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Fluctuation-induced hopping and spin-polaron transport
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We study the motion of free magnetic polarons in a paramagnetic background of fluctuating local moments.
The polaron can tunnel only to nearby regions of local moments when these fluctuate into alignment. We
propose this fluctuation-induced hopping as a transport mechanism for the spin polaron. We calculate the
diffusion constant for fluctuation-induced hopping from the rate at which local moments fluctuate into align-
ment. The electrical resistivity is then obtained via the Einstein relation. We suggest that the proposed transport
mechanism is relevant in the high-temperature phase of the Mn pyrochlore “colossal magnetoresistance”
compounds and EuyB
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[. INTRODUCTION conventional view is that transport is necessarily activated,
as for a BMP. Here we present an alternative viewpoint: we
Recently free magnetic polarofEMP’s) have received propose that, unlike the BMP, the FMP can move between
renewed attention. They were proposed to explain the cologiearby sites without thermal assistance. We consider a fluc-
sal magnetoresistand€MR) in the manganese pyrochlore tuating, paramagnetic background of local moments. A
compound$® and they have been studied in the context ofn€ighboring region of local moments can fluctuate into the
the double exchange model and the manganese perovski@me alignment as the polaronic moments. At that moment,
CMR Compoundg__g Moreover, Raman-scattering data hasthe carrier can tunnel to the newly aligned region without
suggestetf'!! that they exist in EUR Previous theoretical Needing to overcome an energy barrier. The tunneling pro-
studies have focused on the static properties of the FMP's:ess is fast compared to the spin fluctuations. After the tun-
Here we focus on the dynamic aspect, propose a transpdﬁﬁ”ng process the carrier and the alignment have moved so
mechanism for an FMP, and calculate the resulting resistivthat the complete FMP has hopped to the new location. The
ity. entire time evolution of the polaron formation and hopping
A magnetic p0|aron is a Composite object Consisting of dProcess is illustrated in Flg 1. We call this transport mecha-
localized charge carrier and the alignment it induces in dism “fluctuation-induced hopping(FIH). It does not in-
background of local moments. Localization can occur forVO'Ve an activated process. We calculate the resistivity FIH
two different reasons: the carrier can be trapped by an implgives rise to, and find that the reSiStiVity, thOUgh Iarge, has a
rity atom and then induce a magnetization in the region'metallic” T dependence, nameljp/dT>0, in contrast to
where it is localized. The resulting particle is called aan activated process. This may help to reconcile spectro-
“bound magnetic polaron’(BMP). It is well documented Scopic evidence for FMP*.g., in EUB) with the measured
experimentally, for example, in dilute magnetic semiconductesistivity. While these ideas have not, to our knowledge,
tors such as Cd,MnSel?> and in rare-earth been applied in the context of spin systems, some of their
chalcogenide®® It has been studied in depth theoreticafly. counterparts in the electron-phonon problem are used in the
A BMP is not free to roam through the sample since it ishonadiabatic theory of superconductivifyHowever, in this
bound to its impurity. Only activated transport is possible: N PN f e a N A a
when the BMP is “ionized” the carrier is free to move until Gée—w Gée—/ﬂ—% 9—9—?é‘?
it is trapped by the next impurity. En
However, for large enough coupling to the local moments
the carrier can self-trap without the need for an impufity,
forming a FMP. Due to the coupling the carrier acts as a
magnetic field on the local moments. The strength of this
field varies in space as the probability density of the carrier: g,
the more localized the carrier the stronger the field and the
larger the energy gain resulting from aligning the local mo- A X It
ments. The region of aligned moments therefore acts as a FIG. 1. Time evolution of the electron state. Solid curved lines

potential well that localizes the electron and an FMP isand arrows in the upper part represent the electron density and spin.

formed. The balance between the gain in magnetic energx carrier is placed on the “dotted” level. On a time scalg the
from induced alignment and the loss in kinetic energy betarrier aligns the two moments and forms a bound small polaron.

