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Direct sampling of complex landscapes at low temperatures: The three-dimensional
+J Ising spin glass

Alexander K. Hartmanh
Institut fur Theoretische Physik, University of @Giagen, Bunsenstr. 9, 37073 @Giagen, Germany

Federico Ricci-Tersenghi
Dipartimento di Fisica and INFM, Universitdi Roma “La Sapienza,” Piazzale Aldo Moro 2, 1-00185 Roma, Italy
(Received 27 September 2002; published 27 December)2002

A method is presented which allows one to sample directly low-temperature configurations of glassy sys-
tems, like spin glasses. The basic idea is to generate ground states and low lying excited configurations using
a heuristic algorithm. Then, with the help of microcanonical Monte Carlo simulations, more configurations are
found, clusters of configurations are determined, and entropies evaluated. Finally equilibrium configuration are
randomly sampled with proper Gibbs-Boltzmann weights. The method is applied to three-dimensional Ising
spin glasses withtJ interactions and temperatur@s<0.5. The low-temperature behavior of this model is
characterized by evaluating different overlap quantities, exhibiting a complex low-energy landscape for
>0, while theT=0 behavior appears to be less complex.
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[. INTRODUCTION rium sample of configurations fof—0. For the MC meth-
ods, the reason for this is that for larger systems and very
Despite large efforts made by scientists in the last twdow temperatures, equilibration times are too long. Below we
decades, complex energy landscapes with many localhall give an example for &J Ising spin glass, which ex-
minima and nested valleys, like that of spin glassesl hibits an exponential ground state degeneracy, which shows
offer many relevant questions to be answered. These quethat just obtaining ground states is much easier than obtain-
tions usually regard the lowest energy levels of the landing ground states with their proper statistics, i.e., each
scape. The traditional numerical approach is to apply a@round state with the same probability. For other existing
Monte Carlo (MC) simulation? Equilibration is tested by heuristics the statistics of the configurations is influenced in
monitoring different average quantities as a function of thean uncontrollable way by the low-energy landscape.
number of MC steps. Equilibration can be assumed when the In this work, a post-processing method is presented,
measured values of different runs, initially being far apart,which removes the bias induced by the nonequilibrium low-
agree within error bars. Another approaéhto calculate one temperature sampling and allows one to obtain a properly
quantity, like the link overlap, in two different ways, one equilibrated state for systems having a high degeneracy. The
time directly and one time depending on some other meabasic idea of the technique is to calculate clusters of configu-
sured quantity like the energy, and wait till both resultsrations, which are connected in configuration space by zero-
agree. energy moves, e.g., zero-energy flips of spins in the Ising
Such a test is available only in special cases, e.g., for spiapin-glass case. Next the sizes of these clusters are estimated
glasses with a Gaussian distribution of the bonds. Otherwisgynd used to obtain an unbiased sample, where each cluster
one usually waits till the quantity of interest does no longercontributes with a factor proportional to the size of the clus-
show a time dependence. Nevertheless, at low temperaturégr and to the Gibbs-Boltzmani©B) weight. This method
and with increasing system size, equilibration becomes muctvas already successfully applied to the ground-state sam-
harder and eventually, at very low temperatures, is impospling of three-dimensional Ising:J spin glasse8 Here, the
sible. method is extended to the>0 case and again applied to the
In the very last years, a different approach has been prad=3 =J GS model. Please note that this approach works
posed, namely the calculation of ground-st@&) and low-  better and better with decreasing temperature, hence is
energy configurations. Some characteristics of the lowcomplementary to the MC technique, which suffers from
energy landscape can be probed by the application ofquilibration problems at low temperatures. But similar to
suitable perturbations which slightly modify the ¢®But  the MC method, one has to monitor some measured quanti-
full information on the low-temperature behavior can be ob-ties as a function of some parameters to establish equilibra-
tained only by an equilibrium sampling of the system at ation, e.g., the number of clusters found in the analysis as a
given temperature. Here we show that, by calculating GS antunction of the number of states included. Also similar to the
excited states, one can directly sample very low temperaMC method, obtaining equilibrium becomes harder with in-
tures. Several algorithms and heuristiese available to ob- creasing system size. In this sense, the method is also not
tain ground states and excited states. Some are based agaiact. But in contrast to the MC method, ensuring equilib-
on Monte Carlo techniques like simulated annealiBgnA) rium in this way is possible at very low temperatures for
and parallel tempering. All these techniques have the drawlarger systemsand becomes impossible for higher tempera-
back that it is impossible to obtain an unbiased, i.e., equilibtures, while for the MC method it is the other way round.
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We apply the algorithm to three-dimensional Ising spin 300 . .
glasses. The EA model consists Nf=L2 Ising spinss,= T
+1 on a cubic lattice with the HamiltonianH= 250 - ™
—2i,)»JijSiSj - The sum runs over all pairs of nearest neigh-
bors(i,j). J;; are quenched random variables taking values
Jij==1 with equal probability, and satisfy the constraint
2i,jyJij=0. We apply periodic boundary conditions in all
directions.

