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Possible realization of an ideal quantum computer in Josephson junction array
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We introduce a class of Josephson arrays which have nontrivial topology and exhibit a novel state at low
temperatures. This state is characterized by long-range ordéwio@ooper pair condensate and by a discrete
topological order parameter. These arrays have degenerate ground states with this degeneracy “protected”
from the external perturbatioriand nois¢ by the topological order parameter. We show that in ideal condi-
tions the low order effect of the external perturbations on this degeneracy is exactly zero and that deviations
from ideality lead to only exponentially small effects of perturbations. We argue that this system provides a
physical implementation of an ideal quantum computer with a built-in error correction and show that even a
small array exhibits interesting physical properties such as superconductivity with double charged4
extremely long decoherence times.
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[. INTRODUCTION paper by KitaeVand developed further in Ref. 10 involves a
protected subspate'? created by a topological degeneracy
Quantum computinf is, in principle, a very powerful of the ground state. Typically such degeneracy happens if the
technique for solving classic “hard” problems such as fac-system has a conservation law such as the conservation of
torizing large numbersor sorting large list. The remark-  the parity of the number of “particles” along some long
able discovery of quantum error correction algorithms contour. Physically, it is clear that two states that differ only
shows there is no problem of principle involved in building a by the parity of some large number that cannot be obtained
functioning quantum computer. However, implementationfrom any local measurement are very similar to each other.
still seems dauntingly difficult: the essential ingredient of aThe model proposed in Ref. 7 has been shown to exhibit
guantum computer is a quantum system with @ith K many properties of the ideal quantum computer; however,
~10*—10° quantum states which are degener@atenearly before now no robust and practical implementation was

s0) in the absence of external perturbations and are insensfOWn. In a recent paper we and others proposed a
tive to the “random” fluctuations which exist in every real Josephson-junction network which is an implementation of a

system, but which may be manipulated by controlled exter-Similar model with protected degeneracy and which is pos-

nal fields with errors less than 16— 10° (big system sizes, S'b:ﬁ (tﬁghofegszgt'mguZrt?,vguéfvg}gh? J:ggrggoéﬁ 13 DrODOS-
K, are needed to correct the errors; for smaller errors the siz P pap P ) prop

o |% a new Josephson-junction network that has a number of
of the systemK, gets much smallef Insensitivity to ran- 9 b J

q fuctuat that ling to th ¢ afractical advantagesi) This network operates in a phase
om fluctuations means that any coupiing to the extern egime(i.e., when Josephson energy is larger than the charg-
environment neither induces transitions among thefe 2.

. ing energy, which reduces undesired effects of parasitic
states nor changes the phase of one state with respect §9?a 9y P

) . . charges(ii) All Josephson junctions in this array are
another. Mathematically, this means that one requires a sy§~|my gesti) P J y

tem whose Hilbert space contains '%-@imensional subspace llar which should simplify the fabrication procedsi)
(called “the protected subspac®™within which any local This system has'2degenerate ground states “protected” to

- an even higher extent than in Ref. 13: matrix elements of
operatorO has(to a high accuragyonly state-independent |ocal operators scale as-, wheres=<0.1 is a measure of
diagonal matrix elements{n|O|m)=0y6,,+0[exp(—L)]  nonideality of the system’s fabricatiofe.g., the spread of
wherel is a parameter such as the system size that can beitical currents of different Josephson junctions and geo-
made as large as desired. It has been very difficult to desigmetrical areas of different elementary cells in the network
a system which meets these criteria. Many physical system@v) The new array does not require a fine tuning of its pa-
(for example, spin glass®sexhibit exponentially many es- rameters into a narrow region. The relevant degrees of free-
sentially degenerate states, not connected to each other bpm of this new array are described by the model analogous
local operators. However, the requirement that all diagonalo the one proposed in Ref. 7. Even when such system is
matrix elements be equélip to vanishingly small termss ~ small and contains only a few “protected” states its physical
highly nontrivial and puts such systems in a completely newproperties are remarkable: it is a superconductor with the
class. Parenthetically we note that such systems were diglementary chargeetand the decoherence time of the pro-
cussed in philosophical terms by |. Kafwtho termed them tected states can be made macroscopic, allowing “echo” ex-
noumenons; in his thinking the noumenal world is impen-periments.
etrable but contains comprehensible informationRef. 9. Below we first describe the physical array, and identify its
One very attractive possibility, proposed in an importantrelevant low-energy degrees of freedom and the mathemati-
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each rhombus i®4/2. The geometry is chosen in such a way

