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Magnetically mediated superconductivity: Crossover from cubic to tetragonal lattice
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We compare predictions of the mean-field theory of superconductivity for nearly antiferromagnetic and
nearly ferromagnetic metals for cubic and tetragonal lattices. The calculations are based on the parametrization
of an effective interaction arising from the exchange of the magnetic fluctuations and assume that a single band
is relevant for superconductivity. The results show that for comparable model parameters, the robustness of
magnetic pairing increases gradually as one goes from a cubic structure to a more and more anisotropic
tetragonal structure either on the border of antiferromagnetism or ferromagnetism.
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[. INTRODUCTION pects that the robustness of magnetic pairing to be very sen-
sitive to details of the electronic and lattice structures.

One can expect that the effective interaction between qua- On the border of ferromagnetism, one is not hampered by
siparticles in strongly correlated electron systems to be veryhe oscillatory nature of the magnetic interaction which in
complex. The interaction will depend obviously on the the simplest model is attractive everywhere in space and time
charge, but also more generally on the spin and current cain the spin-triplet channel. At first sight this would seem to
ried by the quasiparticles. On the border of long-range magbe the most favourable case for magnetically mediated su-
netic order it is plausible that the dominant interaction chanperconductivity. However, the results of the numerical calcu-
nel is of magnetic origin and depends on the relative spirdations presented in Ref. 2 indicate that the highest mean
orientations of the interacting quasiparticles. field T, for the cases considered is obtainedderave pair-

It has been shown that this magnetic interaction treated ang in the nearly antiferromagnetic state in a quasi-2D tetrag-
the mean field level can produce anomalous normal statenal lattice. In this particular case, as explained in Ref. 2, it
properties and superconducting instabilities to anisotropiturns out to be possible to ideally match the Cooper pair state
pairing states. It correctly predicted the symmetry of theto the attractive regions of the magnetic interaction.

Cooper state in the copper oxide superconduttarsl is On the border of ferromagnetism, magnetic pairing in the
consistent with spin-triplep-wave pairing in superfluidHe  spin-triplet state has the disadvantage that only the exchange
[for a recent review see, e.g., Ref]. ©One also gets the of magnetic fluctuations polarized along the direction of the
correct order of magnitude of the superconducting and supeinteracting spins, i.e., longitudinal fluctuations, contribute to
fluid transition temperatur@. when the model parameters the quasiparticle interactions. For a spin-rotationally invari-
are inferred from experiments in the normal state of theant system, both longitudinal and transverse fluctuations con-
above systems. There is growing evidence that the magnetitbute to pairing only for a spin-singlet state.

interaction model may be relevant to other materials on the Another disadvantage of being on the border of ferromag-
border of magnetism. netism is that for otherwise similar conditions the suppres-

