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Magnon excitations in a mesoscopic Heisenberg ferromagnet

S. Cojocaru* and A. Ceulemans
Division of Quantum Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

~Received 24 June 2002; published 19 December 2002!

We report on a qualitative change of the character of interacting magnon excitations in a ferromagnet due to
finite size. Within an improved continuum approach excitation modes are found analytically for a two-
dimensional system. Several non-totally symmetric modes are obtained which were previously unknown. In
contrast to excitations in one dimension some of the low energy modes approach the macroscopic limit
extremely slowly. These modes occupy a substantial part of the Brillouin zone and can therefore be responsible
for the logarithmic size dependence of various thermodynamic quantities.
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I. INTRODUCTION

The current interest in finite-size ferromagnets is due
progress in mesotechnology and nanotechnology device
volving spin degrees of freedom~see, e.g., Refs. 1–3!. Some
quantum Hall systems can be mapped onto a ferromagn
model.4 However, the transition from macroscopic to finit
size behavior5 remains an open issue. The increased powe
computer simulation methods has made relatively large c
ters accessible for investigation, but general regularities
the excitation spectra are difficult to extract in this way. W
develop an analytical approximation which captures fin
size effects and reveals interesting features in the excita
spectra. At first sight, one can hardly expect dramatic s
effects in ferromagnets. For instance, the corrections to
thermodynamic limit due to finiteN ~the number of sites in
one direction!, predicted by the exact Bethe ansatz solut
for the periodic Heisenberg spin-1/2 chain with isotrop
nearest neighbor interaction6 are found to be small and ana
lytically converging forN→`. An even faster convergenc
is anticipated for a higher dimensional lattice which can th
be described within straightforward methods~see, e.g., Ref.
7!. In the present paper we show that, in contrast to
traditional ways of thinking, finite size-corrections to excit
tion spectra in a two-dimensional~2D! system can be large
and nonanalytical. Some new excitation modes are foun
be responsible for a large share of the low energy spect
and have a logarithmic size dependence. The approach b
upon a preliminary study8 of the 1D system which allows
comparison to the exact solution found by Bethe’s ansa6

We describe the distribution of two-magnon bound exc
tions over the Brillouin zone which reveals the general tre
of multimagnon spectra mentioned above.

Our approach consists of a refinement of the commo
used continuum method in condensed matter, which beco
exact in the thermodynamic limit. Its main feature consists
the ‘‘conservation’’ of symmetries of the discrete lattice
the continuum wave function. Previous continuum tre
ments~see, e.g., Refs. 7,9–12! are apparently in agreemen
with the exact solution,6 although, as mentioned by Mattis i
Ref. 7, p. 155, the relation of Bethe’s ansatz to the continu
approach is ‘‘somewhat obscure.’’ For instance, the sin
eigenenergy branch of the bound two-magnon state in
dimension coincides with Bethe’s result forN→`. How-
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ever, even for the 1D case, the wave function has not b
obtained explicitly within the continuum method and th
point that, according to Bethe ansatz, there should betwo
orthogonal solutions, did not receive any attention. F
higher dimensional lattices, where no exact results are av
able, it is predicted that there should be, e.g., two and th
bound modes for the square and the simple cubic lattic
respectively. The symmetry classification of the excitati
modes in the Brillouin zone is then consideredafter the con-
tinuum limit was taken~see, e.g., Ref. 13 for the 3D ex
ample!. These issues might seem irrelevant since the fin
size correction to the excitation energies in the 1D case i
most 1/N2. This form of the finite-size correction is onl
reached at long wavelengths, i.e., for the inverse wave ve
of the excitation;AN. It is a rather restricted region of th
Brillouin zone where the so called string hypothesis bre
down.14,15 Outside the critical region, i.e., for shorter wav
lengths, the corrections become exponentially small,
therefore this hypothesis is successfully used to describe
thermodynamics of the Heisenberg chain. For higher dim
sional lattices one naturally would expect that the correcti
should become even less relevant. However, it is shown
low that for a 2D lattice the analog of the critical regio
mentioned above becomes large and cannot be ignore
will become clear that properties of the wave function a
essential for this behavior and the construction of a pro
continuum description requires that the symmetries of
wave function are explicitly taken into account. For instan
we recover the ‘‘lost’’ second mode of Bethe’s exact soluti
for the chain, and reveal four additional bound modes for
square lattice. The new modes in higher dimensions turn
to be ‘‘genealogically’’ related to Bethe’s second mode. T
distribution of the two-magnon states over the Brillouin zo
shows that these modes outnumber the ones already kn
It is clear that the same features are present in multimag
spectra.

