
PHYSICAL REVIEW B 66, 224404 ~2002!
Time correlation functions of three classical Heisenberg spins on an isosceles triangle
and on a chain

Marco Ameduri and Richard A. Klemm
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At an arbitrary temperatureT, we solve for the dynamics of single molecule magnets composed of three
classical Heisenberg spins either on a chain with two equal exchange constantsJ1, or on an isosceles triangle
with a third, different exchange constantJ2. As T→`, the Fourier transforms and long-time asymptotic
behaviors of the two-spin time correlation functions are evaluated exactly. The lack of translational symmetry
on a chain or an isosceles triangle yields time correlation functions that differ strikingly from those on an
equilateral triangle withJ15J2. At low T, the Fourier transforms of the two autocorrelation functions with
J1ÞJ2 show one and four modes, respectively. For a semi-infiniteJ2 /J1 range, one mode is a central peak. At
the origin of this range, this mode has an interesting scaling form.

DOI: 10.1103/PhysRevB.66.224404 PACS number~s!: 75.10.Hk, 75.75.1a, 75.30.Ds
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I. INTRODUCTION

Recently, there has been a substantial interest in the p
ics of magnetic molecules, or single molecule magn
~SMM’s!.1–7 Such studies are important both for basic scie
tific reasons and for possible technological applications7,8

Among the smaller SMM’s are dimers of V41 (S51/2) and
of Fe31 (S55/2),9,10 a nearly equilateral array of three V41

spins,11 and an isosceles triangle of Gd31 (S57/2) spins
~Gd3!.12 Nonmetallic variations of 9L-BaRuO3 with three
Ru14 (S51) ions ~Ru3! might behave as three-spin cha
SMM’s.13,14

Each SMM consists of a small number of paramagne
ions surrounded by nonmagnetic chemical ligand grou
and is large enough that the magnetic interactions betw
the ions in different SMM’s within a crystal are negligible
Hence measurements performed on macroscopic sam
just probe the magnetic interactions within the individu
SMM’s. Large single crystals with long-range SMM packin
order are suitable for inelastic neutron scattering exp
ments. Measurements at the appropriate deviations from
Bragg wave vectors for the particular SMM crystal structu
probe statistical ensembles of the Fourier transforms of
two-spin time correlation functions involving the spins
each SMM.

The magnetic interactions between the ions in th
SMM’s can often be described by the isotropic Heisenb
model. One expects that for ions such as Gd31, with S
57/2, the classical version of the Heisenberg model captu
the essential features of the dynamics at not too low temp
tures T. For a dimer, comparisons of the classical andS
51/2,5/2 quantum behaviors of the dynamics supported
expectation.15,16 For the equilateral triangle, such compa
sons were only made forT→`.17 In addition, exact and
numerical results were presented for the classical dimer,18–20

the four-spin ring,21 and the N-spin equivalent neighbo
model, which includes the equilateral triangle.22

For three spins on an equilateral triangle, with eq
Heisenberg exchange constantsJ1, the spin sites on eac
triangle are translationally invariant. Spins on an isosce
0163-1829/2002/66~22!/224404~13!/$20.00 66 2244
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triangle have one additional exchange constantJ2ÞJ1, and
this simple translational invariance is absent. Dynami
measurements on Gd3 and modified compositions of R
could help to uncover the effects of this lack of translation
invariance inside each SMM, and might aid in our und
standing of more complicated systems with multiple ma
netic interactions.

At low T, the N spins in the equivalent neighbor mod
oscillate in a single mode.22 Here we show that the absenc
of translational symmetry inside each isosceles triangle g
erally introduces three additional low-T modes at tunable
frequencies depending upong5J2 /J1. For a semi-infinite
range ofg values, one of these additional modes is a cen
peak. In addition, the dynamics of the spins on the endpo
of the three-spin chain withJ250 are qualitatively different
from the dynamics of the spin at the chain center. The m
tuning parameterg makes the dynamical behavior of th
spins on an isosceles triangle remarkably different from t
present in any SMM system studied previously, including
four-spin ring.21,22

The structure of the paper is as follows: In Sec. II w
define the model, calculate its partition function, and pres
the exact time evolution of the spin vectors. In Secs. III a
IV, we discuss the time dependence and Fourier transfo
respectively, of each spin-spin correlation function. We d
cuss our results in Sec. V.

II. MODEL AND SPIN DYNAMICS

We study the Hamiltonian describing three spinsSi of unit
magnitude,Si5uSi u51, on a triangle with two classica
Heisenberg exchange couplings,

H52J1~S1•S21S2•S3!2J2S1•S3 . ~1!

The casesJ15J2 and J1ÞJ2Þ0 describe equilateral an
isosceles triangles, respectively. The caseJ250 describes a
three-spin chain with free boundary conditions. Equation~1!
can be realized if the ring contains either two different latt
constants, as in Gd3, or ions with two different spin valu
©2002 The American Physical Society04-1
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We rewrite Eq. ~1! in terms of the total spinS5S2
1S13, with S135S11S3, and obtain, up to a constant,

H52
J1

2
S22

J22J1

2
S13

2 . ~2!

