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Magnetically mediated superconductivity: Crossover from cubic to tetragonal lattice

P. Monthoux and G. G. Lonzarich
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 23 July 2002; published 12 December 2002!

We compare predictions of the mean-field theory of superconductivity for nearly antiferromagnetic and
nearly ferromagnetic metals for cubic and tetragonal lattices. The calculations are based on the parametrization
of an effective interaction arising from the exchange of the magnetic fluctuations and assume that a single band
is relevant for superconductivity. The results show that for comparable model parameters, the robustness of
magnetic pairing increases gradually as one goes from a cubic structure to a more and more anisotropic
tetragonal structure either on the border of antiferromagnetism or ferromagnetism.
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I. INTRODUCTION

One can expect that the effective interaction between q
siparticles in strongly correlated electron systems to be v
complex. The interaction will depend obviously on th
charge, but also more generally on the spin and current
ried by the quasiparticles. On the border of long-range m
netic order it is plausible that the dominant interaction ch
nel is of magnetic origin and depends on the relative s
orientations of the interacting quasiparticles.

It has been shown that this magnetic interaction treate
the mean field level can produce anomalous normal s
properties and superconducting instabilities to anisotro
pairing states. It correctly predicted the symmetry of t
Cooper state in the copper oxide superconductors3 and is
consistent with spin-tripletp-wave pairing in superfluid3He
@for a recent review see, e.g., Ref. 4#. One also gets the
correct order of magnitude of the superconducting and su
fluid transition temperatureTc when the model parameter
are inferred from experiments in the normal state of
above systems. There is growing evidence that the magn
interaction model may be relevant to other materials on
border of magnetism.

Thus far the magnetic interaction model has been
plored in very simple cases. The most extensively inve
gated example is that of a nearly half-filled single band i
square or cubic lattice. These studies have revealed a nu
of interesting features that are quite in contrast to those
pected for conventional phonon mediated pairing. In the
ter case, the interaction is local in space, but non-loca
time, whereas on the border of magnetism, one expects
interaction to be strongly nonlocal in both space and tim
For nearly antiferromagnetic metals the magnetic interac
is oscillatory in space and superconductivity depends on
ability of the electrons in a Cooper pair state to sam
mainly the attractive regions of these oscillations. Becaus
the strong retardation in time, the relative wave function
the Cooper pair must be constructed from Bloch states w
wave vectors close to the Fermi surface. Furthermore,
allowed symmetries of the Cooper pair wave function
restricted by the crystal structure. The possibility of co
structing a Cooper pair state with maximum probability
the attractive regions of the magnetic interaction can be
verely constrained by these requirements. Therefore, one
0163-1829/2002/66~22!/224504~8!/$20.00 66 2245
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pects that the robustness of magnetic pairing to be very
sitive to details of the electronic and lattice structures.

On the border of ferromagnetism, one is not hampered
the oscillatory nature of the magnetic interaction which
the simplest model is attractive everywhere in space and t
in the spin-triplet channel. At first sight this would seem
be the most favourable case for magnetically mediated
perconductivity. However, the results of the numerical cal
lations presented in Ref. 2 indicate that the highest m
field Tc for the cases considered is obtained ford-wave pair-
ing in the nearly antiferromagnetic state in a quasi-2D tetr
onal lattice. In this particular case, as explained in Ref. 2
turns out to be possible to ideally match the Cooper pair s
to the attractive regions of the magnetic interaction.

On the border of ferromagnetism, magnetic pairing in t
spin-triplet state has the disadvantage that only the excha
of magnetic fluctuations polarized along the direction of t
interacting spins, i.e., longitudinal fluctuations, contribute
the quasiparticle interactions. For a spin-rotationally inva
ant system, both longitudinal and transverse fluctuations c
tribute to pairing only for a spin-singlet state.

Another disadvantage of being on the border of ferrom
netism is that for otherwise similar conditions the suppr
sion of Tc due to the self-interaction arising from the e
change of magnetic fluctuations is stronger than in
corresponding case on the border of antiferromagneti
This disadvantage can be mitigated in systems with str
magnetic anisotropy in that the effect of the transverse m
netic fluctuations on the self interaction would be suppres
while the strength of the pairing interaction arising from t
longitudinal magnetic fluctuations need not be reduced. T
may apply in systems with strong spin-orbit interactions or
the spin-polarized state close to the border of ferrom
netism.

