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Fluctuation-induced hopping and spin-polaron transport

L. G. L. Wegener and P. B. Littlewood
TCM, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge, CB3 0HE, United Kingdom

~Received 30 January 2002; published 4 December 2002!

We study the motion of free magnetic polarons in a paramagnetic background of fluctuating local moments.
The polaron can tunnel only to nearby regions of local moments when these fluctuate into alignment. We
propose this fluctuation-induced hopping as a transport mechanism for the spin polaron. We calculate the
diffusion constant for fluctuation-induced hopping from the rate at which local moments fluctuate into align-
ment. The electrical resistivity is then obtained via the Einstein relation. We suggest that the proposed transport
mechanism is relevant in the high-temperature phase of the Mn pyrochlore ‘‘colossal magnetoresistance’’
compounds and EuB6.
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I. INTRODUCTION

Recently free magnetic polarons~FMP’s! have received
renewed attention. They were proposed to explain the co
sal magnetoresistance~CMR! in the manganese pyrochlor
compounds1–6 and they have been studied in the context
the double exchange model and the manganese perov
CMR compounds.7–9 Moreover, Raman-scattering data h
suggested10,11 that they exist in EuB6. Previous theoretica
studies have focused on the static properties of the FM
Here we focus on the dynamic aspect, propose a trans
mechanism for an FMP, and calculate the resulting resis
ity.

A magnetic polaron is a composite object consisting o
localized charge carrier and the alignment it induces in
background of local moments. Localization can occur
two different reasons: the carrier can be trapped by an im
rity atom and then induce a magnetization in the reg
where it is localized. The resulting particle is called
‘‘bound magnetic polaron’’~BMP!. It is well documented
experimentally, for example, in dilute magnetic semicond
tors such as Cd12xMnxSe,12 and in rare-earth
chalcogenides.13 It has been studied in depth theoretically14

A BMP is not free to roam through the sample since it
bound to its impurity. Only activated transport is possib
when the BMP is ‘‘ionized’’ the carrier is free to move unt
it is trapped by the next impurity.

However, for large enough coupling to the local mome
the carrier can self-trap without the need for an impurity,15–17

forming a FMP. Due to the coupling the carrier acts as
magnetic field on the local moments. The strength of t
field varies in space as the probability density of the carr
the more localized the carrier the stronger the field and
larger the energy gain resulting from aligning the local m
ments. The region of aligned moments therefore acts a
potential well that localizes the electron and an FMP
formed. The balance between the gain in magnetic ene
from induced alignment and the loss in kinetic energy
cause of localization determines the polaron size. The e
tence of an FMP has not been conclusively established, b
has been suggested to exist both in the Mn pyrochlores4–6,18

and in EuB6.10

The mechanism of transport by FMPs is in doubt. T
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conventional view is that transport is necessarily activat
as for a BMP. Here we present an alternative viewpoint:
propose that, unlike the BMP, the FMP can move betwe
nearby sites without thermal assistance. We consider a fl
tuating, paramagnetic background of local moments.
neighboring region of local moments can fluctuate into
same alignment as the polaronic moments. At that mom
the carrier can tunnel to the newly aligned region witho
needing to overcome an energy barrier. The tunneling p
cess is fast compared to the spin fluctuations. After the t
neling process the carrier and the alignment have move
that the complete FMP has hopped to the new location.
entire time evolution of the polaron formation and hoppi
process is illustrated in Fig. 1. We call this transport mec
nism ‘‘fluctuation-induced hopping’’~FIH!. It does not in-
volve an activated process. We calculate the resistivity F
gives rise to, and find that the resistivity, though large, ha
‘‘metallic’’ T dependence, namely]r/]T.0, in contrast to
an activated process. This may help to reconcile spec
scopic evidence for FMP’s~e.g., in EuB6) with the measured
resistivity. While these ideas have not, to our knowled
been applied in the context of spin systems, some of th
counterparts in the electron-phonon problem are used in
nonadiabatic theory of superconductivity.19 However, in this

FIG. 1. Time evolution of the electron state. Solid curved lin
and arrows in the upper part represent the electron density and
A carrier is placed on the ‘‘dotted’’ level. On a time scaletA the
carrier aligns the two moments and forms a bound small pola
On a longer time scaletX , neighboring spins~dashed line! fluctuate
into alignment, which allows the carrier to tunnel into this state
the levels cross. The resonance persists for a timetS!tX . The
density of statesg(E) is shown on the left-hand side of the lowe
part.
©2002 The American Physical Society02-1
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context the emphasis lies on corrections to the electr
phonon vertex and delocalized carriers, rather than on
equivalent of the transport mechanism we propose. Rel
charge-transfer mechanisms have been suggested in the
text of high-Tc superconductivity20.

