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Possible realization of an ideal quantum computer in Josephson junction array
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We introduce a class of Josephson arrays which have nontrivial topology and exhibit a novel state at low
temperatures. This state is characterized by long-range order in atwo Cooper pair condensate and by a discrete
topological order parameter. These arrays have degenerate ground states with this degeneracy ‘‘protected’’
from the external perturbations~and noise! by the topological order parameter. We show that in ideal condi-
tions the low order effect of the external perturbations on this degeneracy is exactly zero and that deviations
from ideality lead to only exponentially small effects of perturbations. We argue that this system provides a
physical implementation of an ideal quantum computer with a built-in error correction and show that even a
small array exhibits interesting physical properties such as superconductivity with double charge, 4e, and
extremely long decoherence times.
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I. INTRODUCTION

Quantum computing1,2 is, in principle, a very powerful
technique for solving classic ‘‘hard’’ problems such as fa
torizing large numbers3 or sorting large lists.4 The remark-
able discovery of quantum error correction algorithm5

shows there is no problem of principle involved in building
functioning quantum computer. However, implementat
still seems dauntingly difficult: the essential ingredient o
quantum computer is a quantum system with 2K ~with K
;1042106) quantum states which are degenerate~or nearly
so! in the absence of external perturbations and are inse
tive to the ‘‘random’’ fluctuations which exist in every rea
system, but which may be manipulated by controlled ex
nal fields with errors less than 102421026 ~big system sizes
K, are needed to correct the errors; for smaller errors the
of the system,K, gets much smaller!.6 Insensitivity to ran-
dom fluctuations means that any coupling to the exter
environment neither induces transitions among theseK

states nor changes the phase of one state with respe
another. Mathematically, this means that one requires a
tem whose Hilbert space contains a 2K-dimensional subspac
~called ‘‘the protected subspace’’7! within which any local
operatorÔ has ~to a high accuracy! only state-independen
diagonal matrix elements:̂nuÔum&5O0dmn1o@exp(2L)#
whereL is a parameter such as the system size that ca
made as large as desired. It has been very difficult to de
a system which meets these criteria. Many physical syst
~for example, spin glasses8! exhibit exponentially many es
sentially degenerate states, not connected to each othe
local operators. However, the requirement that all diago
matrix elements be equal~up to vanishingly small terms! is
highly nontrivial and puts such systems in a completely n
class. Parenthetically we note that such systems were
cussed in philosophical terms by I. Kant~who termed them
noumenons; in his thinking the noumenal world is impe
etrable but contains comprehensible information! in Ref. 9.

One very attractive possibility, proposed in an importa
0163-1829/2002/66~22!/224503~8!/$20.00 66 2245
-

si-

r-

ze

al

to
s-

be
gn

s

by
al

is-

-

t

paper by Kitaev7 and developed further in Ref. 10 involves
protected subspace11,12 created by a topological degenera
of the ground state. Typically such degeneracy happens if
system has a conservation law such as the conservatio
the parity of the number of ‘‘particles’’ along some long
contour. Physically, it is clear that two states that differ on
by the parity of some large number that cannot be obtai
from any local measurement are very similar to each oth
The model proposed in Ref. 7 has been shown to exh
many properties of the ideal quantum computer; howev
before now no robust and practical implementation w
known. In a recent paper we and others proposed
Josephson-junction network which is an implementation o
similar model with protected degeneracy and which is p
sible ~although difficult! to build in the laboratory.13

In the present paper we develop ideas of Ref. 13 prop
ing a new Josephson-junction network that has a numbe
practical advantages.~i! This network operates in a phas
regime~i.e., when Josephson energy is larger than the ch
ing energy!, which reduces undesired effects of parasi
stray charges.~ii ! All Josephson junctions in this array ar
similar which should simplify the fabrication process.~iii !
This system has 2K degenerate ground states ‘‘protected’’
an even higher extent than in Ref. 13: matrix elements
local operators scale as«L, where«<0.1 is a measure o
nonideality of the system’s fabrication~e.g., the spread o
critical currents of different Josephson junctions and g
metrical areas of different elementary cells in the networ!.
~iv! The new array does not require a fine tuning of its p
rameters into a narrow region. The relevant degrees of f
dom of this new array are described by the model analog
to the one proposed in Ref. 7. Even when such system
small and contains only a few ‘‘protected’’ states its physic
properties are remarkable: it is a superconductor with
elementary charge 4e and the decoherence time of the pr
tected states can be made macroscopic, allowing ‘‘echo’’
periments.

