
PHYSICAL REVIEW B 66, 224408 ~2002!
Bifurcation of ground states and ferrimagnetic long-range order in anisotropic mixed-spin systems
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In this paper, we study a generalized anisotropic mixed-spin ferrimagnetic Heisenberg model on an arbitrary
bipartite lattice. We prove rigorously that, under some very general conditions, this model has a unique ground
state withSz50 in theXY regime and two degenerate ground states with nonzero magnetization in the Ising
regime, respectively. Therefore, the isotropic point of this model is a bifurcation point for its ground states.
Furthermore, we also show that, if magnetization of the ground states in the Ising regime is a macroscopic
quantity in the thermodynamic limit, then these states have both ferromagnetic and antiferromagnetic long-
range order. In other words, they are ferrimagnetically ordered. These conclusions confirm the previous results
derived by numerical calculations on small one-dimensional mixed-spin chains.
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I. INTRODUCTION

Recently, the behaviors of quasi-one-dimensional qu
tum ferrimagnets attracted many physicists’ interest.1–25 Ex-
perimentally, such quasi-one-dimensional compounds h
been successfully synthesized.26,27Most of them are molecu
lar magnets containing two different transitional-metal ma
netic ions, which are alternatively distributed on the latti
The experimental results imply that the magnetic proper
of these materials can be described by the quantum Hei
berg spin model with antiferromagnetic couplings betwe
the localized spins of different values, such assi51/2 and
Si 1151.

Based on this understanding, further investigatio
showed clearly that the ground states of these systems
ferrimagnetic and support both ferromagnetic and antife
magnetic long-range order.3–6 Consequently, the elementar
excitations have two branches: While the ferromagnetic
citations, which reduce magnetization of the system, are g
less, the antiferromagnetic excitations are gapped.4–10 This
structure of the excitation spectrum leads toT1/2 and T21

behaviors of the specific heat and the magnetic susceptib
at low temperature, respectively.4,5,10–13

Extension of this model to the anisotropic cases was m
and studied by several groups.1,9,14,15In particular, by using
exact numerical diagonalization on small samples and
ploiting conformal invariance of the system in the continuu
limit, Alcaraz and Malvezzi1 found that, in theXY regime,
the ground state of the system is nondegenerate and cri
On the other hand, in the Ising regime, the system has
degenerate ground states and each of them has a macros
magnetization.1 Therefore, the isotropic point of the ferr
magnetic Heisenberg chain is, in fact, a bifurcation point
its ground states. These conclusions were further confirm
by Ono et al.14 By applying the density-matrix
renormalization-group technique,28 they also found that,
while each ground state of the model in the Ising regime
ferrimagnetically ordered, the longitudinal spin correlation
the unique ground state of the same system in theXY regime
is short ranged.14 In addition, Sakai and Yamamoto studie
the magnetization plateau of the anisotropic ferrimagn
0163-1829/2002/66~22!/224408~6!/$20.00 66 2244
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Heisenberg chains in an external magnetic field.9,15

Then, a natural question arose as to whether these con
sions derived by numerical calculations on the on
dimensional mixed-spin chains can be rigorously reest
lished for the ferrimagnetic Heisenberg model on an arbitr
bipartite lattice in higher dimensions. In the present pap
we would like to address this problem and show that, fo
large class of the antiferromagnetic Heisenberg model o
higher-dimensional bipartite lattice, the above-mentioned
sults still hold true. In particular, their ground states in t
Ising regime have both ferromagnetic and antiferromagn
long-range order.