In this work we show that the overlap distributi®q) at
zero temperature is qualitatively different froR{q) at low
but nonzero temperature. This means, even if there is an
exponential number of GS configurations, zero-temperature
guantities may be very different from those at any finite and 0 20 40 60
small temperature. In particular we will show here that for (a) ground state
the three-dimensional EA model, which has a finite zero-
temperature entropyR(q) is very narrow at exactlyf =0,
while it is broad at any finite temperature. We obtained the 250 T,
same result for the box overldp,,,(q). The picture result-
ing from our findings is that of a large number of GS’s which
are very close. Nevertheless, quite different states can be
easily found once the first excited energy levels are consid-
ered. This picture agrees with the very recent MC results by
Palassini and Young.

Before proceeding with our results and methods, we
show, as a motivation, results from applying the SimA
method to one sample realization of dite=5 of our model.

We have performed fGndependent runs of the SimA algo-
rithm, starting with a temperatur€,=2 and reducing the 0 20 40 60
temperature according,.,=DbT, until T=0.1 is reached. (b) ground state

Per tem_peratL_Jre ten MC sweeps were perfoymed._At the gnd FIG. 1. Histogram of the number of times each GS is found with
of the simulation, one randomly chosen configuration exhib-

a SimA simulation of 16independent runs for orle=5 realization

iting the lowest energy encountered during the run Wa%ta=+J Ising spin glass. The temperature was decreased according

stored. After having performed iOr_uns, _only the_ tru_e to T,.1=bT,, with To=2 until T=0.1 is reached. At each tem-
ground states were kept. A GS configuration and its MIMOherature ten MC sweeps were performed. For the upper panel

image, obtained by reversing all states, are treated as beingg 5 whileb=0.99 for the lower panel.
equivalent. As it turns out, the system has 59 distinct GS

configurations. In Fig. 1 histograms of the number of times_ , ... .
each GS has been found are displayedkier0.5 and 0.99. additional effort is moderate, because only the few lowest

- . : ; levels of excited states have to be considered. For larger
One sees clearly that fdr=0.5 different GS configurations temperatures, the post-processing methods become intrac-
occur with different frequenciési.e., not all appear with the

same frequency as requested by the GB distribution. Whetallibelg’ but then conventional MC methods can be easily ap-

cooling much slower, i.e., witth=0.99, all GS are almost
equiprobable. This means that just finding GS configuration%X
is much easier than finding each GS configuration with thep
correct probability.

For system sizes just slightly larger tham=5, the num-
ber of GS’s and excited states is already hgge., ~10'°
for L=8). For this system sizes it is impossible to obtain a Il. ALGORITHMS
histogram similar to the one presented above. Consequently, _ ) .
it is impossible to determine whether all GS's are sampled 1€ technique to obtain an equilibrated low-temperature
with the correct statistics. This is even more true for excited®@MPling consists of four steps.
states. Please note that this is the same for more elaborat®) Generate configurations for the GS and the lowest levels
algorithms like parallel temperingSince, as already pointed of excitations.
out, at very low temperatures and for system sizes like (2) On each energy level, group configurations into clusters.
=10 it is impossible to equilibrate the system, other method$3) Calculate sizes of clusters.
have to be applied. In this paper, we present a posté4) Generate a sample of states for given temperaiyre
processing tool, which allows one to correct the bias im-where each cluster contributes with a weight proportional to
posed by any algorithm and leads to an equilibrated sampléts size and to the GB factor expE/T), whereE is the
For sizes up td.=10 and low temperatures up16<0.5 the  energy of the configurations in that cluster.

