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Spin-1
2 J1-J2 model on the body-centered cubic lattice
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Using exact diagonalization~ED! and linear spin wave theory~LSWT!, we study the influence of frustration
and quantum fluctuations on the magnetic ordering in the ground state of the spin-1

2 J1-J2 Heisenberg antifer-
romagnet (J1-J2 model! on the body-centered cubic~bcc! lattice. Contrary to theJ1-J2 model on the square
lattice, we find for the bcc lattice that frustration and quantum fluctuations do not lead to a quantum disordered
phase for strong frustration. The results of both approaches~ED, LSWT! suggest a first-order transition at
J2 /J1'0.7 from the two-sublattice Ne´el phase at lowJ2 to a collinear phase at largeJ2.

DOI: 10.1103/PhysRevB.66.224406 PACS number~s!: 75.10.Jm, 75.40.Mg
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I. INTRODUCTION

The properties of the two-dimensional~2d! J1-J2 model
have attracted a great deal of interest during the last de
~see, e.g., Refs. 1–11 and references therein!. The Hamil-
tonian of theJ1-J2 model is

H5J1(
^ i , j &

Si•Sj1J2(
[ i , j ]

Si•Sj , ~1!

whereJ151 is the nearest neighbor andJ2>0 is the frus-
trating next-nearest-neighbor Heisenberg exchange. We
interested in the extreme quantum case, i.e., we conside
spin quantum number iss51/2. For the square lattice i
seems to be well accepted that there is a quantum spin-li
phase betweenJ2 /J1'0.38 andJ2 /J1'0.60 and that the
corresponding quantum phase transitions from the Ne´el or-
dered state to the spin-liquid state atJ2 /J1'0.38 is of sec-
ond order. The nature of the transition from the spin-liqu
state to the collinear state atJ2 /J1'0.60 is still under dis-
cussion but there are indications that it might be of fi
order.10 The Néel phase for smallJ2 is characterized by an
antiparallel alignment of nearest-neighbor spins with a c
responding magnetic wave vectorQNéel5(p,p). The collin-
ear state for largeJ2 is twofold degenerated and the corr
sponding magnetic wave vectors areQcol

1 5(p,0) andQcol
2

5(0,p). The two collinear states are characterized by a p
allel spin orientation of nearest neighbors in vertical~hori-
zontal! direction and an antiparallel spin orientation of ne
est neighbors in horizontal~vertical! direction and therefore
exhibit Néel order within the initial sublatticesA andB. The
properties of the spin-liquid phase are a current field of
tive research. Even additional quantum phase transition
(J2 /J1)'0.34 and (J2 /J1)'0.50 are discussed.10

The properties of quantum spin systems strongly dep
on the dimensionality. So, contrary to the 2d model, the o
dimensionalJ1-J2 model does not have a Ne´el ordered
ground state, but exhibits a transition from a critical state
a dimer phase atJ2 /J150.241 ~see, e.g., Refs. 12–14!.
Though the tendency to order is more pronounced in th
dimensional~3d! quantum spin systems than in low dime
0163-1829/2002/66~22!/224406~7!/$20.00 66 2244
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sional ones a spin-liquid phase is also observed for frustra
3d systems like the Heisenberg antiferromagnet on the p
chlore lattice.15,16

In this paper, we consider the 3d version of theJ1-J2
model. To cover the possibility to have in a 3d model bo
Néel phases found for the 2d model, we need a 3d
bipartite lattice, i.e., a lattice consisting of two interpenetr
ing bipartite sublattices. The body-centered cubic~bcc! lat-
tice consists of two interpenetrating, identical simple cu
sublattices. Each simple cubic sublattice consists of two
terpenetrating, identical face-centered lattices. Therefore,
bcc lattice is a 3d bi-bipartite cubic lattice.