that the fluxd4 through each Star-of-David model is a half-

integer multiple of®,: ®=(n.+ 3)®,.** Finally, globally

the lattice contains a numbe, of large openingsthe size

of the opening is much larger than the lattice constant; a

lattice with K=1 is shown in Fig. (a)]. The dimension of

the protected space will be shown to be equal fo Zhe

system is characterized by the Josephson endfgy

" =(h/2€)l, of each contact and by the capacitance matrix of

> " the islands(vertices of the lattice We shall assuméas is

usually the cagethat the capacitance matrix is dominated by

the capacitances of individual junctions; we write the charg-

ing energy aEc.=e%2C. The “phase regime” of the net-
FIG. 1. Examples of the proposed Josephson-junction arraywork mentioned above implies thEy>E.. The whole sys-

Thick lines show superconductive wires, and each wire containsem is described by the Lagrangian

one Josephson junction as shown in the detailed view of one hexa-

gon. The width of each rhombi is such that the ratio of the area of 1 . o

the Star of David to the area of one rhombi is an odd integer. The L= E E(% —¢))“+tEscod ¢i—pj—a;;), (1)

array is put in magnetic field such that the flux through each el- 0 c

ementary rhombus and through each Star of Ddindcribed in  where ¢; are the phases of individual islands aagl are

each hexagonis a half integer. Thin lines show the effective bonds chosen to produce the correct magnetic fluxes. The Lagrang-

formed by the elementary rhombi. The Josephson coupling projan (1) contains only gauge-invariant phase differenagg,

vided by these bonds is periodic. (a) Array with one opening;, — #i—¢;—ay;, so it will be convenient sometimes to treat

generally the effective number of qubits, is equal to the number  ihem as independent variables satisfying the constraint

of openings. The choice of boundary condition shown here makei b =270/ Dy+2mn where the sum is taken over
the superconducting phase unique along the entire length of th@l(r)s” o

: _ _ ed loopl” andn is arbitrary integer.
outer (innen boundary, and the state of the entire boundary is de- P Y 9

scribed by a single degree of freedom. The topological order param- As will become clear below, it is crucial that the degrees
y 9 9 . polog P f freedom at the boundary have dynamics identical to those

eter controls the phase difference between inner and outer bound. . »

aries. Each bounzary includes one rhombus to allow experimen the bglk. TO. ensure this one needs to.add additional super-

with flux penetration; magnetic flux through the opening is assume&onducung wires and Joseph_son junctions at the bounda.ry'

10 be dg/2(L+m) with any integerm. (b) With this choice of There are a few ways to do this; two examp_les are shown in

boundaroy cirzcuits the phase is unique only inside the sedd&s Fig. 1(a) and Fig. 1b): type-l boundary[entire length of
boundaries in Fig. (B), partsAB, CD] and type-ll boundary

and CD of the boundary; the topological degree of freedom con- ) .
trols the difference between the phases of these boundaries. Thﬁ C, A.D)' For both types of boundaries o_ne ’?eeds to in-
ude in each boundary loop the flux which is equal to

allows a simpler setup of the experimental test for the signatures ocl"* . oF T )
the ground state described in the text, e.g., by a superconductirgo 7/2 WhereZy, is the coordination number of the dual tri-

quantum interference device interference experiment sketched hegfgular lattice site. For instance, for the four coordinated

that involves a measuring loop with fluk, and a very weak junc- boundary sites one needs to enclose the integer flux in these

tion J balancing the array. contours. In the type-l boundary the entire boundary corre-
sponds to one degree of freed@pihase at some poinvhile

cal model that describes their dynamics. We then show howhe type-Il boundary includes many rhombi so it contains

the protected states appear in this model, derive the pararflany degrees of freedom.

eters of the model, and identify various corrections appearing Note that eackiinner and outgrboundary shown in Fig.

in a real physical system and their effects. Finally, we discusd(@) contains one rhombus. We included it to allow flux to

how one can manipulate these states in a putative quantuiiter and exit through the boundary when it is energetically

computer and the physical properties expected in small afavorable.

rays of this type.