II. CONTINUATION OF THE BIMAGNON EQUATIONS

We first show how the main properties of the Bethe
exact solution can be described within the framework of o
continuum approach for theS51/2 Heisenberg Hamiltonian

Ĥ52(
^ i , j &

Ji j Si•Sj ,
©2002 The American Physical Society16-1
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whereJi j 5J.0 for thez nearest neighbors, and zero othe
wise. Since the total momentum of the excitationP is a con-
served quantity, it is convenient to consider the amplitude
the two magnon excitationC(n1 ,n2) in terms of the ‘‘center
of mass’’ R and relativer coordinates of the flipped spins
Rx5(n2

x1n1
x)/2, r x5(n2

x2n1
x), etc. Thus, up to a constan

factor, for the amplitude we have

C~n1 ,n2!5exp~ iP"R!a~Pzr !. ~1!

The Schro¨dinger equation takes the form7

@«2zJ#a~Pzr !1J(
d

cosS P"d

2 Da~Pzr¿d!5J~r !

3Fa~Pz0!cosS P"r

2 D2a~Pzr !G , ~2!

where« is the excitation energy, the sum runs over the ne
est neighbors andJ(r )5Ji j . In the following energy is
assumed to be in units ofJ. Some symmetry require
ments follow from permutation of overturned spin
@a(Pzr )5a(PzÀr )# and from cyclic boundary condi
tions @C(n1

x ,n1
y ;n2

x ,n2
y)5C(n1

x ,n1
y ;n2

x1N,n2
y)5C(n1

x

1N,n1
y ;n2

x ,n2
y)5C(n1

x ,n1
y1N;n2

x ,n2
y), etc.#:

a~Pzr x ,r y!5expS iPxN

2 Da~PzN1r x ,r y!

5expS iPxN

2 Da~PzN2r x ,r y! . . . . ~3!

We adopt Bethe’s convention of numbering the lattice sit
so that the relative coordinatesr x(5X) andr y(5Y) are non-
negative integers on the main interval:X50,1,•••,N21 for
the chain andX50,1,•••,N21 and Y50,1,•••,N21 for
the square lattice. By these definition one has the follow
coordinates for the nearest neighbors on the 1D latticeX
51 andX5N21 instead of the usualX521. The advan-
tage of this choice is that it includes the boundary conditio
in an explicit form, e.g., it allows for the amplitudes on nea
est neighbor sites@a(Pu1) anda(PuN21)] to havedifferent
signs in agreement with Eq.~3!. The usual choiceX521,
although being correct for the even parity states~see below!,
is generally misleading since, e.g., in one dimension it in f
represents the transposition of flipped spins and not the
dynamics on the lattice. The cyclic boundary conditions i
ply that the relative motion of flipped spins has a period 2N.
In a similar way multiple periods ofN would arise in the
relative amplitude for multimagnon states. The above ar
ments will become important for the discussion of the mo
which are intrinsically related to Bethe’s second mode in o
dimension: The nearest neighbors for the square lattice
defined by analogy with one dimension: (X51,Y50), (X
50,Y51), (X5N21,Y50), and (X50,Y5N21). The
components of the total momentum take on the val
2p l x /N and 2p l y /N, wherel x and l y are integer quantum
numbers. The existence of two-particle eigenstates with e
and odd parity immediately follows from Eq.~3! depending
22441
-

f

r-

s,

g

s
-

t
ue
-

-
s
e
re

s

en

on the parity ofl. We then expand the amplitude of the rel
tive motion into the Fourier series

a~Pzr !5
1

N2 (
Q

b~PzQ!cos~r "Q!. ~4!

The constraints on the variableQ in Eq. ~4! imposed by Eq.
~3! imply that

expF iNS Px,y

2
6Qx,yD G51.

This relation determines the range of values for the resp
tive components ofQ:

Qx,y
s 5

2pm

N
, Qx,y

a 5
2pm

N
1

p

N
, m50,1, . . . ,N21.

~5!

The Fourier amplitudeb(PzQ) and the eigenenergy« are
then obtained as solutions of Eq.~2!. As our aim is to con-
struct a continuum approximation which would keep track
the major properties of the underlying finite lattice, it has
incorporate the symmetry related shiftp/N in Eq. ~5!. There-
fore we replace the sums by integrals, as required by c
tinuum approach,but the integration interval is shifted in
momentum space,8 i.e.,

1

N (
Qa

→ 1

pEp/N

p1p/N

dQ. ~6!

