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Time correlation functions of three classical Heisenberg spins on an isosceles triangle
and on a chain
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At an arbitrary temperaturé, we solve for the dynamics of single molecule magnets composed of three
classical Heisenberg spins either on a chain with two equal exchange codstamtn an isosceles triangle
with a third, different exchange constad$. As T—oo, the Fourier transforms and long-time asymptotic
behaviors of the two-spin time correlation functions are evaluated exactly. The lack of translational symmetry
on a chain or an isosceles triangle yields time correlation functions that differ strikingly from those on an
equilateral triangle withl;=J,. At low T, the Fourier transforms of the two autocorrelation functions with
J,# J, show one and four modes, respectively. For a semi-infihitd, range, one mode is a central peak. At
the origin of this range, this mode has an interesting scaling form.
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[. INTRODUCTION triangle have one additional exchange constgrt J;, and
this simple translational invariance is absent. Dynamical
Recently, there has been a substantial interest in the physieasurements on Gd3 and modified compositions of Ru3
ics of magnetic molecules, or single molecule magnetgould help to uncover the effects of this lack of translational
(SMM's).2~7 Such studies are important both for basic sciendinvariance inside each SMM, and might aid in our under-
tific reasons and for possible technological applicatighs. Standing of more complicated systems with multiple mag-
Among the smaller SMM's are dimers of'V (S=1/2) and  NetiC interactions. . _
of Fé+ (S=5/2) *1a nearly equilateral array of threeV/ At Iow_ T, thg N spins in the equivalent neighbor model
spinst! and an isosceles triangle of &d(S=7/2) spins oscillate ina single mod%z..Hejre we shpw that the_ absence
(Gd3).12 Nonmetallic variations of B-BaRuQ, with three of translational symmetry inside each isosceles triangle gen-

Ru"4 (S=1) ions (Ru3 might behave as three-spin chain erally introduces three additional loWw-modes at tunable
SMM’s. 1314 9 P frequencies depending upoy=J,/J;. For a semi-infinite

Each SMM consists of a small number of paramaanetid 219€ ofy values, one of these additional modes is a central
P 9 gpeak. In addition, the dynamics of the spins on the endpoints

'ons _surrounded by nonmagnetic Ch_e”_“ca' Ilg_and groupSyf e three-spin chain wit,=0 are qualitatively different
and is large enough that the magnetic interactions betweegl,, the dynamics of the spin at the chain center. The mode
the ions in different SMM’s within a crystal are ne_ghglble. tuning parametery makes the dynamical behavior of the
Hence measurements performed on macroscopic samplggins on an isosceles triangle remarkably different from that
just probe the magnetic interactions within the individual present in any SMM system studied previously, including the
SMM's. Large single crystals with long-range SMM packing four-spin ring?-??

order are suitable for inelastic neutron scattering experi- The structure of the paper is as follows: In Sec. Il we
ments. Measurements at the appropriate deviations from thgefine the model, calculate its partition function, and present
Bragg wave vectors for the particular SMM crystal structurethe exact time evolution of the spin vectors. In Secs. Il and
probe statistical ensembles of the Fourier transforms of they, we discuss the time dependence and Fourier transform,
two-spin time correlation functions involving the spins in respectively, of each spin-spin correlation function. We dis-

each SMM. _ o cuss our results in Sec. V.
The magnetic interactions between the ions in these

SMM'’s can often be described by the isotropic Heisenberg
model. One expects that for ions such as®Gdwith S Il. MODEL AND SPIN DYNAMICS
=7/2, the classical version of the Heisenberg model captures
the essential features of the dynamics at not too low temper?ﬁagnitude,8i=|$|:1, on a triangle with two classical
tures T. For a dimer, comparisons of the classical &d Heisenberg exchange couplings
=1/2,5/2 quantum behaviors of the dynamics supported this '
expectatiort>® For the equilateral triangle, such compari-
sons were only made fof—.'" In addition, exact and H=—-31(S-$+ S, $)— 155, Ss. 1)
numerical results were presented for the classical difiiéf,
the four-spin ring?' and the N-spin equivalent neighbor The cases);=J, and J,;#J,#0 describe equilateral and
model, which includes the equilateral triangfe. isosceles triangles, respectively. The cdse 0 describes a
For three spins on an equilateral triangle, with equalthree-spin chain with free boundary conditions. Equatibn
Heisenberg exchange constadts the spin sites on each can be realized if the ring contains either two different lattice
triangle are translationally invariant. Spins on an isoscelesonstants, as in Gd3, or ions with two different spin values.