Thus far the magnetic interaction model has been exsion of T, due to the self-interaction arising from the ex-
plored in very simple cases. The most extensively investichange of magnetic fluctuations is stronger than in the
gated example is that of a nearly half-filled single band in acorresponding case on the border of antiferromagnetism.
square or cubic lattice. These studies have revealed a numbghis disadvantage can be mitigated in systems with strong
of interesting features that are quite in contrast to those exnagnetic anisotropy in that the effect of the transverse mag-
pected for conventional phonon mediated pairing. In the latnetic fluctuations on the self interaction would be suppressed
ter case, the interaction is local in space, but non-local irwhile the strength of the pairing interaction arising from the
time, whereas on the border of magnetism, one expects tHengitudinal magnetic fluctuations need not be reduced. This
interaction to be strongly nonlocal in both space and timemay apply in systems with strong spin-orbit interactions or in
For nearly antiferromagnetic metals the magnetic interactiothe spin-polarized state close to the border of ferromag-
is oscillatory in space and superconductivity depends on theetism.
ability of the electrons in a Cooper pair state to sample These argument$ have stimulated a new search for evi-
mainly the attractive regions of these oscillations. Because alence of superconductivity on the border of itinerant electron
the strong retardation in time, the relative wave function offerromagnetism in cases where spin anisotropy is expected to
the Cooper pair must be constructed from Bloch states witlbe pronounced, such as UG&his search has proved fruit-
wave vectors close to the Fermi surface. Furthermore, th&l because it led to the first observation of the coexistence of
allowed symmetries of the Cooper pair wave function aresuperconductivity and itinerant electron ferromagnetism in
restricted by the crystal structure. The possibility of con-UGe, (Ref. 5 and shortly thereafter in Zrzn(Ref. 6 and
structing a Cooper pair state with maximum probability in URhGe’
the attractive regions of the magnetic interaction can be se- The prediction of the simple model presented in Ref. 2
verely constrained by these requirements. Therefore, one efiat magnetic pairing is more robust in the quasi-2D square
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lattice than in the cubic structure seems to have been borngect that a simple analytic expression similar to that pro-
out by recent experiments. Namely, one finds an order oposed by McMillan could be used to represent approximately
magnitude increase in the maximufa and in the range in the T; calculated numerically via the Eliashberg equations.
pressure where superconductivity is observed on the bordéur attempts in this direction have not, however, proved
of metallic antiferromagnetism when the simple cubic latticesuccessfut:* A recent study suggests that there may be a
of Celn (Ref. 8 is stretched along one principal axis by the fundamental reason for inapplicability of the McMillan-style
insertion of nonmagnetic layers to form the tetragonal comexpression foiT..** On the border of long-range magnetic
pounds ClIns (Ref. 9 (M is Co, Rh, or Iy. order, the incoherent part of the electron Green function,
These systems, albeit quite anisotropic, would not norWhich is ignored in the simplest treatment, plays a major role
mally be considered to be quasi-two-dimensional and it idn the formation of the Cooper pair condensate. The tradi-
not clear at first sight that the model calculations carried outional picture in which superconductivity arose from pairing
in Ref. 2 are directly relevant. The purpose of this paper is t®f well defined(weakly dampeyi quasiparticles appears in-
show that for comparable model parameters, the robustnegélequate on the border of metallic magnetism even in the
of magnetic pairing increases gradually as one goes from &€an field Eliashberg treatment.
cubic structure to a more and more anisotropic structure on Ve note that in our model the coupling of the quasiparti-
the border of metallic antiferromagnetism and ferromag-Cles to the magnetic fluctuations is a phenomenological con-
netism. This behavior of the mean field transition temperaStant to be inferred from normal state properties that formally
ture is in stark contrast to that of the “one-loop” fluctuations includes that part of the vertex correction which is local in
corrections toT,. The latter corrections typically depend SPace and time. Calculations have shown that the neglect of
logarithmically on the degree of anisotropy and would beVertex corrections that are nonlocal in space and time is jus-
expected to be negligible for materials such a/@w,. tified at.Ieast in some cases of physical |r_1t_ei‘éMIhen the
We do not expect some of the results of Ref. 2 to behagnetic correlation length becomes sufficiently large, how-
generic properties of the magnetic interaction model. WeeVer, these neglected nonlocal vertex correctignsluding
have already stressed that even in simple cases, the robu§tPerconducting phase fluctuatipmsay become important.
ness of magnetic pairing can be very sensitive to certair heir effect onT, and the normal state properties are as yet
details of the lattice and electronic structure. Even in thdncompletely understood.
single band problem, many such structures have not yet been
extensively studied theoretically. Furthermore, we expect Il. MODEL
that the range of possibilities to be greatly expanded in the i o . ) )
presence of more than one partially filled electronic band. ~ We consider quasiparticles in a simple tetragonal lattice
Most known materials on the border of magnetism crys-described by a dispersion relation
tallize in other than simple cubic or tetragonal structure and
have more than one band crossing the Fermi level. For these €= — 2t[cogpy) +cogpy) + a,COP,) ]
more complex systems, one would not expect the model of T
Ref. 2 to be directly relevant. For example, the observation At’[cospy)codpy) + aiCospy)cOp,)
of spin-triplet rather than spin-singlet-wave pairing in + a;cog py)cog p,) ] 2.1
some multiband materials with strongly enhanced antiferro-
magnetic spin fluctuations, such as YBhd SgRuQ,, may  with hopping matrix elements andt’. o, represents the
not be inconsistent with the idea of magnetic pairing. A de-electronic structure anisotropy along thelirection. ;=0
tailed study of magnetic pairing in multiband systems for acorresponds to the quasi-2D limit while,=1 corresponds
range of crystal structures would shed light on the possibl¢o the 3D cubic lattice. For simplicity, we measure all lengths
forms of superconductivity and the conditions most favor-in units of the respective lattice spacing. In order to reduce
able for their observation. the number of independent parameters, we teke0.45
The simple model calculations suggest that anisotropi@nd a band filling facton=1.1 as in our earlier work.
forms of superconductivity should be a generic property of The effective interaction between quasiparticles is as-
systems on the border of metallic magnetism. It may seensumed to be isotropic in spin space and is defined in terms of
surprising therefore that there are still so few observations othe coupling constarg and the generalized magnetic suscep-
this phenomenon. In many cases, the multiplicity of bandgibility which is assumed to have a simple analytical form
and, for example, magnetic fluctuations in the nonbipartiteconsistent with the symmetry of the lattice
lattice may weaken magnetic pairing to such an extent that