The above approximation can be viewed as a truncation
the Euler-MacLaurin expansion~see, e.g., Ref. 16!, Chap. 4.
In Eq. ~6! we keep the main term of the expansion. T
bounds of the integral correspond to the half of the to
integration interval which is accounted for by the trivial fa
tor 2 ~see Ref. 8!. The advantage of using the periodic fun
tions of the Fourier series@Eq. ~4!# consists of the cancela
tion of terms containing derivatives of the integrand in Eul
MacLaurin expansion~see Eq. 4.19 in Ref. 16!. Thus the
remainder of such a truncation giving an estimate of the
curacy of the approximation~6! is 1/N2. However, as is
shown in Chap. 5 of Ref. 16 the accuracy is actually ev
higher. Such accuracy is sufficient for the purpose of o
approximation, which is meant to capture the main terms
the finite-size correction, because as it will become cl
from the following the actual values of the integrals are
nite, i.e.,;O(1). Wepoint out that the shift occurs becaus
of the boundary conditions. Other boundary conditio
would result in a different shift which should be incorporat
in a similar way. In one dimension for such a continuu
approximation we indeed obtain two different branch
symmetric~s! and antisymmetric (a), in agreement with Be-
the’s solution. The proper analytical continuation from a d
crete lattice is achieved by explicitly introducing the symm
try requirements into the amplitude:

As,a~pux!5
1

2
@as,a~pux!6as,a~puN2x!#. ~7!

The corresponding Fourier amplitudes arebs,a(Q);cosQ
3@cosvs,a2cosQ#21, where coshvs,a[(12«s,a/2)/cos(p/2)
and p is a continuous variable, the counterpart of the to
6-2
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momentumP. Normalization constants are then readily o
tained and we obtain the correct result which coincides w
the Bethe ansatz forN→`:

As,a~pux!5sinS p

2D /A2Fcosx21S p

2D6cosN2x21S p

2D G .
The single branch mentioned above~see, e.g., Refs. 7 an
10! corresponds to the symmetric solution«s5sin2(p/2),
while the antisymmetric branch is described by the equa

12
2

p

sinS p

ND
coshva

5
2@coshva2cos~p/2!#

p sinhva
arctanS sinhva

sinS p

ND D .

~8!

As shown earlier, our approximation reproduces well the
act solution also at finiteN ~see Ref. 8 for a more detaile
discussion!. It displays the correct behavior at the border
the Brillouin zone:«a5«s51. Toward the long-wavelength
region the energy of the antisymmetric excitation gro
higher than that of the symmetric one, their separation be
scaled asp4 for small momenta. Both branches lie below t
continuum of scattered magnon states until the latter
crossed by«a(p) at some critical momentumpc.2p/AN
which should be compared to the exact value found by Be
Pc

B.4/AN. From Eq.~8! one can see that it predicts a co
tinuous real valued solution for the eigenenergy beyond
crossing point, in the region of scattered states,«a.2J@1
2cos(p/2)#. This might seem to be in contradiction wit
Bethe’s solution, which predicts that the bound state ex
only below the region of scattered states. However, upo
closer look, one should recognize inv the imaginary part of
Bethe’s phase,u5 iv. Then it is clear that at the crossin
point v 50 Eq.~8! describes the ‘‘dissociation’’ of the boun
state~ real v, or a localized wave function! into scattered
magnons~imaginaryv, or an oscillating wave function!. The
physical reason for the instability of the antisymmet
bound state is the vanishing of magnon attraction at
crossing point both exactly and in our approximation. A
though for a finite lattice only discrete momenta have phy
cal meaning, the continuous variables in our approach sh
be considered in the interpolation sense, precisely as the
the ansatz transcendental equations for the finite chain
deed, one can check that Bethe’s equations describe the
crossover behavior. Thus there is no coexistence of bo
and scattered states below the critical momentum, and
transition is characterized by the qualitative change of
wave function: the phase variablev becomes purely imagi
nary above the crossing point. It should be stressed that,
generally the case for a continuum treatment, Eq.~8! cannot
be used for a quantitative description of the scattering m
non region by mere analytical continuation inv. The equa-
tion for the Fourier amplitude should take into account
dense energy spacing (;1/N) of scattering solutions accord
ing to the standard procedure~see, e.g., Ref. 7, Chap. 5.3!
and can be considered in our approach as well. This is, h
ever, beyond the scope of the present paper. We note tha
22441
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the Bethe ansatz equations the 1/N expansion was considere
before, and in the longwave regionP&1/AN of the spectrum
nonstring solutions were obtained,14,15 which can be identi-
fied as the true solutions of Bethe’s equations. In contras
the string solutions which are valid for higher momenta a
unite odd and even branches, only the even symmetry s
was shown to exist in the longwave region. The behav
described by our approximation agrees well with the abo
picture, but quantitatively it of course slightly deviates fro
the exact asymptotic expansion.8