cause of localization determines the polal’on SiZQ. The eX|SQn a |0nger time Sca|%(' neighboring Spinﬁ'jaghed |in¢ﬂuctuate
tence of an FMP has not been conclusively established, butito alignment, which allows the carrier to tunnel into this state as

has been suggested to exist both in the Mn pyrochtofdd  the levels cross. The resonance persists for a tigxéry. The

and in Eul%.10 density of stateg(E) is shown on the left-hand side of the lower
The mechanism of transport by FMPs is in doubt. Thepart.
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context the emphasis lies on corrections to the electronnup,, along the direction ofm to minimize thes-d energy.
phonon vertex and delocalized carriers, rather than on th‘la'he s-d term in the Hamiltonian therefore reduces to

equivalent of the transport mechanism we propose. Relatng,Um, which is lower for more aligned local moments.

charge-transfer mechanisms have been suggested in the C%kis means that the carrier introduces an additional coupling

text of high T superconductivity Eetween the polaronic moments. The value of the effective

In. the next section we present a model Hamiltonian tha oupling constant can be obtained by expanding the expres-
provides the frame of reference for our work. We describe ) RPN ) i
on form up to first order inSy-S; —S* for nearly aligned

the static properties of the FMP and the band states in Sec. i$! . -
postponing a justification until Appendices A and B. In Sec.Polaronic moments. We obtain
[Il we calculate the electrical resistivity for polaron hopping. ,
We determine the rate at which nearby regions of local mo- T J 42
ments accidentally align themselves due to fluctuations. eff V1+8S(25+1)

Since the FMP tunnels to these regions, this rate determines , ]
the diffusion constant and hence the electrical resistivity. SinceT<J’ the moments are nearly aligned, so the polaron
energy is

1. MODEL HAMILTONIAN Ep=—|'[|—[J' 25(25+1)/2+2352]. (5)

We consider a low-density electron gas that is coupled In addit h | ith its induced .
ferromagnetically to a background of local moments. The !N addition to the polaron state with its induced magnet-

local moments are themselves coupled ferromagneticall);.at'on there are many more possible states for the carrier in

The followina Hamiltonian describes this svstér: which it does not align any local moments. These are states
g y in the narrowed band described in Ref. 21. Since the back-

. .. ground fluctuates, these “band states” persist at a given lo-
H=—t > clc,—3' 2 0-S-3> S-S. (1) cation only for a time comparable to the time scale of these
(Do ' By fluctuations, which we denotes. Nevertheless, the FMP
Herei denotes the lattice site], creates a conduction elec- would be unstable if a significant number of lower energy
tron, S is the local moment on siteand; is the conduction band states existed, since the carrier could then tunnel to

electron’s spin.(i,j) denotes a summation over nearest{eM aﬂd glj(ainhenr?rgy.h _ | ,
neighbors. The first term of the Hamiltonian in Ed) is the To check whether the FMP is stable we need to estimate

kinetic energy of the carriers, and the second term coupleﬁj‘e position of the band edge. If the polaron level lies below
the carriers to the local moments on which they reside. Th&€ band edge, band states with a lower energy are exceed-
third term couples the local moments ferromagnetically. Thi ngly rare, apd can be neglected. If on the other hand the
term can be due to, for example, superexchange. We have 23"d edge lies below the energy of the FMP, the latter is
s-d Hamiltonian with an additional Heisenberg term. We unstable. We determlng the position of the band edgg as the
consider the strong-coupling regime in which lowest energy of a typlt_:al band state. We use a variational
approach to calculate this ener@etails are given in Appen-
J' =t~10]~0.1 eV. (2)  dix B). The size of the band state is determined by the bal-
] ance of the kinetic-energy cost of localization and the gain
In our calculations we use the values =5t and J  fiom thes-d term. The latter is very small: the carrier aligns
=0.01 eV which are in agreement with experimental valuesis spin with the total magnetization of the region in which it
in the relevant materiafs:® It should be noted that the mag- is |ocalized. This magnetization is due to statistical fluctua-
netic transition is not driven by thed part of the Hamil-  tions in the paramagnetic regime, and are consequently very
tonian, but only by the superexchange because of the lowmall. We therefore expect the kinetic term to dominate and
carrier density. the band state to be very large. This is confirmed by our
calculation. We show that typical band states are extended
[ll. POLARON AND BAND STATE over a region of roughly flattice sites. Their total energy

is very close to— 6t [see Eq.(B3)]. Therefore the polaron

Here we present the wave function we use to study .th?evel lies below the band edge in the regime we consider
transport properties of the FMP. Our variational calculatlon(J,>t) and the EMP is stable. This concludes our discus-
in Appendix A shows that the FMP is small in the strong- sion of the static properties of the FMP and the band state. In

coupling regime: the carrier occupies approximately two lat- . . . . .
tice sites(see Fig. 3 beloyv We therefore use the following the next section we determine their dynamic properties.

