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Compressible metamagnetic Ising model:
Mean-field Curie-Weiss approach and Landau expansion

A. F. S. Moreira*
Centro de Cieˆncias Tecnolo´gicas da Terra e do Mar, Universidade do Vale do Itajaı´, Itajaı́, SC, Brazil

W. Figueiredo†

Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, SC, Brazil

Vera B. Henriques‡

Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318, 05389-970 Sa˜o Paulo, SP, Brazil
~Received 9 August 2002; published 31 December 2002!

A layered compressible metamagnetic Ising model is studied within the mean-field Curie-Weiss approach
and the Landau expansion. The ferromagnetic and antiferromagnetic couplings depend linearly on the volume
as in Domb’s ferromagnetic model. For equal spin-lattice couplings of ferromagnetic and antiferromagnetic
interactions a closed solution is obtained, suitable for arbitrary values of the compressibility. For a large
spin-lattice coupling and a high compressibility, two tricritical points appear in the magnetic field-temperature
phase diagram, one at low temperatures, and other at high temperatures, for a low hydrostatic pressure. For an
arbitrary ratio of the spin-lattice couplings a perturbation expansion of the free energy on the inverse elastic
constant is presented. The effect of pressure on the single tricritical point comprises three possibilities, accord-
ing to the signs of the derivatives of the tricritical temperature and field, related to the magnitude of the
ferromagnetic/antiferromagnetoelastic couplings. In the experimental literature there are some compressible
metamagnets whose tricritical behaviors as a function of pressure are in agreement with these findings.
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I. INTRODUCTION

The phase diagram of metamagnetic systems in the m
netic field versus temperature plane has been studied
theoretically1–8 and experimentally.9–12 The phase diagram
exhibits paramagnetic-antiferromagnetic transitions, of fi
order at high magnetic field, and critical at low field. The
two lines often join at a tricritical point, but a more comple
behavior is also possible, with coexistence between diffe
magnetic phases.

The compressibility of ferromagnetic Ising systems w
addressed in a series of theoretical studies13–20 some time
ago. For an exchange interaction linearly dependent on i
rion distance, an integration of elastic variables leads to
effective long-range four-spin interaction. The sign of th
effective interaction is crucial for the characterization of t
magnetic transition, which may be either critical, with pu
or renormalized Ising exponents,14,19 or discontinuous in
both magnetic and number densities.15–18 Two simple limit-
ing cases correspond to zero14 and infinite13 shear forces: in
the first case both the elastic and magnetic couplings dep
only on the longitudinal component of the relative positio
of the ions, and in the second position fluctuations are ab
and interion distances are volume dependent. The Ba
Essam model presents Ising critical indices under cons
pressure and Ising renormalized critical indices at cons
volume.14,19 As for Domb’s model, a mean-field approac
and 2d exact or renormalization-group treatments produ
qualitatively different results: a tricritical point in th
temperature-pressure plane is present in the first case,
only first-order transitions in the second case. Interestin
the inclusion of finite shear through fluctuation of bo
0163-1829/2002/66~22!/224425~9!/$20.00 66 2244
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lengths does not stabilize the critical behavior in cases of
isotropic17 and cubic elastic lattices;16 therefore a Domb-like
behavior prevails, i.e., the magnetic transition is turned d
continuous through the elasticity of the underlying lattic
More recently, simulation studies have been carried out
an anisotropic elastic potential.21

A metamagnetic Ising system under pressure was con
ered previously,22 in the spirit of the shearless Baker-Essa
model.14 The phase diagram is essentially the same as tha
the rigid model. The tricritical temperature was explicit
determined as a function of pressure, and possible relat
to experimental results23 were discussed. In view of the dis
crepancy between the behavior of the two extreme mode
the case of ferromagnetism, it is of interest to consider
effect of shear stress on metamagnets.

Experimental investigations on the metamagnetic co
pounds FeBr2 and FeCl2 ~Ref. 23! and Ni(NO3)2.2H2O,24,25

under hydrostatic pressure, have been performed. From m
surements of the magnetization on these systems the de
dence of the tricritical point, Ne´el temperature and transitio
field at zero temperature on pressure was determined.
model we have developed in this work aims to understa
the different behaviors exhibited by these metamagnets in
experiments.

