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In this paper, we study a generalized anisotropic mixed-spin ferrimagnetic Heisenberg model on an arbitrary
bipartite lattice. We prove rigorously that, under some very general conditions, this model has a unique ground
state withS,=0 in the XY regime and two degenerate ground states with nonzero magnetization in the Ising
regime, respectively. Therefore, the isotropic point of this model is a bifurcation point for its ground states.
Furthermore, we also show that, if magnetization of the ground states in the Ising regime is a macroscopic
quantity in the thermodynamic limit, then these states have both ferromagnetic and antiferromagnetic long-
range order. In other words, they are ferrimagnetically ordered. These conclusions confirm the previous results
derived by numerical calculations on small one-dimensional mixed-spin chains.
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I. INTRODUCTION Heisenberg chains in an external magnetic ffefd.
Then, a natural question arose as to whether these conclu-
Recently, the behaviors of quasi-one-dimensional quansions derived by numerical calculations on the one-
tum ferrimagnets attracted many physicists’ inteféétEx-  dimensional mixed-spin chains can be rigorously reestab-
perimentally, such quasi-one-dimensional compounds havished for the ferrimagnetic Heisenberg model on an arbitrary
been successfully synthesiz&d.’ Most of them are molecu- bipartite lattice in higher dimensions. In the present paper,
lar magnets containing two different transitional-metal mag-we would like to address this problem and show that, for a
netic ions, which are alternatively distributed on the lattice.large class of the antiferromagnetic Heisenberg model on a
The experimental results imply that the magnetic propertiefigher-dimensional bipartite lattice, the above-mentioned re-
of these materials can be described by the quantum Heisesults still hold true. In particular, their ground states in the
berg spin model with antiferromagnetic couplings betweerlsing regime have both ferromagnetic and antiferromagnetic
the localized spins of different values, suchsas 1/2 and  long-range order.

Sii1=1. To begin, let us first recall several definitions and nota-
Based on this understanding, further investigationgion. We take a finite latticé\ and letN, be the number of
showed clearly that the ground states of these systems alaitice sites. The Hamiltonian of the ferrimagnetic Heisen-
ferrimagnetic and support both ferromagnetic and antiferroberg model, which we shall study, is of the following form:

magnetic long-range ord&r® Consequently, the elementary

excitations have two branches: While the ferromagnetic ex-

citations, which reduce magnetization of the system, are gap- o = =

less, the antiferromagnetic excitations are gappediThis H:% Jij(ngijSySwH% Ji S5z 1)
structure of the excitation spectrum leadsTd? and T~* ] :

behaviors of the specific heat and the magnetic susceptibility

H ,10-13 ~

at low temperature, respectivéty: ™ _ where(ij) denotes a pair of lattice sites aBdrepresents the

Extension of this model to tg(lefllgsotropm cases was madgycqjized spin operators at lattice siteFor a ferrimagnet,
and studied by Iseyeral g:pub_ -ln partlllcular, t|>y USING  these spins may have different values at different lattice. sites
exa}qt numerica d.|agor'1a|zat|on on smafl samples "’?”d Xthe parameterg; >0 andJi} are the antiferromagnetic cou-
F-)|O.Itlng conformal mvanange of the systgm in the Cor.'t'nuumplings between the localized spins. We further assume that,
limit, Alcaraz and Malvez foun.d that, in thex'y regime, in terms of Hamiltonian(1), lattice A is bipartite. In other
the ground state of t'he system IS nqndegenerate and critic ords, it can be divided into two separate sublattibéesdB
On the other hand, in the Ising regime, the system has twQ :

degenerate ground states and each of them has a macroscofsplilgh that; andJ; only couple the spins at lattice siteand

magnetizatiort. Therefore, the isotropic point of the ferri- Ji which belong to different sublattices. In the following, we

magnetic Heisenberg chain is, in fact, a bifurcation point ofShall USeNa andNg to denote the numbers of lattice sites in
A andB, respectively.