The classical ground state for the bcc lattice correspo
to that of the square lattice: ForJ2 /J1,ac it is a usual
two-sublattice Ne´el state, whereas forJ2 /J1.ac an antifer-
romagnet with four sublattices is realized. The transiti
point ac depends on the coordination numbersac
5z1 /(2z2), wherez1 is the number of nearest neighbors (J1
bonds! andz2 of next-nearest neighbors (J2 bonds!. Conse-
quently, we haveac51/2 for the square lattice butac52/3
for the bcc lattice. Therefore, we define as the appropr
parameter of frustration

p5
J2z2

J1z1
~2!

and we havepc
square5pc

bcc51/2.
In what follows, we use the exact diagonalization sche

and the linear spin wave theory~LSWT! to calculate the
ground-state properties of theJ1-J2 model on the bcc lattice
and compare the results with the corresponding ones for
square lattice. We will present the ground-state energy,
violation of the Marshall-Peierls sign rule, the sublatti
magnetizations and the spin gap of finite lattices in Sec.
Properties of the infinite lattices will be given in Sec. II
where the results of the extrapolation of the ground-st
energy, the sublattice magnetizations@from exact diagonal-
ization ~ED! data# and the corresponding results of th
LSWT are shown.
©2002 The American Physical Society06-1
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II. EXACT DIAGONALIZATION

A. The generation of finite bcc lattices

The generation of finite 3d lattices with periodic bounda
conditions is less transparent than for 2d lattices. As has b
recently pointed out by Betts and co-workers17–19 the use of
a triple of edge vectors in upper triangular lattice form20

~utlf! leads to a systematic generation of finite 3d lattices
this paper, we use the utlf edge vectors and follow stric
Refs. 18 and 19. Finite parallelepipeds that build up the
finite bcc lattice can be defined by three edge vectors,

La5 (
b51

3

nabab , ~3!

where nab with b51,2,3 are integers anda15(1,1,21),
a25(1,21,1), a35(21,1,1) are the basis vectors of the la
tice connecting nearest neighbors. The lattice vectors c
necting next-nearest neighbors areb15(62,0,0),b2
5(60,2,0),b35(0,0,62).

There are altogether ten finite bcc lattices withN<36
listed in Table I, which fulfill the following three conditions
~i! Every sitei of the bcc lattices should have eight near
and six next-nearest neighbors, which means that they h
the full number of nearest and next-nearest neighbors.~ii !
The finite lattices should be bi-bipartite in order to avo
frustration due to boundary conditions forp50 andp→`.
~Notice, that finite bcc lattices may be not bi-bipartite ev
though the infinite bcc lattice is.! ~iii ! Furthermore, they
should be topologically distinct, i.e., the spin Hamiltoni
~1! should exhibit different physical properties.

B. Ground-state energy

The ground-state energy gives first insight in the nature
possible zero-temperature phase transitions. In the therm
namic limit a kink inE0(p) ~respectively, a jump in the firs
derivativedE0 /dp) signals a first-order transition, whereas
smoothdE0 /dp is compatible with second-order transition

TABLE I. The ten finite bcc lattices are used for exact diag
nalization.L1 , L2 , L3 are the three edge vectors in upper triang
lattice form.N is the Number of sites andg5A,B,C,D, . . . is an
additional label corresponding to a notation used in Ref. 18 to
tinguish finite lattices with identicalN.

Edge vectors
Ng L1 L2 L3

24C (2,0,10) (0,2,6) (0,0,24)
28D (2,0,10) (0,2,6) (0,0,28)
32D (2,2,4) (0,8,0) (0,0,8)
32F (2,0,6) (0,4,8) (0,0,16)
32H (2,0,10) (0,2,6) (0,0,32)
32J (4,0,4) (0,4,4) (0,0,8)
32K (2,0,6) (0,4,4) (0,0,16)
36A (2,0,10) (0,2,6) (0,0,36)
36B (2,0,14) (0,2,10) (0,0,36)
36C (2,2,4) (0,6,6) (0,0,12)
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Furthermore, the maximum inE0(p) indicates the point of
maximal frustration. The ground-state energy for the clas
cal model consists of two straight linesE0

clas(p)5(p21)N
for p<0.5 and E0

clas(p)52pN for p>0.5 with a kink
~maximum! at p50.5.

The quantum ground stateuC0& is a singlet eigenstate o
total spin for allJ2. In analogy to the square lattice2 uC0& of
finite bcc lattices withNmod850 has the same translation
symmetry for small and largeJ2 @kgs5(0,0,0)#, whereas the
translational symmetry ofuC0& for lattices withNmod450
but Nmod8Þ0 is different for small and largeJ2. The
change of symmetry fromkgs5(0,0,0) tokgs5(p,p,p) ap-
pears slightly right from the maximum of the ground-sta
energy. For the quantum model, we show exa
diagonalization results ofE0 /N for three different values of
frustration in Table II. WhileJ250 andJ251.3333 corre-
spond to zero or small frustration,J250.7 is in the region of
strong frustration.