In the present study, layered metamagnets with infin
shear forces, are discussed as a function of the external p
sure. We perform a Landau expansion for the model f
energy in order to investigate the general effects of the co
pressibility on the critical behavior. We also compare o
results with some experimental data found in the literatu
This paper is organized as follows: in Sec. II we present
model Hamiltonian. In Sec. III we perform a mean-fie
transformation. In Sec. IV we derive the Landau expansi
Section V is devoted to a discussion of the isotropic sp
©2002 The American Physical Society25-1
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lattice couplings, and in Sec. VI we address the correspo
ing anisotropic case and compare our results with the exp
mental data. Finally, in Sec. VII, we present our conclusio

II. MODEL HAMILTONIAN

The compressible metamagnetic model we consider
hibits the same elastic features of Domb’s ferromagn
model.13 The deformations are homogeneous and isotro
~infinite shear forces!. The magnetic interactions are consi
ered through an Ising spin system on a cubic lattice, ind
space dimensions, constituted by two sublattices. The su
tices are chosen to be the alternating layers ofd21 dimen-
sions of the lattice. The exchange interaction between
neighboring spins on the same sublattice is of the ferrom
netic type, while the coupling between neighboring spins
longing to different sublattices is of the antiferromagne
type. Our choice of stacking planes for the sublattices
motivated by the crystalline structure of some metamagn
compounds like FeBr2 and FeCl2. They are composed o
hexagonal sheets of Fe21 spins, which at low temperatur
are ferromagnetically aligned along the hexagonalc axis,
whereas successive sheets are stacked antiferromagnet
However, we could started with another representation
the sublattices, but the results within the mean-field appro
would be essentially the same. The Hamiltonian of the mo
is given by

H52
1

2 (
i j

s i@Ji j 2 j i j ~a2a0!#s j

1
1

2 (
i j

1

2
K~a2a0!22(

i
His i , ~1!

wheres i561 are the spin variables, anda0 is the average
distance between neighboring spins at a reference temp
ture T0 . Hi is the magnetic field on sitei . The second term
on the right is the elastic energy of the lattice, represented
the harmonic potential between nearest-neighbor pairs
spins, whereK is the elastic constant anda is the average
distance between neighboring spins at temperatureT. We as-
sume a linear approximation for the dependence of the
change couplings on the lattice constanta, justified for very
large values forK, so that only small lattice deformations a
considered.

The partition function at constant volumeZa(T,a,N,Hi),
can be transformed in order to introduce the pressure into
problem. This is done by making a Laplace transformation
the pressure ensemble,

Z5E
2`

1`

dV exp~2bpV!Za~T,a,N,Hi !, ~2!

whereb51/(kBT), V is the volume of the system andp its
pressure. Let us expand the volume around the refere
volume at T0 , V5Na0

d@11d/a0(a2a0)1O„(a2a0)2
…#,

keeping only first-order contribution. Integrating over (a
2a0) we obtain

Z~T,p,N,Hi !5c exp@2bNH0~p!#Zs , ~3!
22442
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where

c5dNa0
d21A 2p

dNbK
, H0~p!5pa0

d2
1

2
d

a0
2(d21)p2

K
,

~4!

Zs5(
$s%

exp~2bH8!, ~5!

and

H852
1

2 (
i j

s i S Ji j 1
pa0

d21

K
j i j Ds j

2
1

2 S (
i j

s i

j i j

2AdNK
s j D 2

2(
i

His i . ~6!

We note that the transformation to the pressure ensem
introduces a biquadratic term, which couples different pa
of spins all over the lattice.

To render the argument of the exponential more mana
able in Eq.~5!, we apply a Gaussian transformation to t
biquadratic term,

Zs5(
$s%

E
2`

1`

dy

3expS 2
y2

2
1

1

2
b(

i j
s iL i j s j1b(

i
His i D , ~7!

where the coupling matrix is defined by

Li , j~F,A!56JF,A6S pa0
d21

K
1yA 1

dNbK D j F,A . ~8!

Note that our choice of signs implies an increment of t
exchange interaction under compression, for positive mag
toelastic couplingsj A,F , in both the ferromagnetic and ant
ferromagnetic cases.