guenched disorder may completely suppress superconductiv- XOK(Z)

ity. An illustration of this point is the dramatic collapse of the x(qw)=—m—7—, (2.2
spin-triplet  superconducting transition temperature in K2+E|2—i e

Sr,RUQ, in the presence of Al impurity concentrations as 7(q)

low as 0.1%.

At first sight, the magnetic interaction model is math- where x and «, are the correlation wave vectors or inverse
ematically analogous to the conventional electron-phonomorrelation lengths in units of the lattice spacing in the basal
problem with the generalized magnetic susceptibility playingplane, with and without strong magnetic correlations, respec-
the role of the phonon propagator. One would therefore extively. Let
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N2 _ 2(c) for a nearly ferromagnetic metal. Note that our previous
S=(4+2 +2[co +co + aco , ; .
G = (4 2am) = 2[ COS )+ COKdy) + anCOL )] (2.3  calculations correspond to the quasi-2D case a,=0 and
to 3D casex;=a,,=1.

where ar, parameterizes the magnetic anisotropy,=0 A glance at Fig. 1 reveals a clear pattern in the variation

corresponds to quasi-2D magnetic correlations aRg=1  of T, with both anisotropy parametess ande,,. We notice

corresponds to 3D magnetic correlations. that T, increases gradually and monotonically as the system

__Inthe case of a nearly ferromagnetic metal the parameteligecomes more and more anisotropic in either the electronic

q? and 5(q) in Eq. (2.2 are defined as structure or in the magnetic interaction. In going from 3D to
. quasi-2D,T./Tge is found to increase by up to an order of
9’=q°, 2.4 magnitude for otherwise fixed parameters of the model. The
. . increase becomes least pronounced as for seladind large

7(a)=Tsd -, (25  g’xolt.

The behavior in the nearly ferromagnetic case, Fig. 2,
‘though broadly similar to that of the nearly antiferromagnetic
.y . . metal, shows some interesting differences. In some cases, the
teristic spin fluctuation temperature scales used by 0theﬁwinimumTC occurs for 3D electronic structure, but quasi-2D

autlf;lotrﬁ. . f a nearlv antiferromaanetic metal. th magnetic interaction. Also, in all cases considered the maxi-
€ case o eary erromagne etal, e P um T. is obtained for a quasi-2D electronic structure and

rametersy” and (q) in Eq. (2.2 are defined as strongly anisotropic, but not 2D magnetic interactions.

9*=q7, (2.6

where Tgr is a characteristic spin fluctuation temperature
Note that our definition off s may differ from the charac-

B. Mass renormalization and interaction parameter

7(Q)=Ts_ . (2.7) In order to make a comparison with the corresponding
electron-phonon problem it is instructive to define a mass
As in our previous work;? the band structure and gener- renormalization parametar, and interaction parametar, .
alized magnetic susceptibility are modeled independentlyWe define
This choice may be inconsistent when all of the contributions
to x(g,w) come from the chosen band. However, it allows f*‘”dw< 1

li
us, in principle, to deal with the case where there are other T\ gmVz(p—p'e)

>FS(F>,P’)

important contributions to the generalized magnetic suscep- Ay= ,

tibility. It has been argued that the latter case is of relevance (Dese)

to the ruthenate¥, and most likely the heavy-fermion sys-

tems. A complete description of the model, the Eliashberg f“"dw 1| Vv , ,

equations for the superconducting transition temperature and © mVa(p=p",@)7(p)n(p) S

their method of solution can be found in the Appendix. ANa=— 5 ©p ),
We note that the model is fully defined by the phenom- (7°(P))Esp)

enological parameters describing the electronic struatyre 3.2

the generalized magnetic susceptibilitfq, ) and the inter-  \here

action vertexg. In principle, these parameters can be esti-

mated from experimental studies of the normal state. In par- V(q,)=0g%x(q, o) (3.3

ticular, the resistivity can be used to estimate the

dimensionless coupling parametgy,/t the value of which  and

is between 10 and 20 for the simplest RPA model for the

magnetic interaction.