III. TWO-MAGNON PROBLEM ON A SQUARE LATTICE

For the two-magnon problem on the square lattice
solution first obtained by Wortis10 predicted two energy
branches. As already noted, by ignoring the unusual size
pendence of some modes, this treatment has largely o
looked the rich structure of the spectrum in the mesosco
to even macroscopic range. To identify the different types
excitations one should carefully apply symmetry relations~3!
depending on the parity of the quantum numbersl x and l y
and also the symmetry groupC4v of the lattice. The excita-
tion modes must transform according to the irreducible r
resentations of the group. Their classification is obtained
using the projection operatorÔa ~see, e.g., Ref. 17!. The
action ofÔa on Fourier expansion~4! projects out a function
which transforms according to one of the five irreducib
representationsa of the group: four one-dimensional repre
sentationsA1 , A2 , B1 , and B2 and one two-dimensiona
representationE. There are three different combinations
the quantum numbers:~1! both l x andl y are even,~2! both l x
and l y are odd, and~3! the numbers are of different parity
These combinations determine the respective sequence
Q in Eq. ~4!. The projection operator then generates t
modes allowed for a particular combination by applying t
group transformations. The same can be achieved by ap
ing first the ‘‘filter’’ of rotational symmetry and then deter
mine the quantum numbers compatible with the respec
mode~Appendix A!. Thus for the one-dimensional represe
tations we find

bA1
~Px ,PyuQx ,Qy!5bA1

~Py ,PxuQy ,Qx!, $Px ,Py% even,

bB2
~Px ,PyuQx ,Qy!5bB2

~Py ,PxuQy ,Qx!, $Px ,Py% odd,

~9!
bB1

~Px ,PyuQx ,Qy!52bB1
~Py ,PxuQy ,Qx!, $Px ,Py% even,

bA2
~Px ,PyuQx ,Qy!52bA2

~Py ,PxuQy ,Qx!, $Px ,Py% odd.

The remaining values of the total momentum correspond
the two components of theE mode:AE

y (Px ,PyuX,Y) hasPx

even, andPy odd, andAE
x (Px ,PyuX,Y) hasPy evenandPx

odd. The symmetry analysis demonstrates that parity of
quantum numbers of the total momentum determine the t
of mode which can be excited for the particular value ofP.
The energy of each mode is obtained by solving the Sch¨-
dinger equation for the irreducible amplitude. Then the
spective Fourier component is obtained up to a constant
6-3
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S. COJOCARU AND A. CEULEMANS PHYSICAL REVIEW B66, 224416 ~2002!
tor which is determined from the normalization conditio
The analytic continuation must be carried out for the sy
metrized quantities in analogy with Eq.~7!, and the finite
sums are replaced by integrals according to Eq.~6!. To sim-
plify the discussion, let us consider the diagonal direction
the Brillouin zoneP5Px5Py . Then for the excitation with
both even components ofP we recover the two energ
branches found by Wortis. However, due to the symme
filtering, instead of the factorized form for the 232 matrix
of the eigenenergy equation~52! in Ref. 10 we obtain two
separate equations depending on the symmetry of the m
This then allows us to identify the two modes asA1 (s
wave!, the lowest energy mode, andB1 (dx2-y2), the highest
energy mode. TheA1 mode~Fig. 1! has the usual shape of
localized wave function with the periodicity of the origin
lattice. However, unlike the total wave function@Eq. ~1!#, the
relative amplitude@Eq. ~4!# is generally not required to hav
the periodicity of the original lattice~see, e.g., Ref. 8! and
for the two-magnon case can be antiperiodic. Indeed, i
least one quantum number of the excitation is an odd inte
then the relative amplitude becomes antisymmetric in
direction of the respective component ofP, e.g.,a(X,0)5
2a(X,N)Þ0 if l y odd (Py52p l y /N). This allows for a
nonzero value of the amplitude on the nearest neighbor s
a(1,0)Þ0, for such modes asB2 andA2 as shown in Appen-
dix A. Therefore, for such momenta theB2 mode, for ex-
ample, cannot be identified with the transformation prop
ties of the ‘‘molecular’’ functiondxy which hasa(1,0)50.
This feature is a direct consequence of the lattice symm
and the boundary conditions. The identification mention
above is possible for the even parity quantum numbers,
then for our square lattice with nearest neighbor interac
f

22441
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the amplitude is identically zero. Since the magnon inter
tion represented by the right-hand side of Eq.~2! has a local
character and depends only on nearest neighbors the non
value of the amplitudes means that for odd quantum numb
the spin waves are allowed to interact, and therefore a bo
state becomes possible. It turns out that such ‘‘antisymm
ric’’ states are responsible for logarithmic size dependenc
in two dimensions.