We study the Hamiltonian describing three spghef unit

0163-1829/2002/6@2)/22440413)/$20.00 66 224404-1 ©2002 The American Physical Society



MARCO AMEDURI AND RICHARD A. KLEMM

We rewrite Eq.(1) in terms of the total spinS=S,
+S;3, With S;3=5;+S;, and obtain, up to a constant,

H=-—

J J,—J
21 Sz 27 Y1 23 (2)

The partition functionz= [(I13_,dQ;/4m)e " is

2 x+1 e® 2 2
zj de' dsse*BHz—j dxe*” sinh 2ax),
0 [x—1] a Jo
3

where 8= (kgT) %, dQ; is the solid angle element for the
ith spin,a=BJ1/2, y=J,/J1, X=S;3, ands=S.

To calculate the time-dependent correlation functions 2 x?
(Si(t)-S;(0)), we first solve the classical Heisenberg equa- lo()= 2\ 2 1- 4

tions of motion for the quantitieS,(t) and S;4(t),

Sp15=31S,13¢ S, (4)
leading to
$,141)=Cp15+ Az 1d cO I sX—siN(J;st)y],  (5)

Where ASHS g_;(XQ, A2— A13, C2+C13=S, C13=(Sz
+x2—1)/(2s), andAZ,=x2—C3,.
The time dependence & (or S;) is obtained from

S;=(J3—31)S; XS5+ 3,5, XS, (6)
leading to

Sis(t) = S150T ASygg €08 (I3 =o)Xt = ¢hg ], (7)

AAS
Sp.(t)= l3813°exp(+|let)+—1S° p{Ii[(Jls

2(CyatX)
(31 2)X]t—|¢o}+2(1éA SR Fi[(3ss
~(91=3)x]tFi o}, ®

where S;.= Slx_ISly, S10=C192, AS;so=A5(1
—x214)Y3/x, and ¢, is an arbitrary angle describing the ini-
tial spin configuratiorf*

Ill. TIME CORRELATION FUNCTIONS

We study the two-spin time correlation functions

) =(S(t)-5(0)), 9

where  (---)=[§Td¢ofodx[ Y sdse PP /(2nZ).
SinceC;1=C33 and C1,=Cyp3, only four C;; are independent.
These are constrained by the sum rule

(8%)=Cont) +2C15(1) +4C1(1) +2C14(1).  (10)
After averaging ovekp,, the exacC;(t) satisfy

Cra(t) =1+ 11(t) +15(t) +15(1), (11

Crg(t) =1+ 11(t) = 15(t) = 15(1), (12
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Codt) =4[l o+ 11(1)]+2(C,8) = (%), 13

1
Crlt)= —2[|o+|1(t)]+§[<32>—<C25>], (14)

where, by setting* =J;t, we have

1
|o:Z<C13>, (15

1
1,(t)= Z(Aiscos(st*», (16)

cog(1- V)Xt*]>, 17

(1—x7/4)
|3(t):<T((C13 x)%coq[s+(1— y)x]t*}

+(Cyz+x)%cog[s—(1— Y)X]t*})>- (18

As T—, the remaining double integrals in Eq4.5)—
(18) can be reduced to single integrals, as shown in the Ap-
pendix. Note that ,(t) is a constant fory=1, but not for
v#1, leading to dramatic differences between the dynamics
of spins on equilateral and isosceles triangles, respectively.
As t—oo, the time-dependent integrands oscillate wildly and
their contributions vanis®® From Egs. (13) and (16),
limt;_...Cy, for y#1 is identical to its value fory=1. Only
at finite T doesJ, influenceC,,(t). Hence, fort*>1 and

T o0 21,24
1 sin(t* )+ sin(3t*)
lim C t)~—+26 , (19
m 22 3 (t*)°
t*>1
03= 9 In3 ! 0.07359 20
3=g0N3~ 55~0 : (20)
From Egs.(13) and(14), it then follows that
1 sin(t* )+ sin(3t*)
lim Cyo(t ~——5 . 21
im Co(t) s (21)

t*>1

The surprise comes from the behaviors@f and Cy;.
The long-time approaches to the various asymptotic limits
are characterized by three different powers, corresponding to
the equilateral, the isosceles and the chain cases, respec-
tively. For y=1, C{7 L(t)=C,x(t), which approach their
mutual limit ast~3 asT—>oo

For y=0, Cy;4(t) is dominated byl (1), yielding

0. 1 8 1
limC], (t)~—+?+2—sm(t*) (22

T—ox
t*>1
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: FIG. 1. Plots ofC;4(t) (solid), C1x(t) (dashed
C15(t) (dense dotted(,5(0)=0), Coy(t) (sparse
dotted, Cp(0)=1) vs t*=|Jy|t as T—x» («
=0) for the chain §=0).
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which approaches its different asymptotic limit dramatically 1 5 9 0.079004
slower. a2=(|n )~ 25)
For y#0,1, |,(t) andI4(t) decay ast 2 and oscillate (1-y)2\32 128 (1—y)?
with different frequencies. The evaluation bf(t) is quite
involved. By calculating its Fourier transform and then in- y—=1 y—2 02 ‘
verting it through integration by parts, we find =" t——In 2" (26)

lim ¢ %)