Ill. GROUND STATE, EXCITATIONS,

Il. ARRAY AND TOPOLOGICAL ORDER

The basic building block of the lattice is a thombus made In order to identify the relevant degrees of freedom in this

of four Josephson junctions with each side of the rhombugIighly frustrated system we consider first an individual

containing one Josephson contact. These rhombi form a heg)ombus. As a function of the gauge-invariant phase differ-

agonal lattice as shown in Fig. 1. We denote the centers ance_between the far ends of the rhombus the potential en-
the hexagons by letteesb . . . and the individual rhombi by ergy 1s

(ab),(cd) ..., because each rhombus has a one-to-one cor- U(d: )= —2E[|cog & /2)| +|sin( &:/2 2
respondence with the linkap) between the sites of the tri- (dy) Llcos i )|+ sin( i 2)[1- @
angular lattice dual to the hexagonal lattice. The lattice isThis energy has two equivalent minima,@} = + #/2 which

placed in a uniform magnetic field so that the flux throughcan be used to construct an elementary unprotected qubit, see
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Ref. 15. In each of these states the phase changes®t  This can be fixed noting that since operatéts commute
in each junction clockwise around the rhombus. We denotgyith the Hamiltonian, any state obtained frd6) by acting
these states 4$) and||), respectively. In the limit of large it by P, is also a ground state. We can now construct a

Josephson energy the space of low-energy states of the fl{ d stat tisfvina th traint b
lattice is described by these binary degrees of freedom, and @ ground state satisfying the constraint by

the set of operators acting on these states is given by Pauli

: . " 1+P
matriceso,p’*. We now combine these rhombi into hexa- IG6)=11 210). (5)
gons forming the lattice shown in Fig. 1. This gives another a2

condition: the sum of phase differences around the hexagon A ) ) o
should equal the fluxd,, through each Star of David in- ere (1t P) /\/2 is a projector onto the subspace satisfying

scribed in this hexagon. The choig, = /2 is consistent the constraint at sita a_nd preserving the norr_nalization.
with flux @ that is equal to a half-integer number of flux ~ OPviously, the Hamiltoniart4) commutes with any prod-
quanta. This state minimizes the potential ene@yof the  uct of P, which is equal to the product af,, operators
system. This is, however, not the only choice. Although flip-around a set of closed loops. These integrals of motion are
ping the phase of one dimer changes the phase flux arouritked by the constraint. However, for a topologically non-
the Star byr and thus is prohibited, flipping two, four, and trivial system there appear a number of other integrals of
six rhombi is allowed; generally the low-energy configura-motion. For a system witK openings a product af;, op-
tions of U(¢) satisfy the constraint erators along the contouy, that begins at one opening and
ends at anothefor at the outer boundary, see Fig. 2

Pa=11 %=1, (3) .
b To= (H) ol (6)
Y

where the product runs over all neighbadbps,of sitea. The !

number of (classical states satisfying the constraif8) is commutes with the Hamiltonian and is not fixed by the con-
still huge: the corresponding configurational entropy is ex-Straint. Physically these operators count the parity of “up”
tensive (proportional to the number of sitesVe now con- rhombi glong such a contour. The presence of these operators
sider the charging energy of the contacts, which results in theesults in the degeneracy of the ground state. Note that mul-
guantum dynamics of the system. We show that it reducesplying such an operator by an appropridg gives a simi-

this degeneracy to a much smaller numb®r Zhe dynamics lar operator defined on the shifted contour so all topologi-
of the individual rhombus is described by a simple Hamil-cally equivalent contours give one new integral of motion.