(3.9

— o0

2
g
Vp(q0)==ZFx(q,0), (3.9
IIl. RESULTS
A. Solution of the Eliashberg equations forT, 7(p) = sin(py) (3.9

The dimensionless parameters at our disposatarg/t, for p-wave spin triplet pairing £ =p) while
Tgelt, kg, and k. For comparison with the results of our

earlier work™? we takeTge= 3t andx3=12. In 2D, thisT¢ Vi(9,0)=9%x(q, ), (3.6)
corresponds to about 1000 K for a bandwidth of 1 eV while
our choice of of«3 is a representative value. n(p) =cog py) —cog py) (3.7

The results of our numerical calculations of the mean field o o )
critical temperatureT, as a function of the electronic and in the case oti-wave Spln-smglet pairing{=d). The Fermi
magnetic anisotropy parametetrsanda,,, respectively, are Surface averages are given by
shown in Figs. 1 and 2 for representative values of the pa- 4
rametersx? and g2y, /t. Figures 1a)— 1(c) illustrate the _f p B
results for a nearly antiferromagnetic metal and Figa)-2 (- drse = (277)a olep= ), 3.8
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Nearly Antiferromagnetic: k2= 0.25 ; g° Xo /t=5

(a)
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Nearly Ferromagnetic: 2=0.25; g2 Xo /t=5
(a)

Tc /Tsf

0.8 0.2
0 Magnetic anisotropy

0.2
10 Magnetic anisotropy

Electronic anisotropy Electronic anisotropy

Nearly Ferromagnetic: 2=0.50; g2 Xo /t=10
(b)

Nearly Antiferromagnetic: x2=0.50; g2 Xxo /t=10
(b)

T /Tef L

0.8 0z 1 t
0 Magnetic anisotropy Electronic anisotropy o

0.8 0.2 Oy

Electronic anisotropy o
Magnetic anisotropy

Nearly Ferromagnetic: k2=1.00; g2 Xo /t=10

©

Nearly Antiferromagnetic: k> =1.00; g0 /t = 10
©

To Mgt T /Mt

0.015
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0.005

0.2
Magnetic anisotropy

0.8 0.2

Electronic anisotropy Magnetic anisotropy

FIG. 1. Eliashberd . /Tg for nearly antiferromagnetic systems FIG. 2. Eliashberd . /T for nearly ferromagnetic systems as a
as a function of the electronic anisotropy parametgrand the  function of the electronic anisotropy paramesgrand the magnetic
magnetic anisotropy parameter, for representative values of the anisotropy parametet,, for representative values of the correlation
correlation wave vectok? and coupling constarg®y,/t. (a8 x>  wave vector x> and coupling constang®yo/t. (8 «?=0.25,
=0.25, g%xo/t=5. (b) «?>=0.50, g°xo/t=10. (c) «?>=1.00, g?xo/t=5. (b) «?>=0.50, g?xo/t=10. (c) «>=1.00, g°x,/t
9%x0/t=10. ay=a,=0 corresponds to the 2D limit while, =10. a;=a,=0 corresponds to the 2D limit while,,= ;=1
=a,=1 corresponds to an isotropic 3D system. corresponds to an isotropic 3D system.
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/

(- Vesppn) = J'( 2m 2 )d - O(€p— ) eg— ).
(3.9

In practice, we compute the Fermi surface average with a
discrete set of momenta on a cubic or tretragonal lattice and
we replace the delta function by a finite temperature expres-
sion

f —w E (3.10

1
5(€p_ﬂ)_)?fp(1_fp)a (3.11
where f, is the Fermi function. Note that (Ljf,(1—f,)

— 8(ep—p) asT—0. We have used=0.1t andN= 12¢

in all of our calculations. The finite temperature effectively

means that van Hove singularities will be smeared out.
Note that the Fermi surface average that appears;in