To begin, let us first recall several definitions and no
tion. We take a finite latticeL and letNL be the number of
lattice sites. The Hamiltonian of the ferrimagnetic Heise
berg model, which we shall study, is of the following form

H5(̂
ij &

Jij ~S̃ixS̃jx1S̃iyS̃jy!1(̂
ij &

Jij8S̃izS̃jz , ~1!

where^ ij & denotes a pair of lattice sites andS̃i represents the
localized spin operators at lattice sitei. For a ferrimagnet,
these spins may have different values at different lattice s.
The parametersJij .0 andJij8 are the antiferromagnetic cou
plings between the localized spins. We further assume t
in terms of Hamiltonian~1!, lattice L is bipartite. In other
words, it can be divided into two separate sublatticesA andB
such thatJij andJij8 only couple the spins at lattice sitesi and
j , which belong to different sublattices. In the following, w
shall useNA andNB to denote the numbers of lattice sites
A andB, respectively.

In fact, Hamiltonian~1! has been used to describe tw
categories of ferrimagnets in the literature. In the first ca
sublatticesA andB have the same number of sites, i.e.,NA
5NB . But the localized spins on two sublattices have diff
ent values. For example, we may haveuS̃iu51/2 for iPA and
uS̃iu51 for iPB. The one-dimensional antiferromagnet
mixed-spin chains, which were studied in Refs. 1–25, belo
©2002 The American Physical Society08-1
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to this category. In the second case, all the localized spin
either sublatticeA or B have the same valueS. However,
sublatticesA and B contain different numbers of sites, i.e
NAÞNB in this case.~Some examples can be found in Re
29–34.! In the following, without special notice, we sha
treat both cases on the same footing.

By the definition of Hamiltonian~1!, we notice that the

total spin-z component operatorŜz5( iPLS̃iz commutes with
the Hamiltonian. Consequently, the Hilbert space ofH can be
split into numerous subspaces$V(M )%. In each subspace
V(M ), the quantum numberSz5M is specified. In particu-

lar, at the isotropic point,Jij 5Jij8 , the total spin operatorŜ2

is also a conserved quantity and hence, the well-known L
Mattis theorem applies.35 According to this theorem, the
ground state of the isotropic ferrimagnetic Heisenb
Hamiltonian is highly degenerate and has spinS5uNASA

2NBSBu, whereSA and SB are total spins on theA and B
sublattices, respectively. As an application of this theorem
Ref. 3, Tian further showed that the mixed-spin chain w
different spinsSA and SB being alternatively distributed
along the lattice has both ferromagnetic and antiferrom
netic long-range order at the isotropic point. Therefore, it i
ferrimagnet. The same conclusion has been also proven
the second category of ferrimagnets with unequal number
sublattice sites.30

In the following, we investigate the degeneracy of t
ground states and the possible existence of the magn
long-range order in these states for the antiferromagn
XXZ Hamiltonian ~1! on an arbitrary bipartite lattice in
higher dimensions. Two regions of parameters will be se
rately studied. The first one is theXY regime with 2Jij

,Jij8,Jij being satisfied by any admissible pair of lattice-s
indicesi and j . On the other hand, the Ising regime is cha
acterized by the conditionJij ,Jij8 . In particular, for the an-
isotropic mixed-spin chain models considered in Refs. 1
14, and 15 the antiferromagnetic couplings are given byJi j

5Jd j ,i 11 and Ji j8 5J8d j ,i 11. Therefore, we have2J,J8
,J in the XY regime and 0,J,J8 in the Ising regime for
spins at a pair of nearest-neighbor lattice sites. Our m
results can be summarized in the following theorems.

Theorem 1.Let L be an arbitrary finite bipartite lattice o
which Hamiltonian ~1! is defined. For technical reason
quantity NASA1NBSB is assumed to be an integer. Und
these conditions, the ground state of Hamiltonian~1! in the
XY regime is nondegenerate and has zero magnetiza
(Sz50). On the other hand, in the Ising regime, the deg
eracy of the ground state becomes twofold and the total s
z component of these ground states has val
Sz56uNASA2NBSBu.