The partition functionZ5*() i 51
3 dV i /4p)e2bH is

Z5E
0

2

dxE
ux21u

x11

ds s e2bH5
ea

a E
0

2

dxeagx2
sinh~2ax!,

~3!

whereb5(kBT)21, dV i is the solid angle element for th
i th spin,a5bJ1/2, g5J2 /J1 , x5S13, ands5S.

To calculate the time-dependent correlation functio
^Si(t)•Sj (0)&, we first solve the classical Heisenberg equ
tions of motion for the quantitiesS2(t) andS13(t),

Ṡ2,135J1S2,133S, ~4!

leading to

S2,13~ t !5C2,13ŝ1A2,13@cos~J1st!x̂2sin~J1st!ŷ#, ~5!

where ŝuuS, ŝ5 x̂3 ŷ, A252A13, C21C135s, C135(s2

1x221)/(2s), andA13
2 5x22C13

2 .
The time dependence ofS1 ~or S3) is obtained from

Ṡ15~J22J1!S13S131J1S13S, ~6!

leading to

S1s~ t !5S1s01DS1s0 cos@~J12J2!xt2f0#, ~7!

S16~ t !5
A13S1s0

C13
exp~7 isJ1t !1

A13DS1s0

2~C131x!
expH 7 i @~J1s

1~J12J2!x#t6 if0%1
A13DS1s0

2~C132x!
exp$7 i @~J1s

2~J12J2!x#t7 if0%, ~8!

where S165S1x6 iS1y , S1s05C13/2, DS1s05A13(1
2x2/4)1/2/x, andf0 is an arbitrary angle describing the in
tial spin configuration.21

III. TIME CORRELATION FUNCTIONS

We study the two-spin time correlation functions

Ci j ~ t !5^Si~ t !•Sj~0!&, ~9!

where ^•••&5*0
2pdf0*0

2dx* ux21u
x11 sdse2bH . . . /(2pZ).

SinceC115C33 andC125C23, only four Ci j are independent
These are constrained by the sum rule

^s2&5C22~ t !12C11~ t !14C12~ t !12C13~ t !. ~10!

After averaging overf0, the exactCi j (t) satisfy

C11~ t !5I 01I 1~ t !1I 2~ t !1I 3~ t !, ~11!

C13~ t !5I 01I 1~ t !2I 2~ t !2I 3~ t !, ~12!
22440
s
-

C22~ t !54@ I 01I 1~ t !#12^C2s&2^s2&, ~13!

C12~ t !522@ I 01I 1~ t !#1
1

2
@^s2&2^C2s&#, ~14!

where, by settingt* 5J1t, we have

I 05
1

4
^C13

2 &, ~15!

I 1~ t !5
1

4
^A13

2 cos~st* !&, ~16!

I 2~ t !5
1

2 K A13
2

x2 S 12
x2

4 D cos@~12g!xt* #L , ~17!

I 3~ t !5K ~12x2/4!

4x2
„~C132x!2cos$@s1~12g!x#t* %

1~C131x!2cos$@s2~12g!x#t* %…L . ~18!

As T→`, the remaining double integrals in Eqs.~15!–
~18! can be reduced to single integrals, as shown in the
pendix. Note thatI 2(t) is a constant forg51, but not for
gÞ1, leading to dramatic differences between the dynam
of spins on equilateral and isosceles triangles, respectiv
As t→`, the time-dependent integrands oscillate wildly a
their contributions vanish.23 From Eqs. ~13! and ~16!,
limT,t→`C22 for gÞ1 is identical to its value forg51. Only
at finite T doesJ2 influenceC22(t). Hence, fort* @1 and
T→`,21,24

lim
T→`
t* @1

C22~ t !;
1

3
12d32

sin~ t* !1sin~3t* !

~ t* !3
, ~19!

d35
9

80
ln 32

1

20
'0.07359. ~20!

From Eqs.~13! and ~14!, it then follows that

lim
T→`
t* @1

C12~ t !;
1

3
2d31

sin~ t* !1sin~3t* !

2~ t* !3
. ~21!

The surprise comes from the behaviors ofC11 and C13.
The long-time approaches to the various asymptotic lim
are characterized by three different powers, correspondin
the equilateral, the isosceles, and the chain cases, res
tively. For g51, C 11

g51(t)5C22(t), which approach their
mutual limit ast23 asT→`.

For g50, C11(t) is dominated byI 3(t), yielding

lim
T→`
t* @1

C 11
g50~ t !;

1

3
1

d3

2
1

1

2t*
sin~ t* !, ~22!
4-2
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FIG. 1. Plots ofC11(t) ~solid!, C12(t) ~dashed!,
C13(t) ~dense dotted,C13(0)50), C22(t) ~sparse
dotted, C22(0)51) vs t* 5uJ1ut as T→` (a
50) for the chain (g50).
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which approaches its different asymptotic limit dramatica
slower.