Below we first describe the physical array, and identify
relevant low-energy degrees of freedom and the mathem
©2002 The American Physical Society03-1
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cal model that describes their dynamics. We then show h
the protected states appear in this model, derive the pa
eters of the model, and identify various corrections appea
in a real physical system and their effects. Finally, we disc
how one can manipulate these states in a putative quan
computer and the physical properties expected in small
rays of this type.

II. ARRAY

The basic building block of the lattice is a rhombus ma
of four Josephson junctions with each side of the rhom
containing one Josephson contact. These rhombi form a
agonal lattice as shown in Fig. 1. We denote the center
the hexagons by lettersa,b . . . and the individual rhombi by
(ab),(cd) . . . , because each rhombus has a one-to-one
respondence with the link (ab) between the sites of the tri
angular lattice dual to the hexagonal lattice. The lattice
placed in a uniform magnetic field so that the flux throu

FIG. 1. Examples of the proposed Josephson-junction ar
Thick lines show superconductive wires, and each wire conta
one Josephson junction as shown in the detailed view of one h
gon. The width of each rhombi is such that the ratio of the area
the Star of David to the area of one rhombi is an odd integer.
array is put in magnetic field such that the flux through each
ementary rhombus and through each Star of David~inscribed in
each hexagon! is a half integer. Thin lines show the effective bon
formed by the elementary rhombi. The Josephson coupling
vided by these bonds isp periodic. ~a! Array with one opening;
generally the effective number of qubits,K, is equal to the numbe
of openings. The choice of boundary condition shown here ma
the superconducting phase unique along the entire length of
outer ~inner! boundary, and the state of the entire boundary is
scribed by a single degree of freedom. The topological order par
eter controls the phase difference between inner and outer bo
aries. Each boundary includes one rhombus to allow experim
with flux penetration; magnetic flux through the opening is assum

to be F0 /2( 1
2 1m) with any integerm. ~b! With this choice of

boundary circuits the phase is unique only inside the sectorsAB
and CD of the boundary; the topological degree of freedom co
trols the difference between the phases of these boundaries.
allows a simpler setup of the experimental test for the signature
the ground state described in the text, e.g., by a supercondu
quantum interference device interference experiment sketched
that involves a measuring loop with fluxFm and a very weak junc-
tion J balancing the array.
22450
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each rhombus isF0/2. The geometry is chosen in such a w
that the fluxFs through each Star-of-David model is a ha
integer multiple ofF0 : F5(ns1

1
2 )F0.14 Finally, globally

the lattice contains a number,K, of large openings@the size
of the opening is much larger than the lattice constant
lattice with K51 is shown in Fig. 1~a!#. The dimension of
the protected space will be shown to be equal to 2K. The
system is characterized by the Josephson energyEJ
5(\/2e)I c of each contact and by the capacitance matrix
the islands~vertices of the lattice!. We shall assume~as is
usually the case! that the capacitance matrix is dominated
the capacitances of individual junctions; we write the cha
ing energy asEC5e2/2C. The ‘‘phase regime’’ of the net-
work mentioned above implies thatEJ.EC . The whole sys-
tem is described by the Lagrangian

L5(
( i j )

1

16EC
~ḟ i2ḟ j !

21EJ cos~f i2f j2ai j !, ~1!

where f i are the phases of individual islands andai j are
chosen to produce the correct magnetic fluxes. The Lagra
ian ~1! contains only gauge-invariant phase differences,f i j
5f i2f j2ai j , so it will be convenient sometimes to tre
them as independent variables satisfying the constr
(Gf i j 52pFG /F012pn where the sum is taken ove
closed loopG andn is arbitrary integer.