T

Note that one cannot take either of the limjts-1 or y

Iyt 1= ]t* 51 —0 directly in Eq.(23), since the expansion is valid only
. . when both|y|t*>1 and|1— y|t*>1 are satisfied.
~}+§+{al+a2005{2(1_7’)t ]+agcodt*)} In Fig. 1, we plot theC;(t) as T—= for y=0. Since
3 2 (t*)2 ' Coo(t) and Cyx(t) as T—x are independent ofy, these

curves are respectively identical to those or(t) and
(23 C15(t) obtained forT—< in the equilateral triangle. These
where (see the Appendjx functions each approach their asymptotic limitstas. On
the other hand, fory=0, C;4(t) and C.5(t) oscillate about
each other for a long time, approaching their mutual

a;= — ; (24) ~ asymptotic limit ast™*,
6(1—1v)? In Fig. 2 we comparey;(t) and Cy5(t) asT—x for y
1 T T T T
=0
—y=03 1
ceeey=-03
< v/ v=15 FIG. 2. Plots 0fCy(t), C15(t) vst* =|J,|t for
& T—w (e=0), y=0.3 (solid, —0.3 (dashey
A S . and 1.5(dotted.
1‘0 1‘5 2‘0 25
¥
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4 FIG. 3. Plots of lim_..Cjj(t) for the chain
(y=0) vs |a|=p|31|/2, for a>0 (FM) and &
<0 (AFM).
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=+0.3 and 1.5. Fory==*0.3, the leading term in the ap-
proach to the asymptotic limit arises frcem in Eq. (23). For

v=1.5, 21— y|=1, so there is asymptotically only one fre-
guency, equal to that for the chain shown in Fig. 1, but th

asymptotic limit is approached faster.

e

A. Infinite temperature

In Fig. 4 we plotsCy(w) asT—o for some|y|<1. The
solid curves fory= 1,0 correspond to the equilateral triangle

and the chain. For the equilateral triangh€,,(») vanishes

At finite T, the physics of the model is influenced not only @ ©—0,3, and exhibits a single smooth peak at|J,|
by v, but also by the sign oJ;. We henceforth refer to the ~1.4385. Although difficult to discern in this figure, the

J;>0 andJ; <0 cases as ferromagnetieM) and antiferro-
magnetic(AFM), respectively.

We obtain theC;;(t) at finite T by direct numerical evalu-
ation of the double integrals in Eq§ll)—(14). As an ex-
ample, in Fig. 3, we plot the lim,..C;;(t) for y=0 as func-
tions of |a|=p|J4|/2. The FM and AFM cases are
distinguished by arrows. We recall that }im.Cq5(t)
=lim,_..Cy4(t) for all y#1. The spins are intrinsically un-
frustrated. At lowT, the FM lim_..C;j(t)~1, while the
AFM lim,_,.Ciy(t)~—1. In the AFM case, liq,..Cy4(t)
has a minimum value of-0.29 ata~ —0.9.

IV. FOURIER TRANSFORMS

The dimensionless Fourier transfofiAT) of each devia-
tion 8C;; (t)=C;; (t) —lim,_..C;j (t),*" is
v _ |‘]1| e i wt

Since causality requiresC;;(w)=8C;j(—w), we consider
only positive values ofw/J;. The Fourier integral is in prin-

ciple elementary, since the time dependence is contained in

simple trigonometric factors, yielding combinations 6f

integration domain is restricted to a finite region in tisex{
plane, thed-functions only contribute to the integrals df

falls within specific ranges. Determining the allowed ranges

functions that allow us to perform one of the integrations. We
thus obtain single integral representations for the FT's at a

T, which can be evaluated with high precision. Since eac

i

curve contains discontinuous second derivativeso4tl, |
=1,3 responsible for the 2 long-time, T—x decay of
8Cyy(t). 2%

As T—, althoughdCo(w) for the chain coincides with
the equilateral triangléC;,(w) curve, the chainsCyy(w) is
dramatically different. In addition to the slope discontinuity
at w/|J;|=2, the chainsCy;(w) is discontinuousat w/|J|
=1, as indicated by the symbet. This discontinuity is
responsible for the L/ong-time, T—o decay ofdCy4(t).

The isosceles triangle cases are also very interesting, as

they do not just interpolate between the equilateral triangle
and the chain. Foy=*+0.2, the discontinuities in the slope
of 6C1i(w) at /|J4]=1, 1.4, and 1.6 are also discernible.
As y—0, the slope discontinuities ab/|J;|=1 approach
+o as expressed in Eq26). In addition, there is a large
discontinuity in the slope of the curve for=0.9 at w/J;
=0.2, and a resulting large peak at|J;|~0.088, arising
from T,(w). This slope discontinuity is responsible for the
first two termsect 2 in Eq. (23).