III. MEAN-FIELD FREE-ENERGY

In order to advance, we shall transform the effective s
Hamiltonian, allowing each spin to interact with all oth
spins in the lattice with the same strength. This is the Cu
Weiss mean-field approximation, and the notion of dime
sion is completely lost in the transformed system. The or
nal lattice can be thought as a stack of ferromagne
hyperplanesA andB, with an antiferromagnetic coupling be
tween them. For the Curie-Weiss version of the mod
where each spin of the lattice is coupled to any other, hav
N/2 ferromagnetic couplingsLF and N/2 antiferromagnetic
onesLA . To keep the free energy finite, the effective co
plings must be taken asLF /N andLA /N. Notice that, unlike
the real system, there is no difference in the number of
romagnetic and antiferromagnetic couplings in this me
field approach.

The applied field at each lattice sitei is divided into two
parts: a uniform positiveH field and a staggeredHs field,
which are positive on theA sublattice and negative on th
5-2
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B sublattice. The effective spin partition function@Eq. ~7!#,
becomes

Zs5(
$s%

E
2`

1`

dy exp2H y2

2
2b

LF2LA

4N S (
i PA

s i1 (
j PB

s j D 2

2b
LF1LA

4N S (
i PA

s i2 (
j PB

s j D 2

2b~H1Hs!(
i PA

s i2b~H2Hs!(
j PB

s j J . ~9!

Before we proceed with the sum over the spins variables,
consider once more the Gaussian transformation, applie
the two quadratic spin sums in the last equation. Introduc
two variablesx andw, we can write

Z5E
2`

1`

dyE
2`

1`

dxE
2`

1`

dw exp@2F~y,x,w,T,p,H,Hs!#,

~10!

where

F5
y2

2
1

x2

2
1

w2

2
2

N

2
ln~2 coshQ1!2

N

2
ln~2 coshQ2!,

~11!

Q65xAb~LF2LA!

N
6wAb~LF1LA!

N
1b~H6Hs!.

~12!

In the thermodynamic limit,N→`, the main contribution
to the partition function comes from the values for which t
exponential function is a sharp maximum. ExpandingF

around its extreme point (x̄,ȳ,w̄) and keeping terms up to
second order, we have

Z5E
2`

1`

dyE
2`

1`

dxE
2`

1`

dw exp2$F̄1F x̄x̄~x2 x̄!2

1F ȳȳ~y2 ȳ!21F w̄w̄~w2w̄!212F x̄ȳ~x2 x̄!~y2 ȳ!

12F x̄w̄~x2 x̄!~w2w̄!12F ȳw̄~y2 ȳ!~w2w̄!%, ~13!

with Fāb̄[@]2F/]a]b#
ā,b̄

. After some algebraic manipula
tions, we obtain

Z5expS 2F̄2
1

2
ln D D , ~14!

D5p3/2FF w̄w̄S F ȳȳ2
F x̄ȳ

2

F w̄w̄
D S F x̄x̄2

F x̄w̄
2

F w̄w̄
D

2F w̄w̄S F x̄ȳ 2
F x̄w̄F ȳw̄

F w̄w̄
D 2G . ~15!

ProvidedD.0, in the thermodynamic limit,N→`, the con-
tribution of the logarithmic term may be neglected, so
finally arrive at the normalized Gibbs free energy
22442
e
to
g

g~T,p,H,Hs!52
1

Nb
ln Z5

F̄

Nb
1H0~p!, ~16!

whereH0(p) is defined in Eq.~4!.
Let us introduce the sublattice magnetizationsmA and

mB . Then we define the total magnetizationm5(mA
1mB)/2 and the staggered magnetizationms5(mA
2mB)/2. The staggered magnetizationms is the order pa-
rameter conjugate to the staggered fieldHs . We can write

m5
]g

]H
5

1

2
tanh~Q1!1

1

2
tanh~Q2!,

ms5
]g

]Hs
5

1

2
tanh~Q1!2

1

2
tanh~Q2!, ~17!

where Q1 and Q2 are defined by Eq.~12! ~for x5 x̄ and
w5w̄). Finally, from Eqs.~11! and ~12!, x̄,ȳ and w̄ can be
written as functions ofm andms ,

x̄5ANbFJ2~p!1
j 2

2
~ j 2m21 j 1ms

2!Gm,

ȳ5
ANb

2
~ j 2m21 j 1ms

2!,

w̄5ANbFJ1~p!1
j 1

2
~ j 2m21 j 1ms

2!Gms , ~18!

where we defined

j 65
1

AdK

j F6 j A

2
, J65

JF6JA

2
,

J6~p!5J61
a0

d21p

K

j F6 j A

2
. ~19!

