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Backward correlations and dynamic heterogeneities: A computer study of ion dynamics
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We analyze the correlated back and forth dynamics and dynamic heterogeneities, i.e., the presence of fast
and slow ions, for a lithium metasilicate system via computer simulations. For this purpose we define, in
analogy to previous work in the field of glass transition, appropriate three-time correlation functions. They
contain information about the dynamics during two successive time intervals. First we apply them to simple
model systems in order to clarify their information content. Afterwards we use this formalism to analyze the
lithium trajectories. A strong back-dragging effect is observed, which also fulfills the time-temperature super-
position principle. Furthermore, it turns out that the back-dragging effect is long ranged and exceeds the
nearest-neighbor position. In contrast, the strength of the dynamic heterogeneities does not fulfill the time-
temperature superposition principle. The lower the temperature, the stronger the mobility difference between
fast and slow ions. The results are then compared with the simple model systems considered here as well as
with some lattice models of ion dynamics.
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I. INTRODUCTION given time some ions are more mobile than other ions, i.e.,
there exist dynamic heterogeneities. Unfortunately, no direct
One basic characteristics of amorphous ion conductors igformation about dynamic heterogeneities can be gained
the strong frequency dependence of the conductivity at sufrom conductivity experiments or, equivalently, from the
ficiently low temperature$.* According to linear response time dependence of the mean square displacement. Some
theory, the dispersion i(v) is equivalent to a nondiffusive progress has been achieved on the basis of simulations.
mean square displacemefif(t)) and thus to the presence Comparing the mean square displacement of different ions
of correlated back and forth jumpsNeglecting possible dy- during a given time a broad distribution has been obsel¥ed.
namic correlations among adjacent ions the relation betweenhis basically corresponds to the presence of a large non-
both quantities reads Gaussian parameter which is known to represent dynamic
2 _heterog(_eneities quite wéﬂ.Othe( groups fognd an interest-
q_PJ dt(d/dtyw(t)exp(—i2mt), (1) ing spatial structure of thg m.obllle regiotfs: o
6kgT Jo Another system with intrinsic complex dynamics is a
glass-forming liquid. A tagged patrticle in a glass-former ex-
periences a dramatic slowing down with decreasing
temperaturé? To a large extent this is related to the cage
_ 2 effect since at low temperatures the neighbor particles have a
W(t) = (d/dt)(ri(). @ strong confining effect on the central parti¢teThis gives
For very high frequencies one observes local dynamicsise to strongly subdiffusive dynamics, i.e., to correlated
which is strongly system dependent. For example, in a soback and forth dynamics. Furthermore glass-forming systems
dium silicate systefhone observes for<10'! Hz a continu-  display dynamic heterogeneiti&s:*°This property has been
ous decrease af(v) with decreasing’ which can typically  quantified by invoking appropriate three-time correlation
be attributed to nonlocal dynamfcand becomes stronger for functions, containing information about the dynamics during
decreasing temperature. Actually, this conclusion has beetwo subsequent time interval®:?2
explicitly verified in recent simulations for lithium Using these three-time correlation functions one can hope
metasilicaté. In a double-logarithmic representation at low to answer several basic questions about the complexity of ion
temperatures the apparent exponent decreases from onedpnamics. How relevant are backward correlations? Are back
zero until the dc plateau is reached, i@(v) = oyc. and forth correlations restricted to nearest-neighbor ionic po-
In general, the complexity of ion dynamics in disorderedsitions? How does the tendency of these back and forth cor-
systems is, on the one hand, related to the static disorder oélations depend on the time scale of investigation? Do dy-
the material and, on the other hand, to the Coulomb interacaamic heterogeneities depend on temperature and thus
tion among the ions giving rise to dynamic disorder. There-nvalidate the time-temperature superposition principle, ob-
fore, one might expect that both the static as well as thaerved for many other quantities such as the conductivity?
dynamic disorder enhances the number of correlated backhis and other aspects of ionic dynamics will be analyzed in
and forth jumps(see, however, Ref.)8&lthough in recent this paper by invoking appropriate three-time correlation
simulations of sodium silicate &t=2000 K no such corre- functions. They will be applied to computer generated trajec-
lations have been observédzurthermore, the presence of tories of lithium metasilicate (LD)(SiO,). Very recently,
different environments of the network might imply that at afirst measurements of three-time correlations have been con-

o(v)=

whereq denotes the charge anpdthe density of the mobile
ions. The functionw(t) is defined as
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ducted via multidimensional NMR. These results clearly r

showed that dynamic heterogeneities are omnipresent in dis- 01 r t

ordered ionic conductors. 15
The organization of this paper is as follows. In Sec. Il we

describe the technical aspects of the simulation and discuss

the numerical tools. Section Il introduces the concept of

three-time correlations. Section IV contains the analysis of r t

simple model systems for which we clarify the information 00

content of the three-time correlation functions. The results of

our simulations as well as their interpretation are presented t01 = t1 - tO

in Sec. V. We close with a discussion and a summary in Sec.