tonianH =10, but the dynamics of a rhombus embedded inFurther, multiplying two operators defined along the con-
the array is different because individual flips are not compattours beginning at the sante.g., outer boundary and end-

ible with the constraint3). The simplest dynamics compat- ing in different openingsA, B, is equivalent to the operator
ible with Eq. (3) contains flips of three rhombi belonging to gefl?ed ontthe contt(J)urdIefz_idw&g from;c)o It?’h SO ttheflndetpen' ot
the elementary triangle,a(b,c), Oape=0"p00%, and ent operators can be defined, e.g., by the set of contours tha
therefore the simplest quantum Har(niltg)niaﬁbogér;ﬁng on thg<9n atone opening ar_ld end at the outer boundary. The state
subspace defined by E¢g) is G) C(_)nstructed gbove is not an eigenstate of these operators

but this can be fixed by defining

V2

We discuss the derivation of the coefficignin this Hamil- .
tonian and the correction terms and their effects below buvherec,=*1 is the eigenvalue of thé, operator defined
first we solve the simplified modéB) and(4), and show that On contoury,. Equation(7) is the final expression for the
its ground state is “protected” in the sense described abov@round-state eigenfunctions.
and that excitations are separated by the §ap. Construction of the excitations is similar to the construc-

Clearly, it is very important that the constraint is imposedtion of the ground state. First, one notices that since all op-
on all sites, including boundaries. Evidently, some boundareratorsQ,,. commute with each other and with the con-
hexagons are only partially complete but the constrainktraints, any state of the system can be characterized by the
should still be imposed on the corresponding sites of thejgenvalues ©,,.= +1) of O,,.. The lowest excited state
corresponding triangular lattice. This is ensured by additionatorresponds to only on@,,., being —1. Notice that a
superconducting wires that close the boundary hexagons Gmple flip of one rhombuby operatorafab)] somewhere in

Fig. 1. . .. the system changes the signtefo Q,;. eigenvalues corre-
We note that constraint operators commute not only W'thsponding to two triangles to which it belongs. To change

H:_r(gc) Q(abC)' (4) |Gf>:H 1+CqTq|G>, (7)
q

the full Hamiltonian but also with individualQ(ang:  only oneQ,,. one needs to consider a continuous string of
[Pa,Qabg]=0. The Hamiltoniar(4) without constraint has these flip operators starting from the boundafgbc))
an obvious ground statg0), in which o%,=1 for all  =v(apy|0) With v(apy=11, 0{.q Where the product is over

rhombi. This ground state, however, violates the constraintall rhombi (cd) that belong to the pathy’, that begins at the
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triangles to which rhombusap) belongs and has twice their
energy. Generally, all excited states of the madglcan be
characterized as a number of elementary excitat{@hsso
they give an exact quasiparticle basis. Note that creating a
quasiparticle at one boundary and moving it to another is

equivalent to tha q operator, so this process actsréén the
space of the ® degenerate ground states. As will be shown
below, in the physical system of Josephson junctions, these
excitations carry chargee2so that theré process is equiva-
lent to the charge € transfer from one boundary to another.

Consider now the matrix elemert, ;= (G,|O|G) of a
local operator,O, between two ground states, e.g., of an
operator that is composed of a small numberogf,. To
evaluate this matrix element we first project a general opera-
tor onto the space that satisfies the constra@:> POP

where P=11,(1+ If’a)/2. The new (projected operator is
also local, in that it has the same matrix elements between

ground states but it commutes with &)} . Since it is local it
can be represented as a productoindQ operators which

implies that it also commutes with aﬂq. Thus, its matrix
elements between different states are exactly zero. Further,

using the fact that it commutes with, and T, we write the
difference between its diagonal elements evaluated between
the states that differ by a parity over contapas
1
I[—70

1 O> . 9

This equation can be viewed as a sum of productsrpf
operators. Clearly to get a nonzero contribution each

should enter an even number of times. E&tltontains a
closed loop of sixs* operators, so any product of these terms
FIG. 2. Lower pane: Location of the discrete degrees of freedonis also a collection of a set of closed loopsadt In contrast

responsible for the dynamics of the Josephson-junction array showy i, operatoﬁ'q contains a product af? operators along the
in Fig. 1. The spin degrees of freedom describing the state of thfoop y, so the product of them contains a stringogfopera-

elementary rhompi are Igcated on the ponds of thg triangular Iz?\ttic?orS along the contour that is topologically equivalentyto
(shown by thick lineswhile the constraints are defined on the sites h | h ~

of this lattice. The dashed line indicates the boundary condition! NUS: One gets a npnzef@;—O_ only for the operator®
imposed by a physical circuitry shown in Figal Contoursy and  Which contain a string o&* operators along the loop that is
y" are used in the construction of topological order parameter an§oPologically equivalent toy which is lm_p055|b|e fora Iogal
excitations. Upper pane: The lattice witk=3 openings; the Operator. Thus, we conclude that for this model all nondiago-
ground state of the Josephson-junction array on this lattices2 nal matrix elements of a local operator aeactlyzero while
eightfold degenerate. all diagonal areexactlyequal.