Now, substituting Eqs.~12! and ~18! into Eq. ~17!, we
obtain the mean-field recurrence relations form(T,p,H,Hs)
andms(T,p,H,Hs),:

H52FJ2~p!1
j 2

2
~ j 2m21 j 1ms

2!Gm
1

1

4b
lnF ~11m1ms!~11m2ms!

~12m1ms!~12m2ms!
G , ~20!

Hs52FJ1~p!1
j 1

2
~ j 2m21 j 1ms

2!Gms

1
1

4b
lnF ~11m1ms!~12m1ms!

~11m2ms!~12m2ms!
G . ~21!

The physical solutions of this set of coupled equatio
minimize the free energy and define the state of the sys
for fixed values ofT, H andp. From Eqs.~11! and ~16! we
have, for the Gibbs free energy,
5-3
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g~T,p,H,Hs!5H0~p!1
1

2
J2~p!m21

1

2
J1~p!ms

2

1
3

8
~ j 2m21 j 1ms

2!21
1

4b
ln@~11m1ms!

3~11m2ms!~12m1ms!~12m2ms!#.

~22!

IV. LANDAU EXPANSION

The Landau expansion consists in developing the free
ergy in a power series of the order parameter, with coe
cients depending only on field variables, for standa
analysis.26 So, we perform a Legendre transform o
g(T,p,H,Hs) @Eq. ~22!# in order to replace the fieldHs by
the magnetizationms . That is,

C~T,p,H,ms!5g~T,p,H,Hs!1Hsms , ~23!

wherem5m(T,p,H,ms). The expansion takes the form

C~T,p,H,ms!5C01C2ms
21C4ms

41C6ms
61O~ms

8!.
~24!

The expansion ofC(T,p,H,ms), allows the analytical
description of the phase transition between a paramagn
phase (ms50) and an antiferromagnetic phase (msÞ0). The
expansion can also be used to describe a phase trans
between two antiferromagnetic phases when the order
rameter of both phases are close to zero.27 However, in this
paper, we are interested only in the transition between
paramagnetic and antiferromagnetic phases.

The critical properties of the model may be derived fro
the behavior of the coefficients of the expansion as a fu
tion of temperature, magnetic field and external pressure
order to obtain explicit expressions for the coefficientsC j ,
we first note that they are proportional to the coefficie
of Hs :

Hs~T,p,H,ms!5
]C

]ms
52C2ms14C4ms

316C6ms
51•••.

~25!

We therefore expand Eq.~21! in powers ofms . However, it
is necessary also to considerm5m(T,p,H,ms), but inspec-
tion of Eq. ~20! shows that it is not possible to obtain a
explicit expression form. We thus consider the expansio
m(T,p,H,ms)5( ia ims

2i , where a i5a i(T,p,H) and i
50,1,2, . . . . Substituting this expansion form into Eq.~20!,
we arrive at an expression of the form

H5w01w1ms
21w2ms

41w3ms
61O~ms

8!, ~26!

where w i5w i(T,p,H). Now, after some straightforwar
work, the coefficients ofC i can be found, as shown in Ap
pendix A.
22442
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V. ISOTROPIC SPIN-LATTICE COUPLING

Let us first consider the particular situation in which t
ferromagnetic and antiferromagnetic exchange interacti
have the same volume dependence, that is,j F5 j A . In this
casej 250, and the continuous phase boundary between
antiferromagnetic and paramagnetic phases is easily obta
after the field variables are rescaled by the pressure. We
fine

tp5
kBT

J1~p!
, hp5

H

J1~p!
, ep5

JF1a0
d21p jF /K

JA1a0
d21p jA /K

, ~27!

wheretp andhp are the rescaled temperature and field, a
ep is the competition parameter between ferromagnetic
antiferromagnetic interactions for each value of the press

From the Landau theory of phase transitions, the conti
ous transition is obtained forC250, which defines a rela-
tionship amongtp ,hp and ep . Equation~A5! gives @a0#c

5A12@ tp#c. Substituting this result in Eq.~A2!, for the
phase boundary we find

@hp#c52
ep21

ep11
@a0#c1

@ tp#c

2
ln

11@a0#c

12@a0#c
, ~28!

where thec index refers to the criticality. The Ne´el tempera-
ture tN is given by@hp#c5@a0#c50, which in our case re-
duces totN(p)5@ tp#c51.