VI. t12 = tz - t1

II. SIMULATION

It

) o - ] FIG. 1. Sketch of a single-particle dynamics in order to clarify
The potential energy for the lithium silicate system is cho-the definition ofr,; andr 5.

sen to be the sum of a Buckingham and a Coulomb pair

potential {,j denote the species lithium, oxygen, or silicon, dynamics, however, is related to the properties of particles
respectively during two subsequent time intervals. Formally, this can be

described as a three-time correlation, including a third time
qqie? C; t;>t;. The idea is sketched in Fig. 1o denotes the dis-
Uji(r)= ) _61 + A exp(—Bjjr). ©) tance a particle moves during the first time mterval pf length
r r tor=t1—to. The value ofr;, denotes the motion during the
. . second time interval of len =t,—1t, as projected on the
The parameters'have peen determined by Habasak?**" direction of the motion dur?r%zthezfirs% timg irfterval. In case
Details of our simulation can be found in Refs. 7 and 26'ofa back jump, as shown, for example, in Fig. 1, the value of
Summarizing, we performed molecular dynamics simulay s counted negative. The additional information about the
tions with a time step of 2 fs and a density pF2.34  gynamics during two successive time intervals as compared
gem °. Periodic boundary conditions were used. The systg the dynamics during a single time interval is contained in
tem size is 1152 particles, thus containing 384 lithium iOﬂS{he conditional probabi”ty functiop(r12|r01) which denotes
The trajectories were generated by an appropriately modifieghe probability for a specific value of, under the condition
version of the moLDY software package, supplied by that the particle has moved the distamggin the first time
Refson?’ The length of the production runs was 16 ns afterinterval.
an equilibration time of around 10 ns at the two lowest tem-
peratures. Even a=640 K the mean square displacement B. Moments

during the production time was larger than 68 fhearest- Rather than analyzing the full probability function, we

neighbor Li-Li distance 2.6 A); see Ref. 7. All configura- ,ncentrate on the first momentr ;) and the second mo-
tions were equilibrated a't;=1500 Kk'sthe cr?mputeli glass ment U(r01)E<[r12_r_(r01)]2(r01)> The interpretation of
transition is approximately 1100 KZ° In this work we 2z

present simuIaF:in)ns for fi\)//e temperatureE=(1240, 980 both functions is straightforward(r ;) contains information
750, 700, and 640 K For all temperatures, the lithium sub- about the relevance of back and forth dynamics. In case that

system has been equilibrated before starting the productioff€ direction of the dynamics during two successive time
run. In particular at the lower temperatures the network flucintervals is uncorrelated one expec{so;) =0. In contrast, a

tuations are very smal(mean square displacement of negative value of is direct evidence of the presence of back
0.3 A?). and forth dynamics.

The second momenit(ry;) yields information about the
presence of dynamic heterogeneities. In case that all particles
have the same mobility, the distance moved in the second

A. Definition of three-time correlations time interval is independent of the distance moved in the first
As mentioned above, the dispersive behavior of the contme interval. Thusy(ro,) would not depend orv; . A de-

o ivalently. th iffusi havi f th pendence omg; will be observed if there exist fast and slow
ductivity or, equivalently, the nondiffusive behavior of the s. The subensemble of ions with smgj] will preferably

mean square displacement, has been related to correlat&y’

back and forth dynamics. Here we want to introduce a for_contain slow ions _vvhereqs for ions With largg, it is vice
ersa. Therefore, ions with smal,; will on average move

malism which allows one to elucidate the properties of bac i X X X i

and forth dynamics in detail. We remind the reader that stan'€SS In the second time intervl, than ions with large o,
dard observables for the characterization of dynamical prop€Sulting in @ monotonous increaseudfr o) with ro; .
erties like the mean square displacement correlate the posi-
tion of individual ions at two successive timgsandt;. For

a calculation of<r2(t)> one averages over the configurations It is possible to establish a direct relation between the

at all timest, andt; such thatt;—t,=t. Back and forth mean square displacement and the first monnéng,) for

IIl. THREE-TIME CORRELATIONS

C. First moment in the limit ty;—0
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the case of a discrete hopping model in the litgjt—~0. For V. MODEL CALCULATIONS
reasons of simplicity we take a 1D model with distandgs

between the individual sites. One may start with the simple Ingrder to clarify the information content 9]( the first mo-
relation mentr (rq;) and the second momen(ry;) we first calculate

them for some simple one-dimensional models. We always
2 ) 2 consider the case of stochastic dynamics since we are inter-
r“(tortten))=(r<(tgy)+2{r(ton)r(typ))+(re(t L . e -
{r(toa+ taa)) = {r™(toa)) + 2(r (toy)r (ta2)) +(r(ts2)) (4  ested in time scales which are beyond the ballistic regime.

which is valid for stationary processes. On the left side one A. Harmonic oscillator

can perform a linear expansion aroufgd=0. On the right This model is relevant to describe the backward and for-

suge one may use the fact thazt for very smigll the term 54 gynamics in the individual potential wells. We consider
{r*(tor)) can be written ad’eqdoto, (corresponding to the 5 1armonic oscillator with minimum at=0. Both times

short-time diffusion in pure hopping models with an effec-¢ . are longer than the equilibration time of the oscillator,
tive escape rat€r). Since for very short times the system j o “the mean square displacement is already constant. We
can only jump to the nearest-neighbor site the termyyst cajculate the probabilitpy(ry) that after the first time
(r(topr(tir)) can be expressed d%qdotosr (do). Inserting  interval the system is at; after a motion off o; to the right.

these relations into Ed4) one finally ends up with This can be formally calculated as
r(do) _ 1jwits) -1 (5) pl(rl)zf droPo(ro)p(rafro)8[roi—(r1—ro)l, (6)
do  2[ w(0) ' 0

where po(ro) denotes the equilibrium distribution and
This relation directly shows that exactly in case of diffu- p(r,|r,) is the probability to move from, to r, during time
sive dynamics, i.ew(t)=const, one has(dy) =0, i.e., no to- For largety, the latter term is identical to the equilibrium
correlated back and forth dynamics. For subdiffusive behavdistribution, i.e.,pg(r1). The resulting Gaussian integral can
ior one obtaingbeyond a possible oscillatory regime of the be easily solved. Here we are particularly interested in the
mean square displacemg@<w(t)<w(0) and thus—1/2  first moment(r;) of p;(r;). One obtains

