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Spin-3 J;-J, model on the body-centered cubic lattice
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Using exact diagonalizatiofED) and linear spin wave theof. SWT), we study the influence of frustration
and quantum fluctuations on the magnetic ordering in the ground state of thé;lipn}—Heisenberg antifer-
romagnet {,-J, mode) on the body-centered cubibcg) lattice. Contrary to thel;-J, model on the square
lattice, we find for the bcc lattice that frustration and quantum fluctuations do not lead to a quantum disordered
phase for strong frustration. The results of both approa¢E® LSWT) suggest a first-order transition at
J,/3,~0.7 from the two-sublattice N# phase at lowl, to a collinear phase at largs.
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[. INTRODUCTION sional ones a spin-liquid phase is also observed for frustrated
3d systems like the Heisenberg antiferromagnet on the pyro-
The properties of the two-dimensiondd) J;-J, model  chlore lattice*>*®
have attracted a great deal of interest during the last decade In this paper, we consider the 3d version of theJ,
(see, e.g., Refs. 1-11 and references thgrdihe Hamil- model. To cover the possibility to have in a 3d model both
tonian of theJ;-J, model is Neel phases found for the 2d model, we need a 3d bi-
bipartite lattice, i.e., a lattice consisting of two interpenetrat-
ing bipartite sublattices. The body-centered cuthico lat-
H:JlaE,p S'Si+‘]2[i2” S-S, @) tice consists of two interpenetrating, identical simple cubic
sublattices. Each simple cubic sublattice consists of two in-
whereJ; =1 is the nearest neighbor add=0 is the frus- terpenetrating, identical face-centered lattices. Therefore, the
trating next-nearest-neighbor Heisenberg exchange. We atgc lattice is a 3d bi-bipartite cubic lattice.
interested in the extreme quantum case, i.e., we consider the The classical ground state for the bcc lattice corresponds
spin quantum number is=1/2. For the square lattice it to that of the square lattice: Fal,/J;<a. it is a usual
seems to be well accepted that there is a quantum spin-liquigvo-sublattice Nel state, whereas fal,/J,> a, an antifer-
phase betweed,/J;~0.38 andJ,/J;~0.60 and that the romagnet with four sublattices is realized. The transition
corresponding quantum phase transitions from thelMe-  point «, depends on the coordination numbees,
dered state to the spin-liquid stateJat/J;~0.38 is of sec- =z,/(2z,), wherez, is the number of nearest neighbods (
ond order. The nature of the transition from the spin-liquidbonds andz, of next-nearest neighborg{ bonds. Conse-
state to the collinear state a3/J,~0.60 is still under dis- quently, we haver.=1/2 for the square lattice bui,=2/3
cussion but there are indications that it might be of firstfor the bcc lattice. Therefore, we define as the appropriate
order!® The Neel phase for small, is characterized by an parameter of frustration
antiparallel alignment of nearest-neighbor spins with a cor-
responding magnetic wave vectQf ;= (7, 7). The collin-
ear state for largd, is twofold degenerated and the corre- NPy
sponding magnetic wave vectors &g,,=(7,0) andQ?,, p= Jiz, @
=(0,7). The two collinear states are characterized by a par-
allel spin orientation of nearest neighbors in vertidabri-
zonta) direction and an antiparallel spin orientation of near-and we havep$Ua"®=p2°¢=1/2,
est neighbors in horizontdlertical direction and therefore In what follows, we use the exact diagonalization scheme
exhibit Neel order within the initial sublatticed andB. The  and the linear spin wave theo.SWT) to calculate the
properties of the spin-liquid phase are a current field of acground-state properties of tldg-J, model on the bcc lattice
tive research. Even additional quantum phase transitions aind compare the results with the corresponding ones for the
(J,/3,)~0.34 and (,/J;)~0.50 are discusséd. square lattice. We will present the ground-state energy, the
The properties of quantum spin systems strongly dependiolation of the Marshall-Peierls sign rule, the sublattice
on the dimensionality. So, contrary to the 2d model, the onemagnetizations and the spin gap of finite lattices in Sec. Il.
dimensionalJ;-J, model does not have a Weordered Properties of the infinite lattices will be given in Sec. Il
ground state, but exhibits a transition from a critical state tavhere the results of the extrapolation of the ground-state
a dimer phase afl,/J;=0.241 (see, e.g., Refs. 12-14 energy, the sublattice magnetizatidiicom exact diagonal-
Though the tendency to order is more pronounced in threezation (ED) datgd and the corresponding results of the
dimensional(3d) quantum spin systems than in low dimen- LSWT are shown.
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TABLE I. The ten finite bcc lattices are used for exact diago- TABLE Il. The ground-state energy per site of the ten consid-
nalization.L, L,, L3 are the three edge vectors in upper triangle ered finite bcc lattices for different values &f (J;=1).