In the next section we present a model Hamiltonian t
provides the frame of reference for our work. We descr
the static properties of the FMP and the band states in Se
postponing a justification until Appendices A and B. In Se
III we calculate the electrical resistivity for polaron hoppin
We determine the rate at which nearby regions of local m
ments accidentally align themselves due to fluctuatio
Since the FMP tunnels to these regions, this rate determ
the diffusion constant and hence the electrical resistivity.

II. MODEL HAMILTONIAN

We consider a low-density electron gas that is coup
ferromagnetically to a background of local moments. T
local moments are themselves coupled ferromagnetic
The following Hamiltonian describes this system:1,2

H52t (
^ i , j &s

cis
† cj s2J8(

i
sW i•SW i2J(

^ i , j &
SW i•SW j . ~1!

Here i denotes the lattice site,cis
† creates a conduction elec

tron,SW i is the local moment on sitei andsW i is the conduction
electron’s spin.^ i , j & denotes a summation over neare
neighbors. The first term of the Hamiltonian in Eq.~1! is the
kinetic energy of the carriers, and the second term cou
the carriers to the local moments on which they reside. T
third term couples the local moments ferromagnetically. T
term can be due to, for example, superexchange. We hav
s-d Hamiltonian with an additional Heisenberg term. W
consider the strong-coupling regime in which

J8*t;10J;0.1 eV. ~2!

In our calculations we use the valuesJ855t and J
50.01 eV which are in agreement with experimental valu
in the relevant materials.1,10 It should be noted that the mag
netic transition is not driven by thes-d part of the Hamil-
tonian, but only by the superexchange because of the
carrier density.

III. POLARON AND BAND STATE

Here we present the wave function we use to study
transport properties of the FMP. Our variational calculat
in Appendix A shows that the FMP is small in the stron
coupling regime: the carrier occupies approximately two
tice sites~see Fig. 3 below!. We therefore use the following
wave function to describe the polaron:

uP&5
1

A2
~c0

†1c1
†!u0& ^ u↑&mW ^ umW &, ~3!

whereSW i are the polaronic local moments andmW 5SW 01SW 1 is
the magnetization of the FMP. It describes a carrier locali
on two lattice sites, with its spin quantized and pointi
22440
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‘‘up’’ along the direction ofmW to minimize thes-d energy.
The s-d term in the Hamiltonian therefore reduces
2J8sm, which is lower for more aligned local moment
This means that the carrier introduces an additional coup
between the polaronic moments. The value of the effec
coupling constant can be obtained by expanding the exp
sion for m up to first order inSW 0•SW 12S2 for nearly aligned
polaronic moments. We obtain

Jeff5
J8

A118S~2S11!
12J. ~4!

SinceT!J8 the moments are nearly aligned, so the polar
energy is

Ep52utu2@J8A2S~2S11!/212JS2#. ~5!

In addition to the polaron state with its induced magne
zation there are many more possible states for the carrie
which it does not align any local moments. These are sta
in the narrowed band described in Ref. 21. Since the ba
ground fluctuates, these ‘‘band states’’ persist at a given
cation only for a time comparable to the time scale of the
fluctuations, which we denotetS . Nevertheless, the FMP
would be unstable if a significant number of lower ener
band states existed, since the carrier could then tunne
them and gain energy.