<r(dg)/dpy<0. Thus subdiffusive behavior is equivalent to (r)=(12)r 7
the presence of correlated forward and backward jumps. Fur- ! ot
thermore validity of Eq.(5) implies that the first moment For longt,, the system acquires the averggg)=0, yield-
r(dy) has a lower limit—(1/2)d, which is reached ifv(t)  'NY
=0, i.e., for the long-time limit of localized dynamics where —
any forth jump is followed by a back jump. Finally one can r(ro) =(rz)=(ry)=—(1/2)rq;. )
see that the range of dispersion, iw(t—%)/w(0), can be  Thus the back-dragging effect in the second time interval is
related to the first moment(dy) in the limit t;;—~0 and  proportional to the distance moved in the first time interval.
typ—°.

This formal treatment has been performed for a hopping B. Periodic potential
model with discrete sites. This may be considered as an ap- In the next step. we analvze a potential which involves
propriate model also for more realistic systems for which theI | vibrati P, I as h yze z ics H i
particles will fluctuate around the individual sites. In particu- ocal vibrations as wetl as nopping dynamics. Here we con
lar this is the case for the ion conductor, studied in this workSlder a perlc_)d|c potentidtyq(r) with minima at integer val-
(see below for more detajlsin contrast, for glass-forming ues ofr, defined as
systems hopping dynamics is not so relevant. Therefore it is V(r)=Vy[1—cog27r)]. 9)
not possible to formulate such a simple relation between the
derivativew(t) of the mean square displacement and the firsiWe are interested in the stochastic dynamics of a particle. In
momentr (dg). general, one has to resort to numerical simulations to calcu-

Equation(5) also implies that the first momen(d,) in Ia_lter_(rm). Here we have_ modgled the dynamics via standard
the limit ty;—0 doesnot contain new information as com- kinetic Monte Carlo simulations at the temperatiife
pared to the mean square displacement. For figite how- =0.4V9 with step sizes much'smaller than the distance of
ever, the first moment can no longer be predicted froft). two adjacent minima. The qualltatlve_features of the result do
Thus new information as compared to the mean square diglot depend on the exact value of this temperature. We have
placement about the nature of correlated back and forth dyehosento, such that on this time scale a particle leaves the
namics becomes available. Of particular interest is the delnitial well with a probability of approximately 50%. Fur-
pendence of the first moment op,. For example, one can thermore we have chosep=10ty;. The result of this simu-
learn whether there exists a long-range back-dragging effeckation is shown in Fig. 2. The dependencer¢fy) onrg;
as implied, e.g., in the percolation approach of ion dynamics¢can be understood from simple argumers. For ry<1,
or whether after jumping to the next nearest-neighbor site thene basically has the behavior of a harmonic oscillator.
memory about the initial site has been basically wiped out.For ry,=0.5, the particle has typically moved to a position
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cage. We denote the two different transition ratedhyand
I', (I'y>T>). Our goal is to calculate(ry;=1). For very

(o] o
.05k N o o ] long tgy, i.e., to1l'»>1 the dynamics resembleg that of a
: ° random walk so that forward backward correlations should
i ° ° 1 not be relevant, i.er,(1)~0. Therefore we restrict ourselves
= 0 b to the casdgl',<1. The analysis is presented in Appendix
g A.
o We obtain
-0.05- o A
o] J—
. 1 1 Q L . L 1 . 1
0 0'.1 0{2 0.3 0[4 0‘.5 0[6 0[7 0i8 019 1 X[1—exp —2I1t1o)], toll'1<<1, (10
o
FIG. 2.r_(r0]) as obtained from Monte Carlo simulations of the Ty — . .
simple periodic cos potential. The potential is shown in the inset. r(1) (1/2)(1-2I'5/T")(1 =T 5toy)
X[1—exp —2I'1t19)], tod'1>1. (17

close to the saddle between two wells. For infinitg,

simple symmetry considerations show thaf) is exactly on

the saddle. Since a particle on a saddle does not experiend@us there exists a limiting value fot,—0 which is
any effective net force to any side one @9_5):0_ For reached foty~1T'y, i.e., the time scale of the fa_stestjump
finite to;, a motion ofr ;= 0.5 on average leaves the particle Process. For larger values of, the back-dragging effect
decreases with time; see Ed1). r(1) approaches zero for
to, of the order of W',. The physical reason is that for
donger timesty; the particle may also cross the high barrier
during the first time interval. These events strongly reduce
the total back-dragging effect in the subsequent time interval.
Thus thety;, dependence contains valuable information about
the time scales involved in the dynamics and indicates at
which time scale(here, tg;~1/",) a simple random-walk
description becomes relevant.

So far we have only discussed backwards dynamics due Fort;;—0 one obtaing —0. This limit is trivial since
to intrawell dynamics. For an ion conductor one expects thathere is no dynamics during the second time interval. In con-
dynamic forward backward correlations either result fromtrast, fort;,—co the backjump effect is largest. Thus it is this
static or from dynamic disorder. Here we briefly discuss aimit which is relevant to judge the maximum backjump ca-
very simple model which contains nontrivial forward back- pabilities. The rest of the discussion for this model system
ward dynamics. It is shown in the inset of Fig. 3. Due to thedeals with this case.
alternating barrier heights a particle performs several for- To show the full dependence E(rm) on ro; We again
ward and backward jumps until it can escape from the locaperformed Monte Carlo simulations for a potential with al-

ternating barriers. This potential was generated from the cos

in the initial well?® Thus the functiorr (r,) has its zero for
ro1 slightly larger than 0.5(c) For ry; approaching 1, the
particle has definitely crossed a saddle. Now the effectiv
force points in the same direction as the initial jump direc-

tion. This results in a positive value cT(rm).Ld) For ro;
=1, one has the same result as fg=0, i.e.,r(rqy) =0.