B. Low temperature

The 55”((0) at finite T were obtained by numerical evalu-
ation of the single integrals defined in the Appendix. As
—o0, we compared our numerical and analytic results. At
inite T we also checked the initial value sum rules by inte-
grating the FT’s in Eq(27).

1. Equilateral triangle

of w values is tedious. Some of the details of this calculation We first discuss the equilateral trianglg=1. For the

are presented in the Appendix.

AFM case, AsT decreases, the single peakd@;(w) grows

224404-4
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1 T T T T T

Tooo

v values .

FIG. 4. Plots of 8C;y(w) as functions of
wl|J;] asT—wo, for y=1,0(solid), 0.2 (dashey
1 -0.2 (dotted, and 0.9(dash dotteq

liMT_000C11()

in amplitude and shifts to lowe®/|J,|. As shown for the 2. Three-spin chain

equivalent neighbor modéf,this behavior can be quantified A gyrikingly different behavior is obtained for the lof-

by plotting| | ~#26C(w) versusw=|a|*?w/|J,|. INFig. 5,  AFM chain. In this case, instead of the single AFM mode

the |a| Y26C;,(w) curves approach the uniform AFM present in the equilateral triangle, there fmar modes, the

equivalent neighbor model form (8(3)w?exp(-w?), frequenciex); of which approach;/|J;|=1, 2, and 3 as

shown as the solid curve, @s-0.?2 This frustrated behavior T—0 as the frequencies of the strongest modgsand(,,

results in a scaling of the time, &¢t) approaches a uniform pecome degenerate. In Fig. 7, we plottéd;,(w) and

function of OT) " asT—0. 8Cpy(w) for these two modes, versusif|J;|—1)2|«|/5, at

For the FM equilateral triangle, a6 decreases, the peak X ' ~ 7

Y . . . various lowT « values. Curves folC,,(w) are shifted to

in 86C14(w) shifts asymptotically to 3,, as all of the spins : , ~

oscillate together. In the equivalent neighbor model,Tas the right by 0.2 for clarity. We note thaC,,(w) for the (),
mode has a shallow maximum at a frequency which ap-

—0, the three-spiny=1 FM curves approach a uniform -
function of (w/J;—w%)a, where of=3—-1/(3|a|), as proachegJ,| from above asT—0. For theQ); mode, 5C;;
shown in Fig. 82 That is, asT—0, the peak amplitude tends has a large discontinuity precisely at|J;|=1 for all T. By
to a constant value, but its maximum position approachesontrast, theSC,,(w) curves only exhibit th&), mode, and
3J4 linearly in T. are smooth and rather symmetric about their maxima. Both

0.6 T T T T T

FIG. 5. Plots of |a| *26C;(w) vs
|a|Y?w/!|J,| for the AFM equilateral triangle at
low T.

|0 123G 11(w)

2.5

15
| 2a| 1|
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1 T

06 |

FIG. 6. Plots of 6Ciy(w)/A; vs (w/J;
— 03)3a/2Y? for the FM equilateral triangle at
low T, where A;=8/(3¢?) and wi=3
—1/(3/al).

o values

04

3C11(w)/A3

0.2 e i

-0.5 0
(1-0*3)30/21/2

C;i (w) for these modes approach a uniform scaling functioris Very large forw/|J;| <1, but dropsliscontinuously to zero
of |a|(w/|J;]—1) asT—0. We remark that the loW-scal-  atw/|J;|=1, as shown in Fig. 8. For the next largest inten-
ing behaviors of the dominant modes in the AFM chain aresity mode,(},, both 5@11(w) and the Iargeﬁ@zz(w) exhibit
similar to that of the FM equilateral triangle, since neither ofpeak positions that approaeh/|J;|=3 asT—0, as shown
these mode energies approaches 0 -as0. in Fig. 8. We note that we have multiplied the intensities of

In addition, we found that the weak&¥; and(), modes, these curves by a factor of 9, and squeezed the scaling vari-
for which 6Cy4(w) is peaked atw/|J;|~3,2, respectively, able by a factor of 3, relative to those 6C,; for the Q,
both approach uniform low- scaling functions. For th€;  mode, in order to fit all three sets of curves in the same
mode,|a|8C14(w) approaches a uniform scaling function of figure. All of the curves shown in Fig. 8 scalg as for the FM
|a|(w/|3,]—3), and for the 2, mode, azgall(w) ap- eqlinateral triangle. As for the AFM chain, at low,
proaches a uniform scaling function ff|(w/|J;|—2) asT  @dCyy(w) for the), mode approaches a uniform function of
—0. Hence, a§—0, the amplitudes of these modes vanish(w/|J;| —2)|a|, and a?58C;;(w) for the weakest mod€),
asT andT?, respectively. approaches a uniform function of(|J;| —5)| /.

