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A layered compressible metamagnetic Ising model is studied within the mean-field Curie-Weiss approach
and the Landau expansion. The ferromagnetic and antiferromagnetic couplings depend linearly on the volume
as in Domb’s ferromagnetic model. For equal spin-lattice couplings of ferromagnetic and antiferromagnetic
interactions a closed solution is obtained, suitable for arbitrary values of the compressibility. For a large
spin-lattice coupling and a high compressibility, two tricritical points appear in the magnetic field-temperature
phase diagram, one at low temperatures, and other at high temperatures, for a low hydrostatic pressure. For an
arbitrary ratio of the spin-lattice couplings a perturbation expansion of the free energy on the inverse elastic
constant is presented. The effect of pressure on the single tricritical point comprises three possibilities, accord-
ing to the signs of the derivatives of the tricritical temperature and field, related to the magnitude of the
ferromagnetic/antiferromagnetoelastic couplings. In the experimental literature there are some compressible
metamagnets whose tricritical behaviors as a function of pressure are in agreement with these findings.
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I. INTRODUCTION lengths does not stabilize the critical behavior in cases of the
isotropic’ and cubic elastic lattice'$:therefore a Domb-like
The phase diagram of metamagnetic systems in the ma@Eh&ViOf prevails, i.e., the magnetic transition is turned dis-

netic field versus temperature plane has been studied bofipntinuous through the elasticity of the underlying lattice.
theoretically~® and experimentall§12 The phase diagram More recently, simulation studies have been carried out for

exhibits paramagnetic-antiferromagnetic transitions, of firsfN anisotropic elastic potential.

. o L . A metamagnetic Ising system under pressure was consid-
order at high magnetic field, and critical at low field. These, o g previously? in the spirit of the shearless Baker-Essam
two lines often join at a tricritical point, but a more complex

o , ) ) ) model}* The phase diagram is essentially the same as that of
behavior is also possible, with coexistence between differeng,e rigid model. The tricritical temperature was explicitly
magnetic phases. determined as a function of pressure, and possible relations
The compressibility of ferromagnetic Ising systems wasto experimental resuftd were discussed. In view of the dis-
addressed in a series of theoretical studied some time crepancy between the behavior of the two extreme models in
ago. For an exchange interaction linearly dependent on intéhe case of ferromagnetism, it is of interest to consider the
rion distance, an integration of elastic variables leads to agffect of shear stress on metamagnets. _
effective long-range four-spin interaction. The sign of this EXperimental investigations on the metamagnetzlgzé:om-
effective interaction is crucial for the characterization of thePounds FeBrand FeCj (Ref. 23 and Ni(NGy),.2H,0,”
magnetic transition, which may be either critical, with pure Under hydrostatic pressure, have been performed. From mea-
or renormalized Ising exponerits™® or discontinuous in Surements of the magnetization on these systems the depen-
both magnetic and number densiti&s!® Two simple limit- dence of the tricritical point, N temperature and transition
ing cases correspond to z&tand infinité shear forces: in field at zero temperature on pressure was determined. The

. : : : odel we have developed in this work aims to understand
the first case bOt.h the elastic and magnetic cou_phngs ‘."?pe“{ﬁe different behaviors exhibited by these metamagnets in the
only on the longitudinal component of the relative pos't'onse%periments
of the ions, and in the second position fluctuations are absen In the present study, layered metamagnets with infinite

and interion distances are volume dependent. The Bakegnear forces, are discussed as a function of the external pres-
Essam model presents Ising critical indices under constand e e perform a Landau expansion for the model free
pressure %nd Ising renormalized critical indices at constadnergy in order to investigate the general effects of the com-
volume:*™ As for Domb’s model, a mean-field approach pressibility on the critical behavior. We also compare our
and 2 exact or renormalization-group treatments produceesults with some experimental data found in the literature.
qualitatively different results: a tricritical point in the This paper is organized as follows: in Sec. Il we present the
temperature-pressure plane is present in the first case, angbdel Hamiltonian. In Sec. Il we perform a mean-field
only first-order transitions in the second case. Interestinglytransformation. In Sec. IV we derive the Landau expansion.