An analysis of the sign of the fourth order coefficientC4
allows one to establish the limits of stability of the pha
boundary@Eq. ~28!#. On the critical surface,

C4

J1~p!
5

1

4@ tp#c
2 S ept2ep1

1

3D2
jp

4
, ~29!

wherejp5 j 1
2 /2J1(p). The phase boundary is stable only f

C4.0. The line of critical points ends at a tricritical point a
C450. This point is stable only if the next coefficient of th
expansion,C6, is positive, which is true for all values o
pressure such thatep.0.6. On the other hand, forep,0.6
the line of critical points ends at a critical endpoint.

In this work we will focus our attention only on tricritica
behavior. Forep.0.6 andC25C450 we find

@ tp# t
65

1

2jp
Fep6Aep

224jpS ep2
1

3D G , ~30!

where@ tp# t
6 are the temperatures of two possible tricritic

points as functions of pressure, subject to the condit
@ tp# t

6<1,.
The different possibilities for the system’s phase diagra

are summarized in thejp versusep plane, as shown in Fig. 1
Three regions are seen, divided by the dashed (jp5 1

3 ) and
solid „jp

05ep
2/@4(ep2 1

3 )#… lines. The corresponding typica
phase diagrams are sketched in the insets. In regionF, either
C4,0 or @ tp# t

6>1, and the system exhibits only phase c
existence. Forjp, 1

3 ~areaA), @ tp# t
1.1 and the system ex

hibits a phase diagram typical of the rigid metamagne
system,10 with a single tricritical point, whose temperatur
5-4
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FIG. 1. Diagram in the plane
jp vs ep and sketch of the possible
tricritical points. The insets repre
sent typical phase diagrams corr
sponding toA, D, andF regions.
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increases withjp . For ep. 2
3 , @ tp# t

2→1 when jp→ 1
3 and

the critical line disappears. Forep, 2
3 and 1

3 ,jp,jp
0 ~region

D), both roots are physically valid and so a second tricriti
point which interrupts the critical line is present. The pha
diagram presents a continuous transition line between@ tp# t

2

and@ tp# t
1 , but of course, no Ne´el temperature. Approachin

the superior limit of regionD—the solid line—we have
limjp→j

p
0@ tp# t

25@ tp# t
1 , and the two tricritical points collaps

into one, onto a coexistence line.
In order to analyze the effect of pressure on the ph

diagram, we use Eq.~19! to introduce variables

t5
kBT

J1
, h5

H

J1
, e5

JF

JA
,

g65
j 6

A2J1

, P5A 2d

KJ1
a0

d21p, ~31!

wheret,h, ande are the pressure independent reduced v
ables. Note thatg250 in the isotropic case studied in th
section.P is the appropriate stress variable. Also, in terms
the variables, we have

jp5
g1

2

11g1P
, ep511

e21

11~11e!g1P
. ~32!

We want to analyze the evolution of the critical behav
within the jp3ep parameter space~Fig. 1! in terms of the
physical pressure.

For vanishing temperature, there is coexistence betw
the paramagnetic (m51, ms50) and antiferromagnetic (m
50,ms51) phases, which must have the same free ene
C(T50,p,H,ms50)5C(T50,p,H,ms), at zero staggered
field. From Eq.~23!, we have, for the phase boundary at n
temperature,
22442
l
e

e

i-

f

r

en

y,

l

h(t50)5
1

e11
1

g1
2

4
1

g1P (t50)

2
. ~33!

At the h50 plane, if the transition is continuous, the Ne´el
temperature exhibits a linear dependence on pressure g
by tN511g1P. On the other hand, if a coexistence
phases is observed at zero field, we must impose equalit
free-energies and solve mean-field equations~20! and ~21!.
The magnetizationm50 automatically satisfies Eq.~20!, and
Eq. ~21! yields, forHs50,

t (h50)

2
ln

11ms

12ms
2@11g1P1g1

2 ms
2#ms50. ~34!

The free energy @Eq. ~23!# for C(T,p,H50,ms50)
5C(T,p,H50,ms) leads to

~11g1P!ms
21

g1
2

2
ms

42t (h50)@~11ms!ln~11ms!

1~12ms!ln~12ms!#50. ~35!