=0.5T, T=2,...,0.1 (6 steps)

frequency

300 T T

=0.99T , T=2,...,0.1 (300 steps)

200 1

frequency

The rest of the paper is organized as follows. First, we
plain the algorithms we have applied. In Sec. Il, we
resent the result for the three-dimensiornal spin glass.
Finally, a summary and a discussion are given.
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Now all four steps are explained. spin are calledcheighbors All the neighbors of the starting

The basic method used here to generate the configuratiom®nfiguration are added to the cluster. These neighbors are
is the cluster-exact approximati¢@EA) technique!® which  treated recursively in the same way: All their neighbors
is a discrete optimization methodlesigned especially for which are yet not included in the cluster are added, etc. After
spin glasses. In combination with a genetic algorithtthis  the construction of one cluster is completed the construction
method is able to calculate true ground stitasp to L of the next one starts with a configuration which has not been
=14, as well as excited configurations as a byproduct. Sinceisited so far.
the CEA technique is well established and described in sev- The construction of the clusters needs only linear
eral sources, the details are skipped here. For each systatomputer-time as function ofig [O(ng)], similar to the
and each energy level, we have generated 1000 configurgtoshen-Kopelman techniqd,because each configuration
tions with the pure genetic CEA algorithms. We will show s visited only once. Unfortunately the detection of all neigh-
below that this number of Configurations is sufficient up tObors’ which has to be performed at the beginning, is of

L=10 andT=0.5. 0(nd), since all pairs of states have to be compared. Even

By applying a pure genetic CEA, one does not obtain the,,rse )| existing configurations of a given energy must
true thermodynamic distributiolf,i.e., not all configurations have been calculated before. As, e.g.,%as§stem may ex-

with the same energy contribute to physical quantities proy.., . , .
portional to the GB weight. This means the genetic CEAhlblt already more than £0GS's and much more excited

algorithm is biased. For small system sizes upLte4 it is staltest, thclis algor|thrr:h|s r;oltl su!tablf. hni based th
possible to avoid the problem by generatalf low-energy nstead we use the Tollowing technique, based on ihe

configurations; averages can be performed simply by consid2llistic-search(BS) algorithm?® The basic idea of ballistic

ering each configuration once, weighted with the GB factorS€arCh is to use @st which tells whether two configurations

Since the degeneracy increases exponentially with the nunf® In the same gluster. The test works as follows: Given two
berN of spins and also grows strongly with the energy level,independent replicagr{} and{c/} let D be the set of spins,

a complete enumeration is not possible for larger systenwhich are different in both stateB.={i|o{# of}. Now the
sizes or higher energies. Instead, one has to choose a subatgorithm BS tries to build a path of successive flips of free
of all configurations, where each configurations contributespins, which leads frorfio} to{aiﬁ} while using only spins

with a probability proportional to the GB weight. The proce- from D. In the simplest version iteratively a free spin is
dure described here, consisting of sté@s-(4) mentioned  selected randomly fronD, flipped, and removed fronb.
above, is applied to ensure that all configurations appear withjs test does not guarantee finding a path between two con-
the correct probability in this selection. Please note that th%gurations which belong to the same cluster, since it may
following methods works for any set of states, independentl)ﬂepend on the order the spins are selected whether a path is

of the method which has been applied to generate the statgg,q o not. But, if a path is found, then it is sure that both

That is, the reSUIt.S of many independent runs .Of a IOW'configurations belong to the same cluster. On the other hand,
temperature MC simulation can also be treated in case

L : 4 both configurations belong to the same cluster, then the
equilibration was not possible, e.g., for very low tempera- . . : . .
tures and larger system sizes metf;}od finds T:;Spath with a cerr:am r|c:robabt;htg)/ :Nhl((:ih depends
. . : on the size ofD. It turns out that the probability decreases
In step(2) of our method, we group the configurations ; .
P(2) droup g monotonically with|D|. For example, foN =282 the method

into clustershy performing the ballistic-search algorithth: " ; 0 . :
All configurations which are accessible via flipping of spinsinds @ path in 90% of all cases if the two states differ by 34

having zero local fieldcalled free spinsin the following, ~ SPins. More analysis can be found in Ref. 15. B
i.e., without changing the energy, are considered to be in the The algorithm for the identification of clusters utilizes a
same cluster. Please note that the Hamiltonian is symmetricgpllective effect, to overcome the problem that sometimes a
with respect to flipping all spins simultaneously. Hence, forpath is not found, even if two configurations belong to the
the rest of the paper and for all analysis steps, a configuratiopame cluster. It works as follows: the basic idea is to let a
and its mirror image are regarded as being identical. Theonfigurationrepresentthat part of a cluster which can be
final result is a list of different clusters whose sizes are estifound using the BS algorithm with a high probability by
mated as explained below. This list does not change if morstarting at this configuration. If a cluster is large it has to be
than one configuration is initially found in the same cluster,represented by a collection of states, such that the whole
since these cases are recognized and correctly handled. Fduster is “covered.” For example a typical cluster of & 8
completeness and to convince the reader that the methapin glass consisting of #®ground states is usually repre-
indeed works, we present some details in the following.  sented by only some few ground statesy., two or threg A