Theorem 2.Let C0
(1) andC0

(2) be the ground states of th
anisotropic ferrimagnetic Heisenberg HamiltonianH in the
Ising regime with spin numbersSz5uNASA2NBSBu and Sz
52uNASA2NBSBu, respectively. If uNASA2NBSBu is a
quantity of orderO(NL) in the thermodynamic limit (NL

→`), which is a condition satisfied by the mixed-sp
model studied in Refs. 1–25, then bothC0

(1) andC0
(2) have
22440
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longitudinal ferromagnetic and antiferromagnetic long-ran
order. In other words, these ground states have ferrimagn
long-range order.

In the following, we establish these theorems on a ma
ematically rigorous basis. To make our proofs more clear
readable, we organize the rest part of this paper as follo
In Sec. II, we prove theorem 1 in detail. In Sec. III, theore
2 is proven. Finally, in Sec. IV, we offer some general r
marks and then summarize our results.

II. THE PROOF OF THEOREM 1

To prove theorem 1, we shall apply a method introduc
by Affleck and Lieb,36 where they considered the standa
one-dimensional antiferromagneticXXZ model with equal
spins distributing along the chain and found that the grou
states of this model in both theXY regime and the Ising
regime are nondegenerate. Therefore, bifurcation of
ground states is hidden in this case. Technically, Affleck a
Lieb exploited the nondegeneracy of the ground state of
antiferromagneticXXZ chain at the isotropic point to estab
lish their theorem. However, for the antiferromagneticXXZ
Hamiltonian~1! on an arbitrary bipartite lattice, the groun
states become highly degenerate at the isotropic poin35

Therefore, we have to take a different approach to reestab
the nondegeneracy of the ground state of Hamiltonian~1! in
the XY regime. As we shall show in the following, it can b
achieved by introducing an auxiliary Hamiltonian.

Theorem 1 is based on the fact proven by Affleck a
Lieb36 that the ground states of Hamiltonian~1! are, at most,
doubly degenerate in either theXY or the Ising regime. Let
us first consider the Ising regime. In this case, conditionJij
,Jij8 holds for any admissible pair of lattice-site indicesi and
j . Following Ref. 36, we introduce a unitary transformatio

Û15expS i
p

2 (
iPL

S̃iyD , ~2!

which rotates each spin inL by an anglep/2 about the spin-
y axis. Under this transformation, Hamiltonian~1! is mapped
into the following equivalent form:

H15Û1
†HÛ15(̂

ij &
~Jij8S̃ixS̃jx1Jij S̃iyS̃jy!1(̂

ij &
Jij S̃izS̃jz .

~3!

To go further, we need to change the sign of the coupling
the first term ofH1. This can be achieved by applying an
other unitary transformationÛ25exp(ip(iPAS̃iz), which ro-
tates each spin in sublatticeA by an anglep about the spin-
z axis and keeps the spins in sublatticeB unchanged. Now,
the twice transformed Hamiltonian reads

H25Û2
†H1Û25~Û1Û2!†H~Û1Û2!

52(̂
ij &

~Jij8S̃ixS̃jx1Jij S̃iyS̃jy!1(̂
ij &

Jij S̃izS̃jz

52
1

4 (̂
ij &

@~Jij81Jij !~S̃i1S̃j21S̃i2S̃j1!

1~Jij82Jij !~S̃i1S̃j11S̃i2S̃j2!#1(̂
ij &

Jij S̃izS̃jz . ~4!
8-2
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Notice thatall the couplings in the spin-flipping terms ar
negative, when Jij ,Jij8. Another important observation onH2

is that its subspaces withSz5 odd ~or even! integers are
connected by the second spin-flipping interaction inH2, re-
spectively. Consequently, the Hilbert spaceV of the Hamil-
tonian is decomposed into two disconnected sectorsVodd and
Veven. Each of them is a joint of the subspacesV(M ) with M
being an odd or even integer. Here, we would like to emp
size that,since H2 is unitarily equivalent to the antiferro-
magnetic XXZ Hamiltonian (1) in the Ising regime, the
global ground states should have the same degeneracy.