C. Potential with alternating barriers

T T T T T T T 1 potential, discussed above, by scaling the cos potential by a
[ o q ] factor 1.5 in the intervals...,[—1,0], [1,2], [3.4], ....
005 © 1] The temperature was=0.5V,. ty; is chosen such that the
I o 1] short-time limitty,;<1/T"; is fulfilled whereag, corresponds
oak o 1 to the long-time limitt,,>1/T",. The transition rate is pro-
-~ o 77 portional to the attempt frequency in the minimum, which
2 o 41 scales with the square root of the force constant and with the
-0.151- ] Boltzmann factor. Thus one expects, /T';~ /1.5 exfj(2
I ] —3)/0.5]=~0.17 which, according to Eq.10), yields r(1)
-0.2F o . ~0.22.
I ° ] The result forr (rqq) is shown in Fig. 3. It resembles that
) AU N NN OUR UR S U NI SRR of a periodic potential except for a systematic downward
0 01 02 03 04 05 06 07 08 09 1

trend. Thus we have a superposition of the correlation effects
of simple periodic potentials with wells and barriers and of
FIG. 3. (ro;) as obtained from Monte Carlo simulations of a barriers with different heights. Actually, it turns out that our

periodic potential with alternating barriers. The potential is shownestimate Ofr_(l) agrees reasonably well with the numerical
in the inset. value of around 0.25.

™
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D. Random trap model 3 ——

Finally, we want to present a very simple model which [ o °
allows one to grasp the relevant features of the second mo- s °
mento(rq;). We start with an(possibly high-dimensional 251 o
array of traps with different depths. Such models have been
extensively studied in the context of supercooled -
liquids 2°-3! Different ratesl; are randomly attributed to the = 2[ ° ]
different traps. For such a simple model the dynamics is i 1
purely diffusive. Here we are specifically interested in the s °
ratio V(t)=v(r o= 1.)/v(ro;=0,) for to;=t;,=t. Accord- L5y
ing to our discussion in Sec. IN(t) is a measure for the I ° ]
relevance of dynamic heterogeneities. i | | | °| o

As shown in Appendix B one can derive the relation """ "Moo 1000 10000

=l =1,

1
V(t—>0)=<F)<F>. (12) FIG. 4. V(t) as obtained from Monte Carlo simulations of a

] ) o potential with random traps. The potential is shown in the inset.
Without dynamic heterogeneities it does not matter whether

or not a particle moves in the first time interval such thatadjacent ionic sites; see, e.g., Refs. 32 and 33 for similar
v(ro;=1t)=v(ro;=0}). In case of no dynamic heterogene- features in previous simulations on alkali silicates. In our
ities, i.e., a single value of’, one ftrivially has(I')  recent work we have shown that the van Hove self-
=1/1/") and thusV(t)=1. For a distribution of jump rates correlation function displays a strong peak fig~2.6 A.

the produckT")(1/T') is larger than one. This can be easily This peak is separated by a minimum at 1.5 A from the peak
rationalized for a bimodal rate distribution with ratég,I',  at the origin. The interpretation is straightforward. The po-
and weightsa, ,a,, respectively. A straightforward calcula- tential energy landscape, as supplied by the network, pro-
tion yields V(t) =1+ (a;a,)(I'y;—',)?/(I'1[",) which for a  vides lithium sites with an average distance of 2.6 A which
bimodal distribution is strictly larger than 1. For stronger are separated by a saddle.

dynamic heterogeneities, i.e., a broader distribution of rates Furthermore, it turned out that the mean square displace-
I', V(t) also increases. Thug(t—0) is a direct measure for ment curves at different temperatures show time-temperature
dynamic heterogeneities. superposition. In Fig. 5 we show their derivative, iw(t),

In the opposite limit—c, a particle withro;=0 has by  for the five temperatures analyzed in our prior works
chance returned to the original position. This implies that theshown in Ref. 7 the functiow(t) for t>1 ps is due to
conditionry;=0 no longer implies any dynamical selection processes which involve long-range dynamical processes
of slow particles. Thus one expec&t—)=1. Whereas [|f(t)—r(0)|=1.5 A]. Whether or not these processes can
the detailed time dependence \é(t) depends on more de- ajways be interpreted as jumps is currently under investiga-
tails of the model like the number of neighbor traps, thetion, Fort<1 ps the functiow(t) is dominated by localized
limiting values are generally valid. processes of the lithium ions. Since the presence of back and

In order to visualize the full time dependence, and tOforth dynamics is equivalent to a decreasewgf) with time,
check our analytic expression we have performed Montgne directly sees that at least in the case of the two lowest

Carlo simulations for a one-dimensional random trap modeliemperatured = 700 K andT =640 K long-range back and
We have chosen two escape rates, characterizeda;by

=0.035a,=0.965]";=0.005]"',=0.1. For this specific 10 e
choice of parameters one hds)(1/T')=1.61. The time de- :
pendence oW (t) is shown in Fig. 4 as obtained via Monte
Carlo simulations. For this simple model the algorithm can
be implemented in a straightforward way. One observes that
the theoretical short-time and long-time limits are confirmed ~