lattice form.N is the Number of sites ang)=A,B,C,D, ... is an
additional label corresponding to a notation used in Ref. 18 to dis- Eo/N
tinguish finite lattices with identicaN. Na J,=0 J,=0.7 J,=1.3333
Edge vectors 24C —1.21305 —0.73883 —1.34537
Ny L, L, Ly 28D —1.20223 —0.73003 —1.32544
32D —~1.19572 —0.72851 —~1.31225
24C (2,0,10) (0,2,6) (0,0,24) 32F —~1.19512 —0.72744 —1.31217
28D (2,0,10) (0,2,6) (0,0,28) 32H —1.19474 —0.72708 —1.31189
32D (2,2,4) (0,8,0) (0,0,8) 32] —1.19440 —0.74003 —1.31688
32F (2,0,6) (0,4,8) (0,0,16) 32K —1.19408 ~0.73203 —1.31423
32H (2,0,10) (0,2,6) (0,0,32) 36A —1.18953 ~0.72119 —1.30021
32] (4,0,4) (0,4,4) (0,0,8) 368 —1.19264 ~0.72180 —1.30145
32K (2,0,6) (0,4,4) (0,0,16) 36C —1.19278 —0.72248 —1.30149
36A (2,0,10) (0,2,6) (0,0,36)
368 (2,0,14) (0,2,10) (0,0,36)
36C (2,2,4) (0,6,6) (0,0,12) Furthermore, the maximum iEq(p) indicates the point of

maximal frustration. The ground-state energy for the classi-
cal model consists of two straight lin&'S(p)=(p—1)N

for p<0.5 and E$®(p)=—pN for p=0.5 with a kink

A. The generation of finite bcc lattices (maximum at p=0.5.

The generation of finite 3d lattices with periodic boundary 1€ duantum ground statd’) is a singlet eigenstate of

conditions is less transparent than for 2d lattices. As has beé;ﬂt_aI spin for_aIIJz. I_n analogy to the square Iattﬁ:blf(,) (.)f
recently pointed out by Betts and co-workeéré®the use of finite bec lattices witiNmod8=0 has the same translational

a triple of edge vectors in upper triangular lattice féfm Symmetry for small and larg#, [kqs=(0,0,0)], whereas the

(utlf) leads to a systematic generation of finite 3d lattices. Ifranslational symmetry of¥ o) for lattices withNmod4=0
this paper, we use the utlf edge vectors and follow strictlyPut Nmod8#0 is different for small and large);. The
Refs. 18 and 19. Finite parallelepipeds that build up the inchange of symmetry frorkgs=(0,0,0) tokgs= (7,7, ) ap-

finite bee lattice can be defined by three edge vectors, pears slightly right from the maximum of the ground-state
energy. For the quantum model, we show exact-
3 diagonalization results dE,/N for three different values of
L,= 2 Nuplg, (3)  frustration in Table II. WhileJ,=0 andJ,=1.3333 corre-
p=1 spond to zero or small frustratiodl;= 0.7 is in the region of
wheren,; with 5=1,2,3 are integers and;=(1,1,-1), strong frustration. . ,
a,=(1,—-1,1),a3=(—1,1,1) are the basis vectors of the lat- For the sake of c'lelarness', we present in the f|gures qnly
tice connecting nearest neighbors. The lattice vectors corf€sults of selected finite lattices. To illustrate the finite-size
necting next-nearest neighbors aré,=(*2,0,0)b, effects in the most of the subsequent flgures,_we present data
—(+0,2,0)bs=(0,0+2). for the smallest (N-24) and the largest lattices we h_ave
calculated, where foN= 32,36 we have choosen the lattices
having highest symmetry. Note that the curves for lattices of