For definiteness, we takeVeven5(2m% V(2m), for ex-
ample. Obviously, in each subspaceV(2m), a natural basis
of vectors can be chosen as

fa~2m!5uS1z
A , S2z

A , . . . ,SNAz
A , S1z

B , S2z
B , . . . ,SNBz

B &.
~5!

In Eq. ~5!, Siz
A and Sjz

B are thez components of the spins a
sites iPA and jPB, respectively. Indexa runs over all the
possible spin configurations subject to the constraint co
tion

S1z
A 1•••1SNAz

A 1S1z
B 1•••1SNBz

B 52m. ~6!

Apparently,ø2m$fa(2m)%, the entire set of these vector
spans the subspaceVeven. Similarly, a natural basis ofVodd
can be also constructed in this way.

In terms ofø2m$fa(2m)%, we are able to rewrite Hamil
tonianH2 in Veveninto a matrixHeven, which has the follow-
ing characteristics:

~i! The off-diagonal elements ofHeven are nonpositive
quantities. More precisely, they are either2(Jij81Jij )/4,
2(Jij82Jij )/4, or zero.

~ii ! Heven is irreducible in the sense that, for any pair
basis vectorsfa(2m1) and fb(2m2), there is a positive
integerL such that

^fa~2m1!uHeven
L ufb~2m2!&Þ0. ~7!

This fact is based on the the connectivity of latticeL by the
couplings$Jij % and $Jij8%. As a result, any pair of vectors i
ø2m$fa(2m)% is also connected by an appropriate numb
of spin flippings.

To such a matrix, the well-known Perron-Fro¨benius theo-
rem in matrix theory applies.37 This theorem tells us that th
lowest eigenstate ofHeven is nondegenerate. Furthermore,
ground-state wave functionC̃0(even) satisfies Marshall’s
sign rule.38 Namely, in the expansion ofC̃0(even),

C̃0~even!5(
a

(
2m

Camfa~2m!, ~8!

all the coefficientsCam are real numbers and have the sa
sign. It is a fact that we shall exploit in the following.

By the same argument, one can also show that the gro
state C̃0(odd) of HamiltonianH2 in the subspaceVodd is
nondegenerate and satisfies Marshall’s sign rule. There
the global ground states ofH2 are, at most, doubly degene
ate. By the unitary equivalence betweenH2 and Hamiltonian
22440
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~1! in the Ising regime, this conclusion implies that the d
generacy of the global ground state of the antiferromagn
XXZ Hamiltonian ~1! in the Ising regime is, at most, two
fold.

Similarly, for the antiferromagneticXXZ Hamiltonian in
the XY regime, we introduce a different unitary transform
tion Û35exp(ip/2( iPLS̃ix), which rotates each spin in lat
tice L by an anglep/2 about the spin-x axis. After applying
both Û3 and Û2 to the HamiltonianH, we obtain

H35~Û3Û2!†H~Û3Û2!

52(̂
ij &

~Jij S̃ixS̃jx1Jij8S̃iyS̃jy!1(̂
ij &

Jij S̃izS̃jz

52
1

4 (̂
ij &

@~Jij 1Jij8!~S̃i1S̃j21S̃i2S̃j1!1~Jij 2Jij8!

3~S̃i1S̃j11S̃i2S̃j2!#1(̂
ij &

Jij S̃izS̃jz . ~9!

In the XY regime,Jij .Jij8 for any admissible pair of lattice
site indices and hence, all the spin-flipping interactions inH2
have negative signs. By repeating the above proof for
Ising case, one can easily see that ground states ofH3 as well
as of the original Hamiltonian~1! in theXY regime are also,
at most, doubly degenerate. With this knowledge, we
ready to prove theorem 1.