As will become clear below, it is crucial that the degre
of freedom at the boundary have dynamics identical to th
in the bulk. To ensure this one needs to add additional su
conducting wires and Josephson junctions at the bound
There are a few ways to do this; two examples are show
Fig. 1~a! and Fig. 1~b!: type-I boundary@entire length of
boundaries in Fig. 1~a!, partsAB, CD] and type-II boundary
(BC, AD). For both types of boundaries one needs to
clude in each boundary loop the flux which is equal
Zb* p/2 whereZb is the coordination number of the dual tr
angular lattice site. For instance, for the four coordina
boundary sites one needs to enclose the integer flux in th
contours. In the type-I boundary the entire boundary cor
sponds to one degree of freedom~phase at some point! while
the type-II boundary includes many rhombi so it conta
many degrees of freedom.

Note that each~inner and outer! boundary shown in Fig.
1~a! contains one rhombus. We included it to allow flux
enter and exit through the boundary when it is energetic
favorable.

III. GROUND STATE, EXCITATIONS,
AND TOPOLOGICAL ORDER

In order to identify the relevant degrees of freedom in t
highly frustrated system we consider first an individu
rhombus. As a function of the gauge-invariant phase diff
ence between the far ends of the rhombus the potential
ergy is

U~f i j !522EJ@ ucos~f i j /2!u1usin~f i j /2!u#. ~2!

This energy has two equivalent minima, atf i j 56p/2 which
can be used to construct an elementary unprotected qubit
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Ref. 15. In each of these states the phase changes by6p/4
in each junction clockwise around the rhombus. We den
these states asu↑& andu↓&, respectively. In the limit of large
Josephson energy the space of low-energy states of the
lattice is described by these binary degrees of freedom,
the set of operators acting on these states is given by P
matricessab

x,y,z . We now combine these rhombi into hex
gons forming the lattice shown in Fig. 1. This gives anoth
condition: the sum of phase differences around the hexa
should equal the flux,Fs , through each Star of David in
scribed in this hexagon. The choicef i j 5p/2 is consistent
with flux Fs that is equal to a half-integer number of flu
quanta. This state minimizes the potential energy~2! of the
system. This is, however, not the only choice. Although fl
ping the phase of one dimer changes the phase flux aro
the Star byp and thus is prohibited, flipping two, four, an
six rhombi is allowed; generally the low-energy configur
tions of U(f) satisfy the constraint

P̂a5)
b

sab
z 51, ~3!

where the product runs over all neighbors,b, of site a. The
number of ~classical! states satisfying the constraint~3! is
still huge: the corresponding configurational entropy is
tensive~proportional to the number of sites!. We now con-
sider the charging energy of the contacts, which results in
quantum dynamics of the system. We show that it redu
this degeneracy to a much smaller number 2K. The dynamics
of the individual rhombus is described by a simple Ham
tonianH5 t̃sx but the dynamics of a rhombus embedded
the array is different because individual flips are not comp
ible with the constraint~3!. The simplest dynamics compa
ible with Eq. ~3! contains flips of three rhombi belonging t
the elementary triangle, (a,b,c), Q̂(abc)5sab

x sbc
x sca

x and
therefore the simplest quantum Hamiltonian operating on
subspace defined by Eq.~3! is

H52r (
(abc)

Q(abc) . ~4!

We discuss the derivation of the coefficientr in this Hamil-
tonian and the correction terms and their effects below
first we solve the simplified model~3! and~4!, and show that
its ground state is ‘‘protected’’ in the sense described ab
and that excitations are separated by the gap.16

Clearly, it is very important that the constraint is impos
on all sites, including boundaries. Evidently, some bound
hexagons are only partially complete but the constra
should still be imposed on the corresponding sites of
corresponding triangular lattice. This is ensured by additio
superconducting wires that close the boundary hexagon
Fig. 1.

We note that constraint operators commute not only w
the full Hamiltonian but also with individualQ̂(abc) :

@ P̂a ,Q̂(abc)#50. The Hamiltonian~4! without constraint has
an obvious ground state,u0&, in which sab

x 51 for all
rhombi. This ground state, however, violates the constra
22450
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This can be fixed noting that since operatorsP̂a commute
with the Hamiltonian, any state obtained fromu0& by acting
on it by P̂a is also a ground state. We can now construc
true ground state satisfying the constraint by

uG&5)
a

11 P̂a

A2
u0&. ~5!