Let us now consider the behavior of theB2 andA2 modes
along the diagonal direction in the Brillouin zone. After sym
metry projection from Eq.~2! we obtain

FIG. 1. The amplitude of theA1 mode along the diagonal direc
tion px5py for the 40340 square lattice. This result corresponds
the solution found in Ref. 10.
AB2(A2)~X,Y!5
FA2(B2)

N2 (
Qx

a ,Qy
a

@cos~Qx
a!6cos~Qy

a!#cos~Qx
aX1Qy

aY!

22«/22cosS Px

2 D cos~Qx
a!2cosS Py

2 D cos~Qy
a!

, ~10!
ta-
where ‘‘1 ’’ stands for theB2 mode, and

FB2(A2)~Px ,Py!5
1

N2 (
Qx

a ,Qy
a

bB2(A2)~Qx
a ,Qy

a!FcosS P

2 D
2cos~Qx

a!G .
The corresponding eigenenergies« are found as solutions o
the compatibility equation

112A~P!cosS P

2 D2B~P!2C~P!50 ~11!

for the B2 mode and

12B~P!1C~P!50 ~12!
for the A2 mode, respectively. In the continuum represen
tion the sums

A~P!5
1

N2 (
Qx

a ,Qy
a

cos~Qx
a!

22cosS P

2 D @cos~Qx
a!1cos~Qy

a!#2«/2

,

B~P!5
1

N2 (
Qx

a ,Qy
a

cos2~Qx
a!

22cosS P

2 D @cos~Qx
a!1cos~Qy

a!#2«/2

,

~13!

C~P!5
1

N2 (
Qx

a ,Qy
a

cos~Qx!cos~Qy!

22cosS P

2 D @cos~Qx
a!1cos~Qy

a!#2«/2
6-4
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MAGNON EXCITATIONS IN A MESOSCOPIC . . . PHYSICAL REVIEW B 66, 224416 ~2002!
are replaced by integrals which can either be expande
asymptotic series or calculated numerically. Equations~11!
and ~12! coincide with the respective equations for theA1
and B1 modes in the limitN→`. For some mesoscopi
values ofN both dispersions are shown in Fig. 2. TheA2
mode has smallN corrections, and its dispersion follows th
of the B1 mode, while theB2 mode, on the contrary, ha
large size corrections and for any finiteN is well separated
from all the other modes. Two different branches are a
obtained for each component of theE mode. The low energy
branch (El) closely follows that of theB2 mode but lies
slightly lower, while the high energy branch (Eh) almost
coincides with that of theA2 mode. Note that for theE mode
the ‘‘diagonal direction’’ of the total momentum in the Bri
louin zone is not allowed due to the mixed set of quant
numbers and has to be understood in an approximate se
For an arbitrary direction the equations become more

FIG. 2. The dispersions of the two antisymmetric bound mo
A2 ~the highest curve with vertical dashes representing a very w
N dependence! andB2 for N560 ~dashed line! andN51000~lower
continuous line! as determined by the refined continuum solution
Eq. ~2!. The curves terminate at the respective crossing points w
the boundary of scattered states~upper continuous line!. The energy
of theB2 mode decreases with the increase ofN. The dispersion of
the A1 mode~not shown! lies lower and terminates atp50. Note
that the number of lattice points corresponds toN2.
22441
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volved but the qualitative picture of the six eigenener
branches outlined above remains unchanged. One can e
see that all the modes become degenerate close to the c
of the Brillouin zone with energy 3J, the two flipped spins
are tightly bound and propagate through the lattice pres
ing the nearest neighbor location. A ‘‘one-dimensional’’ b
havior is realized at the edges of the Brillouin zone, wh
dispersion is possible only in one of the directions. Howev
the symmetry related properties of the excitations app
most prominently at low energies and long waveleng
where some of the modes become unstable toward decay
scattered magnons. This takes place at the crossing line
the boundary of scattered excitations,EL52@22cos(px/2)
2cos(py/2)], in analogy with the 1D problem. The high en
ergy modes (A2 , B1 , andEh) have a very narrow and an
isotropic region of stability and become unstable at alm
the same critical line at high momenta. From the asympto
expansion of Eq.~13! ~see Appendix B!, after substitution in
Eq. ~12! we find the same critical momentumpc as obtained
by Wortis with insignificant size correctionspc
.2 arccos@(4/p)21#1O(1/N). For theB2 mode the main
terms of the asymptotic expansions do not cancel in eigen
ergy equation~11! and the critical point becomes depende
on lnN:

2F12cosS pB2

c

2
D G.

1

1

p
ln N20.22

. ~14!

