PHYSICAL REVIEW B 66, 224416 (2002

Magnon excitations in a mesoscopic Heisenberg ferromagnet
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We report on a qualitative change of the character of interacting magnon excitations in a ferromagnet due to
finite size. Within an improved continuum approach excitation modes are found analytically for a two-
dimensional system. Several non-totally symmetric modes are obtained which were previously unknown. In
contrast to excitations in one dimension some of the low energy modes approach the macroscopic limit
extremely slowly. These modes occupy a substantial part of the Brillouin zone and can therefore be responsible
for the logarithmic size dependence of various thermodynamic quantities.
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I. INTRODUCTION ever, even for the 1D case, the wave function has not been
obtained explicitly within the continuum method and the
The current interest in finite-size ferromagnets is due tgPoint that, according to Bethe ansatz, there shouldvie
progress in mesotechnology and nanotechnology devices i§/thogonal solutions, did not receive any attention. For
volving spin degrees of freedofsee, e.g., Refs. 1+3Some higher dimensional lattices, where no exact results are avail-
quantum Hall systems can be mapped onto a ferromagnet le, it is predicted that there should be,. e.g., two_and t.hree
model? However, the transition from macroscopic to finite- ound mOdeS for the square and_ Fhe IS|mpIe cubic Igtt|pes,
size behaviorremains an open issue. The increased power O?espect!vely. Thg symmetry classmcatpn of the excitation
computer simulation methods has made relatively large clus'].10des In the Brillouin zone is then considewiter the con-
ters accessible for investigation, but general regularities ognuum limit was taken(see, e.g., Ref. 13 for the 3D ex-

the excitation spectra are difficult to extract in this way. Weggslgérrggisoen'tssl:ﬁ: g)‘('g?;ﬁ;eg‘ngrrgilgg’?gtt;'en;g tg:sgr:ge;;t
develop an analytical approximation which captures finite- . L S
p y PP b ost 1N2. This form of the finite-size correction is only

size effects and reveals interesting features in the excitatio hed at | lenaths. i.6. for the i :
spectra. At first sight, one can hardly expect dramatic sizé®acned atlong wavelengins, 1.€., Tor the INVerse wave vector
effects in ferromagnets. For instance, the corrections to th@f the excitation~ JN. Itis a rather restricted region of the

thermodynamic limit due to finit&d (the number of sites in Brillouin zone where the so called string hypothesis breaks
one direction, predicted by the exact Bethe ansatz solutiondoWn:" Outside the critical region, i.e., for shorter wave-

for the periodic Heisenberg spin-1/2 chain with isotropic/€N9ths. the corrections become exponentially small, and
nearest neighbor interactiare found to be small and ana- therefore this _hypotheS|s is successfully used to descrlpe the
lytically converging forN—. An even faster convergence thermodynamics of the Heisenberg chain. For higher dimen-

is anticipated for a higher dimensional lattice which can therpional lattices one naturally would expect that t.hF.“ corrections
be described within straightforward methodee, e.g., Ref should become even less relevant. However, it is shown be-
7). In the present paper we show that, in contrast to théow that for a 2D lattice the analog of the crmca_l region
traditional ways of thinking, finite size-corrections to excita- m'ent|oned above becomes 'afge and cannot be |gr10red. It
tion spectra in a two-dimension&2D) system can be large will become clear that properties of the wave function are
and nonanalytical. Some new excitation modes are found t§SSential for this behavior and the construction of a proper

be responsible for a large share of the low energy spectrurﬁommu”m description requires that the symmetries of the

and have a logarithmic size dependence. The approach builyjave function are explicitly taken into account. For instance,

upon a preliminary stud‘yof the 1D system which allows we recover the “lost” second mode of Bethe’s exact solution

comparison to the exact solution found by Bethe’s an%atz.for the chain, and reveal four additional bound modes for the

We describe the distribution of two-magnon bound excitg-Sauare lattice. The new modes in higher dimensions turn out

tions over the Brillouin zone which reveals the general trend§9 b(f" “ggnealoglcally” related to Bethe's second.mO(_je. The
of multimagnon spectra mentioned above. distribution of the two-magnon states over the Brillouin zone

Our approach consists of a refinement of the commonl)ﬁhows that these modes outnumber the ones already known.