To check whether the FMP is stable we need to estim
the position of the band edge. If the polaron level lies bel
the band edge, band states with a lower energy are exc
ingly rare, and can be neglected. If on the other hand
band edge lies below the energy of the FMP, the latte
unstable. We determine the position of the band edge as
lowest energy of a typical band state. We use a variatio
approach to calculate this energy~details are given in Appen
dix B!. The size of the band state is determined by the b
ance of the kinetic-energy cost of localization and the g
from thes-d term. The latter is very small: the carrier align
its spin with the total magnetization of the region in which
is localized. This magnetization is due to statistical fluctu
tions in the paramagnetic regime, and are consequently
small. We therefore expect the kinetic term to dominate a
the band state to be very large. This is confirmed by
calculation. We show that typical band states are exten
over a region of roughly 106 lattice sites. Their total energy
is very close to26t @see Eq.~B3!#. Therefore the polaron
level lies below the band edge in the regime we consi
(J8*t), and the FMP is stable. This concludes our disc
sion of the static properties of the FMP and the band state
the next section we determine their dynamic properties.

IV. FLUCTUATION-INDUCED HOPPING

In this section we consider the FIH mechanism in de
and calculate the hopping rate of the polaron and the res
ing electrical resistivity. Let us examine the time evolution
a single carrier that is injected onto a lattice site in an em
system. The local moments in its vicinity cannot respo
immediately to the carrier’s presence, but react on a ti
2-2
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FLUCTUATION-INDUCED HOPPING AND SPIN- . . . PHYSICAL REVIEW B 66, 224402 ~2002!
scaletA . On time scales smaller thantA , the background
appears static. A completely static background would ca
Anderson localization21 and trap the carrier in a state in th
tail of the band below the mobility edge. Although localize
the carrier has not yet induced any alignment between lo
moments in its vicinity; it is in one of the band states d
scribed above. Only when the moments have aligned th
selves is the energy of the state greatly reduced. This m
that there is a large energy barrier that prevents the ca
from making thermal hops out of the region of alignme
However, the energy of band states fluctuates because
local moments fluctuate. It can therefore cross the pola
level. At such a crossing the electron can tunnel to this le
since there is no more energy barrier to overcome. We
this tunneling process FIH. After the electron has tunnell
the entire FMP has moved: carrier and alignment h
jumped to another site. We summarize the entire time ev
tion in Fig. 1.

The occurrences of hops are uncorrelated in time
space since the background of local moments is param
netic. FIH is therefore a Markoff process and the FMP e
ecutes a random walk. In an ensemble of realizations of
polaron and the background, polarons in different reali
tions follow different paths. The probability density functio
of the polaron, defined as the fraction of realizations in
ensemble that have the FMP at a specified time at a spec
location, obeys the diffusion equation.22 The diffusion con-
stant in this equation characterizes the polaron transpo
the long-time limit.

For a random walk in three dimensions that consists
hops of l lattice constants, occurring with a frequencyv l ,
the diffusion constant is23

D5
1

6 (
l 51

`

~ la !2v l , ~6!

wherea is the lattice constant. The resistivity from polaro
transport is then obtained from the diffusion constant
means of the Einstein formula

r5~nem!215
kBT

ne2D
, ~7!

where m is the mobility, andn the number density of po
larons.

A. Rate of level crossings

We calculate the rate at which band state levels cross
polaron level. Such a crossing occurs when the band s
energy fluctuates so much that it lies at or below the pola
level. The crossing rate depends on the size of the band s
the energy gap between the FMP and band states depen
their size. In addition to this, we will see that the energy
large band states fluctuates less. First we calculate the c
ing rate for small band states.

The characteristic time,tX , at which the root mean
square~rms! deviation of the band state energy becomes
large as the energy gap between the two levels determ
22440
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the crossing rate. LetEb(t) andEp(t) denote the energies o
a band and a polaronic state, respectively, at timet. Then

^@Eb~tX!2Eb~0!#2&5^Ep~0!2Eb~0!&2 ~8!

determines the mean time interval between level crossin
tX . Here we have neglected the variance of the polaro
exchange energy since it is very small due to the large ef
tive coupling constant of the polaronic moments~see Appen-
dix II !. We use ^•••&J to denote thermal averaging fo
moments coupled by an exchange constantJ and rewrite
Eq. ~8!:

^@SW 0~tX!•SW 1~tX!2SW 0~0!•SW 1~0!&J#
2&

5~^SW 0•SW 1&Jeff
2^SW 0•SW 1&J!

2. ~9!