Eq.(3.1) plays a role similar to that ak’F (w)/w in the case

of phonon mediated superconductivity. From the definitions

of the parametera; , Egs.(3.1), (3.2 and our model for

x(q,0) Eq.(2.2), we see thah, , are directly proportional

to the dimensionless factg2X0K0/t Thus we will consider

the quantities

A5 A=zl (9%xoK5/t) (3.12

which are functions only of, t’/t and 2. In Figs. 3 and 4
we show\3 , \X and the ratio, /\, for a representative
value of k2 in the case of a nearly antiferromagnetic metal
and nearly ferromagnetic metal, respectively.

The trends in both cases are the sanjeand\} are seen
to increase gradually and monotonically in going from 3D to
quasi-2D. However\} grows faster than\3 so the ratio
Ma /N7 also increases in going from 3D to quasi-2D. This
qualitative trend in the ratio is consistent with the behavior
of T, obtained from the numerical solution of the Eliashberg
equations. In the ferromagnetic case, however, it fails to re-
produce the fact that the minimufi, is not necessary for a
fully 3D system and that the maximuif, is obtained for
strongly anisotropic yet not quasi-2D systems.

IV. DISCUSSION

The results of the calculations for both the nearly ferro-
magnetic and nearly antiferromagnetic metals show that the
robustness of magnetic pairing increases gradually as one
goes from a cubic to a more and more anisotropic structure
with parameters other tham,, and ¢, left unchanged. These
results are consistent with our previous findigsd with
the calculations foe,,= &,=0 anda,= a;=1 presented in
Ref. 13. In an earlier study, Nakamueaal } found thatT,
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Nearly Antiferromagnetic: K

(a)

0.2
Magnetic anisotropy

22025

Nearly Antiferromagnetic: K

(b)

0.2

Electronic anisotropy Magnetic anisotropy

10

=0.25

Nearly Antiferromagnetic: K 2

(©)

)\d/)\:z

0.6
0.4

0.2

Electronic anisotropy

FIG. 3. Interaction parameter® \3, (b) A} and ratio(c)
Ng/\z for nearly antiferromagnetic metals for a representative
value of k?=

0.25.

could increase by up to a factor of 3 in going from 3D to 2D states of both the quasiparticles and of the magnetic fluctua-
for their choice of model parameters. The effect of anisottions that mediate the quasiparticle interaction. This effect
ropy onT, for nearly ferromagnetic and nearly antiferromag- could be further enhanced in the case of a nearly antiferro-
netic metals is qualitatively similar. This phenomenon arisesnagnetic metal by the change in the pattern of the oscilla-
from the increase with growing anisotropy of the density oftions of the magnetic interaction.
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Nearly Ferromagnetic: k2 =025
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FIG. 4. Interaction parametel®) A3, (b) A}, and ratio(c)
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\)

aQ

FIG. 5. The magnetic potential seen by a quasiparticle in a spin-
singletd,2_,2 Cooper pair state given that the other quasiparticle is
at the origin(marked by a crogsThe figure depicts the evolution of
the potential as one goes from a cubic to a tetragonal lattice by
varying the parameter,,. Closed circles denote repulsive sites and
open circles attractive ones. The size of the circle is a measure of
the strength of the interaction. The nodal plane ofdhe . state
are represented by the shaded region.

more and more anisotropic tetragonal lattice. This enhance-
ment is the consequence of the increase of the phase space of
soft magnetic fluctuations as one goes from a cubic to a
quasi-two-dimensional structure. Since our model potential
varies smoothly with the tetragonal distortion, parametrized
by a,, in Figs. 1 and 2, it is clear that these effects occur
gradually with increasing separation between the basal
planes.

The calculations assume that the maximum magnetic re-
sponse for a nearly antiferromagnetic metal occurs at the
commensurate wave vector defined Qy=Q,=/a and
Q,=mlc, wherea andc are the lattice constants in the basal
plane and along the tetragonal axis, respectively, reintro-
duced here for clarity. The oscillations in the magnetic inter-
action potential along the tetragonal axis obviously depend
on the value of),. However, the enhancement of the attrac-
tion in the basal plane and the reduction of the interaction
elsewhere as one goes from a cubic to a more and more
anisotropic lattice do not depend on the particular value of
Q,. Therefore, we expect the qualitative conclusions of this
paper to be independent q,.