used continuum method in condensed matter, which becomdk!S clear that the same features are present in multimagnon

exact in the thermodynamic limit. Its main feature consists of PEctra-

the “con_servation" of symm_etries of _the discre_te lattice in Il. CONTINUATION OF THE BIMAGNON EQUATIONS
the continuum wave function. Previous continuum treat-
ments(see, e.g., Refs. 7,9-12re apparently in agreement  We first show how the main properties of the Bethe’s
with the exact solutiofi,although, as mentioned by Mattis in exact solution can be described within the framework of our
Ref. 7, p. 155, the relation of Bethe’s ansatz to the continuungontinuum approach for th®= 1/2 Heisenberg Hamiltonian,
approach is “somewhat obscure.” For instance, the single

eigenenergy branch of the bound two-magnon state in one A=-> J.S-S

dimension coincides with Bethe’s result fé—o. How- o '

0163-1829/2002/6@2)/2244169)/$20.00 66 224416-1 ©2002 The American Physical Society



S. COJOCARU AND A. CEULEMANS PHYSICAL REVIEW B56, 224416 (2002

whereJ;;=J>0 for thez nearest neighbors, and zero other-on the parity ofl. We then expand the amplitude of the rela-
wise. Since the total momentum of the excitat®is a con-  tive motion into the Fourier series
served quantity, it is convenient to consider the amplitude of 1
the two magnon excitatiow (n,,n,) in terms of the “center _

X " . _ a(Pr)=— b(P|Q)cogr-Q). 4
of mass”R and relativer coordinates of the flipped spins, (PI) NE % (PIQ)codr-Q) @
Ry=(n3+n})/2, r,=(n3—n}), etc. Thus, up to a constant

factor, for the amplitude we have The constraints on the variab@ in Eq. (4) imposed by Eq.

(3) imply that
-

¥ (ny,ny)=expiP-R)a(P|r). 1 (P
(N1 d | exg iN ;'yiQX,y
This relation determines the range of values for the respec-
tive components o:

The Schrdinger equation takes the fofm

a(P|r+d)=J(r)

P-d
[e—zJJa(P|r)+J>, co§ —
d 2 2mm 2mm T
Qi'V:T’ Qiy=——*t o, m=01,...N-1

: 2 ®)

The Fourier amplitudeéo(P|Q) and the eigenenergy are
wheree is the excitation energy, the sum runs over the nearthen obtained as solutions of E@). As our aim is to con-
est neighbors and(r)=J;;. In the following energy is Structa continuum approximation which would keep track of
assumed to be in units] of. Some symmetry require- the major properties of the underlying finite lattice, it has to
ments follow from permutation of overturned spins Incorporate the symmetry related shiftN in Eq. (5). There-
[a(Plr)=a(P|-r)] and from cyclic boundary condi- f_ore we replace the sums by mt_egra_ls, as re_qwre_d by con-
tions [W(n,nY3n%,n%) =W (n%,nY;n%+N,nY) = W (n% tinuum approachput the integration interval is shifted in