wave function to describe the polaron:

(4

IV. FLUCTUATION-INDUCED HOPPING

1o+t o | In this section we consider the FIH mechanism in detail
IP) \/§(c0+c1)|0>®|T>m®|m>, © and calculate the hopping rate of the polaron and the result-

) L ing electrical resistivity. Let us examine the time evolution of
whereS; are the polaronic local moments and=S;+S; is  a single carrier that is injected onto a lattice site in an empty
the magnetization of the FMP. It describes a carrier localizegystem. The local moments in its vicinity cannot respond
on two lattice sites, with its spin quantized and pointingimmediately to the carrier’s presence, but react on a time
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scaler,. On time scales smaller thar,, the background the crossing rate. Le(t) andEy(t) denote the energies of
appears static. A completely static background would causa band and a polaronic state, respectively, at timkhen
Anderson localizatioft and trap the carrier in a state in the

tail of the band below the mobility edge. Although localized, ([Eb(7x) —Ep(0)]1%)=(E,(0) —Ep(0))? (8)
the carrier has not yet induced any alignment between Ioca& . . . .
moments in its vicinity; it is in one of the band states de- etermines the mean time interval be_tween level crossings,
scribed above. Only when the moments have aligned them= Here we have. neg[epted the variance of the polaronic
selves is the energy of the state greatly reduced. This mear%(change. energy since itis very smgll due to the large effec-
that there is a large energy barrier that prevents the carridf€ Coupling constant of the polaronic momefee Appen-
from making thermal hops out of the region of alignment.dX Il). We use(..-), to denote thermal averaging for
However, the energy of band states fluctuates because tis°Ments coupled by an exchange constarind rewrite
local moments fluctuate. It can therefore cross the poIarqu' (8):

level. At such a crossing the electron can tunnel to this level,

since there is no more energy barrier to overcome. We call ([So(7x) - S1(7%) —S6(0) - $1(0)),1%)

this tunneling process FIH. After the electron has tunnelled, e e 2 2\ 2

the entire FMP has moved: carrier and alignment have =((S0-S1) 3,4 (So- Sp)a)* ©)
jumped to another site. We summarize the entire time evolu- h . foll ) h h f
tion in Fig. 1. Here the terms arise as follows: we have used the wave func-

The occurrences of hops are uncorrelated in time an P|H|P). The band state energy was calculated in a similar
space since the background of local moments is paramag- ’ 9y

netic. FIH is therefore a Markoff process and the FMP ex- ay. We used the same spatial and spin part for the carrier,

ecutes a random walk. In an ensemble of realizations of thgm the local moments were coupled only byThe kinetic

. . .__énergies cancel out from this difference, since we are com-
polaron and the background, polarons in different realiza- g

tions follow different paths. The probability density function paring polaronic and band states of the same size. The right-

of the polaron, defined as the fraction of realizations in anhand side of Eq9) is obtained by evaluating the expectation

ensemble that have the FMP at a specified time at a specif vdellue of the Hamiltonian with respect to the polaron state at

location, obeys the diffusion equatihThe diffusion con- %V:r)]cgllﬁs:tan\svgﬂia}t;soo igd ngc : t/agaél)ﬂ(,crl](;r:]etéceenr;rglisf the
stant in this equation characterizes the polaron transport i ' 9 9 gy.
the long-time limit. and state compared to the polaron exchange energy:

For a random walk in three dimensions that consists of

hops ofl lattice constants, occurring with a frequeney, ([éo( TX)'§1(TX)][§O'§1]>J:<[§0‘§1]2>J_ 1<§0_§l>§ .
the diffusion constant 73 2 (e:[fo)

g/on from Eq. (3) to calculate the polaron energy as

D=2 (la)%w, (6) eEquatioﬁn 10 . inyolves the four-point correlator
=1 ([So(7x) - Si(7x) ][ Sp- S11);. Since we are interested only in
determining a characteristic time scale, and not the full time

wherea is the lattice constant. The resistivity from polaron dependence. we mav interpolate between two simole limits
transport is then obtained from the diffusion constant by P ' y P P :

o -

means of the Einstein formula First, at timet=0 the correlator reduces {¢S,- S;)?). Sec-
ondly, a pair of spins &at=0 is completely uncorrelated with
oT itself att=o, so that in this limit the correlator reduces to
p=(ne,u)‘1=ne2D , (7)  (Sy-S,)2. We can therefore interpolate as follows:
where u is the mobility, andn the number density of po- ([So() - S1(D][Se(0)- S1(0)])

larons.

.- ty . . .-
:<(So~31)2>—f(7—s)[<(50'31)2>—<30~31>2],

We calculate the rate at which band state levels cross the (3
polaron level. Such a crossing occurs when the band staighere the interpolation functioh(x) should vary smoothly
energy fluctuates so much that it lies at or below the polarofrom 0 atx=0 to 1 atx=o. Moreover, we have written
level. The crossing rate depends on the size of the band stati(t/ ) since the four-point correlator varies on the same
the energy gap between the FMP and band states dependstime scale as the fluctuations of the background. This allows
their size. In addition to this, we will see that the energy ofus to rewrite Eq(10) as
large band states fluctuates less. First we calculate the cross-
ing rate for small band states. 1. 2.,

The characteristic timesy, at which the root mean t (S0 S0,
square(rms) deviation of the band state energy becomes as ( )= T2 2 =
large as the energy gap between the two levels determines ((So-S1)9) = (S0~ S1)3

A. Rate of level crossings

(12
7s
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Since f(x) is a smooth function varying between 0 and 1 B. Diffusion constant

that changes mostly near=1, f(1)~1/2, andf’(1)~_1. When a crossing occurs it is possible, but not necessary,
We expandf(t/7s) up to first order about=7s, which 4 the FMP to hop. The probability?,, of a hop of lengtH

yields at a level crossing depends on the overlap between polaron
2 2.2 and band state wave functions and on the rate at which the
Tx (So- 51)3‘3fr 13 levels cross. The frequency at which hops of lengticcur,
e @ z 2.2 , is then
s ((So- S0~ (S0 S1)3 ¢!
2_-1
This means that crossings occur on the time scale of the <7 P (17)

fluctuations of the Heisenberg magnet weighted by the difsince the number of small band states a distaraveay from
ferent alignments of the polaron and the background spinghe FMP is roughly proportional tt?. The tunneling prob-
SincekgT<J’, the numerator of Eq13) reduces tdS(S  apility from the polaron stateP), to the band statdB),

+1)1% ~ with energiesEp and Eg is given by the Zener-Landau
The temperature dependencergfdepends on the relative  formulad”28

magnitude of the two terms in the denominator of ELB).
For kgT=0O(J) they have very similar temperature depen- B 27 |(P|H|B)|?
dencies, so that Peg=l—€xpg ———r———| (18)

d
5 (Er—Es)

Tx=

[S(S+1)])°
(14) whereH is the Hamiltonian for the particle. Here we have

ST 2 2.2 ¢
(So- S1) , : . .

|0l gt(Ep—Eg)|~J' S/ 7g, since the energy difference is due
whereA~O(1). We use theexpression given in Ref. 24 in to the initially unaligned local moments in the band state.
the denominator ands=%/3/J (Ref. 25 to obtain The time in which this difference between the levels disap-
pears istg. The spatial extent of the wave functions of the
polaron and the small band state limits the hopping range to
one lattice constant. The overlap between neighboring small
polaron states is given by
T INncreases with temperature. With increasing temperature L ,
level crossings become more rare. The decrease in the time
scale of the spin fluctuations is more than offset by the in- <A|H|B>=§<O|(C°+01)H(CI+CD|O>= 5
crease of the average misalignment of the local moments. (19