its ground states. These conclusions were further confirme In fact, Hamiltonian(1) has been used to describe two
n 1 B lyin h nsity-matrix o . . . \
by Ono eta y applying the density-mat categories of ferrimagnets in the literature. In the first case,

renormalization-group techniq@®, they also found that, ) o
while each ground state of the model in the Ising regime isSUbIatt'CeSA andB have th_e same number c_>f sites, 'Nﬁt
=Ng . But the localized spins on two sublattices have differ-

ferrimagnetically ordered, the longitudinal spin correlation in - )
the unique ground state of the same system indifgegime €Nt values. For example, we may hagg=1/2 forie A and

is short ranged? In addition, Sakai and Yamamoto studied |S|=1 for ieB. The one-dimensional antiferromagnetic
the magnetization plateau of the anisotropic ferrimagnetienixed-spin chains, which were studied in Refs. 1-25, belong
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to this category. In the second case, all the localized spins olongitudinal ferromagnetic and antiferromagnetic long-range
either sublatticeA or B have the same valus However, order. In other words, these ground states have ferrimagnetic
sublatticesA and B contain different numbers of sites, i.e., long-range order.

N4+ Ng in this case(Some examples can be found in Refs.  In the following, we establish these theorems on a math-
29-34) In the following, without special notice, we shall ematically rigorous t_)aS|s. To make our prqofs more clear and
treat both cases on the same footing readable, we organize the rest part of this paper as follows.

. . . . In Sec. Il, we prove theorem 1 in detail. In Sec. lll, theorem
By the definition of Hamiltoniar(1), we notice that the 2 is proven. Fpinally, in Sec. IV, we offer some general re-

total spinz component operatd,==,. ,S;, commutes with  marks and then summarize our results.
the Hamiltonian. Consequently, the Hilbert spacélafan be
split into numerous subspacég¥(M)}. In each subspace Il. THE PROOF OF THEOREM 1

V(M), the quantum numbes,=M is specified. In particu- To prove theorem 1, we shall apply a method introduced
lar, at the isotropic point);=1J; , the total spin operatdg? by Affleck and Lieb}® where they considered the standard
is also a conserved quantity and hence, the well-known Liebone-dimensional antiferromagnetitXZ model with equal

Mattis theorem applie¥ According to this theorem, the SPins distributing along the chain and found that the ground

ground state of the isotropic ferrimagnetic HeisenbergSt@tes Of this model in both th¥Y regime and the Ising
Hamiltonian is highly degenerate and has sgin |NASa regime are nondegenerate. Therefore, bifurcation of the

. ground states is hidden in this case. Technically, Affleck and
—NgSg|, whereS, and Sp are total spins on thé\ and B Lieb exploited the nondegeneracy of the ground state of the

sublattices, respectively. As an application of this theorem, iréntiferromagneticxxz chain at the isotropic point to estab-
Ref. 3, Tian further showed that the mixed-spin chain withjish their theorem. However, for the antiferromagnetixz
different spinsS, and Sz being alternatively distributed Hamiltonian(1) on an arbitrary bipartite lattice, the ground
along the lattice has both ferromagnetic and antiferromagstates become highly degenerate at the isotropic point.
netic long-range order at the isotropic point. Therefore, it is arherefore, we have to take a different approach to reestablish
ferrimagnet. The same conclusion has been also proven féhe nondegeneracy of the ground state of Hamiltoriann

the second category of ferrimagnets with unequal numbers d¢he XY regime. As we shall show in the following, it can be
sublattice site&? achieved by introducing an auxiliary Hamiltonian.

In the following, we investigate the degeneracy of the . Ih€orem 1 is based on the fact proven by Affleck and
ground states and the possible existence of the magnet fubbl;réitgtgr?e?;?gri‘g Z}?ht:rs t?)f(;?)ﬂlr:zn;;mngaié?r;;noféi
Iong-range_ oro!er in these state_s for th_e ar_1tiferro_mag_netiﬁs first consider the Ising regime. In this case, cond.it]g)n
XXZ Hamiltonian (1) on an arbitrary bipartite lattice in <Jj holds for any admissible pair of lattice-site indidemnd
higher dimensions. Two regions of parameters will be sepa; Fo|iowing Ref. 36, we introduce a unitary transformation
rately studied. The first one is th&Y regime with —Jj
<Ji}<Jij being satisfied by any admissible pair of lattice-site
indicesi andj. On the other hand, the Ising regime is char-

acterized by the conditiod;<J; . In particular, for the an- nich rotates each spin i by an angler/2 about the spin-
14, and 15 the antiferromagnetic couplings are giveldipy into the following equivalent form:

=J8ji+1 and Jjj=J"6; ;1. Therefore, we have-J<J'’
<\_J in the XY regime and @(J_<J’ in the_lsing_ regime for _ H1:OIH01:Z (JiENSixSxJF Jijgiygiy)+z Jij”si;giz_
spins at a pair of nearest-neighbor lattice sites. Our main (i) (if)
results can be summarized in the following theorems. 3
Theorem 1Let A be an arbitrary finite bipartite lattice on To go further, we need to change the sign of the couplings in
which Hamiltonian (1) is defined. For technical reasons, the first term ofH,. This can be achieved by applying an-
quantity NaSy+ NgSg is assumed to be an integer. Under other unitary transformatiotd ,=exp(72; . 5S;;), which ro-
these conditions, the ground state of Hamiltoni@nin the  tates each spin in sublat_ti@e_by an anglerr about the spin-
XY regime is nondegenerate and has zero magnetizatiohaxis and keeps the spins in sublattBeinchanged. Now,
(S,=0). On the other hand, in the Ising regime, the degenthe twice transformed Hamiltonian reads
eracy of the ground state becomes twofold and the total spin- T T R T
H,=U,H,U,= H
z component of these ground states has values 2= UzH1Up=(UsU2) H(ULU2)
SZ:i|NASA_NBSB|' . = = ~ o~ ~ o~
Theorem 2Let ¥ andW{?) be the ground states of the - _% (‘]iisiX§x+‘]ijsiniy)+% 3iSizS;2
anisotropic ferrimagnetic Heisenberg Hamiltoninin the
Ising regime with spin numberS,=|N,Sy,—NgSg| and S,
=—|NaSa—NgSg|, respectively. If [INAS,—NgSg| is a
guantity of orderO(N,) in the thermodynamic limit I,
—), which is a condition satisfied by the mixed-spin (=335 5. +T T +> 3.3 % 4
model studied in Refs. 1-25, then bo#}" and ¥'{?) have (3= 3i)(5:5:+5-5-)] % 1552 (@)

U,=ex |%2 ~Sy> @)

1 -~ ~ o~
== 72 [Gi+3)EF-+5.5)
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Notice thatall the couplings in the spin-flipping terms are (1) in the Ising regime, this conclusion implies that the de-
negative, whenJ< Ji. Another important observation ¢,  generacy of the global ground state of the antiferromagnetic
is that its subspaces witB,= odd (or even integers are XXZ Hamiltonian (1) in the Ising regime is, at most, two-
connected by the second spin-flipping interactioHiy) re-  fold.

spectively. Consequently, the Hilbert spa¢ef the Hamil- Similarly, for the antiferromagneti® XZ Hamiltonian in
tonian is decomposed into two disconnected sedtfgsgsand  the XY regime, we introduce a different unitary transforma-
Veven- Each of them is a joint of the subspasév) with M tion Uz=exp(m/23;.,S,), which rotates each spin in lat-
being an odd or even integer. Here, we would like to emphatice A by an angler/2 about the spinx axis. After applying
size tha}t,smce H is .unltgrlly quwalent tp the e}ntlferro—' both 03 andU, to the HamiltoniarH, we obtain

magnetic XXZ Hamiltonian (1) in the Ising regime, their

global ground states should have the same degeneracy

For definiteness, we tak¥®uei==,m®V(2m), for ex- Hs=(U30,)TH(030,)
ample. Obviously, in each subspa¢é2m), a natural basis
of vectors can be chosen as _ _% (Jij~5ix~51x+3i}3y~51y)+<z> JijNSizSz
i i

b oIS S S S S ) 1
®) :_ZZ> [ +ID(ES-+5-F)+(3—3))

In Eq. (5), S and Ssz are thez components of the spins at
sitesie A andj e B, respectively. Indexx runs over all the o -

possible spin configurations subject to the constraint condi- ><(5i+5j++5i—51—)]+2 JiiSi;S;; - 9
tion