For the sake of clearness, we present in the figures o
results of selected finite lattices. To illustrate the finite-s
effects in the most of the subsequent figures, we present
for the smallest (N524) and the largest lattices we hav
calculated, where forN532,36 we have choosen the lattice
having highest symmetry. Note that the curves for lattices
identicalN look very similar.

For comparison with the square lattice, we have recal
lated data of Ref. 2 up toN5636536. However, we think
a square lattice withN5434516 is comparable to a bc
lattice with N536. This can be seen if one looks at th
characteristic lengthsL3d}N1/3 and L2d}N1/2. Further, we
mention that the square lattice ofN516 contains five neigh-
borhood shells, whereas some of the more dense finite
lattices withN532 andN536 contain even more.

In Fig. 1 one finds the ground-state energies of the
lattices 24C, 36C, and for comparison theN516 and theN
536 square lattices. To have comparable curves, we sc
the ground-state energy of the square lattice with the fa
7/4. Figure 1 illustrates that, contrary to the 2d model,
ground-state energy of the 3d bcc lattice behaves very s
larly to the classical model. As can be seen in Fig. 1 the k
in the ground-state energy is almost independent of the

-

-

TABLE II. The ground-state energy per site of the ten cons
ered finite bcc lattices for different values ofJ2 (J151).

E0 /N
Na J250 J250.7 J251.3333

24C 21.21305 20.73883 21.34537
28D 21.20223 20.73003 21.32544
32D 21.19572 20.72851 21.31225
32F 21.19512 20.72744 21.31217
32H 21.19474 20.72708 21.31189
32J 21.19440 20.74003 21.31688
32K 21.19408 20.73203 21.31423
36A 21.18953 20.72119 21.30021
36B 21.19264 20.72180 21.30145
36C 21.19278 20.72248 21.30149
6-2
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of the bcc lattices. This can be interpreted as an indica
that the kink survives in the thermodynamic limit.

C. Ground-state phase relationships

The phase relationships of the Ising basis statesun& in the
ground stateuC0& of the bipartite Heisenberg antiferroma
net@i.e.,J250 in ~1!# follow the Marshall-Peierls sign rule.21

This sign rule can be formulated as

uC0&5(
n

cnun& cn.0. ~4!

Here, the Ising statesun& are defined by

un&[~21!N/22M (X)um1& ^ um2& ^ •••^ umN&, ~5!

whereumi&, i 51, . . . ,N, are the eigenstates of the site sp
operatorSi

z ~i.e., mi56 1
2 ) and M (X)5( i eXmi . The stan-

dard Marshall-Peierls sign rule appropriate for the N´el
phase at smallp is obtained forX5A, i.e., X labels one of
the two equivalent sublattices. For large values ofp, we have
antiferromagnetic order within the initial sublatticesA andB
and A and B resolve into four sublattices (A→A1 , A2 and
B→B1 , B2). Then a modified sign rule holds withX
5A1øB1.

As pointed out in Refs. 4 and 5 and very recently in R
11 the sign rule may survive some frustration but is clea
violated for the square lattice in the strongly frustrated sp
liquid region. Hence, we can use the violation of t
Marshall-Peierls sign rule as an indication of the breakdo
of the two-sublattice Ne´el state.

In Fig. 2 one finds the weightg(X)5(n8(cn)2 of the Ising
statesun& fulfilling the Marshall-Peierls sign rule~i.e., the
sum(n8 is restricted to the subset of states havingcn.0) for
two finite bcc lattices and two square lattices. For theJ1-J2
model on the bcc lattice the rule~4! is violated almost dis-
continuously at that point where the ground-state energy
its maximum. This is a hint to a very drastic change of t
ground state on the bcc lattice aroundp50.52, which can be
attributed to an abrupt breakdown of the two-sublattice N´el
state. On the other hand, for theJ1-J2 model on the square