+P. .

O+—O:<0

boundary and ends atbc) (see Fig. 2 which shows one IV. EEFECT OF PHYSICAL PERTURBATIONS
such path This operator changes the sign of only dpg,.,

the one that corresponds to the “last” triangle. This construc- We now come back to the original physical system de-
tion does not satisfy the constraint, so we have to apply thecribed by the Lagrangiafl) and derive the parameters of

same “fix” as for the ground-state construction above, the model4) and discuss the most important corrections to it
and their effect. We begin with the derivation. In the limit of
1+ cq'T'q 1+P, small charging energy the flip of three rhombi occurs by a
|U(abc)>:1;[ 2 1;[ 2 U(abg|0). ®  virtual process in which the phase;, at one(six coordi-

nated island,i, changes byr. In the quasiclassical limit the
to get the final expression for the lowest energy excitationsphase differences on the individual junctions adg,q
The energy of each excitation ig 2Note that a single flip == #/4; the leading quantum process changes the phase on
excitation at a rhombusap) can be viewed as a combination one junction by 3r/2 and on others by- /2 changing the
of two elementary excitations located at the centers of the@hase across the rhombugs— ¢+ 7. The phase differences,
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¢, satisfy the constraint that the sum of them over the closedontrivial string all previous conclusions remain valid. How-
loops remains z(n+ ®./®,). The simplest such a process ever, there is a nonzero amplitude to form such a string—it is
preserves the symmetry of the lattice, and changes simultasow exponential in the system size. With exponential accu-
neously the phase differences on the three rhombi containingicy this amplitude is€/2r)" which leads to an energy split-
island i keeping all other phases constant. The action foiting of the two ground-state levels and the matrix elements
such process is three times the action of elementary transef typical local operators of the same order —E_~O,
tions of individual rhombiSy: —O_~(el2r)-.
The physical meaning of the .,y excitations becomes
r~EY'Ed%exp—3Sy), Sy=1.61yE;/Ec. (100  more clear if one considers the effect of the addition of one
o operator to the end of the string defining the quasiparticle:
In the alternative process the phase differences betwaed it results in the charge transfer ok Zcross this last rhom-
other islands change in turn, via a high-energy intermediatgys. To prove this, note that the wave function of a super-
state in which one phase difference has changed while otheggnductor corresponding to the state which is a symmetric
remained close to their original values. The estimate for thigombination of|1) and||) is periodic with periods and
action shows that it is larger thargg, so Eq.(10) gives the  thys corresponds to a charge which is a multiple efwhile
dominating contribution. There are in fact many processegne antisymmetric state corresponds to charge+(2)2e.
that contribute to this transition: the phase of islandan  The action of oner, induces the transition between these
change by~ and in addition in each rombus one can siates and thus transfers the charge Zhus, these excita-
choose arbitrarily the junction in which the phase changes bygng carry charge @ Note that continuous degrees of free-
+37/2; the amplitude of all these processes should bgjom are characterized by the long range order in e)sédd
added. This does not change the result qualitatively unlesg,ys correspond to the condensation of pairs of Cooper pairs.
these amplitudes exactly cancel each other, which happens other words, this system superconducts with an elemen-
only if the charge of the island is exactly half inted®e- a1y charge 4 and has a gapr2to the excitations carrying
cause phase and charge are conjugate the amplitude d'ff‘“tfharge 2. Similar pairing of Cooper pairs was shown to
ence of the processes that are different byi exp(27iq)].  occur in a chain of rhombi in a recent pag&fprmation of
We assume that in a generic case this cancellation does ngt;|assical superconductive state with an effective chaege 6
occur. External electrical fielddcreated by, e.g., stray i, g frustratedkagoniewire network was predicted in Ref.
chargeg might induce noninteger charges on each islandyg
which would lead to a randomness in the phase and ampli- The model(4) completely ignores the processes that vio-
tude ofr. The phase of can be eliminated by a proper gauge |ate the constraint at each hexagon. Such processes might