Since the ground states of Hamiltonian~1! in subspaces
V(M ) and V(2M ) are trivially doubly degenerate, i.e
E0(Sz5M )5E0(Sz52M ), the conclusion establishe
above implies that, in both theXY and the Ising regimes, a
level crossing between the ground states and the exc
states is forbidden. In fact, if this statement is not true a
such a level crossing occurs at some specific points$Jij %
5$Jij

c% and $Jij8%5$Jij8
c%, say, in theXY regime, then the

ground states of Hamiltonian~1! must be, at least, threefol
degenerate there. It is a possibility that has been exclu
As a direct consequence of the absence of level cros
between the ground states and the excited states,Sz , the total
spin-z component of the ground states should be a conti
ous function of the parameters$Jij % and$Jij8% varying in both
the XY and the Ising regions. On the other hand, becauseSz
is integer valued, we conclude that its value is constan
each regime.

Now, we let$Jij % tend to zero in the Ising regime. In thi
limit, Hamiltonian ~1! is reduced to the Ising Hamiltonian
whose ground states are trivially degenerate and have
numbersSz56uNASA2NBSBu. Therefore, the ground state
of the antiferromagneticXXZ Hamiltonian ~1! in the Ising
regime are also doubly degenerate and have the same
numbers, even if$Jij %Þ0.

Next, we consider Hamiltonian~1! in the XY regime. By
letting all the couplingsJij8 tend to zero, we obtain an ant
ferromagneticXY Hamiltonian. By applying the unitary
transformationÛ2, it can be mapped into a ferromagnet
XY HamiltonianHF(XY) on the same lattice. For our pur
8-3
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pose, we notice that each subspaceV(Sz5M ) is still mapped
into itself under this transformation. Therefore, the glob
ground states of the antiferromagnetic and the ferromagn
XY models have the same spin valueSz . To determine it, we
introduce an auxiliary Hamiltonian,

Haux52(
iPL

(
jPL

~S̃ixS̃jx1S̃iyS̃jy!

52S (
iPL

S̃ixD S (
jPL

S̃jxD 2S (
iPL

S̃iyD S (
jPL

S̃jyD
52S (

iPL
S̃iD •S (

jPL
S̃j D 1S (

iPL
S̃izD S (

jPL
S̃jzD ~10!

on the same lattice with the same distribution of the s
operators asHF(XY). Apparently, by its definition,Haux
has equal ferromagnetic coupling between any pair of
localized spins. Its usefulness relies on the fact thatit is
connected to HF(XY) by continuously changing the ferro
magnetic couplings among the spins without inducing a le
crossing between the ground states and the excited st.
@The proof of this statement can be easily achiev
by repeating the arguments in proving the absence of su
level crossing for the antiferromagneticXXZ Hamiltonian
~1! in the XY regime.# Therefore, we are able to read sp
numbersSz of the global ground states of bothHF(XY) and
Hamiltonian~1! in the XY regime by inspecting the groun
state ofHaux.

Obviously,Haux commutes with both the total spin oper
tors Ŝtot

2 and Ŝz . Furthermore, by its definition, the energ
spectrum ofHaux is simply given by

E~Stot , Sz!52Stot~Stot11!1Sz
2 . ~11!

Therefore, the global ground state ofHaux always has spin
numberSz50, if Stot is an integer.~That is the reason we
assume that quantityuNASA1NBSBu is an integer in theorem
1.! Consequently, the global ground state of Hamiltonian~1!
in the XY regime hasSz50 and hence, is nondegenera
Our proof is accomplished. Q.E.D.

Theorem 1 tells us that a bifurcation of the global grou
states occurs at the isotropic point of the ferrimagne
Heisenberg model. Furthermore, the ground states of Ha
tonian ~1! in the Ising regime have macroscopic magneti
tion if uNASA2NBSBu is a quantity of orderO(NL) in the
thermodynamic limit. In theorem 2, this result is furth
strengthened. It states that, in fact, these ground states
also both ferromagnetic and antiferromagnetic long-ra
order.