L e e ) AL B
&AT=1240K

oT= 980K
zaT= 750K

1

by the numerical data. Interestingly(t) displays a maxi- < o
mum. Qualitatively, this means that at the time scale of the = %1
ES

maximum the effects of dynamic heterogeneities are most
pronounced. A more detailed discussion of the time depen-
dence and of the maximum is beyond the scope of the  0.01
present paper. -

_|||n| L L i T v ol N |||||||| . ¥,
0.01 0.1 1 10 100 1000
V. RESULTS 1 [ps]
A. Previous results S .
o _ ) FIG. 5. The derivativan(t) of the mean square displacement
It has been observed that lithium trajectories can be deshown for different temperatures. Note thatforl ps the function

scribed as a series of local vibrations and jumps betweew(t) is mainly governed by long-range dynamisee text
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0.8 0 -
L|le—vT= 640K
0.7 —oT= 700K
L [fe—=T= 750K
Lle—oT= 980K
0.6 4&4T=1240K
—_ 051 — -0,5— —
it F <
3 —_ .
£0.4r s % £y, [ps] |
S .3 7" 10 100 100 16°
“ 0.3+ > 7 T g
0.2 Ak L 3]
0.1 I C
i L il N By
S S U L 1OLOO 0,1 1 10 100 1000

t [ps] Iy [ps]
FIG. 8. The first moment_(d0:2.6 A) in dependence df;.
The value oft;, has been scaled for every temperature on the basis
of the diffusion constanft,;,(T=640 K)=3276.8 p$. In the inset
also the values dfy; are scaled by the diffusion constant such that
forth correlations are indeed important. In order to characterty,(T=640 K)=t&,(T=640 K).
ize the typical time scales of the long-range dynamical pro-
cesses we show in Fig. 6 the incoherent scattering functiofehavior, as seen from the very good agreement with the
S(Amax:t) Wheredmq,=2m/do. Itis a measure of the probabil- po1en finer(ry,) = — (1/2)ry;. Furthermore the nonmono-
ity that an ion is still(or again at the initial site after time t.  qnic hehavior directly reflects the presence of a saddle be-
All data can be consistently fitted with a KWW function yeen adjacent lithium sites. Figure 7 clearly reveals that the
f(t)=exy - (U7)"] with 5=0.45. fraction of back and forth dynamics increases with increasing
t1o. This is expected from our theoretical considerations; see
B. Back and forth dynamics above.

A quantitative analysis of the back and forth dynamics is_ Interestingly, for the two largest values g} the function
possible on the basis of the first momefityy). In Fig. 7, we  (ro) decays further forrg>do=2.6 A. Thus back-
have plotted this function for a fixed value of;=102.4 ps  dragging effects become stronger when jumping into the sec-
and differentt, at T=750 K. For larger, the statistics of ond nearest-neighbor shell d_unmgl_. Thls observation al-
these curves becomes quite poor since only a few ions pafé@dy goes beyond a scenario which is only based on back
ticipate. This problem becomes worse for shigyt and/or and forth porrelatlons bejween adjacent lithium sites.
long t;,. In this and the following plot we restrict ourselves _ Of particular interest is the dependencetgpas already

to ther, regions which possess a reasonable signal-to-nois@iscussed for the alternate barrier model. Since we are
ratio as estimated from the fluctuations of the curves. mainly interested in correlated back and forth dynamics be-

On a qualitative level the dependence 1qp resembles tween nearest-neighbor positions we focus on the value of

that shown in Fig. 3. For smal},, one recovers the harmonic (do) which characterizes the subsequent dynamics of a par-
ticle which has jumped to the nearest neighbor distance in

FIG. 6. The incoherent scattering functi8gay.t) at different
temperatures. The solid lines correspond to KWW fits with
=0.45.

OF the first time interval. We choose a large but constant value
for t45 (4.1 ns ps foiT =640 K) and vanty;. Comparison of
0.2 om0 different temperatures is achieved by choosing the respective
I o value oft;, approximately proportional to the inverse diffu-
V4 W f gy TETETE sion constant. This results i,=26 ps (T=1240 K), t;,
< _06'_ =102 ps =980 K), t,,=0.8 ns =750 K), t;,=2.0 ns
= 1 - b =1024ps - (T=700 K), andty,=4.1ns =640 K). The data are
T og :;12: ?ziz o1 T shown in Fig. 8. Obviously, for longer timeg,; the back-
ol = 128ps dragging effect becomes much smaller. This agrees with the

- theoretical considerations, discussed for the alternate barrier

model. The limiting valuer (dy)=—1.3 A is only approxi-
mately reached for the lowest temperatiire 640 K. Inter-
estingly, the dependence ogy is very gradual and extends
over several decades of time. This shows that there exists a
broad distribution of barriers experienced by the lithium
ions.

For a fixed value oty; the relevance of correlated back
and forth dynamics increases with decreasing temperature.

-1 e—a t,= 102.4 ps
Fle—of,= 819.2 ps )
1al|emat,=32768 s
P R R S
0 1 2 3 4
1 [Al

FIG. 7. The first moment_(roj) for ty;=102.4 ps and for dif-

ferent t,, at T=750 K. The broken line corresponds er)
= (1/2)01
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FIG. 9. v(ro;) at T=750 K for different choices ofy,=t;,. FIG. 10. V(t*)=v(do)/v(0) at different temperatures using
scaled times.