The algorithm is applied independently for all configura- detailed analysis of how many representing configurations
tions having the same energy. The starting point is a setof are needed as a function of cluster and system size can be
configurations. For clarity, first atraightforward methodo  found in Ref. 15. The details of the algorithm are as follows:
obtain the cluster structure is explained. This methodratl  in memory a set of clusters consisting each of a set of rep-
be applied. Afterward, the method actually used is exposed.esenting configurations is stored. At the beginning the clus-

The straightforward construction starts with one arbitraryter set is empty. Iteratively all available configuratidns}
configuration. It is the first member of the cluster. All con- are treated: For all representing configurations the BS algo-
figurations which differ only by the orientation of one free rithm tries to find a path to the current configuration or to its
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inverse. If no path is found, a new cluster is created, which is 10’3 I
represented by the actual configuration treated{dlf} is
found to be in exactly one cluster nothing special happens. If P
{o;} is found to be in more than one cluster, it is called a 10
bridge configurationand all these clusters are merged into
one single cluster, which is now represented by the union of
the states which have represented all clusters affected by the
merge. After all configurations have been treated the whole
process is run again with the obtained set of clusters. This 102F
allows one to find bridge configurations which have not iden-
tified in the first iteration, because accidentally only one
cluster had been created during the first iteration, at the time 107°°F
the configuration was treatéd.
The BS identification algorithm has some advantages in M | | | )8:5& |
comparison with the straightforward method: since each 10 10° 0 10° 10" o' o®
ground-state configuration represents many ground states, 1%
the method does not need to compare all pairs of states. Each
state is compared only to a few representative configurations.
Thus the computer time needed for the calculation growé'_
only a little bit faster tharD(ngn¢),*® wherenc is the num-
ber of clusters, which is much smaller thary. Conse- of order (or scalg of sizeV to the behavior. First, the statis-
quently, large sets of configurations, which appear alreadyical weight of a cluster is proportional to the number of
for small system sizes likel=5%, can be treated. Further- states in the cluster, i.e., to the voluieSecond, each scale
more, the cluster structure of even larger systems can bef cluster sizes contributes proportionally to the scale itself,
analyzed, since it is sufficient to calculate a small number obecause we are integrating over all clusters of a given scale,
configurations per cluster. The main point is that one has tae., this weight is also proportional ¥. (In other words, to
be sure that all clusters are identified correctly. This is notranslate the probability densities into probabilities on a loga-
guaranteed immediately, since for two configurations belongrithmic scale, one has to multiply by.) In total, clusters of
ing to the same cluster there is just a certain probability thasizes with scalé/ contribute with weightv?p(V)=V2"¢,
a path of free flipping spins connecting them is found. ButSincea~1.1<2, the largest scale clusters dominate the be-
this poses no problem, because once at least one state ohavior. On the other hand, singg¢V) rapidly decreases, the
cluster has been found, many more states can be obtain@dimberof these dominating clusters is rather small, i.e., it is
easily by just performing & = const Monte Carlo simulation rather simple to obtain an equilibrated sample of configura-
starting with the initial state. Hence one can increase théions. For the first excited level we have found=1.3<2,
number of states available quickly. The probability that allwhile at higher excited levels the number of clusters is too
clusters have been identified correctly approaches verjarge to really findall of them. This results indicates that at
quickly unity with increasing number of available states. De-higher levels the distribution becomes broader, which limits
tailed tests can be found in Ref. 15. For all results presentethe application of the method to the lowest level of excita-
here, we have checked that the clusters do not change wheions. This effect is studied below with more detail. We have
doubling the number of states. restricted our analysis to the first four levels of excited states.
Furthermore, one in principle has to ensure that all clus- Please note that the CEA method generates configurations
ters are found, which is simply done by calculating enoughfrom larger clusters with a larger probability;hence the
configurations, but this is still only a tiny fraction of all large and important clusters are encountered on average first
configurations?® This time, the configurations must be ob- in the calculations. For the system sizes we have treated here,
tained independently; one cannot usefreconst MC simu-  exceptL=10 and T=0.5, about 90% of all contributing
lation as above. It is possible to obtain at least one configustates are typically from the top five largest clusters and fur-
ration from each cluster roughly up to site=8 at the GS ther 5% from the next five largest clusters. Then with the
level, respectively.=6 for first excited states. For sizes like 1000 configurations we generated per energy level, we en-
N=10° the largest size we have treated in this paper, theounter typically up to 100 clusters, and we can be pretty
number of clusters is too large at any energy level. But this isure that all thermodynamic relevant contributions are con-
not a problem in principle because the low-temperature besidered within the level of accuracy given by our statistical
havior of these systems is dominated by large clusters. As affuctuations. Only the results fdr=10 andT=0.5, where
example, in Fig. 2 the probabilitdensitiesof cluster sizes higher level excitations contribute significantly, may not be
for GS clusters are shown. The distributions are for smalkquilibrated. This is demonstrated at the end of this section,
system sizes up tb=8, were we can be fairly sutethat all  after we have presented the remaining parts of our algorithm.
clusters have been fourt@iThe distributions follow roughly The third step in the algorithm is the estimation of the
an algebraic decrease withp{V)~V™~ ¢ behavior with « cluster sizes. This works as follows. Létbe a cluster we
~1.1. This dependence becomes straighter with increasingant to measure in size, and let us consider a random “ref-
system size. We are interested in the contribution of a clustegrence configurationir;} belonging to this cluster. We de-