J:OE EBT>J the2 temperature 'dependenmes differ. where the sites 0 and 1 are nearest neighbors and 1 and 2 are
((So-S1)%) tends toS*/3 since the spins are completely un- nearest neighbors. Therefore the hopping probability at a
correlated, whereasSy- S;); vanishes as T. Moreover the level crossing between two neighboring energy levels is
time scale of the fluctuations is differefft: 75  given by
=h/\JS(S+1)J. Hencery tends to a constant in this limit:

Tx=AiJ—i(BJ)‘3’2. (15)

[t+J'V2S5(2S+1)/2]> /BJ
3% PA*}le_eX -2 JJ’ ? ~1,
RN 19 (20)

. .__since 1<J'/J. This means also that the probability is largely
The reason is that the local moments are completely disot- i

) . - : ; independent of temperature. We will therefore take the hop-
dered in this regime; an increase in temperature does not - . - .
cause an increase in disorder. The crossover between the t\B(')ng probability at a level crossing between two neighbonng

regimes occurs at a temperature of abdStS+ 1) /kg. Iai\(/ae:ﬁ;?e?:rell The diffusion constant and resistivity for FIH
Equations(15) and(16) which are both derived from Eq.

(13) in different temperature limits constitute the principal Da?(J/%)(IkgT)¥? for keT=J,
results of this section. However, before proceeding to the

estimate of the diffusion constant we should check that fluc- Doca?(J/h)/S(S+1) for kgT>J,
tuations of other band states—in particular, those involving

rearrangements of many spins—do not change our condi- 7

tions. We calculate the crossing rate of large band states with por ——(kgT/3)®? for kgT=J,
the polaron level in the same way as beftgee Appendix C ne’a’

for detailg. For a level crossing with a large band state,

many local moments need to fluctuate into alignment simul- h

taneously. This is a very unlikely event, and one expects the p* ne2a? kgT/J for kgT>J. (21
crossing rate to be accordingly small. This expectation is

borne out by our calculation. In Appendix C we show thatThis is our main result. We plot the resistivity versus tem-
level crossings with large band states can be neglected safefyerature in Fig. 2 interpolating between the high- and the
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8=7/2 formed in two systems in which the presence of a FMP has
12 ' been suggested: the Mn pyrochlores and EuB
i In the Mn pyrochlore$?>*the resistivity decreases with
increasing temperature aboVe. This is not in accord with
8 our predictions. There are several reasons for this. There are
different types of disorder that affect the resistivity, but they
‘f';; 6 were not taken into account in our work. In the In-doped
> compoundg? there is a miscibility gap for dopings of 0.5
4 =<x=1.5. In this regime the bulk consists of two types of
grains, each of a distinct phase with a different lattice param-
2 eter. Transport is dominated by processes associated with the
grain boundaries. Phase separation is suspected to occur in
0 the Sc-doped materials as well. A different type of disorder
7 oL, 2 30 occurs in Bi-doped compounds: a Bi ion introduces a strong-
scattering 8 vacancy on the TI sublattice. This could bind
FIG. 2. Temperature dependence of the resistivity. the polaron, making its hopping activated. Both the scatter-

ing centers and the grain boundaries make the predicted re-

extremely high temperature regimes. First, the FMP can onlyjstivity difficult to observe.
hop to neighboring sites when a favorable statistical fluctua- EuB, is a much cleaner system, in which magnetic po-
tion aligns the local moments. These fluctuations are statiSarons have been observed by spin-flip Raman-scattering
tically likely in the sense that they can be estimated from thesxperiments$®** There is good qualitative agreement with
rms deviation of the spin fluctuations. Occurrences of alignexperiment in the high-temperature paramagnetic regime.
ment far from the polaron do not lead to hopping. SecondThe resistivity increases rapidly with temperature up to about
while small polarons typically hop by this process, large onesi50 K and then more slowly; at temperatures above 200 K
cannot. The required Spin fluctuation into the correct CONthe resistivity increases even more S|O\ﬁi)§2 This agrees
figuration is statistically very rare. Third, the time scale of qualitatively with the crossover we predict. The crossover
the spin fluctuation is slow enough that the FMP hops withtemperature we predict, 225 K, is only a little too large. The
probability 1 once the requisite configuration is obtained.sjow down above 200 K is probably due to other scattering
Fourth, the diffusion constant decreases and the rESiStiVitmechanisms for the carriers, such as phononS, Spin-orbit cou-
increases as a function of temperature. This reflects the ir*p”ng, and scattering by carriers. There is no quantitative
creasing time intervals between the level crossings for highesgreement since n@>? law is observed. This is probably
temperatures and the relation between the resistivity and thgue to material specific complications that our theory does
diffusion constant. not take into account: EyBexhibits two distinct magnetic