Here (11 P̂a) /A2 is a projector onto the subspace satisfyi
the constraint at sitea and preserving the normalization.

Obviously, the Hamiltonian~4! commutes with any prod-
uct of P̂a which is equal to the product ofsab

z operators
around a set of closed loops. These integrals of motion
fixed by the constraint. However, for a topologically no
trivial system there appear a number of other integrals
motion. For a system withK openings a product ofsab

z op-
erators along the contour,g, that begins at one opening an
ends at another~or at the outer boundary, see Fig. 2!

T̂q5)
(gq)

sab
z ~6!

commutes with the Hamiltonian and is not fixed by the co
straint. Physically these operators count the parity of ‘‘u
rhombi along such a contour. The presence of these opera
results in the degeneracy of the ground state. Note that m
tiplying such an operator by an appropriateP̂a gives a simi-
lar operator defined on the shifted contour so all topolo
cally equivalent contours give one new integral of motio
Further, multiplying two operators defined along the co
tours beginning at the same~e.g., outer! boundary and end-
ing in different openings,A, B, is equivalent to the operato
defined on the contour leading fromA to B, so the indepen-
dent operators can be defined, e.g., by the set of contours
begin at one opening and end at the outer boundary. The
uG& constructed above is not an eigenstate of these opera
but this can be fixed by defining

uGf&5)
q

11cqT̂q

A2
uG&, ~7!

wherecq561 is the eigenvalue of theT̂q operator defined
on contourgq . Equation~7! is the final expression for the
ground-state eigenfunctions.

Construction of the excitations is similar to the constru
tion of the ground state. First, one notices that since all
eratorsQ̂abc commute with each other and with the co
straints, any state of the system can be characterized by
eigenvalues (Qabc561) of Q̂abc . The lowest excited state
corresponds to only oneQabc , being 21. Notice that a
simple flip of one rhombus@by operators (ab)

z ] somewhere in
the system changes the sign oftwo Qabc eigenvalues corre-
sponding to two triangles to which it belongs. To chan
only oneQabc one needs to consider a continuous string
these flip operators starting from the boundaryu(abc)&
5v (abc)u0& with v (abc)5)g8s (cd)

z where the product is ove
all rhombi (cd) that belong to the path,g8, that begins at the
3-3
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L. B. IOFFE AND M. V. FEIGEL’MAN PHYSICAL REVIEW B 66, 224503 ~2002!
boundary and ends at (abc) ~see Fig. 2 which shows on
such path!. This operator changes the sign of only oneQabc ,
the one that corresponds to the ‘‘last’’ triangle. This constr
tion does not satisfy the constraint, so we have to apply
same ‘‘fix’’ as for the ground-state construction above,

uv (abc)&5)
q

11cqT̂q

A2
)

a

11 P̂a

A2
v (abc)u0&, ~8!

to get the final expression for the lowest energy excitatio
The energy of each excitation is 2r . Note that a single flip
excitation at a rhombus (ab) can be viewed as a combinatio
of two elementary excitations located at the centers of

FIG. 2. Lower pane: Location of the discrete degrees of freed
responsible for the dynamics of the Josephson-junction array sh
in Fig. 1. The spin degrees of freedom describing the state of
elementary rhombi are located on the bonds of the triangular la
~shown by thick lines! while the constraints are defined on the sit
of this lattice. The dashed line indicates the boundary condi
imposed by a physical circuitry shown in Fig. 1~a!. Contoursg and
g8 are used in the construction of topological order parameter
excitations. Upper pane: The lattice withK53 openings; the
ground state of the Josephson-junction array on this lattice 2k is
eightfold degenerate.
22450
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triangles to which rhombus (ab) belongs and has twice the
energy. Generally, all excited states of the model~4! can be
characterized as a number of elementary excitations~8!, so
they give an exact quasiparticle basis. Note that creatin
quasiparticle at one boundary and moving it to anothe
equivalent to theT̂q operator, so this process acts astq

z in the
space of the 2K degenerate ground states. As will be show
below, in the physical system of Josephson junctions, th
excitations carry charge 2e so that thetq