momentum spacei.e.,

NS, 1) = W (0 Nk ), etc: pace

1

N
Qa

iP
a(P|rX,ry)=ex;{ >
The above approximation can be viewed as a truncation of
iPN the Euler-MacLaurin expansidsee, e.g., Ref. 26Chap. 4.
=exp( 5 a(PIN—r,,ry)... . (3 In Eq. (6) we keep the main term of the expansion. The
bounds of the integral correspond to the half of the total
We adopt Bethe’s convention of numbering the lattice Sitesi,ntegration interval which is accounted for by the trivial fac-
so that the relative coordinateg=X) andr(=Y) are non-  {or 2 (see Ref. & The advantage of using the periodic func-
negative integers on the main intervX=0,1, - - ,N—1 for tions of the Fourier SerleEEq. (4)] consists of the cancela-
the chain andX=0,1,--,N—1 andY=0,1,--,N—1 for  tionof terms contai_ning derivatives of the integrand in Euler-
the square lattice. By these definition one has the followingacLaurin expansior(see Eq. 4.19 in Ref. 36Thus the
coordinates for the nearest neighbors on the 1D lattice: remainder of such a truncation giving an estimate of the ac-
=1 andX=N-1 instead of the usua{= — 1. The advan- curacy of the approximatiori6) is 1N2. However, as is
tage of this choice is that it includes the boundary condition$hown in Chap. 5 of Ref. 16 the accuracy is actually even
in an explicit form, e.g., it allows for the amplitudes on near-higher. Such accuracy is sufficient for the purpose of our
est neighbor sitega(P|1) anda(P|N—1)] to havedifferent apprc')x.lmat'lon, which is meant to capture the main terms of
signs in agreement with Eq3). The usual choice&X=—1, the finite-size (_:orrectlon, because as it W|_II become cle_ar
although being correct for the even parity statee=e below fr_om _the following the gctual values of the integrals are fi-
is generally misleading since, e.g., in one dimension it in facfite, i.e.,~O(1). Wepoint out that the shift occurs because
represents the transposition of flipped spins and not the try@f the boundary conditions. Other boundary conditions
dynamics on the lattice. The cyclic boundary conditions im-Would resultin a different shift which should be incorporated
ply that the relative motion of flipped spins has a periog 2 N @ similar way. In one dimension for such a continuum
In a similar way multiple periods ol would arise in the aPproximation we indeed obtain two different branches,
relative amplitude for multimagnon states. The above argusymmetrlc_(s) and antisymmetricd), in agreement with Be-
ments will become important for the discussion of the modedhe’s solution. The proper analytical continuation from a dis-
which are intrinsically related to Bethe’s second mode in onéTete lattice is achieved by explicitly introducing the symme-
dimension: The nearest neighbors for the square lattice aféy réquirements into the amplitude:
defined by analogy with one dimensionX€1,Y=0), (X 1
=0,Y=1), (X=N—1Y=0), and X=0Y=N—-1). The As’a(plx)zE[asya(p|x)tasva(p|N—x)]. (7)
components of the total momentum take on the values
2wl /N and 271, /N, wherel, andl, are integer quantum The corresponding Fourier amplitudes drg,(Q)~cosQ
numbers. The existence of two-particle eigenstates with ever[cosvs,—cosQ] %, where coshg,=(1—e4/2)/cosp/2)
and odd parity immediately follows from E¢3) depending andp is a continuous variable, the counterpart of the total

X —a(P|r)

P-r
a(P|0) cos( >

1 (#+=wIN

xN ) miN dQ. ©

a(PIN+ry,ry)
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momentumP. Normalization constants are then readily ob-the Bethe ansatz equations thél Hxpansion was considered
tained and we obtain the correct result which coincides wittbefore, and in the longwave regiéh< 1/y/N of the spectrum

the Bethe ansatz fd{— oe: nonstring solutions were obtain&4'® which can be identi-
fied as the true solutions of Bethe’s equations. In contrast to
the string solutions which are valid for higher momenta and
unite odd and even branches, only the even symmetry state
was shown to exist in the longwave region. The behavior
The single branch mentioned aboteee, e.g., Refs. 7 and described by our approximation agrees well with the above

10) corresponds to the symmetric solutian=sir’(p/2),  picture, but quantitatively it of course slightly deviates from
while the antisymmetric branch is described by the equatiofthe exact asymptotic expansibn.

4P
1 B
cos 5 5

tcoé“"1(9> }

As,a<p|x>=sin(§)/ﬁ

sin K . lll. TWO-MAGNON PROBLEM ON A SQUARE LATTICE
2 N 2[coshv ,—cogp/2)] sinhv ,
T coshva: 7 sinho, arcta T | For the two-magnon problem on th_e square lattice the
sin| solution first obtained by Wortt predicted two energy