The I’eSiStiVity we obtained is “metallic:” it increases with transitions between pha_ses with different magnetic
temperature, even though we are not considering a metallignisotropies?
system at all. It is interesting to compare our result to the There is good agreement as well with the two-
resistivity of a very dirty metal, wherle-A;~1, A¢ being the  dimensional Monte Carlo simulatichThe simulation and
mean free path for the carriers. In such a material the Drudgyr work agree qualitatively on the static characteristics of

formula for the resistivity yields, the polaron, such as the temperature dhdependence of its
size and the core magnetization. We also agree on the tem-
h perature window in which the FMP exists. We do not expect
= (22 tati i | _
nez)\fz more than qualitative agreement given the different param

eter regimes that were explored: the simulation uses a much
It is clear that despite its temperature dependence the polaraveaker superexchange coupling. The discrepancy between
hopping resistivity is far too large to be confused with scat-the results for the binding energy in the critical regime can
tering of metallic carriers. The mean free path in the dirtybe understood. The simulations show a decrease in magni-
metal would need to approach one lattice constant for théude with temperature and we predict an increase. This is due
resistivities to be comparable. At such short mean free path® the breakdown of our high-temperature approximation.
the metallic picture of delocalized carriers breaks down. This also explains why the simulation observes a larger po-
laron: we neglect the correlations between local moments
V. CONCLUSIONS except those induced by the presence of the carrier, whereas
the simulation takes all correlations into account.

We have proposed a transport mechanism for FMP’s in a The dynamical simulations of FMP diffusion show quali-
fluctuating disordered background of local moments. In outative departures from our results though the physical mecha-
theory the FMP hops at the occurrence of a favorable flucnisms identified for the diffusive transport are the same. In
tuation. The transport mechanism is therefore not activatedhe simulations, the polaron binding energy—here again for
but gives rise to a “metallic” resistivity. Experimentally our a large polaron—decreases with temperature, and the corre-
theory can be checked by a measurement of the temperatursponding shrinking of the polaron reduces the number of
dependent resistivity. Such measurements have been pevailable sites for hopping. Our model is appropriate for
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small polarons in a high temperature regime at least a factor t=10J
of 2 aboveT,. °R '
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APPENDIX A: SMALL SPIN POLARONS

We determine the size and energy of the FMP in a strong- 5 L 15
coupling regime by a variational calculation. We choose a
trial wave function for the carrier and obtain the electron
density at the local moments, which acts as an external fiel
on the moments. The resulting alignment and decrease in

energy is calculated using Curie-Weiss theory. The expecte}; of the polaron. The results are shown below in Fig. 3. We