For gÞ0,1, I 2(t) and I 3(t) decay ast22 and oscillate
with different frequencies. The evaluation ofI 3(t) is quite
involved. By calculating its Fourier transform and then i
verting it through integration by parts, we find

lim
T→`

ugut* ,u12gut* @1

C 11
gÞ0,1~ t !

;
1

3
1

d3

2
1

$a11a2cos@2~12g!t* #1a3cos~ t* !%

~ t* !2
,

~23!

where~see the Appendix!

a152
1

6~12g!2
, ~24!
22440
a252
1

~12g!2 S 5

32
2

9

128
ln 3D'2

0.079004

~12g!2
, ~25!

a352
g21

2g
1

g22

4
lnU g

g22U. ~26!

Note that one cannot take either of the limitsg→1 or g
→0 directly in Eq.~23!, since the expansion is valid onl
when bothugut* @1 andu12gut* @1 are satisfied.

In Fig. 1, we plot theCi j (t) as T→` for g50. Since
C22(t) and C12(t) as T→` are independent ofg, these
curves are respectively identical to those forC11(t) and
C12(t) obtained forT→` in the equilateral triangle. Thes
functions each approach their asymptotic limits ast23. On
the other hand, forg50, C11(t) and C13(t) oscillate about
each other for a long time, approaching their mutu
asymptotic limit ast21.

In Fig. 2 we compareC11(t) and C13(t) as T→` for g
FIG. 2. Plots ofC11(t), C13(t) vs t* 5uJ1ut for
T→` (a50), g50.3 ~solid!, 20.3 ~dashed!,
and 1.5~dotted!.
4-3
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FIG. 3. Plots of limt→`Ci j (t) for the chain
(g50! vs uau5buJ1u/2, for a.0 ~FM! and a
,0 ~AFM!.
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560.3 and 1.5. Forg560.3, the leading term in the ap
proach to the asymptotic limit arises froma3 in Eq. ~23!. For
g51.5, 2u12gu51, so there is asymptotically only one fre
quency, equal to that for the chain shown in Fig. 1, but
asymptotic limit is approached faster.

At finite T, the physics of the model is influenced not on
by g, but also by the sign ofJ1. We henceforth refer to the
J1.0 andJ1,0 cases as ferromagnetic~FM! and antiferro-
magnetic~AFM!, respectively.

We obtain theCi j (t) at finiteT by direct numerical evalu-
ation of the double integrals in Eqs.~11!–~14!. As an ex-
ample, in Fig. 3, we plot the limt→`Ci j (t) for g50 as func-
tions of uau5buJ1u/2. The FM and AFM cases ar
distinguished by arrows. We recall that limt→`C13(t)
5 limt→`C11(t) for all gÞ1. The spins are intrinsically un
frustrated. At low T, the FM limt→`Ci j (t);1, while the
AFM lim t→`C12(t);21. In the AFM case, limt→`C11(t)
has a minimum value of;0.29 ata;20.9.

IV. FOURIER TRANSFORMS

The dimensionless Fourier transform~FT! of each devia-
tion dCi j (t)[Ci j (t)2 limt→`Ci j (t),

21 is

d C̃i j ~v!5
uJ1u
p E

2`

1`

dteivtdCi j ~ t !. ~27!

Since causality requiresd C̃i j (v)5d C̃i j (2v), we consider
only positive values ofv/J1. The Fourier integral is in prin-
ciple elementary, since the time dependence is containe
simple trigonometric factors, yielding combinations ofd
functions that allow us to perform one of the integrations.
thus obtain single integral representations for the FT’s at
T, which can be evaluated with high precision. Since e
integration domain is restricted to a finite region in the (s,x)
plane, thed-functions only contribute to the integrals ifv
falls within specific ranges. Determining the allowed rang
of v values is tedious. Some of the details of this calculat
are presented in the Appendix.
22440
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A. Infinite temperature

In Fig. 4 we plotd C̃11(v) asT→` for someugu<1. The
solid curves forg51,0 correspond to the equilateral triang
and the chain. For the equilateral triangle,d C̃11(v) vanishes
as v→0,3, and exhibits a single smooth peak atv/uJ1u
'1.4385. Although difficult to discern in this figure, th
curve contains discontinuous second derivatives atv/uJ1u
51,3 responsible for thet23 long-time, T→` decay of
dC11(t).

21,22

As T→`, althoughd C̃22(v) for the chain coincides with
the equilateral triangled̃C11(v) curve, the chaind C̃11(v) is
dramatically different. In addition to the slope discontinui
at v/uJ1u52, the chaind C̃11(v) is discontinuousat v/uJ1u
51, as indicated by the symbol'. This discontinuity is
responsible for the 1/t long-time,T→` decay ofdC11(t).