IR
Lo RN

1
<

FIG. 2. Cluster-size distributions of GS clusters for small sizes
3-8. The straight line represents the function 2
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sible for small temperatures and small sizes, where only few

fine a test HamiltoniarH[s]=—3r;s; for {s;} C, being : i
~ ~ . low-energy levels contribute to the thermodynamical behav-
E(B) andS(B) the average extensive energy and entropy aj

) . AR or.
inverse temperaturgs. Then the size ofC is given by The selection of the configurations is done in a manner

exf X0)]. Since the GS of this Hamiltonian is uniqliéis  that many small clusters may contribute as a collection as
the reference configuratigni.e., S(«) =0, from the micro-  well.® For example, assume that 100 configurations are se-
canonical definition of the temperatufe- dE/dSwe obtain  lected from a cluster consisting of configurations; then
for a set of 500 clusters of size 1@ach (with the same
energy a total number of 50 configurations is selected, i.e.,

$(0)=5(0)—5(x)=AS= NE(O),G dE 0.1 configurations per cluster on average. The correct han-
B(=) dling of such situations is achieved by first sorting all clus-

© L o ters in ascending order. Then the generation of configurations

= JO [E—E(x)]dB= L (E+N)dp, (1) starts with the smallest cluster. For each cluster the number

of configurations generated is proportional to its size, to
ﬁaxp(—E/T) and to a factof. If the number of configurations
grows too large, only a certain fractidp of the configura-
o tions which have already been selected is kept, the factor is
=—N. In order to calculate this integral, we actually per-ocqicylated {—f* f,), and the process continues with the
form a fast MC simulation restricted to configuratiofs} next cluster.
e C while varyingw=exp(-2g) in [0,1] and measuring the T configurations representing the clusters are generated
average energl as a function ofv. The final formulais the  from the initial configurations, obtained from the heuristic
integral of a smooth functionS= [§[ (N+E)/2w]dw. The  algorithm, by microcanonical MC simulation, i.e., iteratively
number of MC sweeps applied per integration step was chespins are randomly selected and flipped if they are free.
sen automatically by the program in a way that the resultingSince within a cluster there are no energy barriers, for the
entropy did not change by more than 5% of the value whersystem sizes up tb=10, applying 100 MC sweeps ensures
the number of MC sweeps was doubled. That is, the prograrthat all configurations within a cluster are visited with the
started always with ten MC sweeps, calculated the entropgame frequency.
integral, then applied 20 MC sweeps, and so on. For small To summarize, by applying the algorithm presented here,
clusters, the calculation usually stopped after 20 MC sweepgach cluster appears with a weight proportional to its size
For the largest clusters encountered here, the algorithrand to exp{-E/T) and each configuration within a cluster
stopped after the integration using 640 MC sweeps. We havappears with the same probability. Therefore, in total, the
also checked, that for these cases the measured entropy didrrect thermodynamic distribution is obtained.
not depend monotonically on the number of MC sweeps, i.e., We have tested whether our generated data represents the
we are sure that we did not miss a systematic trend whegaquilibrium behavior by calculating the small-overlap weight
stopping the calculation at one point. Xo.5, @s defined in the beginning of Sec. Il in EQ). Xq5is