Here the terms arise as follows: we have used the wave fu
tion from Eq. ~3! to calculate the polaron energy a
^PuHuP&. The band state energy was calculated in a sim
way. We used the same spatial and spin part for the car
but the local moments were coupled only byJ. The kinetic
energies cancel out from this difference, since we are co
paring polaronic and band states of the same size. The ri
hand side of Eq.~9! is obtained by evaluating the expectatio
value of the Hamiltonian with respect to the polaron state
two different times,t50 and tX . Again, kinetic energies
cancel out. We now also neglect the exchange energy of
band state compared to the polaron exchange energy:

^@SW 0~tX!•SW 1~tX!#@SW 0•SW 1#&J5^@SW 0•SW 1#2&J2
1

2
^SW 0•SW 1&Jeff

2 .

~10!

Equation 10 involves the four-point correlato

^@SW 0(tX)•SW 1(tX)#@SW 0•SW 1#&J . Since we are interested only i
determining a characteristic time scale, and not the full ti
dependence, we may interpolate between two simple lim
First, at timet50 the correlator reduces to^(SW 0•SW 1)2&. Sec-
ondly, a pair of spins att50 is completely uncorrelated with
itself at t5`, so that in this limit the correlator reduces

^SW 0•SW 1&
2. We can therefore interpolate as follows:

^@SW 0~ t !•SW 1~ t !#@SW 0~0!•SW 1~0!#&

5^~SW 0•SW 1!2&2 f S t

tS
D @^~SW 0•SW 1!2&2^SW 0•SW 1&

2#,

~11!

where the interpolation functionf (x) should vary smoothly
from 0 at x50 to 1 at x5`. Moreover, we have written
f (t/tS) since the four-point correlator varies on the sam
time scale as the fluctuations of the background. This allo
us to rewrite Eq.~10! as

f S t

tS
D5

1

2
^SW 0•SW 1&Jeff

2

^~SW 0•SW 1!2&J2^SW 0•SW 1&J
2

. ~12!
2-3
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Since f (x) is a smooth function varying between 0 and
that changes mostly nearx51, f (1)'1/2, and f 8(1)'1.
We expandf (t/tS) up to first order aboutt5tS , which
yields

tX

tS
}

^SW 0•SW 1&Jeff

2

^~SW 0•SW 1!2&J2^SW 0•SW 1&J
2

. ~13!

This means that crossings occur on the time scale of
fluctuations of the Heisenberg magnet weighted by the
ferent alignments of the polaron and the background sp
SincekBT!J8, the numerator of Eq.~13! reduces to@S(S
11)#2.

The temperature dependence oftX depends on the relativ
magnitude of the two terms in the denominator of Eq.~13!.
For kBT*O(J) they have very similar temperature depe
dencies, so that

tX5AtS

@S~S11!#2

^SW 0•SW 1&J
2

, ~14!

whereA;O(1). We use theexpression given in Ref. 24 in
the denominator andtS5\Ab/J ~Ref. 25! to obtain

tX5A
\

J
~bJ!23/2. ~15!

tX increases with temperature. With increasing tempera
level crossings become more rare. The decrease in the
scale of the spin fluctuations is more than offset by the
crease of the average misalignment of the local moment

For kBT@J the temperature dependencies diffe

^(SW 0•SW 1)2& tends toS2/3 since the spins are completely u
correlated, whereaŝSW 0•SW 1&J vanishes as 1/T. Moreover the
time scale of the fluctuations is different:26 tS

5\/AS(S11)J. HencetX tends to a constant in this limit

tX5
3\

JAS~S11!
. ~16!

The reason is that the local moments are completely di
dered in this regime; an increase in temperature does
cause an increase in disorder. The crossover between the
regimes occurs at a temperature of aboutJS(S11)/kB .