The robustness of the pairing is further enhanced by the
gradual change in the electronic band from a 3D to a
guasi-2D form[see Eq.(2.1)]. The reduced hopping along
the distortion axis, parametrized lay in Figs. 1 and 2, im-
plies a reduced electronic bandwidth and hence increased
density of electronic states. Our calculations show that this
too leads to a gradual increaseTi with increasing distor-

N\, /N7 for nearly ferromagnetic metals for a representative value ofjon of the lattice.

k=0.25.

In a nearly ferromagnetic metal, one again benefits from
the reduction of the electronic band width and the increase of

It can be seen from Fig. 5 that the strength of the interacthe interaction in the basal plane as one goes from a cubic to
tion in the repulsive sites outside of the nodal plane of thea tetragonal latticésee Fig. 6. However, the suppression of
d,2_,2 state gets reduced while crucially the attraction in thethe interaction between the basal planes has a less dramatic
basal plane gets enhanced as one goes from the cubic toe#fect on the border of ferromagnetism than antiferromag-
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would think that the most favorable case for magnetic pair-
ing is that of strong but not extreme anisotropy.

As noted in the Introduction and in the previous two sec-
tions, the robustness of magnetic pairing can be very sensi-
tive to certain details of the magnetic interaction and elec-
tronic structure. Therefore, one should exercise caution in
making quantitative comparisons between the results of our
calculations and experiment. For instance, one would expect
all of the parameters of the modglot solelya,, and ;) to
2 change simultaneously with increasing lattice anisotropy.
The changes brought about in going from a cubic to a tetrag-
onal lattice may even be much more complex than consid-
g Va /4 ered here. In particular, the number of partially filled bands
& may itself change. As also mentioned in the Introduction, this

C/ C could have in some cases even more dramatic consequences
on superconductivity than the effects taken into account in
FIG. 6. The magnetic potential seen by a quasiparticle in a spingyr simple one-band model.
triplet p, Cooper pair state given that the other quasiparticle is at  The theoretical framework developed for systems on the
the origin (marked by a crogsThe figure depicts the evolution of porder of magnetism can be translated to describe systems on
the potential as one goes from a cubic to a tetragonal lattice byha porder of other types of instabilities, such as charge den-
varying the parametet,, . Open circles denote attractive sites. The gy, \vave or ferroelectric instabilities. The above given phase
size of the circle is a measure of the strength of the interaction. Thgpace argument to explain the increased robustness of mag-
nodal plane of thep, state is represented by the shaded region. netic pairing with increasing lattice anisotropy should carry
yer in part to these other pairing mechanisms, at least at the

\)

aQ

N

. . 0
netism because in the latter case one suppresses key repu )
sive regions of the interactiofFig. 5). one-loop mean-field levdkee, e.g., Ref. 15

. : . While some understanding of the properties of the mag-
These simple arguments explain how the pairing effects of .. " . .

. . d . “netic interaction model has been gained over the last few
the interaction are strengthened by a tetragonal distortion mears(e the conditions for robust pairing of electrns
our model. However, the same effects also contribute to a 9. _pairng

. . . ere are many cases where the predictions of the model have
enhanced self-interaction which acts to suppréss The . . .
relative importance of the pair formina and bair breakin not been worked out. Of particular importance is the role of
P 1 e pair 9 P Yihe multiplicity of partially filled bands which may be ex-
effects of the magnetic interaction cannot be inferred by the . . .
ected to be the key to understanding exotic superconductiv-

above physical picture alone. The numerical calculations, " o,coreq in nearly magnetic materials such asuRd
show that for most cases considered here the pair forming RUO y 9 :
2 4 -

effects dominate. The balance is particularly delicate on th
border of ferromagnetism where the suppression Tof
brought about by the self-interaction is pronounced. A physi- ACKNOWLEDGMENTS

cal interpretation of this suppression f is given in Ref. We would like to thank A.V. Chubukov. P. Coleman. S.R.
11. The same interpretation may explain, for example, why; jian pg. Littlewood, A.J. Millis, A.P. Mackenzie, D.
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for a strongly anisotropic yet not quasi-2D pairing potentialyng related topics. We acknowledge the support of the
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A most striking manifestation of the interplay between the