z process is equiva-
lent to the charge 2e transfer from one boundary to anothe

Consider now the matrix elementsOab5^GauÔuGb& of a
local operator,Ô, between two ground states, e.g., of
operator that is composed of a small number ofsab . To
evaluate this matrix element we first project a general ope
tor onto the space that satisfies the constraint:Ô→PÔP
where P5)a(11 P̂a)/2. The new ~projected! operator is
also local, in that it has the same matrix elements betw
ground states but it commutes with allP̂a . Since it is local it
can be represented as a product ofsz andQ̂ operators which
implies that it also commutes with allT̂q . Thus, its matrix
elements between different states are exactly zero. Fur
using the fact that it commutes withP̂a andT̂q we write the
difference between its diagonal elements evaluated betw
the states that differ by a parity over contourq as

O12O25K 0U)
i

11 P̂i

A2
T̂qÔU0L . ~9!

This equation can be viewed as a sum of products ofsz
operators. Clearly to get a nonzero contribution eachsz

should enter an even number of times. EachP̂ contains a
closed loop of sixsz operators, so any product of these term
is also a collection of a set of closed loops ofsz. In contrast
to it, operatorT̂q contains a product ofsz operators along the
loop g, so the product of them contains a string ofsz opera-
tors along the contour that is topologically equivalent tog.
Thus, one gets a nonzeroO12O2 only for the operatorsÔ
which contain a string ofsz operators along the loop that i
topologically equivalent tog which is impossible for a loca
operator. Thus, we conclude that for this model all nondia
nal matrix elements of a local operator areexactlyzero while
all diagonal areexactlyequal.

IV. EFFECT OF PHYSICAL PERTURBATIONS

We now come back to the original physical system d
scribed by the Lagrangian~1! and derive the parameters o
the model~4! and discuss the most important corrections to
and their effect. We begin with the derivation. In the limit
small charging energy the flip of three rhombi occurs by
virtual process in which the phase,f i , at one~six coordi-
nated! island,i, changes byp. In the quasiclassical limit the
phase differences on the individual junctions aref ind
56p/4; the leading quantum process changes the phas
one junction by 3p/2 and on others by2p/2 changing the
phase across the rhombusf→f1p. The phase differences
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f, satisfy the constraint that the sum of them over the clo
loops remains 2p(n1Fs /F0). The simplest such a proces
preserves the symmetry of the lattice, and changes sim
neously the phase differences on the three rhombi contai
island i keeping all other phases constant. The action
such process is three times the action of elementary tra
tions of individual rhombi,S0:

r'EJ
3/4EC

1/4exp~23S0!, S051.61AEJ /EC. ~10!

In the alternative process the phase differences betweeni and
other islands change in turn, via a high-energy intermed
state in which one phase difference has changed while ot
remained close to their original values. The estimate for
action shows that it is larger than 3S0, so Eq.~10! gives the
dominating contribution. There are in fact many proces
that contribute to this transition: the phase of islandi can
change by6p and in addition in each rombus one ca
choose arbitrarily the junction in which the phase changes
63p/2; the amplitude of all these processes should
added. This does not change the result qualitatively un
these amplitudes exactly cancel each other, which happ
only if the charge of the island is exactly half integer@be-
cause phase and charge are conjugate the amplitude d
ence of the processes that are different by 2p is exp(2piq)].
We assume that in a generic case this cancellation does
occur. External electrical fields~created by, e.g., stra
charges! might induce noninteger charges on each isla
which would lead to a randomness in the phase and am
tude ofr. The phase ofr can be eliminated by a proper gaug
transformationu↑&ab→eiaabu↑&ab and has no effect at all
The amplitude variations result in a position-dependent q
siparticle energy.