The isosceles triangle cases are also very interesting
they do not just interpolate between the equilateral trian
and the chain. Forg560.2, the discontinuities in the slop
of d C̃11(v) at v/uJ1u51, 1.4, and 1.6 are also discernibl
As g→0, the slope discontinuities atv/uJ1u51 approach
6` as expressed in Eq.~26!. In addition, there is a large
discontinuity in the slope of the curve forg50.9 at v/J1
50.2, and a resulting large peak atv/uJ1u'0.088, arising
from Ĩ 2(v). This slope discontinuity is responsible for th
first two terms}t22 in Eq. ~23!.

B. Low temperature

Thed C̃i j (v) at finiteT were obtained by numerical evalu
ation of the single integrals defined in the Appendix. AsT
→`, we compared our numerical and analytic results.
finite T we also checked the initial value sum rules by in
grating the FT’s in Eq.~27!.

1. Equilateral triangle

We first discuss the equilateral triangle,g51. For the
AFM case, AsT decreases, the single peak ind C̃11(v) grows
4-4
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FIG. 4. Plots of d C̃11(v) as functions of
v/uJ1u asT→`, for g51,0 ~solid!, 0.2 ~dashed!,
-0.2 ~dotted!, and 0.9~dash dotted!.
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in amplitude and shifts to lowerv/uJ1u. As shown for the
equivalent neighbor model,22 this behavior can be quantifie
by plottinguau21/2d C̃11(v) versusṽ5uau1/2v/uJ1u. In Fig. 5,
the uau21/2d C̃11(v) curves approach the uniform AFM
equivalent neighbor model form (8/3Ap)ṽ2exp(2ṽ2),
shown as the solid curve, asT→0.22 This frustrated behavio
results in a scaling of the time, asC(t) approaches a uniform
function of (JT)1/2t asT→0.

For the FM equilateral triangle, asT decreases, the pea
in d C̃11(v) shifts asymptotically to 3J1, as all of the spins
oscillate together. In the equivalent neighbor model, asT
→0, the three-sping51 FM curves approach a uniform
function of (v/J12v3* )a, where v3* 5321/(3uau), as
shown in Fig. 6.22 That is, asT→0, the peak amplitude tend
to a constant value, but its maximum position approac
3J1 linearly in T.
22440
s

2. Three-spin chain

A strikingly different behavior is obtained for the low-T
AFM chain. In this case, instead of the single AFM mo
present in the equilateral triangle, there arefour modes, the
frequenciesV i of which approachV i /uJ1u51, 2, and 3 as
T→0 as the frequencies of the strongest modesV1 andV2,

become degenerate. In Fig. 7, we plottedd C̃11(v) and

d C̃22(v) for these two modes, versus (v/uJ1u21)2uau/5, at

various low-T a values. Curves ford C̃22(v) are shifted to
the right by 0.2 for clarity. We note thatd C̃11(v) for the V2
mode has a shallow maximum at a frequency which
proachesuJ1u from above asT→0. For theV1 mode,d C̃11
has a large discontinuity precisely atv/uJ1u51 for all T. By
contrast, thed C̃22(v) curves only exhibit theV2 mode, and
are smooth and rather symmetric about their maxima. B
FIG. 5. Plots of uau21/2d C̃11(v) vs
uau1/2v/uJ1u for the AFM equilateral triangle at
low T.
4-5
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FIG. 6. Plots of d C̃11(v)/A3 vs (v/J1

2v3* )3a/21/2 for the FM equilateral triangle a
low T, where A358/(3e2) and v3* 53
21/(3uau).
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d C̃i i (v) for these modes approach a uniform scaling funct
of uau(v/uJ1u21) asT→0. We remark that the low-T scal-
ing behaviors of the dominant modes in the AFM chain
similar to that of the FM equilateral triangle, since neither
these mode energies approaches 0 asT→0.

In addition, we found that the weakerV3 andV4 modes,
for which d C̃11(v) is peaked atv/uJ1u'3,2, respectively,
both approach uniform low-T scaling functions. For theV3

mode,uaud C̃11(v) approaches a uniform scaling function
uau(v/uJ1u23), and for the V4 mode, a2d C̃11(v) ap-
proaches a uniform scaling function ofuau(v/uJ1u22) asT
→0. Hence, asT→0, the amplitudes of these modes vani
asT andT2, respectively.

For the FM chain at lowT, there are four nondegenera
modes for whichd C̃11(v) is peaked atV i /uJ1u'1, 2, 3, and
5. At low T, the two largest intensity modesV2 and V1,
which are peaked atv/J1'1,3, respectively, are pictured fo
a55, 10, and 20 in Fig. 8. At lowT, d C̃11 for the V2 mode
22440
n

e
f

is very large forv/uJ1u,1, but dropsdiscontinuously to zero
at v/uJ1u51, as shown in Fig. 8. For the next largest inte
sity mode,V1, bothd C̃11(v) and the largerd C̃22(v) exhibit
peak positions that approachv/uJ1u53 asT→0, as shown
in Fig. 8. We note that we have multiplied the intensities
these curves by a factor of 9, and squeezed the scaling
able by a factor of 3, relative to those ofd C̃11 for the V2
mode, in order to fit all three sets of curves in the sa
figure. All of the curves shown in Fig. 8 scale as for the F
equilateral triangle. As for the AFM chain, at lowT,
ad C̃11(v) for theV4 mode approaches a uniform function
(v/uJ1u22)uau, and a2d C̃11(v) for the weakest modeV3
approaches a uniform function of (v/uJ1u25)uau.