III. PROOF OF THEOREM 2

To establish theorem 2, we shall apply a technique sim
to one that we developed in a previous paper to prove
existence of the ferrimagnetic long-range order in the fe
magnetic mixed-spin chain.3 Naturally, due to the absence o
spin rotation symmetry in the antiferromagneticXXZ model,
22440
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some technical subtleties have to be dealt with care in
present case.

For definiteness, let us takeC0
(1) , for example. As shown

above, under the transformationÛ1Û2, Hamiltonian ~1! in
the Ising regime is mapped ontoH2. Since this transforma-
tion is unitary,C0

(1) is also mapped to a global ground sta

C̃0 of H2. In general, C̃0 is a linear combination of
C̃0(odd) andC̃0(even), i.e.,

C̃05aC̃0~odd!1bC̃0~even!, ~12!

wherea andb are complex constants.
Now, we show that the spin-correlation function ofS̃x in

C̃0 satisfies inequality

^C̃0uS̃hxS̃kxuC̃0&>0, ~13!

for any pair of lattice sitesh andk. In fact, by substituting
S̃x5(1/2)(S̃11S̃2) into the left-hand side of Eq.~13!, we
obtain

^C̃0uS̃hxS̃kxuC̃0&

5
1

4
^C̃0uS̃h1S̃k1uC̃0&1

1

4
^C̃0uS̃h2S̃k2uC̃0&

1
1

4
^C̃0uS̃h1S̃k2uC̃0&1

1

4
^C̃0uS̃h2S̃k1uC̃0&.

~14!

Therefore, if each term on the right-hand side of Eq.~14! is
non-negative, inequality~13! holds true. For example, we
have

^C̃0uS̃h1S̃k1uC̃0&5uau2^C̃0~odd!uS̃h1S̃k1uC̃0~odd!&

1ubu2^C̃0~even!uS̃h1S̃k1uC̃0~even!&.

~15!

In Eq. ~15!, the mixing matrix elements betweenC̃0(odd)
andC̃0(even) are absent because operatorS̃h1S̃k1 connects
only the spin configurations in the same sector.

Next, we use the fact that the expansion coefficients
both C̃0(odd) andC̃0(even) in terms of the basis vecto
ø2m11$fa(2m11)% and ø2m$fa(2m)% satisfy Marshall’s
sign rule. By this rule, in the expectation

^C̃0~odd or even!uS̃h1S̃k1uC̃0~odd or even!&

5 (
(n, a)

Ca1n1
Ca2n2

^fa1
~n1!uS̃h1S̃k1ufa2

~n2!&,

~16!

productCa1n1
Ca2n2

is non-negative for any pair of indice

(a1 , n1) and (a2 , n2). Therefore, the right-hand side of Eq
~16! is a positive quantity, if each matrix elemen
8-4
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BIFURCATION OF GROUND STATES AND . . . PHYSICAL REVIEW B66, 224408 ~2002!
^fa1n1
uS̃h1S̃k2ufa2n2

& is non-negative. In fact, this cond

tion is trivially satisfied for any pair of basis vectorsfa1
(n1)

andfa2
(n2) because the action ofS̃h1 and S̃k1 on a basis

vectorfa(n) is determined by the rule

S̃i1uS1z
A , . . . ,Siz

A , . . . ,SNAz
A , S1z

B , . . . ,SNBz
B &

5ASi
A~Si

A11!2Siz
A~Siz

A11! u . . . ,Siz
A11, . . .&,

~17!

assumingiPA. Similarly, one can easily show that the re
terms in Eq.~15! are also non-negative and hence, inequa
~13! holds true.

Finally, we apply the inverse of the unitary transformati
Û1Û2 to Eq. ~13!. Under this transformation,C̃0 is
mapped back ontoC0

(1) and the spin operators are chang
by

@~Û1Û2!21#†S̃ix@~Û1Û2!21#5e~ i!S̃iz , ~18!

where functione( i) is defined bye( i)521 if iPA and
e( i)51 if iPB. Therefore, under the unitary transformatio
inequality ~13! now reads

e~h!e~k!^C0
(1)uS̃hzS̃kzuC0

(1)&>0. ~19!