Sh+ - +SQAZ+ SE+- - +SE,BZ=2m. (6)  IntheXY regime,J;>J; for any admissible pair of lattice-
i site indices and hence, all the spin-flipping interactionid jn
Apparently, Uon{ #,(2m)}, the entire set of these vectors, haye negative signs. By repeating the above proof for the
spans the subspadgye Similarly, a natural basis oFoas  |sing case, one can easily see that ground statks i well
can be also constructed in this way. _ _as of the original Hamiltoniafil) in the XY regime are also,
In terms ofUm{¢,(2m)}, we are able to rewrite Hamil- 3¢ most, doubly degenerate. With this knowledge, we are
tonianH, in Vgyeninto a matrixHeyen, Which has the follow- ready to prove theorem 1.
ing characteristics: N Since the ground states of Hamiltoniéh in subspaces
(i) The off-diagonal elements off e, are nonpositive  \/(M) and V(—M) are trivially doubly degenerate, i.e.,
qguantities. More precisely, they are eithef(Ji}+Jij)/4, Eo(S,=M)=Ey(S,= —M), the conclusion established
—(Jj— J;)/4, or zero. above implies that, in both théY and the Ising regimes, a
(ii) Hevenis irreducible in the sense that, for any pair of level crossing between the ground states and the excited
basis vectors$,(2m;) and ¢z(2m,), there is a positive states is forbidden. In fact, if this statement is not true and

integerL such that such a level crossing occurs at some specific pojdig
L ={J§} and {Jj}={J;°}, say, in theXY regime, then the
(Ba(2my)[Heved $p(2my)) #0. (@) ground states of Hamiltoniafl) must be, at least, threefold

This fact is based on the the connectivity of lattiteby the degene'rate there. It is a possibility that has been excludgd.
couplings{J;} and{J;}. As a result, any pair of vectors in As a direct consequence of the absgnce of level crossing
Uaml #.(2m)} is also connected by an appropriate numberoétween the ground states and the excited st8{eshe total
of spin flippings. spinz component of the ground states should be a continu-
To such a matrix, the well-known Perron“Bemius theo-  0us function of the parametefd;} and{J;} varying in both
rem in matrix theory applie¥. This theorem tells us that the the XY and the Ising regions. On the other hand, bec&jse
lowest eigenstate dfl,.e,iS NONdegenerate. Furthermore, its is integer valued, we conclude that its value is constant in
ground-state wave functioW o(even) satisfies Marshall's ©2ch regime. _ _ , _
sign rule® Namely, in the expansion dF o(even) ~ Now, we Iet_{Jij} tend to zero in the Ising regime. In .thIS
’ 0 ’ limit, Hamiltonian (1) is reduced to the Ising Hamiltonian,

_ whose ground states are trivially degenerate and have spin
To(even=2, > Cmda(2m), (8)  numbersS,= =+ |N,Sx— NgSg|. Therefore, the ground states
a 2m of the antiferromagneti® XZ Hamiltonian (1) in the Ising
all the coefficientC,, are real numbers and have the sameregime are also doubly degenerate and have the same spin
sign. It is a fact that we shall exploit in the following. numbers, even ifJ;}#0.

By the same argument, one can also show that the ground Next, we consider Hamiltonia(l) in the XY regime. By
state ¥ y(odd) of HamiltonianH, in the subspac@/,y is  letting all the couplingsl; tend to zero, we obtain an anti-
nondegenerate and satisfies Marshall's sign rule. ThereforégrromagneticXY Hamiltonian. By applying the unitary
the global ground states &f, are, at most, doubly degener- transformationU,, it can be mapped into a ferromagnetic
ate. By the unitary equivalence betwdep and Hamiltonian XY HamiltonianHg(XY) on the same lattice. For our pur-
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pose, we notice that each subsp&¢&,= M) is still mapped some technical subtleties have to be dealt with care in the
into itself under this transformation. Therefore, the globalpresent case.
ground states of the antiferromagnetic and the ferromagnetic For definiteness, let us takbgl), for example. As shown

XY models have the same spin valsig To determine it, we  ahove, under the transformatidiy U,, Hamiltonian (1) in

introduce an auxiliary Hamiltonian, the Ising regime is mapped ontd,. Since this transforma-
tion is unitary,‘lfgl) is also mapped to a global ground state
Hauw— —EA EA (SxSixt+ Sy Syy) ¥, of H,. In general, ¥, is a linear combination of
ieA je