For the FM chain at lowT, there are four nondegenerate
modes for which5C,(w) is peaked af);/|J;|~1, 2, 3, and
5. At low T, the two largest intensity modeQ, and 4, We now consider the more general isosceles triangle
which are peaked ab/J;~1,3, respectively, are pictured for cases. We first discuss the AFM casbs<0. As for the

=5, 10, and 20 in Fig. 8. At lowl, 8C;; for the ), mode  chain, fory#1, asT is lowered,5C,1(w) generally develops

3. General isosceles triangle

1.4 T T T T

o values

_ . FIG. 7. Plots of 8Ciy(w) vs (w/|dq
A0 —1)2|al/5 and &Crfw) Vs (w/|3y]—1)2/al/5
Y Y, Qe | +0.2, for the AFM chain~at the lowW- values

/ —a=5, 10, 20, 40, and 8@;(w) is discontinu-
40 ous atw/|J;|=1, indicated by the=.

0.8 |

3Cii(w)

02 |

0 ' T Y

0 0.5
(/1] - 1)2]l/5 +(i - 1)/5
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FIG. 8. Plots 0f?5C;4(w) andn?6Cpy(w) vs
(/]34 = @})| a|/n for the O, andQ, modes of
the FM chain at the lowF valuesa=5, 10, and
20, wherew?® =n—(n—1)/(2n|a|). Ci;(w) for
the 2, mode is discontinuous ab/|J,|=1, as
indicated by the~=.

into three or four peaks, which become progressive!ymodes toy. 6Cyy(w) contains four lowT AFM mode fre-

sharper. When only three modes are present, one of them is
central peak atw=0. For nonvanishing frequencies, these

modes are magnons. As for the three-spin chain, their rela-
tive intensities at finitd are very different, as the two largest
are typically a few orders of magnitude larger than the third,
which is a few orders of magnitude larger than the fourth.
To illustrate the types of low- AFM behavior, in Fig. 9
we plot logd 6C11(w)] and logd 8Cox(w)] versusw/|J,| at

the AFM low-T value «=—80 for y=-0.1 and 2.5. For
y=—0.1, 6C14(w) exhibits four sharp peaks a/|J;|~1,

1.2, 2.2, and 3.2. Foy=2.5, there are three broad peaks in
8C11(w), one of which is a central peak at=0, and the
others are centered ai/|J;|~ 0.6 and 1.2. In each case,
8Cw) is a single peak at one of the larger nonvanishing
8C11(w) peak positions.

After a careful analysis of many lowér-results, we es-
tablished simple formulas relating the frequencies of the

log105Cij(w)

o =-80
At y values
2t ' AFM
-0.1

3F ‘.‘
Sr ‘._2.5
5| 1 -0.1
7 1 l“i l:l' ‘I'. 1 1 1 1 /\

0 05 1 15 2 25 3

o/|J4]
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q%enciesﬂi(y), depicted in Fig. 10, which satisfy

Qu(/|3,]=1 for y<1/2,

=|1-1/y| for y=1/2, (28
Quo(P)|3y|=1-2y for y=<1/2,
=0, for y=1/2, (29
Qs(Y)1|31|=3-2y for y<1/2,
=2|1—-1ly| for y>1/2, (30)
Qu(1|31|=2-2y for y<1/2,
=[1-1/y| for y=1/2. (31

FIG. 9. Plots of the AFM log{ 5C;(w)] vs
l|J4], at low T (e=-80) for y=—0.1, 2.5.
The solid(dashedl curves correspond t6C;4(w)
for y=-0.1 (2.5. The dash-dotted(dotted
curves are the correspondidg,,(w) curves.
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35

st\ h AFM T—0 .

Lo
25 | ‘\‘ 3
\

""""""""""""""""""""""""""""""" . FIG. 10. Plots of the lowr AFM mode fre-

Qi(y)/1J1|
&

quencies);(y)/|J;| vs y. The triangles indicate
low-T scaling.

05

.05 1 ! 1 ! 1 ! 1

6Cy(w) contains only the lowF FM mode with fre- and logq 6Cox )] versusw/|J;| at «=20 for y=1.5 and

quency2,(y). We note that fory=1/2, (), and (), are  —1. Fory=1.5, 6C;,(w) at thisT exhibits four sharp modes
degenerate. We analytically confirmed EB8) by perform-  at/|J,|~1, 2, 3, and 4, respectively. For= —1, there are

ing an asymptotic evaluation of the integral representation O{hree broadsC,y(w) modes, with rather well-defined peaks