the inclusion of finite shear through fluctuation of bond Section V is devoted to a discussion of the isotropic spin-
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lattice couplings, and in Sec. VI we address the correspondwhere
ing anisotropic case and compare our results with the experi-

. . . 2(d-1
mental data. Finally, in Sec. VII, we present our conclusions. 2@ ag )p2

_ 0
c=dNaj ! dNBK’ Ho(p)=pag—§dT,

1. MODEL HAMILTONIAN (4)

The compressible metamagnetic model we consider ex-
hibits the same elastic features of Domb’s ferromagnetic Z,=, expg—BH), 5
model!® The deformations are homogeneous and isotropic to}
(infinite shear forces The magnetic interactions are consid- gnd
ered through an Ising spin system on a cubic latticed in

space dimensions, constituted by two sublattices. The sublat- , 1 pag_l_

tices are chosen to be the alternating layerslefl dimen- H'=- 5 %: oi| Jij + K Ji| %

sions of the lattice. The exchange interaction between first

neighboring spins on the same sublattice is of the ferromag- 1 E ji 2 E

netic type, while the coupling between neighboring spins be- - = T ogi| — H,o;. (6)
yp pling g gsp 2\ 4 T2 ANk ] — M7

longing to different sublattices is of the antiferromagnetic

type. Our choice of stacking planes for the sublattices iSye note that the transformation to the pressure ensemble
motivated by the crystalline structure of some metamagnetigytroduces a biquadratic term, which couples different pairs
compounds like FeBrand FeCJ. They are composed of of spins all over the lattice.

hexagonal sheets of Fe spins, which at low temperature  To render the argument of the exponential more manage-

are ferromagnetically aligned along the hexagooaixis,  aple in Eq.(5), we apply a Gaussian transformation to the
whereas successive sheets are stacked antiferromagneticaiyguadratic term,

However, we could started with another representation for

the sublattices, but the results within the mean-field approach +oo
would be essentially the same. The Hamiltonian of the model Zv:% . dy
is given by

y> 1
1 _ xXexp — =+ =B oiLioi+BY, H'O"), (7)
HZ_E; oilJij—jij(a—ag)]o; F( A
where the coupling matrix is defined by

1 1
+§Z EK(a—awz—Z Hiai, D paj ! 1),
g : Li,j(FaA):iJF,Ai(T+y W)JF,A- ()

whereo;= =1 are the spin variables, arg is the average

distance between neighboring spins at a reference tempertote that our choice of signs implies an increment of the
ture To. H; is the magnetic field on site The second term €xchange interaction under compression, for positive magne-
on the right is the elastic energy of the lattice, represented bipelastic couplingg, ¢, in both the ferromagnetic and anti-
the harmonic potential between nearest-neighbor pairs derromagnetic cases.

spins, whereK is the elastic constant aralis the average

distance between neighboring spins at temperafuide as- Ill. MEAN-FIELD FREE-ENERGY

sume a linear approximation for the dependence of the ex- ) )
change couplings on the lattice constanjustified for very In order to advance, we shall transform the effective spin

large values foK, so that only small lattice deformations are Hamiltonian, allowing each spin to interact with all other
considered. spins in the lattice with the same strength. This is the Curie-

The partition function at constant volun,(T,a,N,H,), Weiss mean-field approximation, and the notion of dimen-

can be transformed in order to introduce the pressure into theion IS completely lost in the transformed system. The origi-

problem. This is done by making a Laplace transformation td'@l lattice can be thought as a stack of ferromagnetic
the pressure ensemble, hyperplane®\ andB, with an antiferromagnetic coupling be-

tween them. For the Curie-Weiss version of the model,
+oo where each spin of the lattice is coupled to any other, having
Z= fﬁw dVexp(—BpV)Z4(T,a,N,Hj), (20 N/2 ferromagnetic couplingk and N/2 antiferromagnetic
onesL,. To keep the free energy finite, the effective cou-
where 3=1/(kgT), V is the volume of the system amits  plings must be taken ds-/N andL ,/N. Notice that, unlike
pressure. Let us expand the volume around the referendbe real system, there is no difference in the number of fer-
volume at T, V=Nad[1+d/as(a—ag)+O0((a—ag)?)], romagnetic and antiferromagnetic couplings in this mean-
keeping only first-order contribution. Integrating ovea ( field approach.