These arguments1,2 have stimulated a new search for ev
dence of superconductivity on the border of itinerant elect
ferromagnetism in cases where spin anisotropy is expecte
be pronounced, such as UGe2. This search has proved fruit
ful because it led to the first observation of the coexistence
superconductivity and itinerant electron ferromagnetism
UGe2 ~Ref. 5! and shortly thereafter in ZrZn2 ~Ref. 6! and
URhGe.7

The prediction of the simple model presented in Ref
that magnetic pairing is more robust in the quasi-2D squ
©2002 The American Physical Society04-1
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lattice than in the cubic structure seems to have been b
out by recent experiments. Namely, one finds an orde
magnitude increase in the maximumTc and in the range in
pressure where superconductivity is observed on the bo
of metallic antiferromagnetism when the simple cubic latt
of CeIn3 ~Ref. 8! is stretched along one principal axis by th
insertion of nonmagnetic layers to form the tetragonal co
pounds CeM In5 ~Ref. 9! (M is Co, Rh, or Ir!.

These systems, albeit quite anisotropic, would not n
mally be considered to be quasi-two-dimensional and i
not clear at first sight that the model calculations carried
in Ref. 2 are directly relevant. The purpose of this paper is
show that for comparable model parameters, the robust
of magnetic pairing increases gradually as one goes fro
cubic structure to a more and more anisotropic structure
the border of metallic antiferromagnetism and ferroma
netism. This behavior of the mean field transition tempe
ture is in stark contrast to that of the ‘‘one-loop’’ fluctuation
corrections toTc . The latter corrections typically depen
logarithmically on the degree of anisotropy and would
expected to be negligible for materials such as CeM In5.

We do not expect some of the results of Ref. 2 to
generic properties of the magnetic interaction model.
have already stressed that even in simple cases, the ro
ness of magnetic pairing can be very sensitive to cer
details of the lattice and electronic structure. Even in
single band problem, many such structures have not yet b
extensively studied theoretically. Furthermore, we exp
that the range of possibilities to be greatly expanded in
presence of more than one partially filled electronic band

Most known materials on the border of magnetism cr
tallize in other than simple cubic or tetragonal structure a
have more than one band crossing the Fermi level. For th
more complex systems, one would not expect the mode
Ref. 2 to be directly relevant. For example, the observat
of spin-triplet rather than spin-singletd-wave pairing in
some multiband materials with strongly enhanced antife
magnetic spin fluctuations, such as UPt3 and Sr2RuO4, may
not be inconsistent with the idea of magnetic pairing. A d
tailed study of magnetic pairing in multiband systems fo
range of crystal structures would shed light on the poss
forms of superconductivity and the conditions most fav
able for their observation.

The simple model calculations suggest that anisotro
forms of superconductivity should be a generic property
systems on the border of metallic magnetism. It may se
surprising therefore that there are still so few observation
this phenomenon. In many cases, the multiplicity of ban
and, for example, magnetic fluctuations in the nonbipar
lattice may weaken magnetic pairing to such an extent
quenched disorder may completely suppress supercondu
ity. An illustration of this point is the dramatic collapse of th
spin-triplet superconducting transition temperature
Sr2RuO4 in the presence of Al impurity concentrations
low as 0.1%.

At first sight, the magnetic interaction model is mat
ematically analogous to the conventional electron-pho
problem with the generalized magnetic susceptibility play
the role of the phonon propagator. One would therefore
22450
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pect that a simple analytic expression similar to that p
posed by McMillan could be used to represent approxima
the Tc calculated numerically via the Eliashberg equatio
Our attempts in this direction have not, however, prov
successful.1,2 A recent study suggests that there may be
fundamental reason for inapplicability of the McMillan-sty
expression forTc .11 On the border of long-range magnet
order, the incoherent part of the electron Green functi
which is ignored in the simplest treatment, plays a major r
in the formation of the Cooper pair condensate. The tra
tional picture in which superconductivity arose from pairin
of well defined~weakly damped! quasiparticles appears in
adequate on the border of metallic magnetism even in
mean field Eliashberg treatment.