In a similar way, for the low energy componentEl one ob-
tains

2F12cosS pE
c

2 D G.
1

1

p
ln N20.16

.

The critical line«5EL(px ,py) is obtained by changing the
direction of p. The respective asymptotic expansions a
more complicated and will not be given here. However,
the leading term a simple expression can be obtained for
integrals involved in the eigenenergy equation~see Appendix
B!. If at least one of the integrals contains a low ener
cutoff corresponding to theQa sequence in the Fourier sum
then

s
ak

f
th
1

N2
(
Q

L~cosQx ,cosQy!

cosS Px

2
D @12cos~Qx!#1cosS Py

2
D @12cos~Qy!#

→
1

p2
E E L~cosQx ,cosQy!dQxdQy

cosS Px

2
D @12cos~Qx!#1cosS Py

2
D @12cos~Qy!#

;
ln N

pAcosS Px

2
D cosS Py

2
D

, ~15!
6-5
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where L is a polynomial. Thus our approach predicts t
existence of the logarithmic size dependence for the mo
which have at least one ‘‘odd-symmetry’’ component. This
illustrated by Fig. 3, containing the critical lines for theB2
andEl modes at some mesoscopic values ofN. The energy
of these modes ‘‘sweeps’’ the whole space between the gr
of three high energy branches and the lowest energy m
A1 by increasing the number of spins in the system. At m
soscopic values ofN they are ‘‘half-way’’ between the two
limits and could be easily observed. We have also carried
numerical calculations for the discrete lattice at several v
ues of N. Convergence of numerical data withN confirms
that the leading term@Eq. ~15!# indeed corresponds to th
exact asymptotic expansion of the lattice model and the
crepancy is due to higher order corrections. For example,
~14! predicts for theB2 mode pc52 for N560 and pc
51.86 for N5100, while numerically we findpc51.61 for
N560 and pc51.54 for N5100. Additional confirmation
for this behavior comes from our exact results on the lat
model ~to be published elsewhere!.

Another relevant aspect is the direct relation of the an
lar dependence of the wave function to the energy of
excitation, which is a general feature of quantum mechan
and is easy to understand. All the low energy modes
characterized by a more ‘‘smooth’’ behavior compared to
high energy ones containing more node lines or deple
areas. This point is illustrated by Figs. 4 and 5 showing
behavior of the amplitudesEl and Eh on a finite lattice for
the momenta chosen in the respective regions of stab
These amplitudes correspond to the two branches of
same component (y in the given example! of the E mode.
Figure 6 illustrates the oscillating behavior of theEl ampli-
tude as continued beyond the critical point atp&pc . Note
that in this region the continuum treatment has to take i
account the dense energy spacing of scattering solution
mentioned above.

FIG. 3. Critical lines defining the regions of stability~area out-
side the respective line! for theB2 mode and the low energy branc
of the E mode atN540.
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IV. DISCUSSION

We have considered the features arising in the tw
magnon bound states spectra of a finite size ferromag
within a refined continuum approach. The approach incor
rates the symmetry dependent behavior of the underly
discrete lattice and predicts large finite size corrections
to the long wavelength Goldstone singularity of the magn
spectra. We find several new modes and describe the d
bution of bound states in the Brillouin zone. It is shown th
these modes occupy an even larger area than the kn
ones, and are therefore important for the low energy sp
trum of the Heisenberg ferromagnet. In particular we ha
noticed a slow convergence of these low energy antisymm
ric excitations to the thermodynamic limit. However, one c

FIG. 4. The low energy branchEl of the y component of theE
mode atN540 for the momentumpx5py5p>pc . The critical
momentum is determined by Eq.~14!.