—ay) we obtain The applied field at each lattice sités divided into two
parts: a uniform positived field and a staggereH field,
Z(T,p,N,Hj)=cexd — BNHy(p)]Z,, (3)  which are positive on thé\ sublattice and negative on the
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B sublattice. The effective spin partition functi¢kq. (7)], .

1 (0]
becomes g(T,p,H,Hs)=—@|n Z= /3+H°(p)' (16)
o 2 _ 2
z=> f+ dyexp—[y—— LA( > o+ ‘Ti) whereHy(p) is defined in Eq(4).
{o} J—o 2 ieA jeB Let us introduce the sublattice magnetizatiang and

LF+|-A +mg)/2 and the staggered magnetizatioms=(my

EUl EUJ

) mg. Then we define the total magnetizatiam=(mu

ieA jeB —mg)/2. The staggered magnetizatiang is the order pa-
rameter conjugate to the staggered fiellg. We can write
~BH+H) Y, o= BH-Hg) 2, a;]. ©)
ieA jeB &g

1 1
m= —==stanhQ.)+ stanhQ_),
Before we proceed with the sum over the spins variables, we H 2 2

consider once more the Gaussian transformation, applied to 5
the two quadratic spin sums in the last equation. Introducing _99 _

. . mg= tan - tan 1
two variablesx andw, we can write S 9H, Q) Q-), (7

. +°€d +°°d +°°d ® T o HH wheEzQ+ and Q_ are defined by Eq(12_)(for x_=;and
B ffx yffoc Xffoc wex —®(y.xw,T.p,H,Hy)]. w=w). Finally, from Eqgs.(11) and(12), x,y andw can be
(10)  written as functions ofn andm,

where - i
2 @ W N \ x=\/N/3 J<p>+7<jm2+j+m§>}m,
CI>=y?+E+7—EIn(ZcoerQ—Eln(ZcoshQ,),
_ Np
(0 = S mP g md),
Q+=X\/IB(LFN_LA)iW\/B(LFN+LA)+,8(HiHS). B R
12 w= \/NB J+<p>+7<j_m2+j+m§>}ms, (18

In the thermodynamic limitN— o, the main contribution Where we defined
to the partition function comes from the values for which the o
exponential function is a sharp maximum. Expandibg ) 1 jeEja JeExJa

around its extreme pointx(y,w) and keeping terms up to =Gk "2 0 T2 ¢
second order, we have

ay P irtia

S Rl e = =, (19
= dy dx dwexp—{® + Dd(x—X)

— — — — Now, substituting Eqs(12) and (18) into Eq. (17), we
2 —_— 2

Oy (Y =Y) F Py (W= W)+ 2Py (X=X) (Y~ Y) obtain the mean-field recurrence relations T, p,H,Hy)

+ 2D (X=X (W—W) + 205y —y)(w—w)}, (13 ANdMs(T.p.H H).:

with (I)@E[&ZCD/aaa,B]ZE. After some algebraic manipula-

- .
—1J_ + —(i_ 2+ 2 :|
tions, we obtain [ (p) 2 (J-m+j,ymg)|m

_ 1 I (1+m+mg)(1+m—my) 20
ZZGX%—Q)—EMD), (14) ,8 (1 m+ms)(1 m— ms)’ ( )
] e Ho= | 3.(p)+ (e ,md) fm
D=m% Oyl Oyy— — || b — s - 2 V- s | s
(DWW (I)WW
) 1 | (1+m+ms)(1—m+ms)} 2
b—D— —In — —— .
—‘DW(QE— awPyw (15 4B | (1+m—mg)(1—m—my)
Dy

The physical solutions of this set of coupled equations
ProvidedD >0, in the thermodynamic limif— o, the con- minimize the free energy and define the state of the system
tribution of the logarithmic term may be neglected, so wefor fixed values ofT, H andp. From Eqgs.(11) and(16) we
finally arrive at the normalized Gibbs free energy have, for the Gibbs free energy,
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1 2 1 2
9(T,p.H,Hy) =Ho(p) + 5J-(p)m™+ 5 J..(p)mg

3 H 2 2\2 1
+§(J_m +j.mg) +Eln[(l+m+ms)

X(1+m—mg)(1—m+mg)(1—m—mg)].
(22)