We note that in our model the coupling of the quasipa
cles to the magnetic fluctuations is a phenomenological c
stant to be inferred from normal state properties that forma
includes that part of the vertex correction which is local
space and time. Calculations have shown that the neglec
vertex corrections that are nonlocal in space and time is
tified at least in some cases of physical interest.12 When the
magnetic correlation length becomes sufficiently large, ho
ever, these neglected nonlocal vertex corrections~including
superconducting phase fluctuations! may become important
Their effect onTc and the normal state properties are as
incompletely understood.

II. MODEL

We consider quasiparticles in a simple tetragonal latt
described by a dispersion relation

ep522t@cos~px!1cos~py!1a tcos~pz!#

24t8@cos~px!cos~py!1a tcos~px!cos~pz!

1a tcos~py!cos~pz!# ~2.1!

with hopping matrix elementst and t8. a t represents the
electronic structure anisotropy along thez direction. a t50
corresponds to the quasi-2D limit whilea t51 corresponds
to the 3D cubic lattice. For simplicity, we measure all lengt
in units of the respective lattice spacing. In order to redu
the number of independent parameters, we taket850.45t
and a band filling factorn51.1 as in our earlier work.

The effective interaction between quasiparticles is
sumed to be isotropic in spin space and is defined in term
the coupling constantg and the generalized magnetic susce
tibility which is assumed to have a simple analytical for
consistent with the symmetry of the lattice

x~q,v!5
x0k0

2

k21q̂22 i
v

h~ q̂!

, ~2.2!

wherek andk0 are the correlation wave vectors or inver
correlation lengths in units of the lattice spacing in the ba
plane, with and without strong magnetic correlations, resp
tively. Let
4-2
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MAGNETICALLY MEDIATED SUPERCONDUCTIVITY: . . . PHYSICAL REVIEW B 66, 224504 ~2002!
q̂6
2 5~412am!62@cos~qx!1cos~qy!1amcos~qz!#,

~2.3!

where am parameterizes the magnetic anisotropy.am50
corresponds to quasi-2D magnetic correlations andam51
corresponds to 3D magnetic correlations.

In the case of a nearly ferromagnetic metal the parame
q̂2 andh(q̂) in Eq. ~2.2! are defined as

q̂25q̂2
2 , ~2.4!

h~ q̂!5TSFq̂2 , ~2.5!

where TSF is a characteristic spin fluctuation temperatu
Note that our definition ofTSF may differ from the charac-
teristic spin fluctuation temperature scales used by o
authors.

In the case of a nearly antiferromagnetic metal, the
rametersq̂2 andh(q̂) in Eq. ~2.2! are defined as

q̂25q̂1
2 , ~2.6!

h~ q̂!5TSFq̂2 . ~2.7!

As in our previous work,1,2 the band structure and gene
alized magnetic susceptibility are modeled independen
This choice may be inconsistent when all of the contributio
to x(q,v) come from the chosen band. However, it allow
us, in principle, to deal with the case where there are o
important contributions to the generalized magnetic susc
tibility. It has been argued that the latter case is of releva
to the ruthenates,10 and most likely the heavy-fermion sys
tems. A complete description of the model, the Eliashb
equations for the superconducting transition temperature
their method of solution can be found in the Appendix.

We note that the model is fully defined by the pheno
enological parameters describing the electronic structureep ,
the generalized magnetic susceptibilityx(q,v) and the inter-
action vertexg. In principle, these parameters can be e
mated from experimental studies of the normal state. In p
ticular, the resistivity can be used to estimate t
dimensionless coupling parameterg2x0 /t the value of which
is between 10 and 20 for the simplest RPA model for
magnetic interaction.

III. RESULTS

A. Solution of the Eliashberg equations forTc

The dimensionless parameters at our disposal areg2x0 /t,
TSF/t, k0, and k. For comparison with the results of ou
earlier work,1,2 we takeTSF5

2
3 t andk0

2512. In 2D, thisTSF

corresponds to about 1000 K for a bandwidth of 1 eV wh
our choice of ofk0

2 is a representative value.
The results of our numerical calculations of the mean fi

critical temperatureTc as a function of the electronic an
magnetic anisotropy parametersa t andam , respectively, are
shown in Figs. 1 and 2 for representative values of the
rametersk2 and g2x0 /t. Figures 1~a!– 1~c! illustrate the
results for a nearly antiferromagnetic metal and Figs. 2~a!–
22450
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2~c! for a nearly ferromagnetic metal. Note that our previo
calculations correspond to the quasi-2D casea t5am50 and
to 3D casea t5am51.