II. EXACT DIAGONALIZATION

There are altogether ten finite bcc lattices witl=36
listed in Table I, which fulfill the following three conditions: . . -2
(i) Every sitei of the bcc lattices should have eight nearest'dem'c""l'\l IOOk. very §|mllar. .
and six next-nearest neighbors, which means that they have For comparison with the square lattice, we have re_calcu-
the full number of nearest and next-nearest neighb@rs. ated data of .Ref. 2 up tN:GXG:.%' However, we think
The finite lattices should be bi-bipartite in order to avoid @ Sduare lattice witiN=4x4=16 is comparable to a bcc
frustration due to boundary conditions fpr=0 andp—s . lattice with N=36. This can be seen if one looks at the

it 1/3 1/2
(Notice, that finite bc lattices may be not bi-bipartite evencharacteristic lengtht gqecN- an(jdeocN . Further, we
though the infinite bee lattice is.(iii) Furthermore, they mention that the square lattice Nf=16 contains five nglgh—
should be topologically distinct, i.e., the spin Hamiltonian borhood shells, whereas some of the more dense finite bcc

(1) should exhibit different physical properties. lattices withN =32 andN =36 contain even more.
In Fig. 1 one finds the ground-state energies of the bcc
lattices 24C, 36C, and for comparison tRe=16 and theN
=36 square lattices. To have comparable curves, we scaled
The ground-state energy gives first insight in the nature othe ground-state energy of the square lattice with the factor
possible zero-temperature phase transitions. In the thermody/4. Figure 1 illustrates that, contrary to the 2d model, the
namic limit a kink inEq(p) (respectively, a jump in the first ground-state energy of the 3d bcc lattice behaves very simi-
derivatived Ey/dp) signals a first-order transition, whereas alarly to the classical model. As can be seen in Fig. 1 the kink
smoothdE,/dp is compatible with second-order transitions. in the ground-state energy is almost independent of the size

B. Ground-state energy
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_FIG. 1. Ground-state energy per site ir_1 unitsJfogr the bcc FIG. 2. The weightg(A) (that is 1 forp=0) andg(A,UB;)
lattices 24C, 36C, and for the square Iattutgsaled with N=16 (that is 1 forp>1) of basis statel) fulfilling the Marshall-Peierls
(16sq and N=36 (36sq versusp. The inset is an enlargement of sign rule for the bce lattice 24C, 36C, and the square lattice with
the strongly frustrated region aroupe-0.52. N=16 (16sq and N=232 (32sq versusp. On the bcc lattices the

. . ) ... . signrule is completely fulfilled up tp=0.4 and 99.8% fulfilled at
of the bcc lattices. This can be interpreted as an |nd|cat|0|B:O_51_

that the kink survives in the thermodynamic limit.

lattice the violation of the sign rul&4) starts smoothly and
C. Ground-state phase relationships becomes significant negs=0.4, where the second-order

The phase relationships of the Ising basis sthigsn the transition to the spin-liquid state takes place. The modified

ground statd W) of the bipartite Heisenberg antiferromag- SI9n rule withg(A;UB,) changes also discontinuously for

net[i.e.,J,=0 in (1)] follow the Marshall-Peierls sign rufé. the bcc lattice but smoothly for the square lattice. However,

This sign rule can be formulated as there is a violation of the modified rule also in the collinear
phase, which can be attributed to the coupling between the

both antiferromagnetic subsystems living on the initial sub-

W)= ; coln)  ¢,>0. (4 latticesA andB. Only for largep>1, where the ground state
becomes a product state of both antiferromagnetic sub-
Here, the Ising state) are defined by systems the modified rule is rigorously fulfilled.
In)=(-HN*" MO mp)eim)© - - |my), ®) D. Sublattice magnetizations
where|m;), i=1,... N, are the eigenstates of the site spin  Of course, the most important parameter to studyelNe

operatorS’ (i.e., mj==*3) and M(X)==;.xm;. The stan- ordering is the sublattice magnetization. In finite systems the
dard Marshall-Peierls sign rule appropriate for théeNe conventional antiferromagnetic long-range order, that is real-
phase at smalb is obtained forX=A, i.e., X labels one of ized for smallp, has to be described by the square of the
the two equivalent sublattices. For large valuep,ofie have  sublattice magnetization of one spin component

antiferromagnetic order within the initial sublatticAsand B

N 2
and A and B resolve into four sublatticesA(—A,, A, and 2 |11 iQR, oz
B—B;, B,). Then a modified sign rule holds witX mi(Q)= N;e S ©
:AlU Bl'