IV. LANDAU EXPANSION

PHYSICAL REVIEW B56, 224425 (2002

V. ISOTROPIC SPIN-LATTICE COUPLING

Let us first consider the particular situation in which the
ferromagnetic and antiferromagnetic exchange interactions
have the same volume dependence, thajds;j,. In this
casej _=0, and the continuous phase boundary between the
antiferromagnetic and paramagnetic phases is easily obtained
after the field variables are rescaled by the pressure. We de-
fine

kg T H Jetag 'pie/K

=B h= e =r 0 PIFR
PTIA(p) P I P Jarad tpja/K

. (27)

The Landau expansion consists in developing the free en-
ergy in a power series of the order parameter, with coeffiwheret, andh, are the rescaled temperature and field, and
cients depending only on field variables, for standarde, is the competition parameter between ferromagnetic and
analysis®® So, we perform a Legendre transform on antiferromagnetic interactions for each value of the pressure.

a(T,p,H,H,) [Eq. (22)] in order to replace the fieltl¢ by
the magnetizationng. That is,

W(T,p,H,ms)=9(T,p,H,Hg) +Hsm, (23
wherem=m(T,p,H,ms). The expansion takes the form

W(T,p,H,mg) =¥+ W¥,mi+W¥,mi+¥sm+0O(md).
(24)

The expansion ofV'(T,p,H,my), allows the analytical

From the Landau theory of phase transitions, the continu-
ous transition is obtained fo¥,=0, which defines a rela-
tionship amongt,,h, and e,. Equation(A5) gives[ag];
=vy1—[tp]c. Substituting this result in Eq(A2), for the
phase boundary we find

[tplc

e,—1 1+[C¥0]
[hyle=— ¢ ylaolet =5 -

no—F——,
1-[aglc
where thec index refers to the criticality. The Né¢tempera-

ture ty is given by[h,].=[aq].=0, which in our case re-
duces toty(p) =[tplc=1.

(28)

description of the phase transition between a paramagnetic An analysis of the sign of the fourth order coefficiehy

phase (ng=0) and an antiferromagnetic phasas 0). The

allows one to establish the limits of stability of the phase

expansion can also be used to describe a phase transitigdundaryEq. (28)]. On the critical surface,
between two antiferromagnetic phases when the order pa-

rameter of both phases are close to Zérblowever, in this

paper, we are interested only in the transition between the

paramagnetic and antiferromagnetic phases.

The critical properties of the model may be derived from
the behavior of the coefficients of the expansion as a fun
tion of temperature, magnetic field and external pressure. Iqr

order to obtain explicit expressions for the coefficiemts,

we first note that they are proportional to the coefficient

of Hg:

d 3 5
Ho(T.p.H.mg) = ——=2W,my+ 4W;m+6Weme+ - - -
S
(25

We therefore expand E@21) in powers ofmg. However, it
is necessary also to consider=m(T,p,H,m,), but inspec-

C_

S

Ji(p)  4[t,)2

&
T (29

ept— €pt §

where§p=ji/2J+(p). The phase boundary is stable only for
¥ ,>0. The line of critical points ends at a tricritical point at
4=0. This point is stable only if the next coefficient of the
expansion,¥, is positive, which is true for all values of
pressure such that,>0.6. On the other hand, far,<0.6
the line of critical points ends at a critical endpoint.

In this work we will focus our attention only on tricritical
behavior. Fore,>0.6 and¥,=¥,=0 we find

1
€pt \/e§—4§p( €p— §)J,

where[tp]f are the temperatures of two possible tricritical

L1
[tp]t’zz—gp (30

tion of Eg. (20) shows that it is not possible to obtain an points as functions of pressure, subject to the condition
explicit expression fom. We thus consider the expansion [tp]tis]_,_

m(T,p,H,mg)=3,asm?, where a;=a;(T,p,H) and i
=0,1,2 .. .. Substituting this expansion fon into Eq. (20),
we arrive at an expression of the form

2 6 8
H:(P0+ (les+ (pzm:‘i‘ (p3mS+O(mS), (26)