A glance at Fig. 1 reveals a clear pattern in the variat
of Tc with both anisotropy parametersa t andam . We notice
that Tc increases gradually and monotonically as the sys
becomes more and more anisotropic in either the electro
structure or in the magnetic interaction. In going from 3D
quasi-2D,Tc /TSF is found to increase by up to an order
magnitude for otherwise fixed parameters of the model. T
increase becomes least pronounced as for smallk2 and large
g2x0 /t.

The behavior in the nearly ferromagnetic case, Fig.
though broadly similar to that of the nearly antiferromagne
metal, shows some interesting differences. In some cases
minimumTc occurs for 3D electronic structure, but quasi-2
magnetic interaction. Also, in all cases considered the m
mum Tc is obtained for a quasi-2D electronic structure a
strongly anisotropic, but not 2D magnetic interactions.

B. Mass renormalization and interaction parameter

In order to make a comparison with the correspond
electron-phonon problem it is instructive to define a ma
renormalization parameterlZ and interaction parameterlD .
We define

lZ5

E
2`

1`dv

p K 1

v
Im VZ~p2p8,v!L

FS(p,p8)

^1&FS(p)
, ~3.1!

lD52

E
2`

1`dv

p K 1

v
Im VD~p2p8,v!h~p!h~p8!L

FS(p,p8)

^h2~p!&FS(p)

,

~3.2!

where

VZ~q,v!5g2x~q,v! ~3.3!

and

Vp~q,v!52
g2

3
x~q,v!, ~3.4!

h~p!5sin~px! ~3.5!

for p-wave spin triplet pairing (D[p) while

Vd~q,v!5g2x~q,v!, ~3.6!

h~p!5cos~px!2cos~py! ~3.7!

in the case ofd-wave spin-singlet pairing (D[d). The Fermi
surface averages are given by

^•••&FS(p)5E ddp

~2p!d •••d~ep2m!, ~3.8!
4-3
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FIG. 1. EliashbergTc /TSF for nearly antiferromagnetic system
as a function of the electronic anisotropy parametera t and the
magnetic anisotropy parameteram for representative values of th
correlation wave vectork2 and coupling constantg2x0 /t. ~a! k2

50.25, g2x0 /t55. ~b! k250.50, g2x0 /t510. ~c! k251.00,
g2x0 /t510. a t5am50 corresponds to the 2D limit whilea t

5am51 corresponds to an isotropic 3D system.
22450
FIG. 2. EliashbergTc /TSF for nearly ferromagnetic systems as
function of the electronic anisotropy parametera t and the magnetic
anisotropy parameteram for representative values of the correlatio
wave vector k2 and coupling constantg2x0 /t. ~a! k250.25,
g2x0 /t55. ~b! k250.50, g2x0 /t510. ~c! k251.00, g2x0 /t
510. a t5am50 corresponds to the 2D limit whilea t5am51
corresponds to an isotropic 3D system.
4-4
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MAGNETICALLY MEDIATED SUPERCONDUCTIVITY: . . . PHYSICAL REVIEW B 66, 224504 ~2002!
^•••&FS(p,p8)5E ddp

~2p!d

ddp8

~2p!d
•••d~ep2m!d~ep82m!.

~3.9!

In practice, we compute the Fermi surface average wit
discrete set of momenta on a cubic or tretragonal lattice
we replace the delta function by a finite temperature exp
sion

E ddp

~2p!d → 1

N (
p

, ~3.10!

d~ep2m!→1

T
f p~12 f p!, ~3.11!

where f p is the Fermi function. Note that (1/T) f p(12 f p)
→d(ep2m) as T→0. We have usedT50.1t andN5128d

in all of our calculations. The finite temperature effective
means that van Hove singularities will be smeared out.