As pointed out in Refs. 4 and 5 and very recently in Ref.With  Queei=(m,m,m) for the bcc lattice [and Qpgel
11 the sign rule may survive some frustration but is clearly= (7, m) for the square lattice For large values of the
violated for the square lattice in the strongly frustrated spinmagnetic wave vector®g = (= m/2,* m/2,+ m/2) have to
liquid region. Hence, we can use the violation of thebe used for the bcc latticgand Qf,=(7,0) or QZ,
Marshall-Peierls sign rule as an indication of the breakdowr (0,7) for the square lattideto describe the collinear phase
of the two-sublattice Nal state. with antiferromagnetic order within the initial sublattic@s

In Fig. 2 one finds the weiglg(X)==/(c,)? of the Ising ~ andB. We denote in the following, the order parameter of the
states|n) fulfiling the Marshall-Peierls sign ruléi.e., the ~Neel phase calculated witfyee with m* and that of the
sum3! is restricted to the subset of states hawipg 0) for  collinear phase calculated wig,, or QZ,; with m . Notice
two finite bce lattices and two square lattices. For dhel,  thatm? is identical forQg,, andQZ,,. In Table Ill, we give
model on the bcc lattice the rul@) is violated almost dis- the order parameters of the ten finite bcc latticesJpr 0
continuously at that point where the ground-state energy haasndJ,=1.3333. The behavior ah? andmi shown in Fig. 3
its maximum. This is a hint to a very drastic change of theagain illustrates, that the influence of the frustration on the
ground state on the bcc lattice aroumd 0.52, which can be ground-state properties is basically different for the square
attributed to an abrupt breakdown of the two-sublatticelNe and bcc lattice and suggests a direct first-order transition be-
state. On the other hand, for tg-J, model on the square tween both Nel phases for the bcc lattice. A more detailed
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TABLE Ill. Sublattice magnetizationsn> and m? of the ten
considered bcc lattices for different valuesJgf 0,08 F==r
m? m?
Na J,=0 J,=1.3333 e 006 i
3! Pt
24C 0.09362 0.11006 “ 0.04 - 36C-  -32)
28D 0.09057 0.10429
32D 0.08787 0.09958 00 - Iy
32F 0.08800 0.09959 B AR
32H 0.08811 0.09964 -
32] 0.08819 0.09897 0.519 0.522 0.525 0.528
32K 0.08827 0.09933 P
36A 0.08600 0.09605 FIG. 4. Sublattice magnetizations® (maximal for smallp) and
368 0.08516 0.09562 m2 (maximal for largep) of the bcc lattice 36C, 32D, 28D, and
36C 0.08509 0.09561 24C near the phase transition pop#0.52.

aboutp~0.52, where the transition from the two-sublattice

presentatlon of th.e. transition region 1s given in Fig. 4. C)neNéeI phase to the collinear phase takes place. In the collinear
finds that the position of the transition only slightly depends . o X
hase the relevant coupling parameter for excitations,is

on size and symmetry of the finite lattices. Moreover, th nstead ofJ. and conseauently. the gap increases linearl
width of transition region is getting smaller with growimg 1 q Y: gap y

Again, we mention that the region of transition is related to\g/Ith n%aﬂii%&?ﬁtiiﬁe gilat;%egez '%I_r?: s;)e%erlltrt::r;a\agrreof
the maximum ofE, and the significant violation of the IatStiTce shows a similar Eehrgvior. for. arar%e?er re iong where
Marshall-Peierls sign rule. P 9