The different possibilities for the system’s phase diagrams
are summarized in th&, versuse, plane, as shown in Fig. 1.
Three regions are seen, divided by the dasl”cgd:(%) and
solid (&)= €5/[4(e,—3)]) lines. The corresponding typical
phase diagrams are sketched in the insets. In refgj@ither
v,<0 or[tp]tial, and the system exhibits only phase co-

where ¢;=¢;(T,p,H). Now, after some straightforward existence. Fofp<§ (areah), [tp];’>1 and the system ex-
work, the coefficients of’; can be found, as shown in Ap- hibits a phase diagram typical of the rigid metamagnetic

pendix A.

system'? with a single tricritical point, whose temperature

224425-4



COMPRESSIBLE METAMAGNETIC ISING MODE . .. PHYSICAL REVIEW B 66, 224425 (2002

0.36

P=(e =2/3, ¢ =1/3) T

0.34 —

FIG. 1. Diagram in the plane
o A &p Vs €, and sketch of the possible
tricritical points. The insets repre-

0.32 o [Tk sent typical phase diagrams corre-
\ sponding toA, D, andF regions.

J e T A \
° D o1 \
0'30 1 I L] I L] I L]
0.60 0.65 0.70 0.75 0.80
€
p
increases withé,. For ep>3, [tp]t —1 when gp—>§ and 1 gi 9. 11—
the critical line disappears. Fap< 3 and3<£,<£ (region he=oy= 7272 (33

D), both roots are physically valid and so a second tricritical

point which interrupts the critical line is present. The phase At the h=0 plane, if the transition is continuous, théelle
diagram presents a continuous transition line betwegh temperature exhibits a linear dependence on pressure given
and[tp]{', but of course, no N& temperature. Approaching by ty=1+g,II. On the other hand, if a coexistence of
the superior limit of regionD—the solid line—we have phases is observed at zero field, we must impose equality of

lim, Hgo[tp]t =[t,];", and the two tricritical points collapse free-energies and solve mean-field equati®@® and (21).
into one onto a coexistence line. The magnetizatiom= 0 automatically satisfies E¢0), and

In order to analyze the effect of pressure on the phasgq (21) yields, forHs=0,
diagram, we use Eq19) to introduce variables

I+g2m?m=0. (34
kT HO grmslme
NIRRT The free energy[Eq. (23)] for W(T,p,H=0ms=0)

=¥(T,p,H=0,m,) leads to
g = H=\/ﬁa “p (31) o2
RN KJ,° ™ (1+g, T)m2+ %mg—t(h:o)[(lJrms)ln(1+ms)
wheret,h, ande are the pressure independent reduced vari-
+(1—-mg)In(1—mg)]=0. (35

ables. Note thag_ =0 in the isotropic case studied in this
section.Il is the appropriate stress variable. Also, in terms ofAn analytic expression for the phase boundary at zero field
the variables, we have as a function of the pressure, may be written, for snm)
) as
g% e—1

S 1rgm M iraregn 32

5
1+g [I=tphog)— a8, (39+_t(h 0?4 (36
We want to analyze the evolution of the critical behavior
within the £,X €, parameter spacéig. 1) in terms of the  otherwise Eqs(34) and (35 may be solved numerically.
physical pressure. In Fig. 2, we exhibit the phase diagram of the model for
For vanishing temperature, there is coexistence betweespme values of the reduced presslrefor particular values
the paramagneticnf=1, m;=0) and antiferromagneticnf  of the magnetic competition parameterand the magneto-
=0,m,=1) phases, which must have the same free energglastic parameteg 2 ~Jj?IK (respectively, 1 and 0%). This
V(T=0,p,H,m=0)=V¥(T=0,p,H,m,), at zero staggered corresponds to running vertically from tieto A region in
field. From Eq.(23), we have, for the phase boundary at null Fig. 1, ate,=1. At low pressures the whole phase boundary
temperature, corresponds to first-order transitions, and the more usual