tion V(_;llue Of. the energy of the_ trial wave function 'S then see that the FMP is small: its size is of the order of a lattice
minimized with respect to the size of the wave function. constant over a wide range of temperatures for realistic val-
A Gaussian-like function is used for the electronic part T
of the trial wave function for the FMP; in the notation of ues of the parameters. T_he calculated magnetization is al-
) ways close to saturation in the core of the polaron, but de-
Ea. (1) creases sli i i
ghtly as a function of temperature. For higher
temperatures the FMP shrinks and its energy increases. This
2 e (T /X)ZCI>|0>®|T>rﬁ®|rﬁ>, (A1) is because at constant size the energy gain frons-théerm
VN n fi decreases as the temperature is raised. To compensate, the
R polaron shrinks, so that the effective field due to the carrier
where the vectors; are the positions of the lattice sites, increases, which results in a magnetic energy gain. Hence, at
measured from the center of the polaron akUensures higher temperatures, the point of minimum energy is shifted
proper normalization|1)y denotes the electron spin, which towards smaller sizes. This also means that a smaitér
is quantized and pointing “up” along the direction of the coupling increases the size. The increase of the polaron en-
average magnetization induced by the carriers’ presémde. ergy with temperature can be understood as follows: the ki-
is the state vector of the polaronic local moments. The wingsetic energy is independent of temperature and a decreasing
of this wave function take into account that a trapped elecfunction of size. The magnetic energy curve shifts up as tem-
tron can nearly always make short excursions to a neighboperature is raised and is an increasing function of size.
ing nonpolaronic local moment. This is possible since it hasTherefore, the minimum value of the total energy increases
nearly always a spin component parallel to this momentwith temperature. These results are in close agreement with
These excursions diminish the polaron energy insofar as thelgef. 1 which refers specifically to the pyrochlores.
reduce the magnetization of the core through a reduced elec- Our calculation is well behaved at the ferromagnetic tran-
tron density. sition, even though this temperature lies outside its range of
The magnetization of the background resulting from thevalidity. As T. is approached from above, the polaron size
presence of the carrier is obtained from Curie-Weiss theorytends to a value of approximately9.4t at T.. Neither the
present calculation nor Ref. 1 takes the correlations of local
T moments outside the FMP into account. The predicted size is
Jm+ Epri”’ (A2) therefore too small in the critical regime and the energy is
overestimated.

FIG. 3. Polaron size vs temperature. The curves stop when
the polaron energy reaches the edge of the b@simated in
ppendix. B.

1
P)=—=

. 3
m(r)=§B3,2 B

whereB is the Brillouin function and);i is the electron den-

sity at siteﬂ. Curie-Weiss theory neglects spatial correla-
tions between the local moments that are not due to the ef-
fective field of the carrier and the induced magnetization We check whether the FMP we discovered in the previous
itself. These spatial correlations are small in a paramagnesection is bound by comparing its energy with the position of
since the coupling constant of the nonpolaronic moments ithe band edge. We determine the position of the band edge as
much smaller than the effective field in the core of the FMPthe lowest energy of typical “band states.” The energy of a
(J<J"). Curie-Weiss theory is therefore accurate in the coréband state is the difference between the energy of the system
of the polaron. In the critical regime nonpolaronic correla-with an electron present in that state and the energy of the
tions become important. Our theory is not valid there. system in the absence of that electron. Again we use a varia-
The expectation value of the energy of the trial wavetional approach with a trial wave function similar to Eg.
function is minimized numerically with respect to the size, (A1), with the caveat that local moments are not aligned.

APPENDIX B: BAND STATES
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Only the kinetic and the-d terms of the Hamiltonian in Eq. ian trial wave function to show that the FMP is bound. Here,
(1) contribute to the energy; the Heisenberg term is the samBowever, we determine the crossing rate and we will see that
regardless of the presence of the carrier in a band state. TieSimple model is sufficient. We assume that the carrier is
kinetic energy of a localized state is determined as befordocalized uniformly without inducing extra alignment. Its
The magnetic energy is estimated as follows. There is no ngpin is quantized along the direction of the sum of all the
magnetization in the paramagnet, so the term in the local moments in the band stat®, pointing “up.” The ki-
Hamiltonian vanishes on average. In a finite region, howevemetic energy of the band state is approximately|t|(1
there are statistical fluctuations that make it deviate from this- 72/N??) and its exchange energy vanishes on average.
average value, so that there is a nonzero magnetization Mhe kinetic energy is constant in time, so it cancels out in the
this region,fﬁﬂuct:EiPr’iéﬂ- The carrier’s spin is quantized left-hand side of Eq(C1), leaving only the rms deviation of
the exchange energy.