Equations~15! and~16! which are both derived from Eq
~13! in different temperature limits constitute the princip
results of this section. However, before proceeding to
estimate of the diffusion constant we should check that fl
tuations of other band states—in particular, those involv
rearrangements of many spins—do not change our co
tions. We calculate the crossing rate of large band states
the polaron level in the same way as before~see Appendix C
for details!. For a level crossing with a large band sta
many local moments need to fluctuate into alignment sim
taneously. This is a very unlikely event, and one expects
crossing rate to be accordingly small. This expectation
borne out by our calculation. In Appendix C we show th
level crossings with large band states can be neglected sa
22440
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B. Diffusion constant

When a crossing occurs it is possible, but not necess
for the FMP to hop. The probability,Pl , of a hop of lengthl
at a level crossing depends on the overlap between pol
and band state wave functions and on the rate at which
levels cross. The frequency at which hops of lengthl occur,
v l , is then

v l} l 2tX
21Pl , ~17!

since the number of small band states a distancel away from
the FMP is roughly proportional tol 2. The tunneling prob-
ability from the polaron state,uP&, to the band state,uB&,
with energiesEP and EB is given by the Zener-Landau
formula27,28

PP→B512expF2
2p

\

u^PuHuB&u2

U ]

]t
~EP2EB!UG , ~18!

whereH is the Hamiltonian for the particle. Here we hav
u]/]t(EP2EB)u;J8S/tS , since the energy difference is du
to the initially unaligned local moments in the band sta
The time in which this difference between the levels disa
pears istS . The spatial extent of the wave functions of th
polaron and the small band state limits the hopping rang
one lattice constant. The overlap between neighboring sm
polaron states is given by

^AuHuB&5
1

2
^0u~c01c1!H~c1

†1c2
†!u0&52t2

J8

2
,

~19!

where the sites 0 and 1 are nearest neighbors and 1 and
nearest neighbors. Therefore the hopping probability a
level crossing between two neighboring energy levels
given by

PA→B512expH 22p
@ t1J8A2S~2S11!/2#2

JJ8
AbJ

S J '1,

~20!

since 1!J8/J. This means also that the probability is large
independent of temperature. We will therefore take the h
ping probability at a level crossing between two neighbor
levels to be 1. The diffusion constant and resistivity for F
are therefore

D}a2~J/\!~J/kBT!3/2 for kBT*J,

D}a2~J/\!/S~S11! for kBT@J,

r}
\

ne2a2
~kBT/J!5/2 for kBT*J,

r}
\

ne2a2
kBT/J for kBT@J. ~21!

This is our main result. We plot the resistivity versus te
perature in Fig. 2 interpolating between the high- and
2-4
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extremely high temperature regimes. First, the FMP can o
hop to neighboring sites when a favorable statistical fluct
tion aligns the local moments. These fluctuations are sta
tically likely in the sense that they can be estimated from
rms deviation of the spin fluctuations. Occurrences of ali
ment far from the polaron do not lead to hopping. Seco
while small polarons typically hop by this process, large on
cannot. The required spin fluctuation into the correct c
figuration is statistically very rare. Third, the time scale
the spin fluctuation is slow enough that the FMP hops w
probability 1 once the requisite configuration is obtaine
Fourth, the diffusion constant decreases and the resist
increases as a function of temperature. This reflects the
creasing time intervals between the level crossings for hig
temperatures and the relation between the resistivity and
diffusion constant.

The resistivity we obtained is ‘‘metallic:’’ it increases wit
temperature, even though we are not considering a met
system at all. It is interesting to compare our result to
resistivity of a very dirty metal, wherekFl f'1, l f being the
mean free path for the carriers. In such a material the Dr
formula for the resistivity yields,

r5
\

ne2l f
2

. ~22!

It is clear that despite its temperature dependence the pol
hopping resistivity is far too large to be confused with sc
tering of metallic carriers. The mean free path in the di
metal would need to approach one lattice constant for
resistivities to be comparable. At such short mean free p
the metallic picture of delocalized carriers breaks down.

V. CONCLUSIONS

We have proposed a transport mechanism for FMP’s
fluctuating disordered background of local moments. In
theory the FMP hops at the occurrence of a favorable fl
tuation. The transport mechanism is therefore not activa
but gives rise to a ‘‘metallic’’ resistivity. Experimentally ou
theory can be checked by a measurement of the tempera
dependent resistivity. Such measurements have been

FIG. 2. Temperature dependence of the resistivity.
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formed in two systems in which the presence of a FMP
been suggested: the Mn pyrochlores and EuB6.