FIG. 5. The high energy branchEh of they component of theE
mode atN540 for the momentump>pc52 arccos(4/p21).
6-6
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MAGNON EXCITATIONS IN A MESOSCOPIC . . . PHYSICAL REVIEW B 66, 224416 ~2002!
easily see that similar logarithmic size corrections are pre
in the two-magnon spectra of scattering states. More ge
ally, the same features should also appear in multimag
spectra, which can be described in terms of the wave fu
tion of the form of Eq.~1! with the decoupled motion of the
center of mass and relative coordinates. The latter are
pressed in terms of theQ ‘‘momenta’’ in Eqs. ~4! and ~5!
with shifted sequences of allowed values containing m
tiples of N in the denominator. This is easy to understa
since an excitation with a fixed total momentumP can be
viewed as a convolution of multimagnon elementary exc
tions complying with the boundary conditions in analogy
Eq. ~3!. By applying our continuum procedure we will re
cover the same logarithmic behavior, but now due to
‘‘renormalized’’ shifts mentioned above. Conversely, t
finite-size behavior of the symmetric modes, such asA1 or
B1 , or some of the antisymmetric modes, such asA2 or Eh,
does not differ much from the thermodynamic limit. In th
sense, the present paper reveals the microscopic mecha
of the appearance of logarithmic size-dependent singular
in the thermodynamics of a 2D finite ferromagnet. The s
bility of the low energy modes increases by increasing
number of spins. At mesoscopic values ofN they are well
separated from the known ones and can be easily obse
We note that such a behavior is difficult to capture in nume
cal simulations which are confined to systems of small s
Then even detecting the difference between bound and s
tered states causes problems since the wavelength bec
comparable to the size of the system. Thus our explicit
sults will be useful for the interpretation of numerical sim
lations. The presented approach can also be extended to
spin or orbital as well as bosonic or fermionic finite si
systems.
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FIG. 6. The low energy branchEl at N520 as continued for the
momentum below the critical pointpx5py5p<pc in Eq. ~14!,
where it has dissociated into a scattered two-magnon state.
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APPENDIX A: SYMMETRY ANALYSIS

Our aim is to classify the eigenstates of Eq.~2! according
to their transformation properties, i.e., the irreducible rep
sentations of the group C4v . Its operations Ĝ

5$ Î ,Ĉ4 ,Ĉ4
21 ,Ĉ2 ,ŝv

x ,ŝv
y ,ŝd

1 ,ŝd
2% are mapping amplitude~1!

at one lattice point in the space of relative coordinates i
another. By our convention of numbering the lattice si
they are defined as follows:Ĉ4a(Px ,PyzX,Y)5a(Py ,
2PxzN2Y,X), ŝv

xa(Px ,PyzX,Y)5a(Px ,2PyzX,N2Y),

ŝd
1a(Px ,PyzX,Y)5a(Py ,PxzY,X), etc. We have taken into

account that the momentum is transformed by the inve
operations. The projection operator of thenth irreducible
representationÔn;@(Ĝxn(Ĝ)Ĝ# acting on each side of~2!
projects out the respective eigenmodeAn(Px ,PyzX,Y). Let
us now consider the projection onto theB2 irreducible rep-
resentation as an example. Then the projection operator
erates the combination

a~Px ,PyuX,Y!2a~Px ,PyuX,N2Y!

2a~Px ,PyuN2X,Y!1a~Px ,PyuN2X,N2Y!

2a~Py ,PxuN2Y,X!2a~Py ,PxuY,N2X!

1a~Py ,PxuY,X!1a~Py ,PxuN2Y,N2X!,

where we have used the propertiesa(Px ,2PyuX,Y)
5a(Px ,PyuX,Y)5a(2Px ,PyuX,Y)5etc. After the projec-
tion the amplitude satisfies the symmetry relations specifi
this representation:

AB2
~Px ,PyuX,Y!52AB2

~Px ,PyuX,N2Y!5AB2
~Px ,PyuN

2X,N2Y!52AB2
~Py ,PxuY,N2X!.

These relations can be checked by substitution, e.g.,

AB2
~Px ,PyuX,N2Y!

5a~Px ,PyuX,N2Y!2a~Px ,PyuX,Y!

2a~Px ,PyuN2X,N2Y!1a~Px ,PyuN2X,Y!

2a~Py ,PxuY,X!2a~Py ,PxuN2Y,N2X!

1a~Py ,PxuN2Y,X!1a~Py ,PxuY,N2X!.

The periodic boundary conditions require that this amplitu
satisfies the relations in Eq.~3!. It then follows that for theB2
mode both quantum numbers of the total momentum sho
be odd integers and the Fourier amplitude in Eq.~4! has the
property

bB2
~Px ,PyuQx ,Qy!5bB2

~Py ,PxuQy ,Qx!.

The remaining one dimensional representations are obta
in a similar way. For the two components of theE mode we
find
6-7
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AE
y ~Px ,PyuX,Y!52a~Py ,PxuY,N2X!1a~Py ,PxuN

2Y,X!1a~Py ,PxuY,X!

2a~Py ,PxuN2Y,N2X!;

AE
x ~Px ,PyuX,Y!5a~Px ,PyuX,Y!2a~Px ,PyuN2X,N2Y!

2a~Px ,PyuX,N2Y!

1a~Px ,PyuN2X,Y!.