An analytic expression for the phase boundary at zero fi
as a function of the pressure, may be written, for smallms ,
as

11g1P5t (h50)2
5

48t (h50)
~3g1

2 2t (h50)!
2; ~36!

otherwise Eqs.~34! and ~35! may be solved numerically.
In Fig. 2, we exhibit the phase diagram of the model

some values of the reduced pressureP, for particular values
of the magnetic competition parametere and the magneto-
elastic parameterg1

2 ; j 2/K ~respectively, 1 and 0.72). This
corresponds to running vertically from theF to A region in
Fig. 1, atep51. At low pressures the whole phase bounda
corresponds to first-order transitions, and the more us
5-5
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FIG. 2. Phase diagram in the plane magne
field versus temperature fore51, g150.7 and
four representative pressures. Dotted lines rep
sent first-order transitions and full lines continu
ous transitions. The dashed lineg is a locus of
tricritical points. The full circles are the tricritica
points at the selected pressuresP. At pressure
P50.6714 a tricritical point appears forh50, a
behavior analogous to that of Domb’s ferroma
netic model.
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metamagnetic phase diagram arises at higher pressure
tricritical point in the temperature-pressure plane (h50)
separates the two regimes. For lower values of the magn
elastic parameter (g1,0.58), which may also be associate
with low compressibility, only the usual behavior would b
observed. Phase diagrams with two critical points~as in re-
gion D of Fig. 1!, would be observed for large magnetoela
tic couplings and small competition parameter (e,2/3), at
low pressures.

The behavior of the compressible metamagnetic mode
zero field is reminiscent of that of Domb’s ferromagne
model under a mean-field treatment: at low pressures
compressible model exhibits first-order transitions, wh
continuous transitions appear at higher pressures.19,20 There
is an important difference, however, since for small sp
lattice couplings the transition is critical even for zero pre
sure. It remains to be seen whether fluctuations could des
the stability of the continuous transition, as is the case for
ferromagnetic model.17

VI. ANISOTROPIC LOW COMPRESSIBILITY LIMIT

Let us consider the general case whereg2Þ0, in the low
compressibility limit ~large K). The critical conditionC2
50, with reduced variables defined by Eq.~31! in Eq. ~A5!
yields

g2g1a0c
4 1~11g1P2g2g1!a0c

2 212g1P1tc50,
~37!

where the indexc refers to criticality. Our definition of the
effective magnetic model under pressure@Eq. ~6!# relies on
large values for the elastic constantK. The terms such asg6

2

andg1P are of orderK21, so we solve Eq.~37! for a0c and
perform a perturbation expansion in those variables up
that order, obtaining

a0c5A12tc~12g2g12g1P!2g2g1tc
2. ~38!

Substituting in Eq.~A2!, we obtain the critical surface
equation:
22442
. A

to-

-

at

e

-
-
oy
e

to

hc52S e21

e11
1g2P Da0c2g2a0c

3 1
tc

2
ln

11a0c

12a0c
.

~39!

The Néel temperature is easily obtained. Makinghc50 in
Eq. ~39!, the unique solution isa0c50. Equation~37! then
yields the Ne´el temperaturetN511g1P, which has the
same functional form as for the isotropic case. The dep
dence of the Ne´el temperature on the pressure is also o
served in the experiments. For instance, it increases w
pressure for the metamagnetic systems FeCl2 ~phases I and
II !, FeBr2,23 and Ni(NO3)2.2H2O,24,25 indicating that for
these materialsg1 should be taken as positive.

To allow for a tricritical point on the critical line we mus
look at the conditionC450. From Eq.~A6! we have, in
terms of our variables@Eq. ~31!#,

2F2g2g11
t t

~12a0t
2 !2Ga0ta1t5g1

2 2
t t

3

113a0t
2

~12a0t
2 !3

,

~40!

where the subscriptt denotes the tricritical point. By taking
Eqs.~A3!, ~38!, and~40! and expanding up to orderK21, we
arrive at the following expression for the tricritical temper
ture:

t t5S 12
1

3e D H 11F5e222e11

2e~3e21!
g11

~e11!2

2e~3e21!
g2GP

1
21e317e2117e15

6e2~3e21!
g2g1

1
~e11!2

2e2~3e21!
g2

2 1
~3e21!

3e2
g1

2 J . ~41!

The line of coexistence can be found only numerica
except att50, where internal energies of the paramagne
5-6
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FIG. 3. Phase diagram in the planem ~ratio of
ferro and antiferro spin-lattice couplings versu
e. m t andmh are defined by Eqs.~B2! and ~B5!,
respectively. The arrow in the insets indicates t
direction of increasing pressures. The regions~a!,
~b! and ~c! are associated with the behaviors
the derivatives of the tricritical temperature an
field relative to the pressure.
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~P! and antiferromagnetic~AF! phases become identical
the transition. From Eq.~23!, the coexistence field is give
by

ht505
1

e11
1

g12g2

2
P1

g1
2 2g2

2

4
. ~42!