¥ o(odd) and¥,(even), i.e.,

~[zs)zs) {53z
(333

ieA

Vo=aW¥y(odd) +b¥y(even, (12)

+

> “SIZ)( > ~sz> (100 wherea andb are complex constants.
teA Jeh Now, we show that the spin-correlation function®fin

on the same lattice with the same distribution of the spin\PO satisfies inequality

operators asHg(XY). Apparently, by its definition,H o

has equal ferromagnetic coupling between any pair of the (W olSnSix Wo)=0, (13
localized spins. Its usefulness relies on the fact thas

connected to H(XY) by continuously changing the ferro- for any pair of lattice sitet andk. In fact, by substituting
magnetic couplings among the spins without inducing a Ieve&:(l/z)(’g+ +3.) into the left-hand side of Eq13), we
crossing between the ground states and the excited stategpiqin

[The proof of this statement can be easily achieved

by repeating the arguments in proving the absence of such a <q,0|§hx~skx|q,0>

level crossing for the antiferromagnet}XZ Hamiltonian

(1) in the XY regime] Therefore, we are able to read spin 1. - - - 1. - - -
numbersS, of the global ground states of bokh:(XY) and :Zf<‘1’0|sh+sk+|q’0>+ Z<q'0|shfskf|q’0>
Hamiltonian(1) in the XY regime by inspecting the ground

state ofH . 1. - - - 1. - - -
Obviously,H 4, commutes with both the total spin opera- +Z<‘P0|Sh+sk—|q'0>+ Z<\I’0|Sh—sk+|‘y0>'
tors éfot and S,. Furthermore, by its definition, the energy (14)

spectrum ofH . is simply given by
Therefore, if each term on the right-hand side of Ed) is

non-negative, inequality13) holds true. For example, we

E(Sot: S) =SSt 1)+ S 1D have

Therefore, the global ground state Mf,,, always has spin (U051 S [T o) =|al2(Fo(0dd) [ Sii | T o(0dd))
numberS,=0, if S is an integer(That is the reason we

assume that quantiffN,Sx+ NgSg| is an integer in theorem +|b|3(Wo(even|S, . S| Po(even).
1.) Consequently, the global ground state of Hamilton(i&n (15)
in the XY regime hasS,=0 and hence, is nondegenerate.
Our proof is accomplished. Q.E.D. In Eq. (15), the mixing matrix elements betweéh,(odd)

) 1t'heorem 1 teI:s tlrjf that ta b|.furcat'|c3[n Off tt?]e gflobgl grour,:.dandfl'fo(even) are absent because oper&orS, ., connects
states occurs at the sotropic point ot the Ternmagneta nly the spin configurations in the same sector.

Heisenberg model. Furthermore, the ground states of Hamlf-) Next, we use the fact that the expansion coefficients of

tonian (1) in the Ising regime have macroscopic magnetiza- ~ ~ . .
tion if [NxSa—NgSg| is a quantity of ordelO(N,) in the both ¥o(odd) andW¥y(even) in terms of the basis vectors

thermodynamic limit. In theorem 2, this result is further U,2m+1{¢a(2mf1)} an,dU2m{d’a(2m)}, satisfy Marshall's
strengthened. It states that, in fact, these ground states ha9ign rule. By this rule, in the expectation

also both ferromagnetic and antiferromagnetic long-range ~ ~ =~
order. (Wo(odd or even S, S, |Vo(0dd or evei)

IIl. PROOF OF THEOREM 2 —(nEa) Cayn,Copny{ b, (N)[Sh: S| B, (N2)),

To establish theorem 2, we shall apply a technique similar (16)
to one that we developed in a previous paper to prove the
existence of the ferrimagnetic long-range order in the ferriproductC, » C, n, is non-negative for any pair of indices
magnetic mixed-spin chaihNaturally, due to the absence of («;, n;) and (@, n,). Therefore, the right-hand side of Eq.
spin rotation symmetry in the antiferromagneXiXZ model, (16) is a positive quantity, if each matrix element
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not at all bipartite. Naturally, in the general case, the ferro-
magneticXY HamiltonianHg(XY) is no longer equivalent

S ~ ~to the antiferromagnetiXY Hamiltonian, as they are on a
and ¢,,(n,) because the action &, andS,, on a basis pipartite lattice.