8Coo(w), as shown in the Appendix. at /|J,|~0, 2, 3.6 at thisT. As for the AFM case, in each
For the AFM case withy<1/2, there are four modes at

finite frequencies. For £ y>1/2, (), and (), are degener- cgseéﬁzz(w) 's a single peak at one of the nonvanishing

ate, and the mode with frequendy,(y)=0 is a central 501F1(“’) peak posn!ons. vsis of oV |

peak. The two triangles in Fig. 10 indicate special points. For oM an extensive analysis of many loweresults, we

y=1, the four modes are all degeneratély(w) found that there are generaIIZ four loW5Cy4(w) FM mode

_ P ¥ ; frequencies();(y), and thatéC,,(w) has one nonvanishing

= 8Coy(w), and 8C11(w) approaches the AFM scaling form i 22 ; i

shovjrzw in Fig. 5 Flcl)r the loil- AFM casey=1/2, 6Cy1(w) mode frefquencﬁl(y). These FM(;(y), pictured in Fig.
0 e T 19" 13, satis

exhibits the mode frequend,(1/2)— |J,|/|a|Y? asT—0, y

and the shape of this mode approaches a scaling function of

|a|Y?w/|J4|, as shown in Fig. 11. TheséCy;(w) curves

scalewithouta corresponding rescaling 6€,,(w) itself. QU(N1=[1=1hH| for y<-1/2,
We now consider the FM case at IoWv To illustrate the
types of behavior found, in Fig. 12, we plot lsCy1(w)] =3 for y=-1/2, (32

1

3C11(w)

FIG. 11. LowT plots of 6C;y(w) Vs the
scaled frequencyw|a|¥¥|J;| displaying the
b AFM Q,(1/2) mode.
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“\ y values oa=20 FM
o \‘\ 15 T
PN Y |
N
S -/ AN FIG. 12. Plots at @=20 of the FM
2 8t Y ] log;d 6C1y(w)] for y=1.5 (solid and —1
g‘» 1 VN (dashedl and logq 8Co) ()] for y=1.5 (dot-
= 4r \ C22 T dashediand —1 (dotted vs w/|J4].
5} ' e e ¥ . -
s} 1.5 ANE
1.5 N
7 A
0 1 2 4 5
o/|J1]
Qy(y)31=0 for y=-1/2, For the lowT FM equilateral triangle, indicated by the
circle in Fig. 13,8C,,(w)= 6C14(w), since the amplitude of
=1+2y for y=-1/2, (33) the mode with frequencf,(y) vanishes agy—1, and the
remaining mode frequencies are degenerate. Hétgg w)
Q3(y)131=2|1-1ly| for y<-1/2, approaches the FM scaling form shown in Fig. 6.
We now examine the other special FM cage —1/2.
=|5—-2y|] for y=-1/2, (34 The mode),(—1/2), indicated by the triangle in Fig. 13, is
a low-T FM mode with scaling properties remarkably similar
Quy)I3=|1—1y| for y=-1/2, to those of the AFM mode with frequen€y,(1/2), pictured
in Fig. 10. AsST—0, the 6C;;(w) FM mode frequency)
=2|1—y| for y=—1/2. (35) - g

As for the AFM case with ¥ y>1/2, for y<—1/2, the
low-T FM mode with frequency¥),(y) =0 is a central peak,
and Q, and Q, are finite and degenerate. For>—1/2,

(—1/2)—|J,|/|@|*?, and the mode shape approaches a scal-
ing function of|a|Y?w/|J,|, as pictured in Fig. 14. By com-
paring Fig. 14 with Fig. 11, the lowedt curves in the two
figures are almost identical, provided that one rescileg a

there are four FM magnon modes, none of which is a centrafactor of 8. Since in these special cases, the scaling does not
peak. The amplitude of the weakest mode with frequencynvolve scaling of the mode amplitude, it does not represent

Q4(y) is xT? asT—0 for y=—1/2. At y=5/2, Q5(5/2)

«T, so the mode with frequencf);(y) is never a central
peak.

a contribution todC,4(t) involving a scaling of the time, as
for the AFM equilateral triangle pictured in Fig. 5, or more
generally for the AFM low¥ equivalent neighbor and four-

FIG. 13. Plots of the lowF FM mode fre-
quencied);/J, vs y. The triangle indicates low-
T mode scaling, and the circle indicates the dis-
appearance of the mode. See the text.
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1 T T T

FIG. 14. Plots at various lowl values of

8C11(w) vs the scaled frequenay|a|Y?|J,| for
7 the FM Q,(—0.5) mode.