In principle, there could be high entropic barriers, whichobtained for the largest system size=10 and for different
prevent the size calculation from converging to the correctemperature§ as a function of the number of configurations
value. Fortunately, the full algorithm is not susceptible toN¢., included in the analysis per energy level. The result is
that problem. The reason is that the BS clustering methoghown in Fig. 3. Please note that the full analysis, as ex-
uses single spin flips at constant energy as well to determinglained in this section, has to be repeated independently for
the cluster structure, as described above. This means, if tweach numbemMN ;. The configurations were taken in the
parts of a cluster are connected through a very tiny (iln ~ order they appeared in the generation using the genetic CEA,
entropic barriex, which is not detected by the MC integra- i.e., for a small number of configurations, large clusters are
tion, the clustering method is also not able to recognize botimore likely to be represented than smaller clusters since ge-
subclusters as belonging to the same cluster. Hence, if bothetic CEA preferentially generates configurations from larger
subclusters are large, the genetic CEA method will have calelusters. One can see that, for low temperatures, even a few
culated with high probability configurations from both sub- generated configurations are sufficient to yield the true be-
clusters. In the analysis, because they are not identified dwvior. Please note that the remaining fluctuations are due to
belonging to the same cluster, they will appear as two indethe fluctuations between the different samples of configura-
pendent large cluster, i.e., the correct statistics is ensured @bns. The reason that a few configurations are sufficient here
the end. If, on the other hand, one subcluster is small, it hais that at low temperatures the GS’s dominate and the num-
a negligible contribution to the overall behavior, like other ber of GS clusters is fairly small. With increasing tempera-
small clusters. ture, excited states become more important. For excited

After estimating the cluster sizes, a certain number ofstates, many more clusters exists. Thus more configurations
configurations is selected from each cluster, this is the lashust be included into the analysis. This is visible in Fig. 3,
step of the algorithm listed in the beginning of this section.where at, e.g.T=0.5, Xq 5 depends strongly olN.y.s. For
This number of configurations is proportional to the size ofN¢,,~= 1000, T=0.5 seems to be the borderline case, while
the cluster and to the GB factor expE/T). This means that for T<0.5 the result foixy 5 seems to be convergdaithin
each cluster contributes with its proper weight. This is poserror barg. We have checked this explicitly by fitting alge-

where the previous last equality comes from an integratio
by parts and the last equality from the substitutig(ee)
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Neont FIG. 5. DistributionP(|g|) of overlaps afT=0.5 for different

o ) system sizes. Lines are guides to the eyes only. The inset shows the
FIG. 3. Result foxgs [see Eq(2) for definition] as a function  ayerage weighk, s of the distribution forlg|<0.5 as a function of

of the numberNc,, of configurations included per energy level system size fof =0.5, 0.4, 0.3, and 0.1. The lines represent fits to
in the analysis. The error bars at the right represent the limitingnctions of the form x(L)=x"+aL, with x°=0 and A

valuesNon— o obtained from fitting the data point$.,,=40 t0 = 1 10(5) forT=0.1, x*=0.051(13) forT=0.3, x*=0.095(4)
algebraic functions. For small temperatufiesa few configurations  ¢or T=0.4, andx*=0.122(4) forT=0.5.

are sufficient, while aff=0.5 more than 1000 configurations are
necessary. system sizes. For the smallest size=4 almost only GS
configurations contribute to the thermodynamics; while in-

braic functions to the data pointé.,,=40, resulting in an  creasing system size higher energy configurations become
agreement within error bars of the limiting value fg,,; = More important. Please note that only for10 configura-
—oo with the result we have obtained &f..,=1000. tions from excitation level3) contribute. There the degen-
Hence we can again be confident that, using 1000 configteracy is much larger than for the lower levels. This explains
rations per energy level, the results obtained here up to Why the result fol. =10 andT=0.5 is probably not equili-
=10 andT<0.5 represent the true equilibrium behavior or, brated. The result of Fig. 4 shows that, when studying the
at least, are so close to the true result that they cannot Hew-temperature behavior of glassy systems, it is not suffi-
distinguished from it at the level of accuracy determined bycient to study just GS configurations since the GB factor and
the statistical fluctuations. For smaller sizes, the number ofhe size of the clustefi.e., the entropy must be taken into
clusters is smaller on each energy level, which means thatccount. Nevertheless for low temperatures and not too large
1000 configurations per realization and energy level are sufSystem sizes, the energy levels which actually contribute to
ficient for even higher temperatures. But we restrict ourthe partition function are very few.
analysis toT=<0.5 here.