magnetic long-range order in the ground state is present, but
E. Spin gap aroundp=0.5 the behavior ofAgt is in contrast to the bcc
Another indication for a possible quantum disordered!attice. In this region a quantum disordered gapped phase for
spin-liquid state is the spin gap, i.e., the gig; between the the square lattice is expected, which is consistent with the
singlet ground state and the first triplet excitation. IneNe Significant increase ol sy nearp=0.5. ,
ordered systems, we have Goldstone modes and no spin gap W& conclude from the examination of the spin gap that
is observed in the thermodynamic limit. Contrary to this, 1€ré are no indications for a quantum disordered gapped
quantum disorder is accompanied by the opening of a spiRn@se for the bec lattice.
gap. We show the gaf st of two finite bec lattices in Fig. 5.
The first triplet excitation relevant for the gap belongs to the
translational symmetnk,=(m,,7) for small p and k;
=(m/2,m12,712) for largep. For comparison, we show the A. Finite-size extrapolation
gap for the square lattice dfil=16 andN=32 sites. Of
course, the gap of a finite lattice is finite. However, in the
long-range ordered N and collinear phases the extrapola-
tion to the thermodynamic limit yields a vanishing gap. Ob-
viously, there is no increase in the gap for the bcc lattices til

IIl. INFINITE BCC LATTICES

To obtain properties of the infinite bcc lattice, we extrapo-
late the ED data of all ten lattices listed in Table I. The
finite-size extrapolation is a well elaborated approximation
IS.cheme successfully applied to many 2d quantum spin sys-

0.12 F - - - — . 1.4 a0 -

0.08 |

ol

S

0.04 | T 360 —-—-- ] 0.6 freemeemr™ -

VN 16sq e | g -7 47
________________ Il ;"".‘ 36 4. | + e |
"""""""" J..}.’y\‘k Sq + 04 [ +__+___+__M+ e el
- — = At b= d‘i\ Sel
0 e 0.2 : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
P P
FIG. 3. Sublattice magnetizations? (maximal for smallp) and FIG. 5. Spin gapAgt in units of J,, i.e., the gap to the first
mi (maximal for largep) of the bcc lattices 24C, 36C, and the triplet excitation for the bcc lattices 24C, 36C, and the square lat-
square lattices wittN=16 (16sq andN= 36 (36sq versusp. tices with N=16 (16sq and N=32 (32sq versusp.
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Rewriting the spin operators of the Hamiltonian in terms of

05 ¢ o 1 bose operators by using the usual Holstein-Primakoff trans-
formation and taking into account only quadratic terms in the
0.7} 5 bose operators, we obtain a bosonic Hamiltonian in Fourier

transformed representation

H=s?N(—8+6p)+ >, {Ac(a;ax+by, by
k

o — +By(ayb_+a; b)) ©)
13 0 02 04 06 o8 1 with the coefficients
P Ac=5[8-6p(1- 2], (10)
FIG. 6. LSWT data for the ground-state enerdigsof the in-
finite bcc lattice(dashed line, LSWT bdand square latticédotted Br=8sy1k- (11

line, LSWT sq as well as the extrapolated ED data f& (solid

) ; ) The structure factors of nearest neighbors and next-nearest
line with data pointsversusp.

neighbors are given by

tems like the;-J, model on the square Ia'gtiéeBut evenfor 1= cosk, cosk, cosk, , (12)
3d lattices this scheme may lead to precise data for the infi-

nite latticel’ ' The corresponding scaling laws are known 1

from literature?”~2* The scaling equation for ground-state Yok= 5 (€OS Ky+C0S K, +COS X,). (13
energy per site=Eq/N of the bcc lattice is 3

The ground-state energy per site is then

e(L)=e()+ AL 4+ .. (7)
1
and for the order parameter Ey/N=5%—8+6p)+ . 2 (- AY) (14)
k
m2(L)=m?(%)+B,L 2+ ... (8)
with L= N3 with w,=AZ—BZ. The sublattice magnetizatiom=(S?)
The same relation is valid fomZ. The results are pre- 1S
sented in Figs. 6 and 7. The discussion of the data is given 1 1 A
below. m=s—— > [ —=+-—]|. (15)
N % 2 2wy

B. Linear spin wave theory (LSWT)
2. LSWT for large J,

1. LSWT for small .
% The classical ground state of tlig-J, model on the bcc

Starting from the classical two-sublattice dlestate, we |attice for largeJ, consists of two interpenetrating M

choose a two-boson representation of the Hamiltotlan  states each living on the initial sublatticAsand B. The two
Neel states are energetically decoupled, i.e., the afdie-