We now consider the corrections to the model~4!. One
important source of corrections is the difference of the ac
magnetic flux through each rhombus from the ideal va
F0/2. If this difference is small it leads to the bias of ‘‘up
versus ‘‘down’’ states, and their energy difference becom
2e52pA2(dFd /F0)EJ . Similarly, the difference of the ac
tual flux through the Star of David star and the difference
the Josephson energies of individual contacts leads to
interaction between ‘‘up’’ states:

dH15(
(ab)

Vabsab
z 1 (

(ab),(cd)
V(ab),(cd)sab

z scd
z , ~11!

whereVab5e for uniform field deviating slightly from the
ideal value andV(ab),(cd)Þ0 for rhombi belonging to the
same hexagon. Consider now the effect of perturbations
scribed bydH1, Eq. ~11!. These terms commute with th
constraint but do not commute with the main term,H, so the
ground state is no longeruG6&. In other words, these term
create excitations~8! and give them kinetic energy. In th
leading order of the perturbation theory the ground state

comes uG6&1
e

4r
( (ab)s (ab)

z uGi 6&. Qualitatively, it corre-

sponds to the appearance of virtual pairs of quasiparticle
the ground state. The density of these quasiparticles ise/r .
As long as these quasiparticles do not form a topologic
22450
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nontrivial string all previous conclusions remain valid. How
ever, there is a nonzero amplitude to form such a string—
now exponential in the system size. With exponential ac
racy this amplitude is (e/2r )L which leads to an energy split
ting of the two ground-state levels and the matrix eleme
of typical local operators of the same orderE12E2;O1

2O2;(e/2r )L.
The physical meaning of thev (abc) excitations becomes

more clear if one considers the effect of the addition of o
sz operator to the end of the string defining the quasipartic
it results in the charge transfer of 2e across this last rhom
bus. To prove this, note that the wave function of a sup
conductor corresponding to the state which is a symme
combination ofu↑& and u↓& is periodic with periodp and
thus corresponds to a charge which is a multiple of 4e while
the antisymmetric state corresponds to charge (2n11)2e.
The action of onesz induces the transition between the
states and thus transfers the charge 2e. Thus, these excita
tions carry charge 2e. Note that continuous degrees of fre
dom are characterized by the long range order in cos(2f) and
thus correspond to the condensation of pairs of Cooper p
In other words, this system superconducts with an elem
tary charge 4e and has a gap 2r to the excitations carrying
charge 2e. Similar pairing of Cooper pairs was shown
occur in a chain of rhombi in a recent paper;19 formation of
a classical superconductive state with an effective chargee
in a frustratedKagoméwire network was predicted in Ref
20.

The model~4! completely ignores the processes that v
late the constraint at each hexagon. Such processes m
violate the conservation of the topological invariantsT̂q and
thus are important for a long-time dynamics of the groun
state manifold. In order to consider these processes we n
to go back to the full description involving the continuou
superconducting phasesf i . Since potential energy~2! is pe-
riodic in p it is convenient to separate the degrees of fr
dom into continuous~defined as modulusp) and discrete
parts. Continuous parts have a long-range order:^cos(2f0
22fr)&;1. The elementary excitations of the continuous d
grees of freedom are harmonic oscillations and vortices.
harmonic oscillations interact with discrete degrees of fr
dom only through the local currents that they generate,
ther the potential~2! is very close to the quadratic, so w
conclude that they are practically decoupled from the res
the system. In contrast to this vortices have an import
effect. By construction, the elementary vortex carries fluxp
in this problem. Consider the structure of these vortices
greater detail. The superconducting phase should chang
0 or 2p when one moves around a closed loop. In a h
vortex this is achieved if the gradual change byp is com-
pensated~or augmented! by a discrete change byp on a
string of rhombi which costs no energy. Thus, from the vie
point of discrete degrees of freedom the position of the v
tex is the hexagon where constraint~3! is violated. The en-
ergy of the vortex is found from the usual arguments

Ev~R!5
pEJ

4A6
@ ln~R!1c#, c'1.2; ~12!
3-5
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it is logarithmic in the vortex size,R. The process tha

changes the topological invariant,T̂q , is the one in which
one-half vortex completes a circle around an opening. T
amplitude of such a process is exponentially sm

@ t̃ /Ev(D)#L where t̃ is the amplitude to flip of one rhombu
andL is the length of the shortest path around the open

In the quasiclassical limit the amplitudet̃ can be estimated

analogously to Eq.~10!: t̃;AEJEQ exp(2S0). The half vor-
tices would appear in a realistic system if the flux throu
each hexagon is systematically different from the ideal h
integer value. The presence of free vortices destroys to
logical invariants, so a realistic system should either be
too large~so that deviations of the total flux do not induc
free vortices! or these vortices should be localized in pr
pared traps~e.g., Stars of David with fluxes slightly larger o
smaller thanFs). If the absence of half vortices the model
equivalent to the Kitaev model7 placed on triangular lattice
in the limit of the infinite energy of the excitation violatin
the constraints.