Finally, in Fig. 4, the fraction of configurations sampled at . RESULTS

T=0.5 for the different energy levels is shown for different We have calculated ground states and excited configura-

tions up to level(4), for system sized <10. Up to 3000
realizations of the disorder were conside(@d0 for the larg-

est system size From the set of configurations, samples of
several hundred equilibrium configurations were generated
for temperatured €[0,0.5].

For each disorder realization and each temperature, the
distribution P;(q) of overlapsqz(llN)Eisi“sF was calcu-
lated, wherg s} and{s’} are two different equilibrium con-
figurations. In Fig. 5 the disorder-averaged distribution
P(lgl)=[P,(|a])]; is shown forT=0.5, where[ - - -]; de-
notes the average over the quenched disorder. The long tail
to g=0 seems to saturate at a finite weight, indicating the
existence of a complex low-energy landscape at finite tem-
peratures. This can be seen even better, by calculating the
fraction

fraction of configurations

energy level

FIG. 4. Fraction of configurations sampled from each energy %
level atT=0.5 for different system sizes. The energy level O is the Xqo = J P(q)dq (2)
ground state. Lines are guides to the eyes only. 0 —do
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of overlaps smaller than,. The result forqo=0.5 is pre- 10' . . . .
sented in the inset of Fig. 5. For zero temperatures, where
only GS configurations are sampled,s converges to O or to

a very small valug® The rate of convergence is described
by the finite-size dependencrys(L)~L*. We find X\
=—1.10(5), which is compatible with the predicted bound
A<-1 given by the “TNT” scenarid! In Ref. 7 a larger
value = —0.90(10) was found. This slight difference might
be due to the different ensembles studied, since in Ref. 7 the
constraintz ; ;,J;;=0 was not applied.

Please note that for small temperatures we sample only
GS configurations, due to small system sizes. For larger tem-
peraturesT=0.3, the asymptotic value ofys is clearly 0 0.2 0.4 0.6 0.8 1
larger than zero. Please note that the last phiatlO and Ig!
T=0.5 may th b? converged, as dlscgssed _above._ But, as FIG. 6. Distribution P, (|q|) of box overlaps aff=0.5 for
you can see in Fig. 3, the value @b is anincreasing igerent system sizes. Lines are guides to the eyes only. The inset
function of the number of states included in the calculationshows the average weighg s of the distribution for|q|<0.5 as a
Hence the true resulwe have obtainedx§s'%(0.5)  function of system size fof =0.5, 0.4, 0.3, and 0.1. The lines
=0.137(6) by extrapolatingN.,,— as opposed to represent fits to functions of the form(L)=Xp.,+apL™, with
0.1267) found forNg,n= 1000) is probably above our value, Xpe=0 and A,=—0.86(5) for T=0.1, Xp,,=0.05(13) for T
thus supporting even more the conclusion thg>0. =0.3, Xpo,=0.10(1) forT=0.4, andxpe,=0.13(1) forT=0.5.

Our results are quantitatively comparable to the data

found in Ref. 7 which were obtained by a parallel-tempering  Finally, we have computed the average distribufiy(y)

MC simulation. Although the authors had no reliable crite-of Jink overlapsg;=3; J->si“sj“sfsf. The result forT=0.5
rion to check equilibration of the syste(m contrast to the  and different system sizes can be observed in Fig. 7. The
case with Gaussian distribution of the disordlehy com- gistribution becomes narrower, but a second small peak

parison with our results it is Very I|ke|y that in Ref. 7 indeed seems to emerge_ In the inset of F|g 7 the finite-size depen_

the;mal etqu!ll?r(le_IT.\éva? obtafmed. | . ) ficient dence of the variance?®= [3(q—q)?P,(q)dq is shown for
nontrivial distribution ot overiaps IS not a suflicient  yige o ¢ temperatures. In all cases, the width seems to con-

criterion for a complex energy landscape. A qualitatively, o e toward zero. Please note, however, that we cannot ex-
similar overlap distribution with a nonzero weight for small o|,,de that the variance converges to a small but finite value.

values ofg would be obtained also for a system, where vari-\yhen we fit it to a function of the formo2(L) = o2

ous configurations differ by a domain wall through the SYS-1 4 LM we obtain. forT=0.5. o2 =0.0038(28) withy?

tem at different posi_ti_ons,_e.g., a f_erro_magnet with amtiperi-p(_:‘r degree of freedom of 0.1, which is a very good fit. Nev-
odic boundary conditions in one directiéh.