branches. As already noted, by ignoring the unusual size de-
(8) pendence of some modes, this treatment has largely over-
As shown earlier, our approximation reproduces well the exiooked the rich structure of the spectrum in the mesoscopic
act solution also at finité\ (see Ref. 8 for a more detailed to even macroscopic range. To identify the different types of
discussioi It displays the correct behavior at the border of excitations one should carefully apply symmetry relati8)s
the Brillouin zone:e,=es=1. Toward the long-wavelength depending on the parity of the quantum numblgrandl,
region the energy of the antisymmetric excitation growsand also the symmetry group,, of the lattice. The excita-
higher than that of the symmetric one, their separation beingion modes must transform according to the irreducible rep-
scaled ap* for small momenta. Both branches lie below the resentations of the group. Their classification is obtained by
continuum of scattered magnon states until the latter igising the projection operat(fba (see, e.g., Ref. 7 The
crossed bys,(p) at some critical momenturp=2m/\N  action of®,, on Fourier expansiof¥) projects out a function
which should be compared to the exact value found by Bethgyhich transforms according to one of the five irreducible
P&=4/\N. From Eq.(8) one can see that it predicts a con- representations: of the group: four one-dimensional repre-
tinuous real valued solution for the eigenenergy beyond theentationsA;, A,, B;, and B, and one two-dimensional
crossing point, in the region of scattered states>2J[1  representatiorE. There are three different combinations of
—cos@/2)]. This might seem to be in contradiction with the quantum numbersl) bothl, andl, are even(2) bothl,
Bethe’s solution, which predicts that the bound state existgmﬂy are odd, and3) the numbers are of different parity.
only below the region of scattered states. However, upon &hese combinations determine the respective sequences for
closer look, one should recognizednthe imaginary part of Q in Eq. (4). The projection operator then generates the
Bethe's phasef=iv. Then it is clear that at the crossing modes allowed for a particular combination by applying the
pointv =0 Eq.(8) describes the “dissociation” of the bound group transformations. The same can be achieved by apply-
state( real v, or a localized wave functigninto scattered ing first the “filter” of rotational symmetry and then deter-
magnongimaginaryv, or an oscillating wave functionThe  mine the quantum numbers compatible with the respective
physical reason for the instability of the antisymmetric mode(Appendix A). Thus for the one-dimensional represen-
bound state is the vanishing of magnon attraction at theations we find
crossing point both exactly and in our approximation. Al-
though for a finite lattice only discrete momenta have physi-bAl(PX,Py|Qx Q)= bAl(Py,PX|Qy ,Qx), {Px,Py} even,
cal meaning, the continuous variables in our approach should
be considered in the interpolation sense, precisely as the Be _
the ansatz transcendental equations for the finite chain. In-bBZ(PX’PY|QX'QV) bg,(Py,PyQy,Qx), {Px,Py} odd,
deed, one can check that Bethe’s equations describe the same 9)
crossover behavior. Thus there is no coexistence of boundey(Px:PylQx:Qy)=—bg, (Py,P,|Qy,Qy), {Py,Py} even,
and scattered states below the critical momentum, and the
transition is characterized by the qualitative change of theba,(Py,Py|Qyx,Qy) = —ba,(Py,PxQy,Qy), {Px,P,} odd.
wave function: the phase variablebecomes purely imagi-
nary above the crossing point. It should be stressed that, as 1$1€ remaining values of the total momentum correspond to
generally the case for a continuum treatment, Bycannot  the two components of the mode:AL(P,,Py|X,Y) hasP,
be used for a quantitative description of the scattering mageven andP, odd andAg(Py,P,|X,Y) hasP, evenand P,
non region by mere analytical continuationun The equa- odd The symmetry analysis demonstrates that parity of the
tion for the Fourier amplitude should take into account thequantum numbers of the total momentum determine the type
dense energy spacing-(L/N) of scattering solutions accord- of mode which can be excited for the particular valuePof
ing to the standard procedutsee, e.g., Ref. 7, Chap. 5.3 The energy of each mode is obtained by solving the Schro
and can be considered in our approach as well. This is, howdinger equation for the irreducible amplitude. Then the re-
ever, beyond the scope of the present paper. We note that fspective Fourier component is obtained up to a constant fac-

224416-3



S. COJOCARU AND A. CEULEMANS PHYSICAL REVIEW B56, 224416 (2002

tor which is determined from the normalization condition.
The analytic continuation must be carried out for the sym-
metrized quantities in analogy with E¢7), and the finite
sums are replaced by integrals according to ®y. To sim-
plify the discussion, let us consider the diagonal direction in
the Brillouin zoneP=P,=P, . Then for the excitation with
both even components d? we recover the two energy
branches found by Wortis. However, due to the symmetry
filtering, instead of the factorized form for thex2 matrix

of the eigenenergy equatigs2) in Ref. 10 we obtain two
separate equations depending on the symmetry of the mode.
This then allows us to identify the two modes As (s
wave), the lowest energy mode, a®f (d,z.,2), the highest
energy mode. Th&; mode(Fig. 1) has the usual shape of a
localized wave function with the periodicity of the original
lattice. However, unlike the total wave functipig. (1)], the
relative amplitudd Eq. (4)] is generally not required to have
the periodicity of the original latticésee, e.g., Ref.)8and FIG. 1. The amplitude of th&; mode along the diagonal direc-
for the two-magnon case can be antiperiodic. Indeed, if ation px=py for the 40<40 square lattice. This result corresponds to
least one quantum number of the excitation is an odd integef€ solution found in Ref. 10.