Quantitatively, the expression for the parameters of
model~4! become exact only ifEJ@EC . One expects, how
ever, that the qualitative conclusions remain the same and
formulas derived above provide good estimates of the sc
even for EJ;EC , provided that charging energy is not s
large as to result in a phase transition to a different pha
One expects this transition to occur atEc* 5hEJ with h;1
whose exact value can be reliably determined only from
merical simulations. Practically, since the perturbations
duced by flux deviations fromF0 are proportional to
(dF/F0)EJ /r and r becomes exponentially small at sma
EC , the optimal choice of the parameters for the physi
system isEC'EC* . We show the schematics of the pha
diagram in Fig. 3.21 The ‘‘topological’’ phase is stable in a
significant part of the phase diagram; further since the vo
excitations have logarithmic energy, we expect that t
phase survives at finite temperatures as well. In the ther
dynamic limit, atTÞ0, one gets a finite density of 2e car-
rying excitations@nv;exp(22r/T)# but the vortices remain
absent as long as temperature is below a BKT-like depai
transition for half vortices.

FIG. 3. Schematic of the phase diagram for half integerFs at
low temperatures:dFd is the deviation of the magnetic flux throug
each rhombus from its ideal value. SC stands for usual super
ducting phase, and SCT for the phase with cos(2f) long-range order
of the continuous degrees of freedom and discrete topological o
parameter discussed extensively in the bulk of the paper. The
phase and SC phase are separated by a two-dimensional qua
Ising phase transition.
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V. QUANTUM MANIPULATIONS

We now discuss the manipulation of the protected sta
formed in this system. First, we note that the topologi
invariant T̂q has a simple physical meaning—it is the tot
phase difference~modulus 2p) between the inner and oute
boundaries. This means that measuring this phase differe
measures the state of the qubit. Also, introducing a w
coupling between these boundaries by a very weak Jos
son circuit ~characterized by a small energyeJ) would
change the phase of these states in a controllable man
e.g., in a unitary transformationUz5exp(ieJttq

z). The trans-
formation coupling two qubits can be obtained if one intr
duces a weak Josephson circuit that connects two diffe
inner boundaries~corresponding to different qubits!. Analo-
gously, the virtual process involving half vortex motio
around the opening gives the tunneling amplitude,e t , be-
tween topological sectors, e.g., unitary transformationUx

5exp(itettq
x). This tunneling can be controlled by magnet

field if the system is prepared with some number of vortic
that are pinned in the idle state in a special plaquette wh
the flux is an integer. The slow~adiabatic! change of this flux
towards a normal~half-integer! value would release the vor
tex and result in the transitions between topological sec
with e t; t̃ /D2.

These operations are analogous to usual operations
qubit and are prone to the usual source of errors. This s
tem, however, allows another type of operation that is na
rally discrete. As we show above the transmission of
elementary quasiparticle across the system changes its
by tq

z . This implies that a discrete process of one pair tra
fer across the system is equivalent to thetq

z transformation.
Similarly, a controlled process in which a vortex is mov
around a hole results in a discretetq

x transformation. More-
over, this system allow one to make discrete transformati
such asAtx,z. Consider, for instance, a process in which
changing the total magnetic flux through the system one-
vortex is placed in a center of the system shown in Fig. 1~b!
and then released. It can escape through the left or thro
the right boundary; in one case the state does not chang
another it changes bytx . The amplitudes add, resulting i
the operation (11 i tx)/A2. Analogously, using the electro
static gate~s! to pump one charge 2e from one boundary to
the island in the center of the system and then releasin
results in a (11 i tz)/A2 transformation. These types of pro
cesses allow a straightforward generalization for the ar
with many holes: there an extra half vortex or charge sho
be placed at equal distances from the inner and outer bo
aries.