FIG. 1. Ground-state energy per site in units ofJ1 for the bcc
lattices 24C, 36C, and for the square lattices~scaled! with N516
~16sq! and N536 ~36sq! versusp. The inset is an enlargement o
the strongly frustrated region aroundp50.52.
22440
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lattice the violation of the sign rule~4! starts smoothly and
becomes significant nearp50.4, where the second-orde
transition to the spin-liquid state takes place. The modifi
sign rule withg(A1øB1) changes also discontinuously fo
the bcc lattice but smoothly for the square lattice. Howev
there is a violation of the modified rule also in the colline
phase, which can be attributed to the coupling between
both antiferromagnetic subsystems living on the initial su
latticesA andB. Only for largep@1, where the ground stat
becomes a product state of both antiferromagnetic s
systems the modified rule is rigorously fulfilled.

D. Sublattice magnetizations

Of course, the most important parameter to study N´el
ordering is the sublattice magnetization. In finite systems
conventional antiferromagnetic long-range order, that is re
ized for smallp, has to be described by the square of t
sublattice magnetization of one spin component

m2~Q!5K F 1

N (
i 51

N

eiQRiSi
zG2L ~6!

with QNéel5(p,p,p) for the bcc lattice @and QNéel
5(p,p) for the square lattice#. For large values ofp the
magnetic wave vectorsQcol

1,25(6p/2,6p/2,6p/2) have to
be used for the bcc lattice@and Qcol

1 5(p,0) or Qcol
2

5(0,p) for the square lattice# to describe the collinear phas
with antiferromagnetic order within the initial sublatticesA
andB. We denote in the following, the order parameter of t
Néel phase calculated withQNéel with m2 and that of the
collinear phase calculated withQcol

1 or Qcol
2 with ma

2 . Notice
that ma

2 is identical forQcol
1 andQcol

2 . In Table III, we give
the order parameters of the ten finite bcc lattices forJ250
andJ251.3333. The behavior ofm2 andma

2 shown in Fig. 3
again illustrates, that the influence of the frustration on
ground-state properties is basically different for the squ
and bcc lattice and suggests a direct first-order transition
tween both Ne´el phases for the bcc lattice. A more detaile

FIG. 2. The weightg(A) ~that is 1 forp50) andg(A1øB1)
~that is 1 forp@1) of basis statesun& fulfilling the Marshall-Peierls
sign rule for the bcc lattice 24C, 36C, and the square lattice w
N516 ~16sq! and N532 ~32sq! versusp. On the bcc lattices the
sign rule is completely fulfilled up top50.4 and 99.8% fulfilled at
p50.51.
6-3
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presentation of the transition region is given in Fig. 4. O
finds that the position of the transition only slightly depen
on size and symmetry of the finite lattices. Moreover,
width of transition region is getting smaller with growingN.
Again, we mention that the region of transition is related
the maximum ofE0 and the significant violation of the
Marshall-Peierls sign rule.

E. Spin gap

Another indication for a possible quantum disorder
spin-liquid state is the spin gap, i.e., the gapDST between the
singlet ground state and the first triplet excitation. In Ne´el
ordered systems, we have Goldstone modes and no spin
is observed in the thermodynamic limit. Contrary to th
quantum disorder is accompanied by the opening of a s
gap. We show the gapDST of two finite bcc lattices in Fig. 5.
The first triplet excitation relevant for the gap belongs to
translational symmetrykt5(p,p,p) for small p and kt
5(p/2,p/2,p/2) for largep. For comparison, we show th
gap for the square lattice ofN516 and N532 sites. Of
course, the gap of a finite lattice is finite. However, in t
long-range ordered Ne´el and collinear phases the extrapo
tion to the thermodynamic limit yields a vanishing gap. O
viously, there is no increase in the gap for the bcc lattices

TABLE III. Sublattice magnetizationsm2 and ma
2 of the ten

considered bcc lattices for different values ofJ2.

m2 ma
2

Na J250 J251.3333

24C 0.09362 0.11006
28D 0.09057 0.10429
32D 0.08787 0.09958
32F 0.08800 0.09959
32H 0.08811 0.09964
32J 0.08819 0.09897
32K 0.08827 0.09933
36A 0.08600 0.09605
36B 0.08516 0.09562
36C 0.08509 0.09561