3C11(w)

1
olo|12/J4

spin ring model€? It is therefore a new form of mode  For the three-spin chainy=0, the effects of the absence

scaling, not previously found in any SMM system. of translational symmetry in the chain are even more dra-
matic, leading to qualitatively different dynamical behaviors
of the spins on the chain ends from that of the spin at the

) _center. For both signs af;, 6C,(w) has only one mode
We presented the exact solution for the thermal equilib-

. . ; . : ‘energy|J;|. But 6Cy4(w) is distinctly different. For the AFM
rium dynamics of three classical Heisenberg spins on a tri- , R
angle with two exchange couplinds andJ,. Although one  three-spin chaingCyy(w) has three lowr modes atn|J4|
might expect that fory=J,/J;~1 the behavior would not With n=1, 2, 3, where th@=1 mode is doubly degenerate.
be too different from that of the equilateral triangles=1, For the FM three-spin chaingC,i(w) has four modes at
we found that this is not the case, regardles3.dhstead of n|J;| with n=1, 2, 3, and 5. Our results suggest that for
the two Cj;(t)’s related by a sum rule foy=1, for y#1 N-spin chains, the spins on or near the chain ends would
there are foulCj;(t)’s related by a sum rule. Foy#0, the  have a richer dynamics than would those of more central
piecewise continuous Fourier transforrﬂgfij(w) demon-  spins, or of spins on closed rings bf spins. It would be
strate the profound effects of the absence of translationadhteresting to see if such differences are indeed maintained
symmetry within the triangle withy#1. As T—o, they for larger spin chains and for larger spin clusters with two or
allow us to determine the long-time behavior of the autocormore Heisenberg spin exchange interactions.
relation functionsC;4(t) and C,(t), which approach their For the four-spin ring with equal near-neighbor exchange
d_'sst'”Ct long-time asymptotic limits differently, as ? and couplings J;, the single autocorrelation functiofiC;(w)
%, respectively. For the three-spin chaips=0, the auto- 545 single mode that approaches the fixed frequefiy 2
correlation function on the chain end(;y(w), is discon-  asT—0, in addition to the AFMFM) mode of the four-spin
tinuous atw/|J,|=1 at allT, leading to the characterisic*  equivalent neighbor model with a frequency that approaches
behavior ofCyy(t) asT— . o _ 0 (4|J41]).2%*2None of these is a central peak &£ 0. The

At low T, settingy#1 leads to a qualitatively different jgosceles triangle has a much richer spectrum of four modes,
behavior from that obtained foy=1. Regardlefs of the sign  yith tunable frequencies that depend upgnand a central
of J;, for y# 1, there are four lowr modes in6Cy;(w). For  peak for a semi-infinite range of values. In addition, at the
J;<0 andy#1, two of these lowF modes{); and{),, are  onset of the central peak, that mode form exhibits Bw-
degenerate foy=1/2. ForJ,>0, (), and(), are degenerate frequency scaling, instead of the time scaling present in the
for y<—1/2. In both of these FM and AFM regimes, one of AFM equivalent neighbor and four-spin ring models, and it
the nondegenerate lolv-modes is a central peak with a is a scaling function of a differently scaled frequency than in
width determined by thd;, which grows in intensity a§  the FM equivalent neighbor model and the four-spin
—0. This central peak, which can have the largest modeing.?**? The simplest integrable four-spin system with dy-
intensity, arises from the pinning of a magnon mode in thenamics similar to that of the isosceles triangle is the
isosceles triangle witll;#J,, and does not appear in any squashed tetrahedron, which also involves two different
other model which has been solved exactly. There is also aear-neighbor exchange couplirfgs.
peak atw=0 arising from the long-time asymptotic limit of Inelastic neutron scattering experiments on large single
Cq4(t), which would be broadened by relaxation processegrystals would be a particularly useful technique to observe
not included in our model. the effects predicted here. By appropriately varying the scat-

V. SUMMARY AND DISCUSSION
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tering wave vector, all four of théC;;(w)’s can be measured 8C(0)=11(0)+1(w)+13(w), (A6)
as functions ofw andT. Although experimental observation

of the predicted lowF modes might be difficult, since quan- WhereTl(w)= 5"@22((0)/4_ We then find that

tum effects are expected to dominate at very lowhe pres-
ence of such modes for three classical Heisenberg spins on
an isosceles triangle underscores the qualitative changes that
occur with different exchange couplings. Our numerical re-
sults indicate that the development of these additional modes
appears at values high enough for the classical treatment to ) - 2

be valid. Frds)=eds(-Dedg| 1 2|1

- 3 1 — (14w
I(w)= m(a(z_w)ﬁl_;ldsﬂl,z(s): (A7)

— 2
s+ w2—1>

2sw
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APPENDIX l3(w)= 757 [13a(@) +1ap(w) +la(w)]. (A9)