In the Mn pyrochlores6,29,30 the resistivity decreases wit
increasing temperature aboveTc . This is not in accord with
our predictions. There are several reasons for this. There
different types of disorder that affect the resistivity, but th
were not taken into account in our work. In the In-dop
compounds,29 there is a miscibility gap for dopings of 0.
<x<1.5. In this regime the bulk consists of two types
grains, each of a distinct phase with a different lattice para
eter. Transport is dominated by processes associated with
grain boundaries. Phase separation is suspected to occ
the Sc-doped materials as well. A different type of disord
occurs in Bi-doped compounds: a Bi ion introduces a stro
scattering 6s vacancy on the Tl sublattice. This could bin
the polaron, making its hopping activated. Both the scat
ing centers and the grain boundaries make the predicted
sistivity difficult to observe.

EuB6 is a much cleaner system, in which magnetic p
larons have been observed by spin-flip Raman-scatte
experiments.10,11 There is good qualitative agreement wi
experiment in the high-temperature paramagnetic regi
The resistivity increases rapidly with temperature up to ab
150 K and then more slowly; at temperatures above 200
the resistivity increases even more slowly.31,32 This agrees
qualitatively with the crossover we predict. The crossov
temperature we predict, 225 K, is only a little too large. T
slow down above 200 K is probably due to other scatter
mechanisms for the carriers, such as phonons, spin-orbit
pling, and scattering by carriers. There is no quantitat
agreement since noT5/2 law is observed. This is probabl
due to material specific complications that our theory do
not take into account: EuB6 exhibits two distinct magnetic
transitions between phases with different magne
anisotropies.32

There is good agreement as well with the tw
dimensional Monte Carlo simulation.3 The simulation and
our work agree qualitatively on the static characteristics
the polaron, such as the temperature andJ8 dependence of its
size and the core magnetization. We also agree on the
perature window in which the FMP exists. We do not exp
more than qualitative agreement given the different para
eter regimes that were explored: the simulation uses a m
weaker superexchange coupling. The discrepancy betw
the results for the binding energy in the critical regime c
be understood. The simulations show a decrease in ma
tude with temperature and we predict an increase. This is
to the breakdown of our high-temperature approximati
This also explains why the simulation observes a larger
laron: we neglect the correlations between local mome
except those induced by the presence of the carrier, whe
the simulation takes all correlations into account.

The dynamical simulations of FMP diffusion show qua
tative departures from our results though the physical mec
nisms identified for the diffusive transport are the same.
the simulations, the polaron binding energy—here again
a large polaron—decreases with temperature, and the co
sponding shrinking of the polaron reduces the number
available sites for hopping. Our model is appropriate
2-5
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small polarons in a high temperature regime at least a fa
of 2 aboveTc .
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APPENDIX A: SMALL SPIN POLARONS

We determine the size and energy of the FMP in a stro
coupling regime by a variational calculation. We choose
trial wave function for the carrier and obtain the electr
density at the local moments, which acts as an external fi
on the moments. The resulting alignment and decreas
energy is calculated using Curie-Weiss theory. The expe
tion value of the energy of the trial wave function is th
minimized with respect to the size of the wave function.

A Gaussian-like function is used for the electronic p
of the trial wave function for the FMP; in the notation o
Eq. ~1!:

uP&5
1

AN (
rW i

e2(r i /l)2
crW i

† u0& ^ u↑&mW ^ umW &, ~A1!

where the vectorsrW i are the positions of the lattice site
measured from the center of the polaron andN ensures
proper normalization.u↑&mW denotes the electron spin, whic
is quantized and pointing ‘‘up’’ along the direction of th
average magnetization induced by the carriers’ presence.umW &
is the state vector of the polaronic local moments. The wi
of this wave function take into account that a trapped el
tron can nearly always make short excursions to a neigh
ing nonpolaronic local moment. This is possible since it h
nearly always a spin component parallel to this mome
These excursions diminish the polaron energy insofar as
reduce the magnetization of the core through a reduced e
tron density.

The magnetization of the background resulting from
presence of the carrier is obtained from Curie-Weiss the

m~rW !5
3

2
B3/2FbS Jm1

J8

2
r rW i D G , ~A2!

whereB is the Brillouin function andr rW i
is the electron den-

sity at siterW i . Curie-Weiss theory neglects spatial corre
tions between the local moments that are not due to the
fective field of the carrier and the induced magnetizat
itself. These spatial correlations are small in a paramag
since the coupling constant of the nonpolaronic moment
much smaller than the effective field in the core of the FM
(J!J8). Curie-Weiss theory is therefore accurate in the c
of the polaron. In the critical regime nonpolaronic corre
tions become important. Our theory is not valid there.