Note that the Fermi surface average that appears inlZ ,
Eq. ~3.1! plays a role similar to that ofa2F(v)/v in the case
of phonon mediated superconductivity. From the definitio
of the parameterslZ,D Eqs. ~3.1!, ~3.2! and our model for
x(q,v) Eq. ~2.2!, we see thatlZ,D are directly proportional
to the dimensionless factorg2x0k0

2/t. Thus we will consider
the quantities

lZ,D* [lZ,D /~g2x0k0
2/t ! ~3.12!

which are functions only ofn, t8/t andk2. In Figs. 3 and 4
we showlZ* , lD* and the ratiolD /lZ for a representative
value of k2 in the case of a nearly antiferromagnetic me
and nearly ferromagnetic metal, respectively.

The trends in both cases are the same.lZ* andlD* are seen
to increase gradually and monotonically in going from 3D
quasi-2D. However,lD* grows faster thanlZ* so the ratio
lD /lZ also increases in going from 3D to quasi-2D. Th
qualitative trend in the ratio is consistent with the behav
of Tc obtained from the numerical solution of the Eliashbe
equations. In the ferromagnetic case, however, it fails to
produce the fact that the minimumTc is not necessary for a
fully 3D system and that the maximumTc is obtained for
strongly anisotropic yet not quasi-2D systems.

IV. DISCUSSION

The results of the calculations for both the nearly fer
magnetic and nearly antiferromagnetic metals show that
robustness of magnetic pairing increases gradually as
goes from a cubic to a more and more anisotropic struc
with parameters other thanam anda t left unchanged. These
results are consistent with our previous findings2 and with
the calculations foram5a t50 andam5a t51 presented in
Ref. 13. In an earlier study, Nakamuraet al.14 found thatTc
could increase by up to a factor of 3 in going from 3D to 2
for their choice of model parameters. The effect of anis
ropy onTc for nearly ferromagnetic and nearly antiferroma
netic metals is qualitatively similar. This phenomenon ari
from the increase with growing anisotropy of the density
22450
a
d

s-

s

l

r

-

-
e

ne
re

t-

s
f

states of both the quasiparticles and of the magnetic fluc
tions that mediate the quasiparticle interaction. This eff
could be further enhanced in the case of a nearly antife
magnetic metal by the change in the pattern of the osc
tions of the magnetic interaction.

FIG. 3. Interaction parameters~a! lZ* , ~b! ld* and ratio ~c!
ld /lZ for nearly antiferromagnetic metals for a representat
value ofk250.25.
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It can be seen from Fig. 5 that the strength of the inter
tion in the repulsive sites outside of the nodal plane of
dx22y2 state gets reduced while crucially the attraction in
basal plane gets enhanced as one goes from the cubic

FIG. 4. Interaction parameters~a! lZ* , ~b! lp* , and ratio~c!
lp /lZ for nearly ferromagnetic metals for a representative value
k250.25.
22450
-
e
e
o a

more and more anisotropic tetragonal lattice. This enhan
ment is the consequence of the increase of the phase spa
soft magnetic fluctuations as one goes from a cubic t
quasi-two-dimensional structure. Since our model poten
varies smoothly with the tetragonal distortion, parametriz
by am in Figs. 1 and 2, it is clear that these effects occ
gradually with increasing separation between the ba
planes.

The calculations assume that the maximum magnetic
sponse for a nearly antiferromagnetic metal occurs at
commensurate wave vector defined byQx5Qy5p/a and
Qz5p/c, wherea andc are the lattice constants in the bas
plane and along the tetragonal axis, respectively, rein
duced here for clarity. The oscillations in the magnetic int
action potential along the tetragonal axis obviously depe
on the value ofQz . However, the enhancement of the attra
tion in the basal plane and the reduction of the interact
elsewhere as one goes from a cubic to a more and m
anisotropic lattice do not depend on the particular value
Qz . Therefore, we expect the qualitative conclusions of t
paper to be independent ofQz .

The robustness of the pairing is further enhanced by
gradual change in the electronic band from a 3D to
quasi-2D form@see Eq.~2.1!#. The reduced hopping alon
the distortion axis, parametrized bya t in Figs. 1 and 2, im-
plies a reduced electronic bandwidth and hence increa
density of electronic states. Our calculations show that
too leads to a gradual increase inTc with increasing distor-
tion of the lattice.