From our previous discussion the short-time limit ©f : . . . .
~1 ps is related to the dispersion according to @, Since this case, a particle which has jumped twice would, on aver

only fortg;>1 ps long-range processes become relevant on%ge' lijelong tg a fas;er f_reglo_n th_an parltlc_:_eh§ V;hf'fCh only
should chooséqy,=1 ps as the short-time limit in Ed5). Jumped once during the first time interval. This ditierence

R T would show up in the mean square displacement during the
Checking it, e.g., folf=750 K, one obtains(do)=—-1 A second time interval since particles in the faster region
which according to Eq. (5) corresponds to w(t  \ould, on average, also jump further in the second time in-
—)/w(1 ps)=0.23. This agrees with the measured valueteryal. This would lead to a strong increasev¢f o;) beyond
of around 0.2(see Fig. 5. Note that Eq.(5) is based on a he nearest-neighbor distandg.
strict hopping picture. Therefore one would not expect an  |n order to study the temperature dependence and the time
exact agreement between both values. In any event, singgpendence in greater detail we have calculatd)
only for T<750 Kr(d,) comes close to the limiting value of =y (d,)/v(0) in dependence df=tq,=t,, and for different
—1.3 A the back-dragging effect and, equivalently, the distemperaturesv(t) is a direct measure for the degree of dy-
persion in the mean square displacement are relevant only itamic heterogeneity on the length scale of the nearest-
this low-temperature range. neighbor distance. In order to compare the different tempera-
In the inset of Fig. 8 the individual curves are scaled withtures we have again scaled all times by the ratio
the scaling factoD(T)/D(T=640 K), thereby introducing D(T)/D(T=640 K). The results are shown in Fig. 10. One
the scaled timég, . Within the statistical noise one can see acan clearly see that the degree of heterogeneity changes with
decent superposition, in particular for the three lowest temtemperature. The lower the temperature the stronger the dy-
peratures. Thus one observes a time-temperature superposamic heterogeneity. Thus on the level of dynamic heteroge-
tion also for this rather involved quantity of correlated backneities the time-temperature superposition principle does not
and forth dynamics. hold. For the lowest temperatut) is approximately 5.5 at
the maximum. This number directly implies that the mean
square displacement of a particleorrected for possible
backwards correlationss 5.5 times larger in the second time
Finally we present results for the second mome(rty,). interval if it has performed a jump in the first time interval
In Fig. 9 we have plotted (r;) for T=750 K and different as compared to particles which are still at the initial site
values forty;=t;,. One can clearly distinguish two regimes aftertg;.
which are approximately separated by 2 A. Fgi<2 A,
the second moment(ry,) is significantly smaller than for
valuesr,;=2 A. As discussed above this is a clear signature
of dynamic heterogeneities. After a jump of 2 A an ion has In this paper we have shown how analysis of three-time
basically achieved to cross the saddle and is already part @brrelations can be used to get model-free information about
the adjacent ionic site. This means that a particle which hathe nature of the complex ion dynamics. The characteristics
crossed the local saddle during the first time interval is muclof back and forth dynamics is reflected by the first moment
faster during the subsequent time interval. Starting frgm  of the three-time conditional probability function, the dy-
=dy the second momeni(ry,) further increases with in- namic heterogeneities by the second moment. The main re-
creasing ro;. This further increase, however, is much sults are(i) the long-range backward correlations beyond the
weaker. This observation would be compatible with only mi-nearest neighbor positiofij) the gradual decrease of back-
nor spatial correlations among ionic sites of similar mobility. ward correlations with increasingy,, (ii) the time-
In particular, it would contradict the scenario of compacttemperature superposition principle for correlated back and
regions of ionic sites each with a different ionic mobility. In forth dynamics(iv) the significant dynamic heterogeneities

C. Dynamic heterogeneities

VI. DISCUSSION
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at low temperatures, anfv) the lack of time-temperature which are already relevant on the time scale of a few hun-
superposition for the dynamic heterogeneities. In what fol-dred femtoseconds.
lows we discuss these results in more detail. The alternate barrier model differs from our lithium meta-
For ion conductors at low temperatures the basically im-silicate system also in another respect. For the alternate bar-
mobile network serves as a pseudoexternal field for théier model the typical jump time is of the order ofl’y/ One
lithium ions. Therefore it has been attempted to model thean show thati) the decay ofw(t) is strongest for exactly
lithium dynamics by simple lattice models like the randomthis time scale andi) S(q=2,t~1/T";) is already signifi-
barrier or the random energy modet! Also in these models ~cantly smaller than unity. For the lithium metasilicate system
the long-range backward correlations are present. Only i@t, €.9.,T=640 K the decay oWw(t) (due to long-range pro-
simple models such as the alternate barrier model, discuss€g@sses; see abovés strongest in the ps range whereas
in this paper, back and forth jumps are restricted to theS(q,t) is still close to the short-time plateau value. This dis-
nearest-neighbor position. The reason for these long-ranggiepancy could be alleviated by introducing an additional
backward correlations is quite intuitive: the ions look for variation of site energies. This would shift the decay of
paths which can can be accessed rather easily. In particular &d,t) to times of the order of 17,. On a qualitative level
low temperatures these paths can be rather extended. Orilyis would imply that the short-time dynamics occurs in
for long times the ions manage to escape such a local patasymmetric double-well potentials. It remains an important
This picture is consistent with the percolation approachjuestion whether the same scenario also holds in lithium
which has been successfully applied to describe the dynamwetasilicate, i.e., whether fast back and forth jumps in
ics in the random barrier and the random energy médfel.  strongly asymmetric double-well potentials are present. An-
It may be interesting to compare this scenario with that ofother scenario to rationalize the abovementioned discrepancy
supercooled liquids. There all particles move on the sam#ill be presented further below.
time scale. No pseudoexternal fields are present. The com- In Ref. 9 it has been reported that for sodium silicate at
plexity of the dynamics is due to the necessity of cooperativdl =2000 K no backward correlations were observed. This is
dynamics of the strongly interacting particles. A simple pic-compatible with the experimental data for sodium silicate
ture is to view a particle localized in the cage of the adjacenwhere the dispersion disappears fbr=1000 K3 For the
particles. The relevant relaxation process is to escape thigresent system the dispersion disappears around a similar
local cage and afterwards being trapped in a new cage. ltemperature. This shows up in a very little time-dependence