3. General isosceles triangle

We now consider the more general isosceles trian
cases. We first discuss the AFM casesJ1,0. As for the
chain, forgÞ1, asT is lowered,d C̃11(v) generally develops
FIG. 7. Plots of d C̃11(v) vs (v/uJ1u
21)2uau/5 and d C̃22(v) vs (v/uJ1u21)2uau/5
10.2, for the AFM chain at the low-T values

2a55, 10, 20, 40, and 80.C̃11(v) is discontinu-
ous atv/uJ1u51, indicated by the'.
4-6
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FIG. 8. Plots ofn2d C̃11(v) andn2d C̃22(v) vs
(v/uJ1u2vn* )uau/n for the V1 andV2 modes of
the FM chain at the low-T valuesa55, 10, and

20, wherevn* 5n2(n21)/(2nuau). C̃11(v) for
the V2 mode is discontinuous atv/uJ1u51, as
indicated by the'.
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into three or four peaks, which become progressiv
sharper. When only three modes are present, one of them
central peak atv50. For nonvanishing frequencies, the
modes are magnons. As for the three-spin chain, their r
tive intensities at finiteT are very different, as the two large
are typically a few orders of magnitude larger than the th
which is a few orders of magnitude larger than the fourth

To illustrate the types of low-T AFM behavior, in Fig. 9
we plot log10@d C̃11(v)# and log10@d C̃22(v)# versusv/uJ1u at
the AFM low-T value a5280 for g520.1 and 2.5. For
g520.1, d C̃11(v) exhibits four sharp peaks atv/uJ1u'1,
1.2, 2.2, and 3.2. Forg52.5, there are three broad peaks
d C̃11(v), one of which is a central peak atv50, and the
others are centered atv/uJ1u' 0.6 and 1.2. In each case
d C̃22(v) is a single peak at one of the larger nonvanish
d C̃11(v) peak positions.

After a careful analysis of many lower-T results, we es-
tablished simple formulas relating the frequencies of
22440
y
s a

a-

,

g

e

modes tog. d C̃11(v) contains four low-T AFM mode fre-
quencies,V i(g), depicted in Fig. 10, which satisfy

V1~g!/uJ1u51 for g<1/2,

5u121/gu for g>1/2, ~28!

V2~g!/uJ1u5122g for g<1/2,

50, for g>1/2, ~29!

V3~g!/uJ1u5322g for g<1/2,

52u121/gu for g.1/2, ~30!

V4~g!/uJ1u5222g for g<1/2,

5u121/gu for g>1/2. ~31!
FIG. 9. Plots of the AFM log10@d C̃i j (v)# vs
v/uJ1u, at low T (a5280) for g520.1, 2.5.

The solid~dashed! curves correspond tod C̃11(v)
for g520.1 ~2.5!. The dash-dotted~dotted!

curves are the correspondingd C̃22(v) curves.
4-7
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FIG. 10. Plots of the low-T AFM mode fre-
quenciesV i(g)/uJ1u vs g. The triangles indicate
low-T scaling.
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d C̃22(v) contains only the low-T FM mode with fre-
quencyV1(g). We note that forg>1/2, V4 and V1 are
degenerate. We analytically confirmed Eq.~28! by perform-
ing an asymptotic evaluation of the integral representation
d C̃22(v), as shown in the Appendix.

For the AFM case withg,1/2, there are four modes a
finite frequencies. For 1Þg.1/2, V1 and V4 are degener-
ate, and the mode with frequencyV2(g)50 is a central
peak. The two triangles in Fig. 10 indicate special points.
g51, the four modes are all degenerate,d C̃11(v)
5d C̃22(v), andd C̃11(v) approaches the AFM scaling form
shown in Fig. 5. For the low-T AFM caseg51/2, d C̃11(v)
exhibits the mode frequencyV2(1/2)→uJ2u/uau1/2 asT→0,
and the shape of this mode approaches a scaling functio
uau1/2v/uJ1u, as shown in Fig. 11. Thesed C̃11(v) curves
scalewithout a corresponding rescaling ofd C̃11(v) itself.

We now consider the FM case at lowT. To illustrate the
types of behavior found, in Fig. 12, we plot log10@d C̃11(v)#
22440
f

r

of

and log10@d C̃22(v)# versusv/uJ1u at a520 for g51.5 and
21. Forg51.5, d C̃11(v) at thisT exhibits four sharp modes
at v/uJ1u'1, 2, 3, and 4, respectively. Forg521, there are
three broadd C̃11(v) modes, with rather well-defined peak
at v/uJ1u'0, 2, 3.6 at thisT. As for the AFM case, in each
cased C̃22(v) is a single peak at one of the nonvanishi
d C̃11(v) peak positions.