pair-forming and pair-breaking tendency of the magnetic in-
teraction is the breakdown of the McMillan-style expression

for T¢ in terms of the parameteds, and\; [see Eqs(3.1), We consider quasiparticles on a cubic or tetragonal lattice.
and(3.2)]. This was noted in Ref. 2 and has been interpreteqye assume that the dominant scattering mechanism is of

in Ref. 11 in terms of the important role played by the inco-magnetic origin and postulate the following low-energy ef-

simplest treatments, but is included in the present and earlier
work!? where the full momentum and frequency dependence B
. . — t -
of the self-energy is taken into account. Ser= 2 . A7y () (9 €= 1) hp o(T)
pa

APPENDIX

V. OUTLOOK

w0z [l
- dr| d7’ ,T— T ,7)-S(—0q,7),
The calculations show that the lattice anisotropy may in- 6N % 0 0 xa a0 s-q.r)
crease the robustness of magnetic pairing in the mean-field (A1)
approximation. Superconducting phase fluctuations which
are not included in this approximation may be expected tavhereN is the number of allowed wave vectors in the Bril-
suppressT, in the 2D limit. Therefore, in practice, one louin zone and the spin densi§{q,7) is given by
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s(q.r)ngy U () O ylip (T) (A2)

where o denotes the three Pauli matrices. The quasiparticle
dispersion relatiore, is defined in Eq(2.1), « denotes the

PHYSICAL REVIEW B66, 224504 (2002

2
1,

AM®(piwy)=| 3 52 2 x(p—k,ioy
_92 Qn kK

—i0)|G(k,i Q) [2D(k,iQ,),

chemical potential 3 the inverse temperaturg? the cou-
pling constant and/;’(, andy, , are Grassmann variables. In
the following we shall measure temperatures, frequencies,
and energies in the same units.
The retarded generalized magnetic susceptibjitg, w)
that defines the effective interaction, H@\1), is defined in  \yhere S (p,iw,) is the quasiparticle self-energ@(p,iw,)
Eq. (2.2. ) , ) ) . the one-particle Green'’s function, addp,i w,)) the anoma-
The spin-fluctuation propagator on the imaginary axis,oys self-energy. The chemical potential is adjusted to give
x(,ivy) is related to the imaginary part of the responsey, gjectron density ofi=1.1, andN is the total number of
function Imx(q,w), Eq.(2.2), via the spectral representation gjowed wave vectors in the Brillouin zone. In E@\6), the

A(T)=1-T=T,, (AB)

+edw 1M x(q,w)

x(q,ivn>=—f (A3)

e T iV~

To getx(q,iv,) to decay as 1/2n asv,—«, as it should, we
introduce a cutofiwy and take Imy(q,w)=0 for w=wy. A
natural choice for the cutoff iswg= n(d)K%. We have

prefactorg?/3 is for triplet pairing while the prefactor g2 is
appropriate for singlet pairing. Only the longitudinal spin-
fluctuation mode contributes to the pairing amplitude in the
triplet channel. Both transverse and longitudinal spin-
fluctuation modes contribute to the pairing amplitude in the
singlet channel. All three modes contribute to the quasiparti-
cle self-energy.

checked that our results for the critical temperature are not The momentum convolutions in Eg6Ad) and (A6) are

sensitive to the particular choice af, used.
The Eliashberg equations for the critical temperafiy@

carried out with a fast Fourier transform algorithm on a
48X 48%x 48 lattice. The frequency sums in both the self-

the Matsubara representation reduce, for the effective actio(gnergy and linearized gap equations are treated with the

Eq. (Al), to

.
S(pion)=g7g 2 2 x(P—kion=iQ)G(kiQp),
” (A%)

1
wn_(ep_ﬂ)_z(priwn)

G(p,iwy)= i , (A5)

renormalization group technique of Pao and Bickérgve

have kept between 8 and 16 Matsubara frequencies at each
stage of the renormalization procedure, starting with an ini-
tial temperaturel = 0.6t and cutoff() .~ 30t. The renormal-
ization group acceleration technique restricts one to a dis-
crete set of temperature$,>T,>T,---. The critical
temperature at which (T)=1 in Eq.(A6) is determined by
linear interpolation.
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