In other words, the longitudinal spin correlation inC0
(1) is

antiferromagnetic. Equation~19! also implies the following
relation:

e~h!e~k!^C0
(1)uS̃hzS̃kzuC0

(1)&>^C0
(1)uS̃hzS̃kzuC0

(1)&.
~20!

By summing up both sides of Eq.~20! over h and k, we
obtain

^C0
(1)uS (

iPL
e~ i!S̃izD S (

jPL
e~ j !S̃jzD uC0

(1)&

>^C0
(1)uS (

iPL
S̃izD S (

jPL
S̃jzD uC0

(1)&5uNASA2NBSBu2.

~21!

Therefore, if uNASA2NBSBu is a quantity of orderO(NL)
as NL→`, then C0

(1) has both longitudinal ferromagneti
and antiferromagnetic long-range order. The sa
conclusion holds also forC0

(2) . Theorem 2 is proven
Q.E.D.

IV. REMARKS AND CONCLUSIONS

In theorem 1, we show that the ground state of the fer
magneticXY model on a bipartite lattice is nondegenera
and has spin numberSz50. In fact, by following this proof,
one can easily see that the same conclusion also holds fo
ferromagneticXY model on an arbitrary lattice, even ifL is
22440
y

,

e

-

the

not at all bipartite. Naturally, in the general case, the fer
magneticXY HamiltonianHF(XY) is no longer equivalent
to the antiferromagneticXY Hamiltonian, as they are on
bipartite lattice.

In proving theorem 2, we first established inequality~13!

on the spin correlation ofS̃x in the ground stateC̃0 of H2

and then, mapped it into an inequality satisfied by the lon
tudinal spin-correlation function inC0

( i ) , the ground states o
the original antiferromagneticXXZ Hamiltonian in the Ising
regime. Naturally, one expects that this strategy should a
apply to establish the existence of magnetic long-range o
for the same model in theXY regime. However, the approac
actually does not work in this case. The main problem

caused by the negative sign in the spin operator identityS̃y

5(S̃12S̃2)/2i and the anisotropy in Hamiltonian~1!. Con-
sequently, we could not even establish an inequality such

Eq. ~13! for the correlation function ofS̃y in the nondegen-
erate ground state ofH3, which is equivalent to Hamiltonian
~1! in theXY regime. Besides, even if we were successfu
proving such a inequality, which could then be mapped

the inverse ofÛ3Û2 into Eq. ~19! with C0
(1) being replaced

with the unique ground state of Hamiltonian~1! in the XY
regime, this method still fails. That is due to the fact that t
total spin-z component of the nondegenerate ground state
Hamiltonian ~1! in the XY regime is zero. Consequently
Eq. ~21! cannot tell us anything about the possible existen
of magnetic long-range order in theXY regime. It is still
open as to whether such an order exists at all in theXY
regime of the Hamiltonian. We shall address this problem
the future.

In summary, in this paper, we studied a generalized an
tropic ferrimagnetic Heisenberg model on a bipartite latti
We proved that, when the maximal spinNASA1NBSB of the
system is an integer, the model has a unique ground s
with Sz50 in the XY regime and two degenerate groun
states withSz56uNASA2NBSBu in the Ising regime, respec
tively. Therefore, the isotropic point of this model is
bifurcation point for its ground states. Furthermore, we a
showed that if the magnetization of the ground sta
in the Ising regime is macroscopic in the thermodynam
limit, then the ground states have both ferromagne
and antiferromagnetic long-range order. Therefore, th
are ferrimagnetic. Our conclusions confirm an
generalize the previous results derived by numerical calc
tions on small samples of one-dimensional mixed-s
chains.
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