then the relative amplitude becomes antisymmetric in the

direction of the respective component Bf e.g.,a(X,0)= the amplitude is identically zero. Since the magnon interac-
—a(X,N)#0 if I, odd (P,=2wl,/N). This allows for a tion represented by the right-hand side of E2).has a local
nonzero value of the amplitude on the nearest neighbor sitesharacter and depends only on nearest neighbors the nonzero
a(1,0)#0, for such modes &8, andA, as shown in Appen- value of the amplitudes means that for odd quantum numbers
dix A. Therefore, for such momenta tti®, mode, for ex- the spin waves are allowed to interact, and therefore a bound
ample, cannot be identified with the transformation properstate becomes possible. It turns out that such “antisymmet-
ties of the “molecular” functiond,, which hasa(1,0)=0. ric” states are responsible for logarithmic size dependencies
This feature is a direct consequence of the lattice symmetrin two dimensions.

and the boundary conditions. The identification mentioned Let us now consider the behavior of tBg andA, modes
above is possible for the even parity quantum numbers, bulong the diagonal direction in the Brillouin zone. After sym-
then for our square lattice with nearest neighbor interactiormetry projection from Eq(2) we obtain

Fa,®, [cog Q) = cod QF) Jcog QeX+ QJY)
Asyny X )= — 7= X T e (10
QQy 2—¢g/2— cos( ?X) cog Q%) — cos( 7)/) cog Q7))
|
where “+” stands for theB, mode, and for the A, mode, respectively. In the continuum representa-

tion the sums

1 P
Fe,a,)(Px.Py)=— > b, (a,)(Q%, Q) C05<§ 1 cogQ?)
N Qi’Qg A( P) = N P y
N7 @2 o2 2—cos<E)[cos(Qi)vLcos{Q‘;‘)]—s/Z
—cos(Qi)}
The corresponding eigenenergiesire found as solutions of  B(p)= i E cos(Q}) ,
the compatibility equation N2 Q?.Q3 2—cos{ g)[COiQ§)+COS(Q§)]—8/2
P
1+2A(P)cos( E) -B(P)-C(P)=0 (12) (13
1
for the B, mode and C(P)== > 5 CosQJcosQy)
Q2.Q% 5_ = a ay1_
1-B(P)+C(P)=0 (12) y 2 cos(z)[cos(QX)+cos(Qy)] el2

224416-4



MAGNON EXCITATIONS IN A MESOSCOPC . .. PHYSICAL REVIEW B 66, 224416 (2002
34 volved but the qualitative picture of the six eigenenergy
branches outlined above remains unchanged. One can easily
see that all the modes become degenerate close to the corner

of the Brillouin zone with energy B, the two flipped spins
are tightly bound and propagate through the lattice preserv-
ing the nearest neighbor location. A “one-dimensional” be-
havior is realized at the edges of the Brillouin zone, when
dispersion is possible only in one of the directions. However,
the symmetry related properties of the excitations appear
most prominently at low energies and long wavelengths
where some of the modes become unstable toward decay into
scattered magnons. This takes place at the crossing line with
the boundary of scattered excitatiors, =2[2— cos{,/2)
—cosp,/2)], in analogy with the 1D problem. The high en-
o r T r ergy modes A,, B;, andE") have a very narrow and an-
0 1 2 3 isotropic region of stability and become unstable at almost
P the same critical line at high momenta. From the asymptotic

FIG. 2. The dispersions of the two antisymmetric bound mode Sxpansion Of Eq(13) (see Ap_pendlx B after SUbStItUtIO.n in
A, (the highest curve with vertical dashes representing a very wea 9-(12) W_e find _the S.ame c_r_ltlcal mome”t“m as thamed
N dependengeandB, for N=60 (dashed linpandN = 1000(lower y Wortis with insignificant size corrections pC_
continuous ling¢ as determined by the refined continuum solution of =2 arccop(4/m) — 1] +_O(1/N)' For theB, mode thg maln
Eq. (2). The curves terminate at the respective crossing points witi€"ms of the asymptotic expansions do not cancel in eigenen-
the boundary of scattered statepper continuous lineThe energy €79y equatior(11) and the critical point becomes dependent
of the B, mode decreases with the increaséNofThe dispersion of 0N INN:
the A; mode (not shown lies lower and terminates gt=0. Note
that the number of lattice points corresponds\fo p%z 1

2| 1-co N (14

are replaced by integrals which can either be expanded in —InN-0.22
asymptotic series or calculated numerically. Equatiiiy m
and (12) coincide with the respective equations for the  In a similar way, for the low energy componegt one ob-

and B; modes in the limitN—o. For some mesoscopic tains
values ofN both dispersions are shown in Fig. 2. ThAg
PE 1
1—c05(7”—1—.
—InN-0.16
an