FIG. 3. Sublattice magnetizationsm2 ~maximal for smallp) and
ma

2 ~maximal for largep) of the bcc lattices 24C, 36C, and th
square lattices withN516 ~16sq! andN536 ~36sq! versusp.
22440
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aboutp'0.52, where the transition from the two-sublatti
Néel phase to the collinear phase takes place. In the collin
phase the relevant coupling parameter for excitations isJ2
instead ofJ1 and consequently, the gap increases linea
with p. Clearly, we see that there is no special behavior
DST near the transition pointp'0.52. The gap for the squar
lattice shows a similar behavior for parameter regions wh
magnetic long-range order in the ground state is present,
aroundp50.5 the behavior ofDST is in contrast to the bcc
lattice. In this region a quantum disordered gapped phase
the square lattice is expected, which is consistent with
significant increase ofDST nearp50.5.

We conclude from the examination of the spin gap th
there are no indications for a quantum disordered gap
phase for the bcc lattice.

III. INFINITE BCC LATTICES

A. Finite-size extrapolation

To obtain properties of the infinite bcc lattice, we extrap
late the ED data of all ten lattices listed in Table I. Th
finite-size extrapolation is a well elaborated approximat
scheme successfully applied to many 2d quantum spin

FIG. 4. Sublattice magnetizationsm2 ~maximal for smallp) and
ma

2 ~maximal for largep) of the bcc lattice 36C, 32D, 28D, an
24C near the phase transition pointp'0.52.

FIG. 5. Spin gapDST in units of J1, i.e., the gap to the first
triplet excitation for the bcc lattices 24C, 36C, and the square
tices with N516 ~16sq! and N532 ~32sq! versusp.
6-4
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SPIN-12 J1-J2 MODEL ON THE BODY-CENTERED . . . PHYSICAL REVIEW B66, 224406 ~2002!
tems like theJ1-J2 model on the square lattice.2 But even for
3d lattices this scheme may lead to precise data for the
nite lattice.17–19 The corresponding scaling laws are know
from literature.22–24 The scaling equation for ground-sta
energy per sitee5E0 /N of the bcc lattice is

e~L !5e~`!1A4L241••• ~7!

and for the order parameter

m2~L !5m2~`!1B2L221••• ~8!

with L5N1/3.
The same relation is valid forma

2 . The results are pre
sented in Figs. 6 and 7. The discussion of the data is g
below.

B. Linear spin wave theory „LSWT …

1. LSWT for small J2

Starting from the classical two-sublattice Ne´el state, we
choose a two-boson representation of the Hamiltonian~1!.

FIG. 6. LSWT data for the ground-state energiesE0 of the in-
finite bcc lattice~dashed line, LSWT bcc! and square lattice~dotted
line, LSWT sq! as well as the extrapolated ED data forE0 ~solid
line with data points! versusp.

FIG. 7. LSWT data for the sublattice magnetizationsm of the
infinite bcc lattice~dashed line, LSWT bcc! and square lattice~dot-
ted line, LSWT sq! as well as extrapolated ED data forA3m2(`)
andA3ma

2(`) ~solid line with data points! versusp. The error bars
indicate the standard deviation of the finite-size extrapolation.
22440
fi-

n

Rewriting the spin operators of the Hamiltonian in terms
bose operators by using the usual Holstein-Primakoff tra
formation and taking into account only quadratic terms in
bose operators, we obtain a bosonic Hamiltonian in Fou
transformed representation

H5s2N~2816p!1(
k

$Ak~ak
1ak1bk

1bk!

1Bk~akbÀk1ak
1bÀk

1 !% ~9!

with the coefficients

Ak5s@826p~12g2k!#, ~10!

Bk58sg1k . ~11!

The structure factors of nearest neighbors and next-nea
neighbors are given by

g1k5coskx cosky coskz , ~12!

g2k5
1

3
~cos 2kx1cos 2ky1cos 2kz!. ~13!

The ground-state energy per site is then

E0 /N5s2~2816p!1
1

N (
k

~vk2Ak! ~14!

with vk5AAk
22Bk

2. The sublattice magnetizationm5^Si
z&

is

m5s2
1

N (
k

S 2
1

2
1

Ak

2vk
D . ~15!