224425-5



MOREIRA, FIGUEIREDO, AND HENRIQUES PHYSICAL REVIEW B56, 224425 (2002

1.2 AL T T T T T T
= - Y -’ -
.............. ..m=15 R
_______ i ~._‘ 4
Rl (A // 7] FIG. 2. Phase diagram in the plane magnetic
e.m=1.0 v/ field versus temperature far=1, g, =0.7 and
c i y T four representative pressures. Dotted lines repre-
------ m=067 -, /7 sent first-order transitions and full lines continu-
06 - N T 7 n ous transitions. The dashed lineis a locus of
- 4 tricritical points. The full circles are the tricritical
i . i T points at the selected pressurds At pressure
0.3 ,’ [1=0.6714 a tricritical point appears for=0, a
I i ] behavior analogous to that of Domb’s ferromag-
: netic model.
b
0.0 . 1 : [ . }.I : 1
0.0 0.5 1.0 1.5 2.0
t
metamagnetic phase diagram arises at higher pressures. A e—1 s te ltag
tricritical point in the temperature-pressure plarte=(Q) he=— et 1l +9H) @oc— g-apet 5'” T—a
separates the two regimes. For lower values of the magneto- oc (39)

elastic parameterg(, <0.58), which may also be associated
with low compressibility, only the usual behavior would be
observed. Phase diagrams with two critical poifs in re-
gion D of Fig. 1), would be observed for large magnetoelas-
tic couplings and small competition parametex(2/3), at
low pressures.

The behavior of the compressible metamagnetic model
zero field is reminiscent of that of Domb’s ferromagnetic
model under a mean-field treatment: at low pressures th
compressible model exhibits first-order transitions, while
continuous transitions appear at higher pressti&sThere
is an important difference, however, since for small spin-
lattice couplings the transition is critical even for zero pres-
sure. It remains to be seen whether fluctuations could destrots?
the stability of the continuous transition, as is the case for the
ferromagnetic modél’ t, t, 1+3a},

2/ =0-9++ —— S |eqan=0' —3 > 5
(1-ag) (1-ag)
VI. ANISOTROPIC LOW COMPRESSIBILITY LIMIT (40)

The Neel temperature is easily obtained. Making=0 in
Eq. (39), the unique solution igy,=0. Equation(37) then
yields the Nel temperaturety=1+g.,II, which has the
same functional form as for the isotropic case. The depen-
aqence of the Nel temperature on the pressure is also ob-
served in the experiments. For instance, it increases with
ressure for the metamagnetic systems Féghases | and
), FeBp,% and Ni(NG,),.2H,0,%*?° indicating that for
these materialg , should be taken as positive.
To allow for a tricritical point on the critical line we must
look at the condition¥,=0. From Eq.(A6) we have, in
rms of our variablefEq. (31)],

Let us consider the general case whgre#0, in the low
compressibility limit (large K). The critical conditionV,
=0, with reduced variables defined by Eg§1) in Eq. (A5)
yields

where the subscriftdenotes the tricritical point. By taking
Eqgs.(A3), (38), and(40) and expanding up to ordé&r 1, we
arrive at the following expression for the tricritical tempera-
ture:

9-9sag.+(1+9,.11-g_g,)af.—1-g. [1+t=0,

(37) 5e—2e+1 (e+1)?

. L t=|1-%5-]{ 1+ g+t g-|IT
where the index refers to criticality. Our definition of the 3e 2¢(3e—1) 2¢(3e—1)
effective magnetic model under press{igy. (6)] relies on . )
large values for the elastic constaqtThe terms such ag> +21€ T7e+17e+5 gg
andg. IT are of ordeiK ~1, so we solve Eq(37) for aq. and 6€2(3e—1) I
perform a perturbation expansion in those variables up to
that order, obtaining (e+1)?> , (3e-1) ,

+ ‘+ % (- (47
2€%(3e—1) 3€?

ape=V1-t(l—g_g,—g.I)—g_g.tZ. (39

Substituting in Eq.(A2), we obtain the critical surface The line of coexistence can be found only numerically,
equation: except att=0, where internal energies of the paramagnetic
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10

FIG. 3. Phase diagram in the plapg(ratio of
ferro and antiferro spin-lattice couplings versus
e. ut and uM are defined by EqgB2) and(B5),
respectively. The arrow in the insets indicates the
direction of increasing pressures. The regit@s
(b) and (c) are associated with the behaviors of
the derivatives of the tricritical temperature and
field relative to the pressure.