Scattered states

mode has small corrections, and its dispersion follows that

of the B; mode, while theB, mode, on the contrary, has 2
large size corrections and for any finieis well separated

from all the other modes. Two different branches are also

obtained for each component of themode. The low energy The critical lines =E (px,p,) is obtained by changing the
branch €') closely follows that of theB, mode but lies direction of p. The respective asymptotic expansions are
slightly lower, while the high energy brancte®) almost more complicated and will not be given here. However, for
coincides with that of thé, mode. Note that for thE mode the leading term a simple expression can be obtained for the
the “diagonal direction” of the total momentum in the Bril- integrals involved in the eigenenergy equatisae Appendix
louin zone is not allowed due to the mixed set of quantumB). If at least one of the integrals contains a low energy
numbers and has to be understood in an approximate sensgitoff corresponding to th©2 sequence in the Fourier sums,
For an arbitrary direction the equations become more inihen

Px

1 L(coRy,coNy) 1 L(coR,,c0N,)dQ,dQ,
HEJ f E(_
co 5

N2 Q Py l:)y I:)y
CO{?)[l—COS(Qx)]ﬂLCO{? [1—coqQy)] [1—cogQy)]+co > [1—coqQy)]

InN
~ : (15

Ll
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=)
A

FIG. 4. The low energy brandg' of they component of thé&
FIG. 3. Critical lines defining the regions of stabilifgrea out-  mode atN=40 for the momentunp,=p,=p=p.. The critical
side the respective lindor the B, mode and the low energy branch momentum is determined by E€14).
of the E mode atN=40.

where L is a polynomial. Thus our approach predicts the IV. DISCUSSION
existence of the logarithmic size dependence for the modes \ne have considered the features arising in the two-

which have at least one “odd-symmetry” component. This iSmagnon bound states spectra of a finite size ferromagnet
illustrated by Fig. 3, containing the critical lines for tBg  within a refined continuum approach. The approach incorpo-
andE' modes at some mesoscopic values\ofThe energy rates the symmetry dependent behavior of the underlying
of these modes “sweeps” the whole space between the grougiscrete lattice and predicts large finite size corrections due
of three high energy branches and the lowest energy modg the long wavelength Goldstone singularity of the magnon
A; by increasing the number of spins in the system. At mespectra. We find several new modes and describe the distri-
soscopic values o they are “half-way” between the two pytion of bound states in the Brillouin zone. It is shown that
limits and could be eaSily observed. We have also carried Ol.these modes occupy an even |arger area than the known
numerical calculations for the discrete lattice at several Va.l'ones’ and are therefore important for the low energy spec-
ues ofN. Convergence of numerical data with confirms  trym of the Heisenberg ferromagnet. In particular we have
that the leading terniEg. (15)] indeed corresponds to the noticed a slow convergence of these low energy antisymmet-

exact asymptotic expansion of the lattice model and the disric excitations to the thermodynamic limit. However, one can
crepancy is due to higher order corrections. For example, Eq.

(14) predicts for theB, mode p.=2 for N=60 and p.
=1.86 forN=100, while numerically we fingp.=1.61 for
N=60 andp,=1.54 for N=100. Additional confirmation Ag
for this behavior comes from our exact results on the lattice
model(to be published elsewhere

Another relevant aspect is the direct relation of the angu-
lar dependence of the wave function to the energy of the
excitation, which is a general feature of quantum mechanics
and is easy to understand. All the low energy modes are
characterized by a more “smooth” behavior compared to the
high energy ones containing more node lines or depletec
areas. This point is illustrated by Figs. 4 and 5 showing the
behavior of the amplitudeE' andE" on a finite lattice for
the momenta chosen in the respective regions of stability.
These amplitudes correspond to the two branches of the
same componenty(in the given exampleof the E mode.
Figure 6 illustrates the oscillating behavior of te ampli-
tude as continued beyond the critical pointpetp.. Note
that in this region the continuum treatment has to take into
account the dense energy spacing of scattering solutions as FIG. 5. The high energy brand® of they component of th&
mentioned above. mode atN=40 for the momentunp=p.=2 arccos(4#—1).
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A APPENDIX A: SYMMETRY ANALYSIS

Our aim is to classify the eigenstates of E2). according
SN to their transformation properties, i.e., the irreducible repre-