VI. PHYSICAL PROPERTIES OF SMALL ARRAYS

Even without these applications for quantum computat
the physical properties of this array are remarkable: it exh
its a long-range order in the square of the usual superc
ducting order parameter:̂cos@2(f02fr)#&;1 without the
usual order:̂ cos(f02fr)&50; the charge transferred throug
the system is quantized in units of 4e. This can be tested in
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an interference experiment sketched in Fig. 1~b!, as a func-
tion of external flux,Fm ; the supercurrent through the loo
should be periodic with half the usual period. This simp
array can be also used for a kind of ‘‘spin-echo’’ experime
applying two consecutive operations (11 i tx) /A2 described
above should give again a unique classical state, while
plying only one of them should result in a quantum super
sition of two states with equal weight.

The echo experiment can be used to measure the dec
ence time in this system. Generally one distinguishes
tween processes that flip the classical states and the one
change their relative phases. In NMR literature the form
are referred to as transverse relaxation and the latter as
gitudinal. The transverse relaxation occurs when a vorte
created and then moved around the opening by an exte
noise. Assuming a thermal noise, we estimate the rate of
processt'

21; t̃ exp@2EV(L)/T#. Similarly, the transfer of a
quasiparticle from the outer to the inner boundary chan
the relative phase of the two states, leading to longitud
relaxation. This rate is proportional to the density of qua
particles,t i

215R exp(22r/T). The coefficientR depends on
the details of the physical system. In an ideal system w
some nonzero uniform value ofe @defined above, Eq.~11!#
quasiparticles are delocalized andR;e/L2. Random devia-
tions of fluxesF r from a half-integer value produce random
ness ine, in which case one expects Anderson localization
quasiparticles due tooff-diagonaldisorder, with localization
length of the order of lattice spacing, thusR;ē exp(2cL)
with c;1, and ē is the typical value ofe. Stray charges
induce randomness in the values ofr, i.e., they add some
diagonaldisorder. When the random part ofr, dr , becomes
larger than ē the localization becomes stronger:R
;ē( ē/ d̄r )L where d̄r is the typical value ofdr . Upon a
further increase of stray charge field there appear rare
wherer i is much smaller than an average value. Such a
acts as additional openings in the system. If the density
these sites is significant, the effective length that controls
decoherence becomes the distance between these site
typical EV(L)'EJ'2 K the transverse relaxation tim
reaches seconds forT;0.1 K while realistice/r;0.1 im-
plies that due to a quasiparticle localization in a random c
the longitudinal relaxation reaches the same scale for
tems of sizeL;10; note that temperatureT has to be only
somewhat lower than the excitation gap, 2r , in order to
make the longitudinal rate low.

*Present address: Landau Institute for Theoretical Physics, K
gina 2, Moscow, 117940 Russia.
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Most properties of the array are only weakly sensitive
the effect of stray charges: as discussed above, they resu
a position-dependent quasiparticle potential energy wh
has very little effect because these quasiparticles had no
netic energy and were localized anyway. A direct effect
stray charges on the topologically protected subspace ca
also physically described as a effect of the electrostatic
tential on the states with even and odd charges at the in
boundary; since the absolute value of the charge fluctu
strongly this effect is exponentially weak.

Finally, we remark that the properties of the excitatio
and topological order parameter exhibited by this system
in many respects similar to the properties of the ring e
change and frustrated magnets models discussed recen
Refs. 11, 12, and 22–32.

VII. CONCLUSION

We have shown that a Josephson-junction array of a s
cial type ~shown in Fig. 1! has a degenerate ground sta
described by a topological order parameter. The manifold
these states is protected in the sense that local perturba
have an exponentially weak effect on their relative pha
and transition amplitudes. The main building block of t
array is the rhombus which has two~almost! degenerate
states. In the array discussed here these rhombi are
sembled into hexagons but we expect that lattices in wh
these rhombi form other structures would have similar pr
erties. However, the dynamics of these arrays is describe
quartic-~or higher-! order spin-exchange terms which have
larger barrier in a quasiclassical regime, implying that th
parameterr is much smaller than for the array consider
here. This makes them more difficult to build in the intere
ing regime.
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