From an extensive analysis of many lower-T results, we
found that there are generally four low-T d C̃11(v) FM mode
frequencies,V i(g), and thatd C̃22(v) has one nonvanishing
mode frequencyV1(g). These FMV i(g), pictured in Fig.
13, satisfy

V1~g!/J15u121/gu for g<21/2,

53 for g>21/2, ~32!
FIG. 11. Low-T plots of d C̃11(v) vs the
scaled frequencyvuau1/2/uJ1u displaying the
AFM V2(1/2) mode.
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FIG. 12. Plots at a520 of the FM

log10@d C̃11(v)# for g51.5 ~solid! and 21

~dashed! and log10@d C̃22(v)# for g51.5 ~dot-
dashed! and21 ~dotted! vs v/uJ1u.
,

tr
nc

l

e

s
ar

cal-
-

not
ent

re
-

V2~g!/J150 for g<21/2,

5112g for g>21/2, ~33!

V3~g!/J152u121/gu for g,21/2,

5u522gu for g>21/2, ~34!

V4~g!/J15u121/gu for g<21/2,

52u12gu for g>21/2. ~35!

As for the AFM case with 1Þg.1/2, for g,21/2, the
low-T FM mode with frequencyV2(g)50 is a central peak
and V1 and V4 are finite and degenerate. Forg.21/2,
there are four FM magnon modes, none of which is a cen
peak. The amplitude of the weakest mode with freque
V3(g) is }T2 as T→0 for g>21/2. At g55/2, V3(5/2)
}T, so the mode with frequencyV3(g) is never a centra
peak.
22440
al
y

For the low-T FM equilateral triangle, indicated by th
circle in Fig. 13,d C̃22(v)5d C̃11(v), since the amplitude of
the mode with frequencyV4(g) vanishes asg→1, and the
remaining mode frequencies are degenerate. Henced C̃11(v)
approaches the FM scaling form shown in Fig. 6.

We now examine the other special FM caseg521/2.
The modeV2(21/2), indicated by the triangle in Fig. 13, i
a low-T FM mode with scaling properties remarkably simil
to those of the AFM mode with frequencyV2(1/2), pictured
in Fig. 10. AsT→0, thed C̃11(v) FM mode frequencyV2
(21/2)→uJ2u/uau1/2, and the mode shape approaches a s
ing function ofuau1/2v/uJ1u, as pictured in Fig. 14. By com
paring Fig. 14 with Fig. 11, the lowestT curves in the two
figures are almost identical, provided that one rescalesT by a
factor of 8. Since in these special cases, the scaling does
involve scaling of the mode amplitude, it does not repres
a contribution todC11(t) involving a scaling of the time, as
for the AFM equilateral triangle pictured in Fig. 5, or mo
generally for the AFM low-T equivalent neighbor and four
is-
FIG. 13. Plots of the low-T FM mode fre-
quenciesV i /J1 vs g. The triangle indicates low-
T mode scaling, and the circle indicates the d
appearance of the mode. See the text.
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FIG. 14. Plots at various lowT values of

d C̃11(v) vs the scaled frequencyvuau1/2/uJ1u for
the FM V2(20.5) mode.
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spin ring models.21,22 It is therefore a new form of mode
scaling, not previously found in any SMM system.

V. SUMMARY AND DISCUSSION

We presented the exact solution for the thermal equi
rium dynamics of three classical Heisenberg spins on a
angle with two exchange couplingsJ1 andJ2. Although one
might expect that forg5J2 /J1'1 the behavior would no
be too different from that of the equilateral triangle,g51,
we found that this is not the case, regardless ofT. Instead of
the two Ci j (t)’s related by a sum rule forg51, for gÞ1
there are fourCi j (t)’s related by a sum rule. ForgÞ0, the
piecewise continuous Fourier transformsd C̃i j (v) demon-
strate the profound effects of the absence of translatio
symmetry within the triangle withgÞ1. As T→`, they
allow us to determine the long-time behavior of the autoc
relation functionsC11(t) and C22(t), which approach their
distinct long-time asymptotic limits differently, ast22 and
t23, respectively. For the three-spin chain,g50, the auto-
correlation function on the chain end,d C̃11(v), is discon-
tinuous atv/uJ1u51 at allT, leading to the characteristict21