(P) and antiferromagneti€AF) phases become identical at fit to Fig. 3(b) (dt,/dII>0 anddh,/dI1>0). The behavior
the transition. From Eq(23), the coexistence field is given of Ni(NO3).2H,O conforms to region(c) of Fig. 3

by (dt;/dII>0 anddh,/dI1<0).
P Our results must also be compared to those of Uda and
h o — 1 n §]+—§1—H+ 9+ —0- 42) Figueiredo?® obtained for a shearless compressible meta-
=07 et 1 2 4 magnet. Similarly to the ferromagnetic case, a biquadratic

term [see Eg.(6)] is absent in the effective pressure-

\ o X dependent magnetic Hamiltonian, if shear is absent. How-
pressure according to the sign pf. Experimental work g\ er  gifferently from the ferromagnetic case, at least in the
performed on the above mentioned metqmajﬁezt% mean-field approach, both models lead to similar results for
showed thah,_ increases with pressure, indicating also thaty,e evolution of the phase diagrams under pressure. Sce-

for these compoundg, should be taken positive. ~ narios(i) and (i) were obtained for the shearless model for
Now let us consider the dependence of the tricritical po'mparticular numerical parametefs, e= —0.02, 2.9(i): 0.97,

on pressure. First, we define a parameier jg/ja Which 3 3 jiy] which fit into the corresponding regions of Fig. 3,
corresponds to the ratio of ferromagnetic and antiferromagyie scenario(iii) was not considered by the authors. Are
netoelastic couplings. We have fo‘fnd thﬁ valuesuofor  ghearless and infinite shear elasticities equivalent in the case
which dt;/dI1=0 anddh,/dIT=0, u'andp", respectively.  of metamagnets? Again, calculations beyond the mean field

This is shown in Appendix B. _ . would be needed to check on this question.
In Fig. 3 the linesu' and u" as functions of the ratie

delimit regions of physical microscopic parameters which
lead to a different behavior of the system as a function of
pressure. We take only>0.6, which corresponds t¥¢ We have studied the behavior, as a function of pressure, of
>0, in order to keep the tricritical point stable. Assuming aan Ising layered compressible metamagnetic model. The ex-
positivej», as suggested by a comparison with experimentchange coupling between nearest-neigboring spins is taken to
three different scenarios for the evolution of the tricritical be linearly dependent on the volume. Under the assumption
point with pressure are possibl@é) an increasing field and of limited compressibility, the model is studied in the Curie-
decreasing temperature for very smail low €) or negative  Weiss mean-field approximation and the free energy is deter-
(at largee) ferromagnetoelastic coupling, the latter implying mined as a function of temperature and pressure. The critical
that the magnetic energy increases as atoms approach edgéhavior is analyzed in terms of the coefficients of the cor-
other; (ii) an increasing field and temperature if the ferro-responding Landau expansion in the staggered magnetiza-
magnetic and antiferromagnetoelastic couplings are of théon.
same ordefthis includes the symmetric case discussed in the A simple solution is obtained, in the case of isotropic
previous sectiop and finally (iii) a decreasing field and in- magnetoelastic coupling. The magnetic field versus tempera-
creasing temperature if the antiferromagnetoelastic couplingure phase diagram may present some unusual features, un-
is large. Positiveg, , as also suggested from experiment,der the effect of compression. Depending on the values of
limits behavior(i) to u>—1. the spin-lattice coupling, compressibility, and pressure, a sec-
From the experimental point of view, the three kinds ofond first-order transition line at high temperatures and low
phase diagram are possible. For instance, phase diagrams filds appears alongside the usual low-temperature and high-
FeCl}, in the low-pressure rhombohedral phase compare witliield coexistence line. In such cases, a continuous transition
Fig. 3(a (with dt,/dIT<0 anddh,/dI1>0), while those of line smoothly joins two first-order transition lines, one at low
the high pressure closed packed hexagonal phase, {)leCl temperature, and the other at high temperatures, and two tri-

As g, —g_/2=j,/J2dKJ,, the field h,—o changes with

VII. CONCLUSIONS
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critical points appear in the phase diagram. In the absence of o2 1 1
a magnetic field, we recover the classical behavior of — 71 5 5
Domb’s ferromagnet, for which the transition changes from (1+ap)® (1-ag)

first order to continuous, for increasing pressure, with a tri-
critical point in the pressure-temperature plane. In view of
the destabilizing effect of fluctuations on the critical transi-
tion in the case of ferromagnets, this point requires further
clarification. It is to be noted, however, that differently from
the ferromagnetic case, the transition is critical for small
spin-lattice coupling, even at zero pressure.