We first discuss th& — o« limit of the integraldl;(t), Egs. ]
(16—(18). From Eq.(13), we obtain 6Cyy(t)=1,(t)/4. As  For 0<y<2, settingA=[1—1y|, we then have
T—o, 8Cyy(t) coincides with that of theN=3 equivalent

neighbor model, so lim_.1,(t) is obtained by settind\ T20(0)=0(3+2A—0)O(w—1)
=3 in Egs.(4)—(9) of Ref. 22. Setting* =J;t as before, for ~
- in[2,(w+1)/(1+A)]
[5(t) we find « jfi“” dX Fir s (X)
5 (w—1)/(1+A)
lim |2(t):j dxfy(x)cog (1—y)xt*], (A1) -~ (L+@)/(1+A)
T 0 +0O(l-w)O(w—A) _ dxFy13-(X),
(1-w)/(1-A)
. _4—x24 2 1) (2 1)) x+1)? (A10)
2(x)= PYg) X(x“+1)—(x )<In —1l |
(A2) l3p(0)=0O(3—2A—w)O(w—1)
Then Eq.(23) is derived fromf,(0)=f,(2)=0, and 2 ~
Xf~ de11’3+(X)+®(l_w)
’ 1 9 (@—1)/(1-A)
fz(O)—g, f2(2)—_3—2+ ESInS (A3)

in[2,(1+ ©)/(1— A
X f M g s (0, (ALD)
(

Since f,(x) and f;(x) are continuous ak=1, Eq. (A3) 1-0)/(1+4)

leads to the constanés anda, in Eq. (23). The FT ofl 5(t)
at arbitraryT is given in Eqs(A10)—(A13).

N ~ [ min[2,(1- ®)/(1—A)]
We illustrate the procedure for computing the FT's by l3c(w)=0(A-w

dx —Fr15- (X1,

- n = (14 @)/(1+A)
obtaining 6C,o(w). The FT of cos§t) is 8(w+s)+ é(w (A12)
—s), where w=w/J;. For aw>0, the §(w+s) term is - .
irrelevant. Thenw satisfies|x—1|<w=x-+1. For fixedw, Fip 3 (x) = eel(@=xa)+ (y=1)x7]
the integration interval fox is then determined as a function 5 - 5 )
of 5. Hence >((1—x D[ (wxx(1+A))"—1]
(0*XA)X? '
- 1 ~ [ min[2,(0+1)]
6Cos( )= E®(3— ) ooy dxFoy(X), (A4) (A13)
=212\ For other values ofy, we obtain similar expressions.
~ ~ w°+1—X
fzz(x):ea[w2+(71)xz]w|:l_ — ) , (As) As T—x, one has
w
and ©(z) is Heaviside’s step function®(z)=0 if z<0, |imT2(w):i@)(2—E)f2(Z)_ (A14)
0(z)=1 if z>0. T 11—
The exact calculation oBCy, is substantially more in-

volved. We define the functions,(w) to be FT's ofl(t), The general expression for lm..I3(w) is too compli-
[Egs.(16)—(18)], cated to be given here. For the chain,
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— -~ 1o o~
T|im Ig_o(w)=®(5—w)®(w—3)al 1 %w)
-~ 1o o~
+®(3—w)®(w—l)al3b ()
e o
+O(1-w) 503 %(w), (A15)
T (5— ) (— 24— 1950+ 22%w%+ 4703+ Tw?)
w)=— ~
s 480
+(Z)2—1)(1+7Z)2)| w—1
? 4
0?—4)(0?-1)?  w+1
_(@m e )7, edl (A16)
4w? 2(w—2)
e~ 30*+670?-24
13 %0)=——5——
6w
(2)2—1)(2)4+232>2+8)| w+1
—_ — n~ ,
4w? w—1
(A17)
oo~ T0*—60°+951 (1-0?)(1+7w?) 1-w?
13-%w)= + ~ In
24 e 16
4_~2 1_~22 44_~2
LUzendzel), Ao (A18)
4e? 1— w?

The leading asymptotic behavipEqg. (22)], arises from

11°%5)=0, (A19)

PHYSICAL REVIEW B 66, 224404 (2002

oo~ _o . 137 592
13.7(3)=13,"(3)= % ——5-In2, (A20)
3 9
og. 23 o o 119
13, (1)=§, 4 (1):?. (A21)
o 9. 315
137°(0)="%—33In2 (A22)

We now derive the AFM lowF mode frequency),(vy).
As a— —, the integrand in Eq(A4) becomes sharply
peaked about some-dependent valug,. We then perform
an asymptotic evaluation of the form

(A23)
~2_y2\2
h(X)= a[ @2+ (y— 1)x3]+In @ +In 1—%
4w
(A24)

Inside the integration region, the integrand has exactly
one maximum ai,. For y>1, x""V=|1—w|+ e, while
for y<1, x{"Y=1+w—¢, wheree>0 is O(a™1). We
then evaluate the integral in EGA23). It is maximal forw
=Q,, where

QY31 =1-11y]. (A25)

For y<1/2, this result gives a spurious maximum, since it
would requirex>2. Since the result of the asymptotic evalu-
ation is a monotonically increasing function af for w
<1, we therefore conclude th&,=|J,| for y<1/2. The
proof of Eq.(28) is thus complete.
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