behavior ofC11(t) asT→`.
At low T, settinggÞ1 leads to a qualitatively differen

behavior from that obtained forg51. Regardless of the sig
of J1, for gÞ1, there are four low-T modes ind C̃11(v). For
J1,0 andgÞ1, two of these low-T modes,V1 andV4, are
degenerate forg>1/2. ForJ1.0, V1 andV4 are degenerate
for g<21/2. In both of these FM and AFM regimes, one
the nondegenerate low-T modes is a central peak with
width determined by theJi , which grows in intensity asT
→0. This central peak, which can have the largest m
intensity, arises from the pinning of a magnon mode in
isosceles triangle withJ1ÞJ2, and does not appear in an
other model which has been solved exactly. There is als
peak atv50 arising from the long-time asymptotic limit o
C11(t), which would be broadened by relaxation proces
not included in our model.
22440
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For the three-spin chain,g50, the effects of the absenc
of translational symmetry in the chain are even more d
matic, leading to qualitatively different dynamical behavio
of the spins on the chain ends from that of the spin at

center. For both signs ofJ1 , d C̃22(v) has only one mode

energyuJ1u. But d C̃11(v) is distinctly different. For the AFM

three-spin chain,d C̃11(v) has three low-T modes atnuJ1u
with n51, 2, 3, where then51 mode is doubly degenerate

For the FM three-spin chain,d C̃11(v) has four modes a
nuJ1u with n51, 2, 3, and 5. Our results suggest that f
N-spin chains, the spins on or near the chain ends wo
have a richer dynamics than would those of more cen
spins, or of spins on closed rings ofN spins. It would be
interesting to see if such differences are indeed maintai
for larger spin chains and for larger spin clusters with two
more Heisenberg spin exchange interactions.

For the four-spin ring with equal near-neighbor exchan

couplings J1, the single autocorrelation functiond C̃11(v)
has a single mode that approaches the fixed frequency 2uJ1u
asT→0, in addition to the AFM~FM! mode of the four-spin
equivalent neighbor model with a frequency that approac
0 (4uJ1u).21,22 None of these is a central peak atTÞ0. The
isosceles triangle has a much richer spectrum of four mo
with tunable frequencies that depend upong, and a central
peak for a semi-infinite range ofg values. In addition, at the
onset of the central peak, that mode form exhibits lowT
frequency scaling, instead of the time scaling present in
AFM equivalent neighbor and four-spin ring models, and
is a scaling function of a differently scaled frequency than
the FM equivalent neighbor model and the four-sp
ring.21,22 The simplest integrable four-spin system with d
namics similar to that of the isosceles triangle is t
squashed tetrahedron, which also involves two differ
near-neighbor exchange couplings.25

Inelastic neutron scattering experiments on large sin
crystals would be a particularly useful technique to obse
the effects predicted here. By appropriately varying the sc
4-10
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tering wave vector, all four of thed C̃i j (v)’s can be measured
as functions ofv andT. Although experimental observatio
of the predicted low-T modes might be difficult, since quan
tum effects are expected to dominate at very lowT, the pres-
ence of such modes for three classical Heisenberg spin
an isosceles triangle underscores the qualitative changes
occur with different exchange couplings. Our numerical
sults indicate that the development of these additional mo
appears atT values high enough for the classical treatmen
be valid.
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APPENDIX

We first discuss theT→` limit of the integralsI i(t), Eqs.
~16!–~18!. From Eq. ~13!, we obtaindC22(t)5I 1(t)/4. As
T→`, dC22(t) coincides with that of theN53 equivalent
neighbor model, so limT→`I 1(t) is obtained by settingN
53 in Eqs.~4!–~9! of Ref. 22. Settingt* 5J1t as before, for
I 2(t) we find

lim
T→`

I 2~ t !5E
0

2

dx f2~x!cos@~12g!xt* #, ~A1!

f 2~x!5
42x2

256x2 F4x~x211!2~x221!2lnS x11

x21D 2G .
~A2!

Then Eq.~23! is derived fromf 2(0)5 f 2(2)50, and

f 28~0!5
1

6
, f 28~2!52

5

32
1

9

128
ln 3. ~A3!

Since f 2(x) and f 28(x) are continuous atx51, Eq. ~A3!
leads to the constantsa1 anda2 in Eq. ~23!. The FT ofI 3(t)
at arbitraryT is given in Eqs.~A10!–~A13!.

We illustrate the procedure for computing the FT’s
obtaining d C̃22(v). The FT of cos(st* ) is d(ṽ1s)1d(ṽ
2s), where ṽ5v/J1. For a ṽ.0, the d(ṽ1s) term is
irrelevant. Thenṽ satisfiesux21u<ṽ<x11. For fixedṽ,
the integration interval forx is then determined as a functio
of ṽ. Hence

d C̃22~v!5
1

4Z
Q~32ṽ !E

uṽ21u

min[2,(ṽ11)]
dxF22~x!, ~A4!

F22~x!5ea[ ṽ21(g21)x2]ṽF12S ṽ2112x2

2ṽ
D 2G , ~A5!

and Q(z) is Heaviside’s step function,Q(z)50 if z,0,
Q(z)51 if z.0.