R W\
RSO

S

sentations of the groupC,,. Its operations G
={1,C,,C;1,C,,0%,0Y, 08,07} are mapping amplitudét)

at one lattice point in the space of relative coordinates into
another. By our convention of numbering the lattice sites
they are defined as followsf:4a(PX,Py|X,Y)=a(Py,
—P,N—-Y,X), &;‘a(PX,Py|X,Y) =a(Py,—PyIX,N-Y),
oga(Py.PyIX,Y)=a(P,,P,]Y,X), etc. We have taken into
account that the momentum is transformed by the inverse
operations. The projection operator of thh irreducible
representatio®”~[ 3 x"(G)G] acting on each side df)
projects out the respective eigenmodg(Px,Py|X,Y). Let
FIG. 6. The low energy brandh' atN=20 as continued for the us now consider the projection onto tBg irreducible rep-

momentum below the critical poinp,=p,=p=<p. in Eq. (14,  resentation as an example. Then the projection operator gen-
where it has dissociated into a scattered two-magnon state. erates the combination

easily see that similar logarithmic size corrections are present a(Py,Py|X,Y)—a(P,,P,|X,N=-Y)

in the two-magnon spectra of scattering states. More gener-

ally, the same features should also appear in multimagnon —a(Py,PyIN=X,Y)+a(P,,P,IN=X,N-Y)
spectra, which can be described in terms of the wave func-

tion of the form of Eq.(1) with the decoupled motion of the ~a(Py PyN=Y.X)—a(Py,P{Y.N=X)

center of mass and relative coordinates. The latter are ex- +a(py,pX|Y,X)+a( py,px|N_Y,N_x)’

pressed in terms of th® “momenta” in Egs. (4) and (5)

with shifted sequences of allowed values containing mulyyhere we have used the propertie(P, , — P,|X,Y)
tiples of N in the denominator. This is easy to understand,— a(Py,Py|X,Y)=a(—P,,P,|X,Y)=etc. After the projec-
since an excitation with a fixed total momentucan be  tjon the amplitude satisfies the symmetry relations specific to
viewed as a convolution of multimagnon elementary excitahjs representation:

tions complying with the boundary conditions in analogy to
Eq. (3). By applying our continuum procedure we will re- _ _
cover the same logarithmic behavior, but now due to the”82(Px Py X, Y) = = Ag (P, Py X.N=Y) = Ag,(Px.PyIN
“renormalized” shifts mentioned above. Conversely, the . V) — _
finite-size behavior of the symmetric modes, suchAasor XN=Y)==Ag,(Py P Y.N=X).
B,, or some of the antisymmetric modes, suchAasor E",
does not differ much from the thermodynamic limit. In this
sense, the present paper reveals the microscopic mechanism

of the appearance of logarithmic size-dependent singularities ~ Ag,(Px,Py[X,N—=Y)
in the thermodynamics of a 2D finite ferromagnet. The sta-

These relations can be checked by substitution, e.g.,

bility of the low energy modes increases by increasing the =a(Py,Py[X,N=Y)—a(P,,Py[X,Y)
number of spins. At mesoscopic values Mfthey are well

i —a(Py,P,IN=X,N=Y)+a(Py,P,|N=-X,Y
separated from the known ones and can be easily observed. (Px,Pyl )+a(Py,Py )
We note that such a behavior is difficult to capture in numeri- —a( Py,PX|Y,x)—a( Py, P.N—=Y,N—X)
cal simulations which are confined to systems of small size.
Then even detecting the difference between bound and scat- +a( Pvax|N_va)+a( Pvax|YvN_X)-

tered states causes problems since the wavelength becomes o . . ) )
comparable to the size of the system. Thus our explicit reThe periodic boundary conditions require that this amplitude
sults will be useful for the interpretation of numerical simu- satisfies the relations in E@). It then follows that for theB,
lations. The presented approach can also be extended to otH8Pde both quantum numbers of the total momentum should
spin or orbital as well as bosonic or fermionic finite size P& odd integers and the Fourier amplitude in E9.has the
systems. property

bg.(Py,P,|Qx,Qy)=bg (Py,PyQ,.,Q,).
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AL(P,,P,IX,Y)=—a(P,,P,|Y,N=X)+a(Py,PyN On the integration interval we have
=Y, X)+a(Py,Py|Y,X) a 1-cosQy
off = > =1
—a(Py, ,P,|N=Y,N=X); 2/ J(2—cosQy)?~-1