this case the first momen(r o) is constant for values afy, ~ ©f w(t) at 980 K in Fig. 5 beyond 1 ps. Nevertheless, even
larger than the typical nearest-neighbor distaftcghis is  these weak backward correlations are directly visible by
due to the fact that after leaving the initial cage no significan@nalysis of the three-time correlations in Fig. 8. As discussed

memory to that cage is left. The, dependence af(r o) for below thesg backward correlation; may be QUe to a small
roi>do shows that this simple cage picture cannot be use umbebr OL'OH‘Z' Thusl 6,:. less detailed analysis may oversee
for the ionic dynamics. A possible explanation for this effect €se backward correlations. . -

is the relevance of the static disordered energy landscape in The approximate time-temperature superposition principle

ion conductors which leads to a dramatic reduction of muI-as seen in Fig. 8 implies that the back-dragging effect re-

tiparticle correlationSsuch that cages, formed by adjacentmalns the same if a.nalyzed on appropriately adjusted time
ions, are less relevant. Alternatively, one might argue that thgcales. Note that this statement_ goes beyond_ the Previous
presence of long-range Coulomb interaction gives rise t esult that the mean square (_1|splacement displays time-
long-range backward correlations. This aspect still has to b&MPerature superposition. As d|scus§eg above the latter ob-
clarified. servable is only related to thig;—0 limit of r(ryy). The

In the alternate barrier model the dependencg(df)) on tlnje.—temperature superposmon in Fig. 8 may be l.Jsed to dis-
criminate between different models of ion dynamics.

toq reflects the values of the lowest and highest relevant bar- The significant heterogeneities, as characterized by the

riers present in the system. On the time scale for which theSecond moment, is compatible with the abovementioned

highest relevant barrier is crossed no back and forth dynanliroad distribution of relevant barriers. Actually, such a dis-

ics should be visible. Indeed, we see in Fig. 8, e.g., Tor buti i he | . f the di .

=750 K, that the back and forth dynamics becomes smal‘rI ution comp_lcates the interpretation of the dispersion

for t o’f the order of 1 ns. The relaxation time, i.e., the Ww(t—¢2)/w(0) in terms of correlated back and forth dynam-
01 " H ey 1

decay time ofS(Qg.t), is of the same order. Within the ics. This is exemplified for the simple case of titempo-

alternate barrier model one expects that fgr somewhat rarily distinct ionic species with jump ratek,;>I", which
smaller than 17, but still larger than 17, one expects a are present with probabilitigs, andp,, respectively. If we

i — . have in mind a log-Gauss distribution of rates one should
linear dependence af(do) on to, in marked contrast to the  choosep,>p,. Generalizing Eq(5) we get
numerical results. This clearly shows that in contrast to the

alternate barrier model the lithium metasilicate system is wt—w) 1 1 pll“lr_1+p21“2r_2
characterized by a broad distribution of relevant barriers. =

Furthermore no short-time limit is visible in Fig. 8 butd,)
decreases also for the shortest times which could be andhe termsl';p; imply that during the short time interva,
lyzed. This indicates the presence of transitions with verythe probability of a particle of speciégdo perform a hop is
small saddles or, possibly, broad anharmonic potentialproportional to the rate and its occurrence probability. In the

w(t—0) 2 " do  pil1+pals 13

224201-8



BACKWARD CORRELATIONS AND DYNAMIC. . .. PHYSICALREVIEW B 66, 224201 (2002

limit, discussed above, and under the additional assumption ACKNOWLEDGMENTS
that|r'| is not much smaller or even larger thiad|, this can In this work we have profited from helpful discussions
be approximated by with C. Cramer, K. Funke, J. Habasaki, H. Lammert, and
B. Roling.
w(t—o) 1 rt APPENDIX A

——~ 4 —,
Calculation ofr(ry;=1) proceeds in two steps. First we
calculate the probability that a particle has moved by one
This result shows that the dispersion is to a large degregnit to the right during some time,;. Since we have two
determined by the backjump properties of tlast Species_ nonequivalent sites we have to CaICUIate, on the one hand,
Thus in case of significant dynamic heterogeneities one ha§e transition probabilitye, (eo stands for even-oddrom
to be careful to relate the dispersion of the mean squart=0 tor=1 and, on the other hand, the transition probabil-

displacement to the average backjump properfiesre itﬁ’ oe fromr=1 t;rzz. In the secofnd stepzwe caaiculate
(pari+ pr?)/dg] of the ions. the average motionr, (starting, e.g., fromr=2) andAr,