In a nearly ferromagnetic metal, one again benefits fr
the reduction of the electronic band width and the increas
the interaction in the basal plane as one goes from a cub
a tetragonal lattice~see Fig. 6!. However, the suppression o
the interaction between the basal planes has a less dram
effect on the border of ferromagnetism than antiferrom

f

FIG. 5. The magnetic potential seen by a quasiparticle in a s
singletdx22y2 Cooper pair state given that the other quasiparticle
at the origin~marked by a cross!. The figure depicts the evolution o
the potential as one goes from a cubic to a tetragonal lattice
varying the parameteram . Closed circles denote repulsive sites a
open circles attractive ones. The size of the circle is a measur
the strength of the interaction. The nodal plane of thedx22y2 state
are represented by the shaded region.
4-6
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MAGNETICALLY MEDIATED SUPERCONDUCTIVITY: . . . PHYSICAL REVIEW B 66, 224504 ~2002!
netism because in the latter case one suppresses key r
sive regions of the interaction~Fig. 5!.

These simple arguments explain how the pairing effect
the interaction are strengthened by a tetragonal distortio
our model. However, the same effects also contribute to
enhanced self-interaction which acts to suppressTc . The
relative importance of the pair forming and pair breaki
effects of the magnetic interaction cannot be inferred by
above physical picture alone. The numerical calculatio
show that for most cases considered here the pair form
effects dominate. The balance is particularly delicate on
border of ferromagnetism where the suppression ofTc
brought about by the self-interaction is pronounced. A phy
cal interpretation of this suppression ofTc is given in Ref.
11. The same interpretation may explain, for example, w
the maximum ofTc /TSF in the nearly ferromagnetic case
for a strongly anisotropic yet not quasi-2D pairing potent
~Fig. 2!.

A most striking manifestation of the interplay between t
pair-forming and pair-breaking tendency of the magnetic
teraction is the breakdown of the McMillan-style express
for Tc in terms of the parameterslD andlZ @see Eqs.~3.1!,
and~3.2!#. This was noted in Ref. 2 and has been interpre
in Ref. 11 in terms of the important role played by the inc
herent part of the Green function which is ignored in t
simplest treatments, but is included in the present and ea
work1,2 where the full momentum and frequency depende
of the self-energy is taken into account.

V. OUTLOOK

The calculations show that the lattice anisotropy may
crease the robustness of magnetic pairing in the mean-
approximation. Superconducting phase fluctuations wh
are not included in this approximation may be expected
suppressTc in the 2D limit. Therefore, in practice, on

FIG. 6. The magnetic potential seen by a quasiparticle in a s
triplet px Cooper pair state given that the other quasiparticle is
the origin ~marked by a cross!. The figure depicts the evolution o
the potential as one goes from a cubic to a tetragonal lattice
varying the parameteram . Open circles denote attractive sites. T
size of the circle is a measure of the strength of the interaction.
nodal plane of thepx state is represented by the shaded region.
22450
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would think that the most favorable case for magnetic pa
ing is that of strong but not extreme anisotropy.

As noted in the Introduction and in the previous two se
tions, the robustness of magnetic pairing can be very se
tive to certain details of the magnetic interaction and el
tronic structure. Therefore, one should exercise caution
making quantitative comparisons between the results of
calculations and experiment. For instance, one would exp
all of the parameters of the model~not solelyam anda t) to
change simultaneously with increasing lattice anisotro
The changes brought about in going from a cubic to a tetr
onal lattice may even be much more complex than con
ered here. In particular, the number of partially filled ban
may itself change. As also mentioned in the Introduction, t
could have in some cases even more dramatic conseque
on superconductivity than the effects taken into accoun
our simple one-band model.

The theoretical framework developed for systems on
border of magnetism can be translated to describe system
the border of other types of instabilities, such as charge d
sity wave or ferroelectric instabilities. The above given pha
space argument to explain the increased robustness of m
netic pairing with increasing lattice anisotropy should ca
over in part to these other pairing mechanisms, at least a
one-loop mean-field level~see, e.g., Ref. 15!.

While some understanding of the properties of the m
netic interaction model has been gained over the last
years ~e.g., the conditions for robust pairing of electron!,
there are many cases where the predictions of the model
not been worked out. Of particular importance is the role
the multiplicity of partially filled bands which may be ex
pected to be the key to understanding exotic supercondu
ity observed in nearly magnetic materials such as UPt3 and
Sr2RuO4.