To rule out this scenario, we have calculated also the dis-

10

Pbox(lql)

tributions of box(or window) overlaps?>2?* This overlap is . ' '
defined as usual, but restricted to a finite “window” of vol- 6l R ]
ume | X1 X1, with I<L fixed independently of the system —s

sizeL. Please note that for the aforementioned ferromagnet, 5% — i
the distribution of box overlaps converges to a pair of delta

functions atq= =1 whenL—. The result fod =3 andT -~ 4T 0T=05 8
=0.5 is exhibited in Fig. 6. At a finite temperature, similar to < 107 p OT=01

the conventional overlap, the log-tail seems to saturate, sy 0 |
but more slowly, at a nonzero weight with increasing systems 5| 2 4 6 810 |
size. This can be seen from the inset of Fig. 6, wheyeis L

shown as a function of system size fb=0.1, 0.3, 0.4, and 1 L

T=0.5. For T=0.3, Xq5 clearly converges to a nonzero 7 / \
value. Thus we can conclude that indeed, at finite tempera- 0 Semesrammesirna,

tures, three-dimensional spin glasses exhibit a complex low- 0.
energy landscape. %

Please note that the nontrivial behavior occurs for low g, 7. DistributionP,(q,) of link overlaps aff = 0.5 for differ-
temperatures, probably for all temperatues0, which are  ent system sizet. Lines are guides to the eyes only. The inset

sufficiently far away from the phase transitioh~1.1.  shows the variance? as a function of system size far=0.1 and
Hence, the effects which were found within a Migdal- 0.5. The lines represent fits to functions of the form?(L)

Kadanoff approximation scherfeare unlikely to explain the =a,L (L>4), with \,;=0.53(5) forT=0.1 and\,=0.27(1) for
kind of behavior we find. T=0.5.
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ertheless, &,(q;) consisting of two peaks at distance of 0.1 = We have applied the algorithm to study the Ilow-
with weights 0.1 and 0.9 respectively has a variamde temperature behavior of three-dimensional Ising spin
=0.0009. glasses. We find that the statistical properties of the exponen-
The behavior ofP|(q,) is quantitatively the same for tially many ground state configurations are not representative
three-dimensional spin glasses with a Gaussian distributionf the low-temperature behavior. In particular we have
of the interactions, which were found with a parallel- shown for the three-dimensional Edwards-Anderson model

tempering MC simulation. that both the distributions of the overlap and of the box-
overlap seem to be very narrow functionsTat 0, where
IV. SUMMARY only few states contribute to the GB measure, and broad for

finite T. Hence the model does have a complex state space,
Summarizing, we have presented an algorithm which alyhich seems to become trivial &=0. For this reason one
lows one to investigate the low-temperature behavior ofs forced to probe the energy landscapd@at0. The distri-
Ising systems with high degeneracy by direct sampling of G,ytion of the link overlap seems to develop a second peak,

and excited configurations. The basic idea is to generate Coyt the extrapolation of the asymptotic shape is beyond our
figurations with any suitable algorithm, group the configura-present computational capabilities.

tions into clusters, measure the size of the clusters, and then
obtain a very good estimate of the GB measure to sample
configurations with. Similar to the MC approach, where one
has to increase the number of MC sweeps until the system is
equilibrated, one has to increase the number of independent This work was supported by thiaterdisziplinaes Zen-
configurations until the true behavior is obtained. The mairtrum fir Wissenschaftliches RechnénHeidelberg and the
difference from MC techniques is that the method presente@aderborn Center for Parallel Computinigy the allocation
here works better with decreasing temperature, while the M®@f computer time. A.K.H. acknowledges financial support
method equilibrates faster with increasing temperatures. lfrom the DFG (Deutsche Forschungsgemeinschafhder
this sense these methods are complementary. Grant Nos. Ha 3169/1-1 and Zi 209/6-1.
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