' ' ' tween the staggered magnetizationfoandB is arbitrary for
LSWTbee ———— lassical spins. For th t del tart with arbi
0.5 | extrapolation bec | classical spins. For the quantum model, we start with arbi-
LSWT sq === trary 6 and use as quantization axis the local orientation of
the spins in the classical ground state. The further procedure
is the same as for smal}, but the bosonic Hamiltonian now
contains the angl®. By means of the Hellmann-Feynman
theorem® (9H(6)/96)=9E(H)/96 it can be easily found

0.6

04t

0.3

m;mg

0.2 ¢ that in the quantum model the collinear state=0 or )
o1t | has lowest energy. This lifting of the continuous degeneracy
i of the classical ground state by quantum fluctuatiGrder
0 . S - : from disorder effedtis also found for the square lattié®For
0 0.2 0.4 0.6 0.8 1 6=0 the bosonic Hamiltonian reads

p

FIG. 7. LSWT data for the sublattice magnetizationof the H=—6Nps’+ >, {A(aja,+b]b)+[Ck(ba, —ba’,)
infinite bcc lattice(dashed line, LSWT bgand square lattic&dot- k

ted line, LSWT S‘)_‘ as WeII.as extrap(_)lated ED data fgBm?(c) —By(aa_y+bb_,)+H.cl}, (16
and \/3m2a(w) (solid line with data poinfgsversusp. The error bars
indicate the standard deviation of the finite-size extrapolation. ~ where
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A=6sp, 17
Bk=3spya., (18)
Cy=4s(cosk, cosk, cosk,+i sink, sink, sink,).
(19
Then the ground-state energy per site is
1 w 0
 Ac?n T Pk, T2k
Eo/N=—65"p+ ; ( >t A) (20)
with the modes
o= VAZ=4BZ+F,,  wy=AZ-4BZ-F,, (21)

and the function

F={(C2—C;?)2—8AB,(C2+C}?)+4C,C; (A2

+4B2)}12, (22)
The sublattice magnetization is written as
1 D(k! wlk)
m,=s— — _—
N 20 (0f—wd)
S L. (23
N 20y(w5—wl)

with
D(k,wy) = — wp+Awi— (4B2— A?) o+ A(4BE+2C,CF)

— 2By (C2+Cr?H—AS, (24)

PHYSICAL REVIEW B 66, 224406 (2002

stronger and the agreement is only qualitative. Both methods
suggest a first-order transition for the sgifi-J, model on

the bcc lattice. The transition point obtained from the ED
data isJ,~0.7J; (i.e., p~0.52), while the LSWT becomes
instable at the classical transition point.

IV. CONCLUSION

We have presented spin-wave and exact diagonalization
results for the spir-J;-J, model on the bcc lattice and com-
pare them with those for the square lattice. In general, we
observe that the physics for the 3d quantum model is closer
to classical behavior since quantum fluctuations and finite-
size corrections become less important for higher coordina-
tion number and larger dimension.

We are not sure whether the increase of the magnetization
m,, approaching the transition point from the rigkhown in
Fig. 7) is a real effect. A possible physical origin for an
increase may be a stronger coupling of théeNerdered
subsystemsA and B due to larger quantum fluctuations or
finite-size effects that become more important in the region
of strong frustration. From the data for the ground-state en-
ergy, the Marshall-Peierls sign rule, the sublattice magneti-
zations and the spin gap, we conclude that the increase from
dimension &2 to d=3 changes the physical properties ba-
sically. The good agreement with the spin wave results sup-
port this conclusion. Contrary to the 2d model, where the
quantum fluctuations and frustration lead to a second-order
transition from the two-sublattice Nestate to a disordered
spin-liquid phase like, in the 3d model we find no indications
for a disordered ground-state phase. The quanfyri,
model on the bcc lattice shows one transition of first order
induced by strong frustration from the two-sublatticeéeNe

The results of LSWT and the finite-size extrapolation arestate directly to the collinear state, where the transition takes

shown in Figs. 6 and 7. For the limits=0 andJ;=0 our

place ata.=(J,/J;).~0.7.

LSWT results are in agreement with data for the bcc and the

simple cubic lattice given if* Both methods yield similar
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