ACKNOWLEDGMENTS

We would like to thank A.V. Chubukov, P. Coleman, S.
Julian, P.B. Littlewood, A.J. Millis, A.P. Mackenzie, D
Pines, D.J. Scalapino, and M. Sigrist for discussions on
and related topics. We acknowledge the support of
EPSRC, the Newton Trust and the Royal Society.

APPENDIX

We consider quasiparticles on a cubic or tetragonal latt
We assume that the dominant scattering mechanism i
magnetic origin and postulate the following low-energy e
fective action for the quasiparticles

Seff5(
p,a

E
0

b

dtcp,a
† ~t!~]t1ep2m!cp,a~t!

2
g2

6N (
q
E

0

b

dtE
0

b

dt8x~q,t2t8!s~q,t!•s~2q,t8!,

~A1!

whereN is the number of allowed wave vectors in the Br
louin zone and the spin densitys(q,t) is given by
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s~q,t![ (
p,a,g

cp1q,a
† ~t!sa,gcp,g~t! ~A2!

wheres denotes the three Pauli matrices. The quasipart
dispersion relationep is defined in Eq.~2.1!, m denotes the
chemical potential,b the inverse temperature,g2 the cou-
pling constant andcp,s

† andcp,s are Grassmann variables. I
the following we shall measure temperatures, frequenc
and energies in the same units.

The retarded generalized magnetic susceptibilityx(q,v)
that defines the effective interaction, Eq.~A1!, is defined in
Eq. ~2.2!.

The spin-fluctuation propagator on the imaginary ax
x(q,inn) is related to the imaginary part of the respon
function Imx(q,v), Eq.~2.2!, via the spectral representatio

x~q,inn!52E
2`

1`dv

p

Im x~q,v!

inn2v
. ~A3!

To getx(q,inn) to decay as 1/nn
2 asnn→`, as it should, we

introduce a cutoffv0 and take Imx(q,v)50 for v>v0. A
natural choice for the cutoff isv05h(q̂)k0

2. We have
checked that our results for the critical temperature are
sensitive to the particular choice ofv0 used.

The Eliashberg equations for the critical temperatureTc in
the Matsubara representation reduce, for the effective ac
Eq. ~A1!, to

S~p,ivn!5g2
T

N (
Vn

(
k

x~p2k,ivn2 iVn!G~k,iVn!,

~A4!

G~p,ivn!5
1

ivn2~ep2m!2S~p,ivn!
, ~A5!
v

,

e
P
-

n

et

h

22450
le

s,

,

ot

on

L~T!F~p,ivn!5F g2

3

2g2
G T

N (
Vn

(
k

x~p2k,ivn

2 iVn!uG~k,iVn!u2F~k,iVn!,

L~T!51→T5Tc , ~A6!

whereS(p,ivn) is the quasiparticle self-energy,G(p,ivn)
the one-particle Green’s function, andF(p,ivn) the anoma-
lous self-energy. The chemical potential is adjusted to g
an electron density ofn51.1, andN is the total number of
allowed wave vectors in the Brillouin zone. In Eq.~A6!, the
prefactorg2/3 is for triplet pairing while the prefactor2g2 is
appropriate for singlet pairing. Only the longitudinal spi
fluctuation mode contributes to the pairing amplitude in t
triplet channel. Both transverse and longitudinal sp
fluctuation modes contribute to the pairing amplitude in t
singlet channel. All three modes contribute to the quasipa
cle self-energy.

The momentum convolutions in Eqs.~A4! and ~A6! are
carried out with a fast Fourier transform algorithm on
48348348 lattice. The frequency sums in both the se
energy and linearized gap equations are treated with
renormalization group technique of Pao and Bickers.16 We
have kept between 8 and 16 Matsubara frequencies at
stage of the renormalization procedure, starting with an
tial temperatureT050.6t and cutoffVc'30t.The renormal-
ization group acceleration technique restricts one to a
crete set of temperaturesT0.T1.T2•••. The critical
temperature at whichL(T)51 in Eq. ~A6! is determined by
linear interpolation.
.L.
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