i iaap N
transformf’;\tlonH)ap—?e *|1)ab gnd has o effect at all. violate the conservation of the topological invariaitsand
T.he gmphtude variations result in a position-dependent QU3 s are important for a long-time dynamics of the ground-
Slp\f;l\jgcrl]%v?lng%.i der the corrections to the mo@#. One state manifold. In order to consider these processes we need
) aﬁo go back to the full description involving the continuous

important source of corrections is the difference of the actu L uperconducting phases. Since potential energi) is pe-
magnetic flux through each rhombus from the ideal value. P gp j P P

®,/2. If this difference is small it leads to the bias of “up” riodic in 7 it is convenient to separate the degrees of free-

versus “down” states, and their energy difference becomeé:Iom into continupug(defined as modulusar) and discrete

2e=2m\2(6D41D,)E, . Similarly, the difference of the ac- Pars; Continuous parts have a long-range ordeos (2,

d ; . —2¢,))~1. The elementary excitations of the continuous de-
twal flux through the S_tar of Dawd_ star and the difference in rees of freedom are harmonic oscillations and vortices. The
the Josephson energies of individual contacts leads to t

interaction between “up” states: armonic oscillations interact with discrete degrees of free-
' dom only through the local currents that they generate, fur-
ther the potential2) is very close to the quadratic, so we
SH,= E VapoZp+ z V(ab)’(cd)ggbgéd, (11) conclude that they are practically decoupled from the rest of
(ab) (ab),(cd) the system. In contrast to this vortices have an important
effect. By construction, the elementary vortex carries fitix
in this problem. Consider the structure of these vortices in
reater detail. The superconducting phase should change by
or 2 when one moves around a closed loop. In a half
vortex this is achieved if the gradual change #yis com-
pensatedor augmentedby a discrete change by on a
string of rhombi which costs no energy. Thus, from the view-
oint of discrete degrees of freedom the position of the vor-
'ex is the hexagon where constrai8} is violated. The en-

€ .
comes |G. )+ Ez(ab)(ffabﬂGi:)- Qualitatively, it corre- €rgy of the vortex is found from the usual arguments

whereV,,= € for uniform field deviating slightly from the
ideal value anaV ) (cgy#0 for rhombi belonging to the
same hexagon. Consider now the effect of perturbations des
scribed bySH4, Eq. (11). These terms commute with the
constraint but do not commute with the main tetf),so the

ground state is no longé6.. ). In other words, these terms
create excitationg8) and give them kinetic energy. In the
leading order of the perturbation theory the ground state b

sponds to the appearance of virtual pairs of quasiparticles in £
the ground state. The density of these quasiparticlegris E,(R)= D[In(R)ﬁLc], c~1.2; (12)
As long as these quasiparticles do not form a topologically 4.6

224503-5



L. B. IOFFE AND M. V. FEIGEL'MAN PHYSICAL REVIEW B 66, 224503 (2002

0.2 V. QUANTUM MANIPULATIONS
5D /D
e We now discuss the manipulation of the protected states
scC formed in this system. First, we note that the topological
Ins invariant'i'q has a simple physical meaning—it is the total
0.0 phase differencémodulus 27) between the inner and outer
. 00 N EJE boundaries. This means that measuring this phase difference
. Cc/l=J

measures the state of the qubit. Also, introducing a weak

FIG. 3. Schematic of the phase diagram for half intedgrat Couplirjg *?et""ee” the§e boundaries by a very weak Joseph-
low temperaturess®,, is the deviation of the magnetic flux through SON Circuit (characterized by a small energs) would
each rhombus from its ideal value. SC stands for usual supercorfthange the phase of these states in a controllable manner,
ducting phase, and SCT for the phase with cgd(@ng-range order  €.9., in a unitary transformatiod = exp(e;t7;). The trans-
of the continuous degrees of freedom and discrete topological orddormation coupling two qubits can be obtained if one intro-
parameter discussed extensively in the bulk of the paper. The SCluces a weak Josephson circuit that connects two different
phase and SC phase are separated by a two-dimensional quantimmer boundariegcorresponding to different qubjtsAnalo-
Ising phase transition. gously, the virtual process involving half vortex motion