. . . (starting, e.g., fronr=1) during the second time interval.
This observation allows one to envisage another explana(—)ne expectar.>0 andAr.<0 and for reasons of symme-
tion of the very different time scales where the decaw(if) P € 0 Y

is maximum(ps regime and where the incoherent scattering try Are: —Ar, V\.’h'Ch we abbreviate akr. With this infor-
: N mation we can finally calculate
function S(qmax.t) decays(ns regime; see above. A few fast

ions with significant back and forth correlations can domi- o AT yGoot AT Joo—0
nate the time dependencewft) but hardly contribute to the r(l)=——2 —_C0¢_ A\ 22 (A1)
decay of the incoherent scattering function. Actually, for the eo™ doe Geot Goe

random energy model we have observed that the back and
fo_rth corre!at!ons are sirongest for the fast pf‘lr.t'defs such th%at in the limitty,I",<<1 multiple transitions over the higher
this effect is indeed present there. Whether it is this scenari . . . .
. o -harrier can be neglected. We start with a particle eithar at
or the above-discussed presence of energetic disorder, which -~ ; . iy
. . . =0 orr=1 and we are interested in the probability to be at
dominates the different time dependence wf{t) and

S(qmax.t) for lithium metasilicate, awaits further clarifica- r=1 orr=2 after timety,, respectively. Neglecting those
tion terms, which are only relevant in case that a particle has

. rossed a high barrier at least twice, we end up with the

We have shown that the degree of heterogeneity depends, ~~ . . .
. . ollowing system of rate equations for the site populations
on temperature. In contrast, the incoherent scattering func-

tion S(Qmax.t) fulfills the time-temperature superposition Pi-

For the calculation ofy., and q,. we take into account

principle. Actually, the same observations have been made d/dDon= — (T++T T A2
for glass-forming liquid$! For these systems the nonexpo- ( JPo (1 #T2)Pot Py, (A2)
nentiality of S(gmax.t) Mainly reflects the broad distribution (d/dt)p;= — (T1+T2)py+'1pg (A3)
of relaxation times. Thus naively one would expect a lower ’

value of the KWW exponenf with increasing degree of d/dD D= —T10o+T0a+T A4
heterogeneity. It still has to be shown why at least in the ( P2 P2 Pt h 2P *4)
temperature range, accessible to simulations, this is not the d/dD)Da= —TDa+T A5
case. ( )P3 1P3T11P2. (A5)

It may be interesting to compare our approach with that ofThis set of differential equations can be directly solveg,
Habasaki and Hiwataff For the same system &t=700 K can be identified ap; with initial conditionr =0 andq,. as
they determined during 1 ns the distribution of square disp, with initial conditionr =1. One obtains after a short cal-
placements of all particles. They observed a large varianceulation
thus indicating some distribution of relaxation times. On a
qualitative level this result is compatible with the results re- Qeo=(1/2)(1=Tato)[1—exp(—2I'1te)]  (AB)
ported above. One advantage of the present approach is that
via study of thery, dependence also information about and
length scales are available. Furthermore, the valu®/(af
—0) has a direct interpretation in terms of local rate distri- qoe:ﬁ{l—exp(—2F1t01)+FltO][1+exp(—2F1t01)]}.
butions. 1

Having identified several properties of the complex ion (A7)
dynamics in quantitative terms one would like to relate themrhys we finally getusing againl’;>T ')
to more microscopic properties such as the distribution of
oxygens around the lithium ions and to see whether mainly Jeo— Uoe r,
the interaction among the different ions or the interaction le—ZF— (tol'<<1) (A8)
with the basically static network gives rise to the observa- o Hoe !
tions reported in this work. and
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Jeo— Yoe

—1-T,t
Jeot Joe 2oL

(toT>1). (A9)

As a second ingredient we want to calculate which is
the average coordinatg) after timet,, for the initial con-

ditionr =0. Using the standard trick of introducing the func-

tions

sng piexp(iq)) (A10)

and

TqEE (—1)p;exgliq)) (A11)

PHYSICAL REVIEW B66, 224201 (2002

APPENDIX B

Here we calculate the short-time limit of the random trap

model. We always choosg,=t,=t. We define the prob-
ability that a trap has the escape rhteasp; . In equilibrium
the probability that a particle is in a trap with escape iate
is proportional top; /I";. Then we can write

> (P /THpGi(DrE(t)

B
v(rgp=1)=

(B1)
EJ (pi /T p;ai(t)

Here g;(t) denotes the probability that after timehe par-

ticle has moved by one unit, starting in a trap with escape

one can write down two linear differential equations involv- rate I‘i and r]z(t) the short-time expression for the mean

ing Tq and S,

(d/dt)Sy(t)= —(I'1+1'2)Sy(1—cosq) —i(I'y—I',) Tgsing,
(A12)

(d/dt)Ty(t)=—(I'1+T'5) Te(L+cosq) +i(I'; —I',)Sysing
(A13)

square displacement, starting from a trap with date One
simply hasq;(t)=T";t andr]-z(t)=1“jt. After a short calcula-
tion one obtains

v(r01=1,tﬂ0>=2i pili=(T). (B2)

which can be solved with standard methods after specifica-

tion of the initial condition. Of interest for us is the expec- In analogy one obtains for the short-time expansion of

tation value(r) for the initial conditionr(0)=0. This ex-
pression can be calculated from

(ry=—ilim(d/dq)S,.
q—0

(A14)

It turns out that

I'—T,
r+r,
which in the limitT"y>T", can be rewritten aar=(1/2)(1

Ar=(1/2)

{l1—exd —2(I'1+T'5)t,]} (A15)

—2I',/T'1)[1—exp(—=2T'1t;5) ]. Thus we have calculated all

ingredients which are necessary for determination_(df).

v(r01=0,t)
EJ (P /TP 1—ai()]rf(t)
v(ror=0)=— =1y
EJ (P /TP [1—ai(1)] i
| (B3)
Thus one obtains
v(rp=1t)
U(rm—:O’t)—(F)(l/F)- (B4)
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