Using th i
K(Py Py X, Y) =a(Py,Py|X,Y) —a(Py, Py IN=X,N-Y) Sing the expansion

11 1
—a(Py,Py|X.N=Y) arctanz)= 5 — >+ 5~ —+ -,
+a(P, Py IN=X,Y). e

The respective symmetry relations we obtain
ALXGY) = — ALOGN=Y) = ALN=X,Y), Earcta,< Cot(é 1-cosQ, )
) ) ) m 2] J(2—cosQ,)?—1
AE(X,Y)=Ae(X,N=Y)=—Ac(N-X,Y) (2—cosz)2—1
require thaQ, be even an®@, odd for they component, and
the reverse for th& component. _ 1
V(2— cosz)z— 1
APPENDIX B: ASYMPTOTIC EXPANSION "
. _ _ _ 2 & (—1kt a
Let us consider the asymptotic expansion corresponding X| 1+ — 2 Wtanﬁz““) >
to the discrete suma= 7/N) T k=0
J(2=cosQ,)2— 1)+t
1 1 y (2—cosQy)“—1 .
— 1-cosQ
N2 0%.Q2 5 P a a 2 Y
%y 2—cog > |[cog Q) +cos Q)] — & Then integration of the first term gives
Jﬂﬂ-ﬁjﬂﬂ-ﬁ 1 |na+3|2+ 1 2+
A T Togn2 ot

2— coS( g) [cogQy) +cogQy)]—&/2

The terms of the remaining series can be estimated as

dQ, dQ, . e
= w B K AN
2 k=0 (2k+1)

2
at the crossing point with the lower boundary of magnon

continuumE, : &/2=2[1—cosp/2)]. As we are interested Where

only in the first couple of terms of the expansion the upper

limit shift can be neglected. Indeed, 0(a)= f”( V(2—<305Qy)2—1)2k+1 dQ,
kla)= — =
e 1 dQ, 1-cosQy V(2—cosQy)*—1
L 2—cogQ,) —codQ,) T We are int.eresteq in the most singular termgjita) arising
from the singularity of the integrand &,~a, where we can
a 1—cox use the Taylor expansion i@, . This leads to the estimate
—2 arcta CO<§ B ) )y I +a
N ot 1 (a)=22+1|” Yol [
m\(2—coR,) -1 9k a y2k+D) a y2krl
a or
=+ ...
3-co3Qy) o\2k+1 g
Then the first integration gives o(a)= a3 2k 1)
f g 1 & Using the definition of the Catalan constant
a 2_C03Qx)_CO$Qy) ™ - ( 1)k
C=> ————=0.915966
2 a 1-cos - 2 ’
—arcta cot(— Q ) k=0 (2k+1)
™ 2] J(2—cosQ,)?—1 , . -
= y ) for the first two terms of the asymptotic expansion we can
V(2— cosz)z— 1 finally write
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J17+ w/NJ17+ @IN 1 dQ, dQ, 1 N cosfP,/2) are considered to be positive. By keeping only the
~n . - ; .
N N 2-cogQy) —cogQy) - a o gta;]lgrtgr(r)nr;)after the first integration we obtdbelow b is

+ 3 In2 1I 2 C
27 AT 2 f cos"(Q,) dQy
1 b Py Py T
= InN—-0.2109. co ? [1—cogQy)]+co ? [1-codQy)]
aao
The respective expansions for the functions in E) are Py m
obtained in a similar way: co >
1+ — [1-co
aore Ny 3, 2t Py[CS{QX)]
(P)= cogpiz) | 7"\ 7)) T 222" 2C7 2 cog —
+O(1N), P, P,
cogd —|[1—cogQ,)]+2 cog —
B——1 1IN+3I22CbL2 ’ ’
(P)=cogpid)| 7M7) T2a "2 2O S 1
X .
+O(1IN), Px
cog - |[1=codQy]
i) 1 1IN+3I22C2
p)= ———|—In|—|+5—=In2——C—-—
codpl2)[m \m| 2 77 m In the second integration we may pQ§=0 in the prefactor
+O(1NN). of the singular term above. Thus we obtain
It is also not difficult to find the main term of the 1 1 &
asymptotic expansion for an arbitrary direction in the Bril- - ™ COSQy dQ,~
louin zone[Eq. (15)]. Indeed, let us consider the integral T P, P, ’a \/1—cost X
2 co§ —|coy —
1 f f cos{(Q,)cos™(Qy)dQ,dQ, 2
2 P P
™ “*lr1— Ylir1— 1 1
cos( 5 [1 cos{QX)]+cos( 5 )[1 cogQy)] - Ina.
a
wherem andk are arbitrary integers and at least one of the \/cos{ E) cos( E)
integration limits contains the cut-of; both cosP,/2) and
*On leave from the Institute of Applied Physics, Ghal, 21, 511 (2001).
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