Now we use the expression for the two-site polaron of Eq.
(5) on the right-hand side of EC1). The band states-d
energy can be expressed @m(t)/N? and hence Eq(C1)

along the direction ofrﬁﬂuct, pointing “up.” The average
value of thes-d term in the Hamiltonian is then

> p;ip;jéa-§ﬂ>. (B1)  becomes

B N 1/2\ 7t=7x(N)
The above sum is split up in one in whi¢ck-j and one in <[ S (1)-$ (OIS (0)-S:(0 ] }
whichi#j. We then take the thermal average of the Taylor i,%l [0 S(OI15,0)-5:(0)] o
expansion of the square root about fhkej term. The sum 5
that contains the term with# j is at least of ordeJ since o m \|t| S
it contains correlations between different local moments. The =2N | 5~ o5 3 2 (C2)

s-d energy of the band state is then given by
The sum on the left-hand side of this equation contains
J'S N2 terms of the formS* and N terms of the form

=__= 2 - o
Esa=" 3 Z prl1+OBI)]. (B2) SZEi“;js;i-s;j where the spin operators are evaluated at
equal times. There are also terms whierg andk#1. The

The energy of the band state is minimized numerically WlthSquare root is expanded about the term of oider

respect to the size. We obtain a size of the order flacal
moments that decreases weakly with increasihgWe find N 172
that thes-d energy is completely negligible and that the band { 2 [§;_(t) . §F.(t)][§r‘ (0)- §F(0)]}
state is so large that its energy is very close-t6|t|. We Bkt ! « !

expand the band state energy to second order ifoddarge N
| and obtain =+NSS+1)+2 S-S
7
Epand 6|t|( 1 1) J'S\/ = (B3) NS (DS (DS (0)-S:,(0)]
band™ |2 2 (\/El)s' + z i j k | +o..
i£T K| 2NS(S+1)
wherel is the spatial extent of the band state. The polaron
level lies therefore below the band edge and the FMP is well (C3)
bound. Thermal averaging both sides of this equation results in
many two- and four-point spin correlators. We only retain the
APPENDIX C: CROSSING RATE WITH LARGE correlators of lowestquadrati¢ order in the small parameter
BAND STATES BJ, thereby considering only nearest-neighbor interactions.

. Moreover, the first and second terms on the right-hand side
We use the same method t'o calculate the crossing rate_ Qs Eq. (C3) cancel in Eq(C2) since they do not depend on
large band states. However, instead of two spins fluctuatingme "Hence the condition for a level crossing reduces to
into nearly exact alignment, many spins need to collectively

fluctuate into a more aligned configuration. The time be- <(§0'§1)2—{§o[7'x(N)]'§1[Tx(N)]}[§0'§1]>
tween two crossings is again estimated from the time it takes
for the rms deviation of the band state energy to become as 2S(S+1)N? m \|t| S 2
large as the energy difference between the band level and the =3 _N_2’3 ; 3 (C4H
polaron level:

~ ) The four-point correlator is treated as in E§1) and we

({EnL7(N)]=En(0)}) = (Ep—En)~. (€D introduce the numerical constaAtas in Eq.(14):

Here 7«(N) is the average time between crossings of the 5 2 2
polaron level and a particular band stateNofocal moments f(rx(N))=AN?2 SE SJZ b (5_ L)M _ §
with energyEy . In Appendix B we calculate energy of the 3(Sy- S1)? NZ3) g 2
band state using a variational ansatz with an accurate Gauss- (C5)
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f(t) could be expanded abott 75 to obtain an explicit ~s-d energy of a single pair of local moments is weighted by
expression forry(N). However, it is clear that large band the electron density. For large states this density is low, so
states rarely cross the polaron levé{t) on the left-hand that alignment of a single pair of local moments does not
side is bounded from above by 1 and the right-hand side i wer the energy significantly. Thus, a crossing requires all

proportona o, and so only smal band states satsy B, 0Ce Moments o lcete i nearly pefect algrment
(C5H). Sincery grows withN, the size of the largest crossing » 1arg 9 y aig

: - moments do exist, and do cross the polaron level, but they lie
band state follows from EdC4) in the limit 7(N)—. In in the far tail of the band and are far more rare than a Gauss-

this limit f(t)=1 so that the largest crossing band stat€an approximation to the density of states would predict.
needsN~(Sy-S;)2<1. This result shows that large band These fluctuations are thus negligible. We have therefore
states do not cross the polaron level according to Gaussiaghown that our expressions feg in Egs.(15) and(16) give
statistics. The physical reason is that the contribution to théhe correct hopping rate for the small FMP.
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