The exact calculation ofd C̃11 is substantially more in-
volved. We define the functionsĨ a(v) to be FT’s of I a(t),
@Eqs.~16!–~18!#,
22440
on
hat
-
es
o

,

d C̃11~v!5 Ĩ 1~v!1 Ĩ 2~v!1 Ĩ 3~v!, ~A6!

where Ĩ 1(v)5d C̃22(v)/4. We then find that

Ĩ 2~v!5
1

2Zu12gu
Q~22v̄ !E

u12v̄u

11v̄
dsF11,2~s!, ~A7!

F11,2~s!5ea[s21(g21)ṽ2]sS 12
v̄2

4
D F12S s21v̄221

2sv̄
D 2G ,

~A8!

and v̄5v/@J1(12g)#. We first write Ĩ 3(v) as

Ĩ 3~v!5
1

16Z
@ Ĩ 3a~ṽ !1 Ĩ 3b~ṽ !1 Ĩ 3c~ṽ !#. ~A9!

For 0,g,2, settingD5u12gu, we then have

Ĩ 3a~ṽ !5Q~312D2ṽ !Q~ṽ21!

3E
(ṽ21)/(11D)

min[2,(ṽ11)/(11D)]
dxF11,32~x!

1Q~12ṽ !Q~ṽ2D!E
(12ṽ)/(12D)

(11ṽ)/(11D)
dxF11,32~x!,

~A10!

Ĩ 3b~ṽ !5Q~322D2ṽ !Q~ṽ21!

3E
(ṽ21)/(12D)

2

dxF11,31~x!1Q~12ṽ !

3E
(12ṽ)/(11D)

min[2,(11ṽ)/(12D)]
dxF11,31~x!, ~A11!

Ĩ 3c~ṽ !5Q~D2ṽ !E
(11ṽ)/(11D)

min[2,(12ṽ)/(12D)]
dx@2F11,32~x!#,

~A12!

F11,36~x!5ea[( ṽ6xD)21(g21)x2]

3
~12x2/4!@„ṽ6x~11D!…221#2

~ṽ6xD!x2
.

~A13!

For other values ofg, we obtain similar expressions.
As T→`, one has

lim
T→`

Ĩ 2~v!5
1

u12gu
Q~22v̄ ! f 2~v̄ !. ~A14!

The general expression for limT→` Ĩ 3(v) is too compli-
cated to be given here. For the chain,
4-11
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lim
T→`

Ĩ 3
g50~v!5Q~52ṽ !Q~ṽ23!

1

64
Ĩ 3a

g50~ṽ !

1Q~32ṽ !Q~ṽ21!
1

64
Ĩ 3b

g50~ṽ !

1Q~12ṽ !
1

64
Ĩ 3c

g50~ṽ !, ~A15!

Ĩ 3a
g50~ṽ !5

~52ṽ !~2242195ṽ1229ṽ2147ṽ317ṽ4!

48ṽ

1
~ṽ221!~117ṽ2!

ṽ2
ln

ṽ21

4

2
~ṽ224!~ṽ221!2

4ṽ2
ln

ṽ11

2~ṽ22!
, ~A16!

Ĩ 3b
g50~ṽ !5

3ṽ4167ṽ2224

6ṽ

2
~ṽ221!~ṽ4123ṽ218!

4ṽ2
ln

ṽ11

ṽ21
,

~A17!

Ĩ 3c
g50~ṽ !5

7ṽ426ṽ21951

24
1

~12ṽ2!~117ṽ2!

ṽ2
ln

12ṽ2

16

1
~42ṽ2!~12ṽ2!2

4ṽ2
ln

4~42ṽ2!

12ṽ2
. ~A18!

The leading asymptotic behavior@Eq. ~22!#, arises from

Ĩ 3a
g50~5!50, ~A19!
ur

.

y

B

J.

22440
Ĩ 3a
g50~3!5 Ĩ 3b

g50~3!5
137

3
2

592

9
ln 2, ~A20!

Ĩ 3b
g50~1!5

23

3
, Ĩ 3c

g50~1!5
119

3
, ~A21!

Ĩ 3c
g50~0!5

315

8
233 ln 2. ~A22!

We now derive the AFM low-T mode frequencyV2(g).
As a→2`, the integrand in Eq.~A4! becomes sharply
peaked about somev-dependent valuex0. We then perform
an asymptotic evaluation of the form

E
a

b

dxeh(x)'eh(x0)A2pUd2h

dx2U
x0

21

, ~A23!

h~x!5a@ṽ21~g21!x2#1 ln ṽ1 lnF12
~11ṽ22x2!2

4ṽ2 G .

~A24!

Inside the integration region, the integrand has exac
one maximum atx0. For g.1, x0

(g.1)5u12vu1e, while
for g,1, x0

(g,1)511v2e, where e.0 is O(a21). We
then evaluate the integral in Eq.~A23!. It is maximal forv
5V1, where

V1~g!/uJ1u5u121/gu. ~A25!

For g,1/2, this result gives a spurious maximum, since
would requirex.2. Since the result of the asymptotic eval
ation is a monotonically increasing function ofv for v
,1, we therefore conclude thatV15uJ1u for g,1/2. The
proof of Eq.~28! is thus complete.
.
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