around the opening gives the tunneling amplitueg, be-
it is logarithmic in the vortex sizeR. The process that Wween topological sectors, e.g., unitary transformatish
=exp@tet7§). This tunneling can be controlled by magnetic
one-half vortex completes a circle around an opening. Th field if the'syster.n Is prgpared Wi.th some number of vortices
. . . ' _(?hat are pinned in the idle state in a special plaguette where

amplitude of such a process is exponentially smally,o gy is an integer. The slogadiabati¢ change of this flux
[t/E,(D)]* wheret is the amplitude to flip of one rhombus towards a normathalf-integey value would release the vor-
and A is the length of the shortest path around the openingtex and result in the transitions between topological sectors
In the quasiclassical limit the amplitudecan be estimated with e~1/D2

analogously to Eq(10): T~ \/?EQexp(—So). The half vor- These operations are analogous to usual operations on a
tices would appear in a realistic system if the flux throughdubit and are prone to the usual source of errors. This sys-
each hexagon is systematically different from the ideal halffem, however, allows another type of operation that is natu-
integer value. The presence of free vortices destroys topd@lly discrete. As we show above the transmission of the
logical invariants, so a realistic system should either be nofl€émentary quasiparticle across the system changes its state
t00 large(so that deviations of the total flux do not induce PY 7q- This implies that a discrete process of one pair trans-

free vortice$ or these vortices should be localized in pre-fer across the system is equivalent to tfetransformation.
pared trapge.g., Stars of David with fluxes slightly larger or Similarly, a controlled process in which a vortex is moved
smaller thanb.). If the absence of half vortices the model is around a hole results in a discret transformation. More-
equivalent to the Kitaev modeplaced on triangular lattice ©Ver this system allow one to make discrete transformations
in the limit of the infinite energy of the excitation violating Such asy7*. Consider, for instance, a process in which by
the constraints. changing the total magnetic flux through the system one-half
Jortex is placed in a center of the system shown in F{g) 1

Quantitatively, the expression for the parameters of th and then released. It can escape through the left or through
model(4) become exact only iE,>Ec . One expects, how the right boundary; in one case the state does not change, in

ever, that the qualitative conclusions remain the same and the

. . . another it changes by,. The amplitudes add, resulting in
formulas derived above provide good estimates of the scale]s1 . . .

. . . the operation (i7°)/y2. Analogously, using the electro-
even forE,~Ec, prowded that chgrglng energy IS not so static gatés) to pump one chargee€from one boundary to
Ig;geeef)i(s ;?:tgetshﬁt tlrr;;lr?sirt)igist% tgigj':% :to g dvlvfifte;]renirlmas%he island in the center of the system and then releasing it
whose gxact value can be reliabl determyilnejd onl 77from nu_results in a (1i7)/2 transformation. These types of pro-

y y cesses allow a straightforward generalization for the array

merical simulations. Practically, since the perturbations in-": ;
L . with many holes: there an extra half vortex or charge should
duced by flux deviations fromd, are proportional to

(8D/Do)E,/r andr becomes exponentially small at small be placed at equal distances from the inner and outer bound-

Ec, the optimal choice of the parameters for the physicafmes'
system isEc~Eg . We show the schematics of the phase
diagram in Fig. 3! The “topological” phase is stable in a
significant part of the phase diagram; further since the vortex
excitations have logarithmic energy, we expect that this Even without these applications for quantum computation
phase survives at finite temperatures as well. In the thermdhe physical properties of this array are remarkable: it exhib-
dynamic limit, atT#0, one gets a finite density ofe2car-  its a long-range order in the square of the usual supercon-
rying excitations[ n,~exp(—2r/T)] but the vortices remain ducting order parameter.cog2(¢o—¢,)])~1 without the
absent as long as temperature is below a BKT-like depairingisual order{cos(p,— ¢;))=0; the charge transferred through
transition for half vortices. the system is quantized in units 0€A4This can be tested in