2. LSWT for large J2

The classical ground state of theJ1-J2 model on the bcc
lattice for large J2 consists of two interpenetrating Ne´el
states each living on the initial sublatticesA andB. The two
Néel states are energetically decoupled, i.e., the angleu be-
tween the staggered magnetization onA andB is arbitrary for
classical spins. For the quantum model, we start with a
trary u and use as quantization axis the local orientation
the spins in the classical ground state. The further proced
is the same as for smallJ2 but the bosonic Hamiltonian now
contains the angleu. By means of the Hellmann-Feynma
theorem25 ^]H(u)/]u&5]E(u)/]u it can be easily found
that in the quantum model the collinear state (u50 or p)
has lowest energy. This lifting of the continuous degener
of the classical ground state by quantum fluctuations~order
from disorder effect! is also found for the square lattice.26 For
u50 the bosonic Hamiltonian reads

H526Nps21(
k

$A~ak
†ak1bk

†bk!1@Ck~bkak
12bk

1a2k
1 !

2Bk~aka2k1bkb2k!1H.c.#%, ~16!

where
6-5
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SCHMIDT et al. PHYSICAL REVIEW B 66, 224406 ~2002!
A56sp, ~17!

Bk53spg2k , ~18!

Ck54s~coskx cosky coskz1 i sinkx sinky sinkz!.
~19!

Then the ground-state energy per site is

E0 /N526s2p1
1

N (
k

S v1k

2
1

v2k

2
2AD ~20!

with the modes

v1k5AA224Bk
21Fk; v2k5AA224Bk

22Fk, ~21!

and the function

Fk5$~Ck
22Ck*

2!228ABk~Ck
21Ck*

2!14CkCk* ~A2

14Bk
2!%1/2. ~22!

The sublattice magnetization is written as

ma5s2
1

N (
k

D~k,v1k!

2v1k~v1k
2 2v2k

2 !

2
1

N (
k

D~k,v2k!

2v2k~v2k
2 2v1k

2 !
~23!

with

D~k,vk!52vk
31Avk

22~4Bk
22A2!vk1A~4Bk

212CkCk* !

22Bk~Ck
21Ck*

2!2A3. ~24!

The results of LSWT and the finite-size extrapolation a
shown in Figs. 6 and 7. For the limitsJ250 andJ150 our
LSWT results are in agreement with data for the bcc and
simple cubic lattice given in.24 Both methods yield similar
results. For the ground-state energy, we have a good qu
tative agreement. Being in the size of the data points,
standard deviation of extrapolated ground-state energy is
shown. For the order parameter the finite-size effects
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stronger and the agreement is only qualitative. Both meth
suggest a first-order transition for the spin-1

2 J1-J2 model on
the bcc lattice. The transition point obtained from the E
data isJ2'0.7J1 ~i.e., p'0.52), while the LSWT become
instable at the classical transition point.

IV. CONCLUSION

We have presented spin-wave and exact diagonaliza
results for the spin-12 J1-J2 model on the bcc lattice and com
pare them with those for the square lattice. In general,
observe that the physics for the 3d quantum model is clo
to classical behavior since quantum fluctuations and fin
size corrections become less important for higher coord
tion number and larger dimension.

We are not sure whether the increase of the magnetiza
ma approaching the transition point from the right~shown in
Fig. 7! is a real effect. A possible physical origin for a
increase may be a stronger coupling of the Ne´el ordered
subsystemsA and B due to larger quantum fluctuations o
finite-size effects that become more important in the reg
of strong frustration. From the data for the ground-state
ergy, the Marshall-Peierls sign rule, the sublattice magn
zations and the spin gap, we conclude that the increase f
dimension d52 to d53 changes the physical properties b
sically. The good agreement with the spin wave results s
port this conclusion. Contrary to the 2d model, where
quantum fluctuations and frustration lead to a second-o
transition from the two-sublattice Ne´el state to a disordered
spin-liquid phase like, in the 3d model we find no indicatio
for a disordered ground-state phase. The quantumJ1-J2
model on the bcc lattice shows one transition of first ord
induced by strong frustration from the two-sublattice Ne´el
state directly to the collinear state, where the transition ta
place atac5(J2 /J1)c'0.7.
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