(¢ayn S+ Sc-|da,n,) is non-negative. In fact, this condi-
tion is trivially satisfied for any pair of basis vectafg, (n;)

vector ¢,(n) is determined by the rule In proving theorem 2, we first established inequalit®)
on the spin correlation o8, in the ground statéV, of H,
SISy, S S A2 sk, ... ,SﬁBZ> and_ then,_mapped |F into an _mequrzlil)lty satisfied by the longi-
tudinal spin-correlation function i¥,’ , the ground states of
=VSN(S+1)-Sy(Sh+1) |....Sh+1,...), the original antiferromagneti¥ X Z Hamiltonian in the Ising

(17) regime. Naturally, one expects that this strategy should also
apply to establish the existence of magnetic long-range order
assuming € A. Similarly, one can easily show that the rest for the same model in th€Y regime. However, the approach
terms in Eq(15) are also non-negative and hence, inequalityactually does not work in this case. The main problem is

(13) holds true. _ _ __caused by the negative sign in the spin operator ideSjty
Finally, we apply the inverse of the unitary transformation _ (3, —3.)/2i and the anisotropy in Hamiltoniai). Con-

U,U; ctiob E?(- (153,'(1)Und§rththis _transfor:nation,‘lfoh is dsequently, we could not even establish an inequality such as
Mmapped back ontéy~ an € Spin operalors are change Eq. (13) for the correlation function oNBy in the nondegen-

by erate ground state ¢13, which is equivalent to Hamiltonian
N e - (1) in the XY regime. Besides, even if we were successful in
[(U1U) 'S, (U1U,) H=€(D)S;, (18 proving such a inequality, which could then be mapped by

where functione(i) is defined bye(i)=—1 if icA and the inverse olJsU; into Eq. (19) with WY being replaced
e(i)=1 if ie B. Therefore, under the unitary transformation, With the unique ground state of Hamiltoni&i) in the XY
inequality (13) now reads regime, this method still fails. That is due to the fact that the
total spinz component of the nondegenerate ground state of
Hamiltonian (1) in the XY regime is zero. Consequently,
Eq. (21 cannot tell us anything about the possible existence
of magnetic long-range order in the€Y regime. It is still
open as to whether such an order exists at all in Xhe

e(h) e(K)(¥{[S$,S| ¥ §)=0. (19

In other words, the longitudinal spin correlation ¥ is
antiferromagnetic. Equatiofil9) also implies the following

relation: regime of the Hamiltonian. We shall address this problem in
the future.
6(h)6(k)<‘l’(()1)|§hzékz|‘l'gl)>><‘1’(()l)|~5hz§kz|‘1’(()l)>- In summary, in this paper, we studied a generalized aniso-

(20) tropic ferrimagnetic Heisenberg model on a bipartite lattice.
We proved that, when the maximal spip S, + NgSg of the
By summing up both sides of Eq20) overh andk, we  system is an integer, the model has a unique ground state
obtain with S,=0 in the XY regime and two degenerate ground
states withS,= = |N,S,— NgSg| in the Ising regime, respec-

tively. Therefore, the isotropic point of this model is a
1 1

<‘1’5) )I(iEE e(i)S, )( > € 5‘12) |\I’( ) bifurcation point for its ground states. Furthermore, we also

showed that if the magnetization of the ground states

(1) (W) _ - 2 in the Ising regime is macroscopic in the thermodynamic

=¥ |<2 S: )(EE )"P0> INASA— N5 Sg|" limit, then the ground states have both ferromagnetic

and antiferromagnetic long-range order. Therefore, they
(22) are ferrimagnetic. Our conclusions confirm and

Therefore, if[NaSy—NgSg| is a quantity of ordelO(N,)  generalize the previous results derived by numerical calcula-

asN,—, then¥{") has both longitudinal ferromagnetic tions on small samples of one-dimensional mixed-spin

and antiferromagnetic long-range order. The samehains.

conclusion holds also for#{?). Theorem 2 is proven.

Q.E.D.
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