For an arbitrary ratio of ferromagnetic and antiferromag- joje o, 1 1 1
netic spin-lattice couplingg, a closed solution for arbitrary ~ 2¥2=—J.(p)— ——ao+ 28| (1t ay) + (1—ag)
compressibility is unavailable, and we carried out a pertur- 0 0 (A5)
bation expansion on the inverse compressibility parameter
around the rigid lattice solution. This corresponds to the situ- i2 1 (1
ation in which a Nel temperature is present at all pressures. 4V 4= — 7—] “jragagt ﬁ 3
Three different possibilities arise for the behavior of the tri-
critical point under pressure, depending on the valug.of 1 1

(1+ ag)? (1—ao>2H’ "o

1 1
(14 ag) " (1—ayp)

+C¥2

] =0. (A4)

Finally, from Egs.(21) and (25), we obtain the proper
coefficients of the expansion of the desired thermodynamic
potential[Eq. (24)]:

1 . 1
(1+ap)® (1—ap)®

and e (the ratio of ferromagnetic and antiferromagnetic ex- —ay
change of the rigid modglWe argue that the compressible
metamagnets (Feg}, (FeCh),,, and Ni(NG;).2H,0O may

be associated with each one of these regions. Comparison ., _ J-i+ 2 P+ 1]1 1
with partial results for a shearless Ising metamagnet indicates 6 2 Tod2™ X1 2B 5| (1+ ay)®
that presence of shear is not as crucial as for ferromagnets.

1 1 1
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APPENDIX A: COEFFICIENTS OF THE LANDAU

EXPANSION 1 1

(1+ag)? (1-ap)?

—ay

} . (A7)

As T,p,H and mg are the independent variables of the
problem, from Eq(26) we can write

APPENDIX B: PRESSURE DERIVATIVES

po=H, @1=¢=¢3=...=0, (AL) AT THE TRICRITICAL POINT
which are the desired equations fef(T,p,H) yielding the First we take the derivative of Ed41) relative to the
coefficientse;(T,p,H): reduced pressure:
i2 dt; 9,—-9_
1= 5 1 1tao — =2 T3+ 1)+ 2e(e—
=H=— - - ut2e(e—1)]. (B1)
®o H ‘J*(p)ao 2 a0+ ZBlnl_a’o, (AZ) dIl 662

Then we observe that

=J_(p)a +§j2a2a +¢a L a o dt 2e(1—e)
P ARET Rl FM T TR TR0 28] YO (14 ap) <—t) =0=ul=—"o—=. (B2)
dit/ 3e?+1
N 1 +1 i 1 _0. (a3 Ve haveu!=0 ate=1. As g, —g_=2j./y2dKJ,, the
(1-a0)| 2|(1+ap)? (1-ap)? ’ ratio (dt,/dIT)/j,>(<)0 if u>(<)u'. . _
The field at the tricritical point is found by inserting Eq.
3 (41) into EQ. (A2). Its derivative with relation to pressure is
2= =J.(P)az—5j%(aar+ag,ad) =] j given by
dht_ 1 dttl 1+a0t
+i[_£ 1 1 a9t g M T gy,
2 4 4 RY
B (1+ap)* (1—ap) 1 o t ] dag,
1 1 Tlerg TSR an T
+a1 3+ 3 aO'[
(1+ap)” (1—-ap) (B3)
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The larger terms of this expression are of orler’2. By  This derivative becomes zero at= 1", where
expanding the right side in the last equation up to order

K =2 we obtain 2\Bet (e—1yin ot t V3e+1
€—
3e—1
dh 9+_g_{ 362+1 \/—+1 < p'=2e \/—\/— (B5)
i M +1°
dIl 2 6e? @ 1 e3¢ 2(e+1)\3e—(362+1)l
@ 1
E 1 \/_+1 G In this case, foru> " the ratio @h;/dII)/j,<0 and for
. (B4) S . ratio @hy
\/_e 1 \/§ w< M the ratio dh;/dII)/j , is positive.
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