As g12g2/25 j A /A2dKJ1, the field ht50 changes with
pressure according to the sign ofj A . Experimental work
performed on the above mentioned metamagnets23–25

showed thatht50 increases with pressure, indicating also th
for these compoundsj A should be taken positive.

Now let us consider the dependence of the tricritical po
on pressure. First, we define a parameterm5 j F / j A which
corresponds to the ratio of ferromagnetic and antiferrom
netoelastic couplings. We have found the values ofm for
which dtt /dP50 anddht /dP50, m tandmh, respectively.
This is shown in Appendix B.

In Fig. 3 the linesm t and mh as functions of the ratioe
delimit regions of physical microscopic parameters wh
lead to a different behavior of the system as a function
pressure. We take onlye.0.6, which corresponds toC6
.0, in order to keep the tricritical point stable. Assuming
positive j A , as suggested by a comparison with experime
three different scenarios for the evolution of the tricritic
point with pressure are possible:~i! an increasing field and
decreasing temperature for very small~at low e) or negative
~at largee) ferromagnetoelastic coupling, the latter implyin
that the magnetic energy increases as atoms approach
other; ~ii ! an increasing field and temperature if the ferr
magnetic and antiferromagnetoelastic couplings are of
same order~this includes the symmetric case discussed in
previous section!; and finally ~iii ! a decreasing field and in
creasing temperature if the antiferromagnetoelastic coup
is large. Positiveg1 , as also suggested from experime
limits behavior~i! to m.21.

From the experimental point of view, the three kinds
phase diagram are possible. For instance, phase diagram
FeCl2 in the low-pressure rhombohedral phase compare w
Fig. 3~a! ~with dtt /dP,0 anddht /dP.0), while those of
the high pressure closed packed hexagonal phase, (FeC2) II ,
22442
t

t

-

f

t,
l

ach
-
e
e

g
,

f
for

th

fit to Fig. 3~b! (dtt /dP.0 anddht /dP.0). The behavior
of Ni(NO3).2H2O conforms to region ~c! of Fig. 3
(dtt /dP.0 anddht /dP,0).

Our results must also be compared to those of Uda
Figueiredo,22 obtained for a shearless compressible me
magnet. Similarly to the ferromagnetic case, a biquadr
term @see Eq. ~6!# is absent in the effective pressur
dependent magnetic Hamiltonian, if shear is absent. H
ever, differently from the ferromagnetic case, at least in
mean-field approach, both models lead to similar results
the evolution of the phase diagrams under pressure. S
narios~i! and ~ii ! were obtained for the shearless model f
particular numerical parameters@m,e520.02, 2.9~i!; 0.97,
2.3 ~ii !# which fit into the corresponding regions of Fig.
while scenario~iii ! was not considered by the authors. A
shearless and infinite shear elasticities equivalent in the
of metamagnets? Again, calculations beyond the mean fi
would be needed to check on this question.

VII. CONCLUSIONS

We have studied the behavior, as a function of pressure
an Ising layered compressible metamagnetic model. The
change coupling between nearest-neigboring spins is take
be linearly dependent on the volume. Under the assump
of limited compressibility, the model is studied in the Curi
Weiss mean-field approximation and the free energy is de
mined as a function of temperature and pressure. The cri
behavior is analyzed in terms of the coefficients of the c
responding Landau expansion in the staggered magne
tion.

A simple solution is obtained, in the case of isotrop
magnetoelastic coupling. The magnetic field versus temp
ture phase diagram may present some unusual features
der the effect of compression. Depending on the values
the spin-lattice coupling, compressibility, and pressure, a s
ond first-order transition line at high temperatures and l
fields appears alongside the usual low-temperature and h
field coexistence line. In such cases, a continuous trans
line smoothly joins two first-order transition lines, one at lo
temperature, and the other at high temperatures, and two
5-7
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critical points appear in the phase diagram. In the absenc
a magnetic field, we recover the classical behavior
Domb’s ferromagnet, for which the transition changes fro
first order to continuous, for increasing pressure, with a
critical point in the pressure-temperature plane. In view
the destabilizing effect of fluctuations on the critical tran
tion in the case of ferromagnets, this point requires furt
clarification. It is to be noted, however, that differently fro
the ferromagnetic case, the transition is critical for sm
spin-lattice coupling, even at zero pressure.