changes the topological invariaﬁth, is the one in which

VI. PHYSICAL PROPERTIES OF SMALL ARRAYS
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an interference experiment sketched in Figh)las a func- Most properties of the array are only weakly sensitive to
tion of external flux,®,; the supercurrent through the loop the effect of stray charges: as discussed above, they result in
should be periodic with half the usual period. This simplera position-dependent quasiparticle potential energy which
array can be also used for a kind of “spin-echo” experiment:has very little effect because these quasipatrticles had no ki-
applying two consecutive operations{17,)/\/2 described netic energy and were localized anyway. A direct effect of
above should give again a unique classical state, while agstray charges on the topologically protected subspace can be
plying only one of them should result in a quantum superpo-also physically described as a effect of the electrostatic po-
sition of two states with equal weight. tential on the states with even and odd charges at the inner
The echo experiment can be used to measure the decoh&eundary; since the absolute value of the charge fluctuates
ence time in this system. Generally one distinguishes bestrongly this effect is exponentially weak.
tween processes that flip the classical states and the ones thatFinally, we remark that the properties of the excitations
change their relative phases. In NMR literature the forme@and topological order parameter exhibited by this system are
are referred to as transverse relaxation and the latter as lof® many respects similar to the properties of the ring ex-
gitudinal. The transverse relaxation occurs when a vortex ishange and frustrated magnets models discussed recently in
created and then moved around the opening by an externRefs. 11, 12, and 22-32.
noise. Assuming a thermal noise, we estimate the rate of this

processr, ~1 exd —Ey(L)/T]. Similarly, the transfer of a VII. CONCLUSION
guasiparticle from the outer to the inner boundary changes
the relative phase of the two states, leading to Iongitudina{i

relaxation. This rate is proportional to the density of quaSi'described by a topological order parameter. The manifold of
particles,r; *=R exp(—2r/T). The coefficieniR depends on i i i

i - A _ these states is protected in the sense that local perturbations
the details of the physical system. In an ideal system with 46 an exponentially weak effect on their relative phases
some nonzero uniform value ef [defined above, Eq11)]  ang transition amplitudes. The main building block of the

quasiparticles are delocalized aRd- e/L?. Random devia- array is the rhombus which has tw@lmos) degenerate
tions of fluxesd, from a half-integer value produce random- gtates. In the array discussed here these rhombi are as-
ness ine, in which case one expects Anderson localization ofsempled into hexagons but we expect that lattices in which
quasiparticles due toff-diagonaldisorder, with localization  these rhombi form other structures would have similar prop-
length of the order of lattice spacing, th@is~ e exp(—cL) erties. However, the dynamics of these arrays is described by
with c~1, ande is the typical value ofe. Stray charges quartic-(or higherj order spin-exchange terms which have a
induce randomness in the values rofi.e., they add some larger barrier in a quasiclassical regime, implying that their
diagonaldisorder. When the random part of ér, becomes ~parameter is much smaller than for the array considered
larger than e the localization becomes strongefR here. This makes them more difficult to build in the interest-

~ ¢e(el 8r)- where 6r is the typical value ofsr. Upon a ng regime-
further increase of stray charge field there appear rare sites

wherer; is much smaller than an average value. Such a site

acts as additional openings in the system. If the density of We are grateful to G. Blatter, D. Ivanov, S. Korshunov, A.
these sites is significant, the effective length that controls thearkin, A. Millis, B. Pannetier, and E. Serret for the discus-
decoherence becomes the distance between these sites. Biwhs and useful comments and to LPTMS, Orsay and LSI,
typical Ey(L)=~E;~2 K the transverse relaxation time Ecole Polytechnique for their hospitality which allowed this
reaches seconds far~0.1 K while realistice/r~0.1 im-  work to be completed. L.I. is thankful to K. Le Hur for
plies that due to a quasiparticle localization in a random casmspiring discussions. M.F. was supported by the SCOPES
the longitudinal relaxation reaches the same scale for sygrogram of Switzerland, the Dutch Organization for Funda-
tems of sizeL ~10; note that temperature has to be only mental ResearctNWO), the RFBR Grant No. 01-02-17759,
somewhat lower than the excitation gap;, 2n order to  the program “Quantum Macrophysics” of RAS, and the
make the longitudinal rate low. Russian Ministry of Science.

We have shown that a Josephson-junction array of a spe-
al type (shown in Fig. 1 has a degenerate ground state
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