The expectation value of the energy of the trial wa
function is minimized numerically with respect to the siz
22440
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l, of the polaron. The results are shown below in Fig. 3. W
see that the FMP is small: its size is of the order of a latt
constant over a wide range of temperatures for realistic
ues of the parameters. The calculated magnetization is
ways close to saturation in the core of the polaron, but
creases slightly as a function of temperature. For hig
temperatures the FMP shrinks and its energy increases.
is because at constant size the energy gain from thes-d term
decreases as the temperature is raised. To compensate
polaron shrinks, so that the effective field due to the car
increases, which results in a magnetic energy gain. Henc
higher temperatures, the point of minimum energy is shif
towards smaller sizes. This also means that a smallers-d
coupling increases the size. The increase of the polaron
ergy with temperature can be understood as follows: the
netic energy is independent of temperature and a decrea
function of size. The magnetic energy curve shifts up as te
perature is raised and is an increasing function of s
Therefore, the minimum value of the total energy increa
with temperature. These results are in close agreement
Ref. 1 which refers specifically to the pyrochlores.

Our calculation is well behaved at the ferromagnetic tra
sition, even though this temperature lies outside its range
validity. As Tc is approached from above, the polaron si
tends to a value of approximately29.4t at Tc . Neither the
present calculation nor Ref. 1 takes the correlations of lo
moments outside the FMP into account. The predicted siz
therefore too small in the critical regime and the energy
overestimated.

APPENDIX B: BAND STATES

We check whether the FMP we discovered in the previo
section is bound by comparing its energy with the position
the band edge. We determine the position of the band edg
the lowest energy of typical ‘‘band states.’’ The energy o
band state is the difference between the energy of the sys
with an electron present in that state and the energy of
system in the absence of that electron. Again we use a va
tional approach with a trial wave function similar to E
~A1!, with the caveat that local moments are not align

FIG. 3. Polaron size vs temperature. The curves stop w
the polaron energy reaches the edge of the band~estimated in
Appendix. B!.
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Only the kinetic and thes-d terms of the Hamiltonian in Eq
~1! contribute to the energy; the Heisenberg term is the sa
regardless of the presence of the carrier in a band state.
kinetic energy of a localized state is determined as bef
The magnetic energy is estimated as follows. There is no
magnetization in the paramagnet, so thes-d term in the
Hamiltonian vanishes on average. In a finite region, howe
there are statistical fluctuations that make it deviate from
average value, so that there is a nonzero magnetizatio
this region,mW fluct5( ir rW i

SW rW i
. The carrier’s spin is quantize

along the direction ofmW fluct , pointing ‘‘up.’’ The average
value of thes-d term in the Hamiltonian is then

Es-d52
J8

2 KA(
i j

r rW i
r rW j

SW rW i
•SW rW j L . ~B1!

The above sum is split up in one in whichi 5 j and one in
which iÞ j . We then take the thermal average of the Tay
expansion of the square root about thei 5 j term. The sum
that contains the term withiÞ j is at least of orderbJ since
it contains correlations between different local moments. T
s-d energy of the band state is then given by

Es-d52
J8S

2 A(
i

r rW i

2
@11O~bJ!#. ~B2!

The energy of the band state is minimized numerically w
respect to the size. We obtain a size of the order of 106 local
moments that decreases weakly with increasingJ8. We find
that thes-d energy is completely negligible and that the ba
state is so large that its energy is very close to26utu. We
expand the band state energy to second order in 1/l for large
l and obtain

Eband526utuS 12
1

l 2D 2
J8S

2
A 1

~A2l !3
, ~B3!

where l is the spatial extent of the band state. The pola
level lies therefore below the band edge and the FMP is w
bound.

APPENDIX C: CROSSING RATE WITH LARGE
BAND STATES

We use the same method to calculate the crossing rat
large band states. However, instead of two spins fluctua
into nearly exact alignment, many spins need to collectiv
fluctuate into a more aligned configuration. The time b
tween two crossings is again estimated from the time it ta
for the rms deviation of the band state energy to becom
large as the energy difference between the band level and
polaron level:

^$EN@tX~N!#2EN~0!%2&5~EP2EN!2. ~C1!