For an arbitrary ratio of ferromagnetic and antiferroma
netic spin-lattice couplingsm, a closed solution for arbitrary
compressibility is unavailable, and we carried out a per
bation expansion on the inverse compressibility param
around the rigid lattice solution. This corresponds to the s
ation in which a Ne´el temperature is present at all pressur
Three different possibilities arise for the behavior of the
critical point under pressure, depending on the value om
and e ~the ratio of ferromagnetic and antiferromagnetic e
change of the rigid model!. We argue that the compressib
metamagnets (FeCl2) I , (FeCl2) II , and Ni(NO3).2H2O may
be associated with each one of these regions. Compar
with partial results for a shearless Ising metamagnet indic
that presence of shear is not as crucial as for ferromagn
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APPENDIX A: COEFFICIENTS OF THE LANDAU
EXPANSION

As T,p,H and ms are the independent variables of th
problem, from Eq.~26! we can write

w05H, w15w25w35 . . . 50, ~A1!

which are the desired equations forw i(T,p,H) yielding the
coefficientsa i(T,p,H):

w05H52J2~p!a02
j 2
2

2
a0

31
1

2b
ln

11a0

12a0
, ~A2!

w15J2~p!a11
3

2
j 2
2 a0

2a11
j 2 j 1

2
a02

1

2b H a0F 1

~11a0!

1
1

~12a0!G1
1

2 F 1

~11a0!2
2

1

~12a0!2G J 50, ~A3!

w252J2~p!a22
3

2
j 2
2 ~a0

2a11a0 ,a1
2!2 j 2 j 1a1

1
1

2b H 2
1

4 F 1

~11a0!4
2

1

~12a0!4G
1a1F 1

~11a0!3
1

1

~12a0!3G
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of
f

i-
f
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r
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r-
er
-
.

-
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es
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.

2
a1

2

2 F 1

~11a0!2
2

1

~12a0!2G
1a2F 1

~11a0!
1

1

~12a0!G J 50. ~A4!

Finally, from Eqs.~21! and ~25!, we obtain the proper
coefficients of the expansion of the desired thermodyna
potential@Eq. ~24!#:

2C252J1~p!2
j 2 j 1

2
a0

21
1

2b F 1

~11a0!
1

1

~12a0!G ,
~A5!

4C452
j 1
2

2
2 j 2 j 1a0a11

1

2b H 1

3 F 1

~11a0!3
1

1

~12a0!3G
2a1F 1

~11a0!2
2

1

~12a0!2G J , ~A6!

6C652
j 2 j 1

2
~2a0a21a1

2!1
1

2b H 1

5 F 1

~11a0!5

1
1

~12a0!5G12a1F 1

~11a0!4
2

1

~12a0!4G
1a1

2F 1

~11a0!3
1

1

~12a0!3G
2a2F 1

~11a0!2
2

1

~12a0!2G J . ~A7!

APPENDIX B: PRESSURE DERIVATIVES
AT THE TRICRITICAL POINT

First we take the derivative of Eq.~41! relative to the
reduced pressure:

dtt
dP

5
g12g2

6e2
@~3e211!m12e~e21!#. ~B1!

Then we observe that

S dtt
dP D

m t

50⇒m t5
2e~12e!

3e211
. ~B2!

We havem t50 at e51. As g12g252 j A /A2dKJ1, the
ratio (dtt /dP)/ j A.(,)0 if m.(,)m t.

The field at the tricritical point is found by inserting Eq
~41! into Eq. ~A2!. Its derivative with relation to pressure i
given by

dht

dP
52g2a0t1

1

2

dtt
dP

ln
11a0t

12a0t

2F e21

e11
1g2P13g2

2 a0t
2 2

t t

12a0t
2 G da0t

dP
.

~B3!
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The larger terms of this expression are of orderK21/2. By
expanding the right side in the last equation up to or
K21/2, we obtain

dht

dP
5

g12g2

2 H F3e211

6e2
ln

A3e11

A3e21
2

e11

eA3e
Gm

1
e21

3e
ln

A3e11

A3e21
1

2

A3e
J . ~B4!
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