The respective symmetry relations

AE
y ~X,Y!52AE

y ~X,N2Y!5AE
y ~N2X,Y!,

AE
x ~X,Y!5AE

x ~X,N2Y!52AE
x ~N2X,Y!

require thatQx be even andQy odd for they component, and
the reverse for thex component.

APPENDIX B: ASYMPTOTIC EXPANSION

Let us consider the asymptotic expansion correspond
to the discrete sum (a[p/N)

1

N2 (
Qx

a ,Qy
a

1

22cosS P

2 D @cos~Qx
a!1cos~Qy

a!#2«/2

→E
a

p1aE
a

p1a 1

22cosS p

2D @cos~Qx!1cos~Qy!#2«/2

3
dQx

p

dQy

p
,

at the crossing point with the lower boundary of magn
continuumEL : «/252@12cos(p/2)#. As we are interested
only in the first couple of terms of the expansion the up
limit shift can be neglected. Indeed,

E
p

p1a 1

22cos~Qx!2cos~Qy!

dQx

p

5

22 arctanS cotS a

2D 12cosQy

A~22cosQy!221
D 1p

pA~22cosQy!221

5
a

32cos~Qx!
1•••.

Then the first integration gives

E
a

p 1

22cos~Qx!2cos~Qy!

dQx

p

5

2

p
arctanS cotS a

2D 12cosQy

A~22cosQy!221
D

A~22cosQy!221
.

22441
g

r

On the integration interval we have

cotS a

2D 12cosQy

A~22cosQy!221
>1.

Using the expansion

arctan~z!5
p

2
2

1

z
1

1

3z3
2

1

5z3
1•••,

we obtain

2

p
arctanS cotS a

2D 12cosQy

A~22cosQy!221
D

A~22cosQy!221

5
1

A~22cosQy!221

3S 11
2

p (
k50

`
~21!k11

2k11
tanh(2k11)S a

2D
3SA~22cosQy!221

12cosQy
D 2k11D .

Then integration of the first term gives

S 2
ln a

p
1

3

2p
ln2D1

1

24p
a21•••.

The terms of the remaining series can be estimated as

2

p2 (
k50

`

tanh2k11S a

2D ~21!k11

~2k11!
gk~a!

where

gk~a!5E
a

pSA~22cosQy!221

12cosQy
D 2k11 dQy

A~22cosQy!221
.

We are interested in the most singular terms ingk(a) arising
from the singularity of the integrand atQy;a, where we can
use the Taylor expansion inQy . This leads to the estimate

gk~a!522k11E
a

p dy

y2(k11)
1OS E

a

p dy

y2k11D
or

gk~a!.S 2

aD 2k11 1

~2k11!
.

Using the definition of the Catalan constant

C5 (
k50

`
~21!k

~2k11!2
.0.915966,

for the first two terms of the asymptotic expansion we c
finally write
6-8
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E
p/N

p1p/NE
p/N

p1p/N 1

22cos~Qx!2cos~Qy!

dQy

p

dQx

p
.

1

p
ln N

1S 3

2p
ln 22

1

p
ln p2

2

p2
CD

5
1

p
ln N20.219.

The respective expansions for the functions in Eq.~13! are
obtained in a similar way:

A~p!5
1

cos~p/2! F 1

p
lnS N

p D1
3

2p
ln 22

2

p2
C2

1

2G
1O~1/N!,

B~p!5
1

cos~p/2! F 1

p
lnS N

p D1
3

2p
ln 22

2

p2
C211

2

pG
1O~1/N!,

C~p!5
1

cos~p/2! F 1

p
lnS N

p D1
3

2p
ln 22

2

p2
C2

2

pG
1O~1/N!.

It is also not difficult to find the main term of th
asymptotic expansion for an arbitrary direction in the Br
louin zone@Eq. ~15!#. Indeed, let us consider the integral

1

p2E E cosk~Qx!cosm~Qy!dQxdQy

cosS Px

2 D @12cos~Qx!#1cosS Py

2 D @12cos~Qy!#

wherem andk are arbitrary integers and at least one of t
integration limits contains the cut-offa; both cos(Px/2) and

*On leave from the Institute of Applied Physics, Chis¸inău,
Moldova.
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E
b

p cosm~Qy!

cosS Px

2
D @12cos~Qx!#1cosS Py

2
D @12cos~Qy!#

dQy

p

.

S 11

cosS Px

2
D

cosS Py

2
D @12cos~Qx!#D m

AcosS Px

2
D @12cos~Qx!#12 cosS Py

2
D

3
1

AcosS Px

2
D @12cos~Qx!#

.
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1

p

1

A2 cosS Px

2
D cosS Py

2
D
E

a

p coskQx
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2
1

p
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2
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2
D
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