Here tX(N) is the average time between crossings of
polaron level and a particular band state ofN local moments
with energyEN . In Appendix B we calculate energy of th
band state using a variational ansatz with an accurate Ga
22440
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ian trial wave function to show that the FMP is bound. He
however, we determine the crossing rate and we will see
a simple model is sufficient. We assume that the carrie
localized uniformly without inducing extra alignment. It
spin is quantized along the direction of the sum of all t
local moments in the band state,mW , pointing ‘‘up.’’ The ki-
netic energy of the band state is approximately26utu(1
2p2/N2/3) and its exchange energy vanishes on avera
The kinetic energy is constant in time, so it cancels out in
left-hand side of Eq.~C1!, leaving only the rms deviation o
the exchange energy.

Now we use the expression for the two-site polaron of E
~5! on the right-hand side of Eq.~C1!. The band states-d
energy can be expressed assm(t)/N2 and hence Eq.~C1!
becomes

F K H (
i , j ,k,l

N

@SW rW i
~ t !•SW rW j

~ t !#@SW rWk
~0!•SW rW l

~0!#J 1/2L G
t50

t5tX(N)

52N2F S 52
p2

N2/3D utu

J8
2

S

2G 2

. ~C2!

The sum on the left-hand side of this equation conta
N2 terms of the form S4 and 2N terms of the form
S2( iÞ j

N SW rW i
•SW rW j

where the spin operators are evaluated

equal times. There are also terms whereiÞ j andkÞ l . The
square root is expanded about the term of orderN:

H (
i , j ,k,l

N

@SW rW i
~ t !•SW rW j

~ t !#@SW rWk
~0!•SW rW l

~0!#J 1/2

51NS~S11!1(
iÞ j

N

SW rWk
•SW rW l

1 (
iÞ j ,kÞ l

N @SW rW i
~ t !•SW rW j

~ t !#@SW rWk
~0!•SW rW l

~0!#

2NS~S11!
1•••.

~C3!

Thermal averaging both sides of this equation results
many two- and four-point spin correlators. We only retain t
correlators of lowest~quadratic! order in the small paramete
bJ, thereby considering only nearest-neighbor interactio
Moreover, the first and second terms on the right-hand s
of Eq. ~C3! cancel in Eq.~C2! since they do not depend o
time. Hence the condition for a level crossing reduces to

^~SW 0•SW 1!22$SW 0@tX~N!#•SW 1@tX~N!#%@SW 0•SW 1#&

5
2S~S11!N2

3 F S 52
p2

N2/3D utu

J8
2

S

2G 2

. ~C4!

The four-point correlator is treated as in Eq.~11! and we
introduce the numerical constantA as in Eq.~14!:

f ~tX~N!!5AN2
2S~S11!

3^SW 0•SW 1&
2 F S 52

p2

N2/3D utu

J8
2

S

2G 2

.

~C5!
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f (t) could be expanded aboutt5tS to obtain an explicit
expression fortX(N). However, it is clear that large ban
states rarely cross the polaron level.f (t) on the left-hand
side is bounded from above by 1 and the right-hand sid
proportional toN2, and so only small band states satisfy E
~C5!. SincetN grows withN, the size of the largest crossin
band state follows from Eq.~C4! in the limit tX(N)→`. In
this limit f (t)51 so that the largest crossing band st
needsN;^SW 0•SW 1&

2!1. This result shows that large ban
states do not cross the polaron level according to Gaus
statistics. The physical reason is that the contribution to
hy

n

J

, D
ys

.

22440
is
.

e

an
e

s-d energy of a single pair of local moments is weighted
the electron density. For large states this density is low,
that alignment of a single pair of local moments does
lower the energy significantly. Thus, a crossing requires
the local moments to fluctuate into nearly perfect alignme
Of course, large clusters of ferromagnetically aligned lo
moments do exist, and do cross the polaron level, but they
in the far tail of the band and are far more rare than a Gau
ian approximation to the density of states would pred
These fluctuations are thus negligible. We have theref
shown that our expressions fortX in Eqs.~15! and~16! give
the correct hopping rate for the small FMP.
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