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Backward correlations and dynamic heterogeneities: A computer study of ion dynamics

A. Heuer,* M. Kunow,† M. Vogel,‡ and R. D. Banhatti§

Westfa¨lische Wilhelms-Universita¨t Münster, Institut fu¨r Physikalische Chemie and Sonderforschungsbereich 458,
Schlossplatz 4/7, D-48149 Mu¨nster, Germany

~Received 15 July 2002; published 10 December 2002!

We analyze the correlated back and forth dynamics and dynamic heterogeneities, i.e., the presence of fast
and slow ions, for a lithium metasilicate system via computer simulations. For this purpose we define, in
analogy to previous work in the field of glass transition, appropriate three-time correlation functions. They
contain information about the dynamics during two successive time intervals. First we apply them to simple
model systems in order to clarify their information content. Afterwards we use this formalism to analyze the
lithium trajectories. A strong back-dragging effect is observed, which also fulfills the time-temperature super-
position principle. Furthermore, it turns out that the back-dragging effect is long ranged and exceeds the
nearest-neighbor position. In contrast, the strength of the dynamic heterogeneities does not fulfill the time-
temperature superposition principle. The lower the temperature, the stronger the mobility difference between
fast and slow ions. The results are then compared with the simple model systems considered here as well as
with some lattice models of ion dynamics.
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I. INTRODUCTION

One basic characteristics of amorphous ion conductor
the strong frequency dependence of the conductivity at
ficiently low temperatures.1–4 According to linear respons
theory, the dispersion ins(n) is equivalent to a nondiffusive
mean square displacement^r 2(t)& and thus to the presenc
of correlated back and forth jumps.1 Neglecting possible dy-
namic correlations among adjacent ions the relation betw
both quantities reads

s~n!5
q2r

6kBTE0

`

dt~d/dt!w~ t !exp~2 i2pnt !, ~1!

whereq denotes the charge andr the density of the mobile
ions. The functionw(t) is defined as

w~ t !5~d/dt!^r 2~ t !&. ~2!

For very high frequencies one observes local dynam
which is strongly system dependent. For example, in a
dium silicate system5 one observes forn,1011 Hz a continu-
ous decrease ofs(n) with decreasingn which can typically
be attributed to nonlocal dynamics6 and becomes stronger fo
decreasing temperature. Actually, this conclusion has b
explicitly verified in recent simulations for lithium
metasilicate.7 In a double-logarithmic representation at lo
temperatures the apparent exponent decreases from o
zero until the dc plateau is reached, i.e.,s(n)5sdc.

In general, the complexity of ion dynamics in disorder
systems is, on the one hand, related to the static disorde
the material and, on the other hand, to the Coulomb inte
tion among the ions giving rise to dynamic disorder. The
fore, one might expect that both the static as well as
dynamic disorder enhances the number of correlated b
and forth jumps~see, however, Ref. 8! although in recent
simulations of sodium silicate atT52000 K no such corre-
lations have been observed.9 Furthermore, the presence o
different environments of the network might imply that at
0163-1829/2002/66~22!/224201~11!/$20.00 66 2242
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given time some ions are more mobile than other ions,
there exist dynamic heterogeneities. Unfortunately, no dir
information about dynamic heterogeneities can be gai
from conductivity experiments or, equivalently, from th
time dependence of the mean square displacement. S
progress has been achieved on the basis of simulati
Comparing the mean square displacement of different i
during a given time a broad distribution has been observe10

This basically corresponds to the presence of a large n
Gaussian parameter which is known to represent dyna
heterogeneities quite well.11 Other groups found an interes
ing spatial structure of the mobile regions.12,13

Another system with intrinsic complex dynamics is
glass-forming liquid. A tagged particle in a glass-former e
periences a dramatic slowing down with decreas
temperature.14 To a large extent this is related to the ca
effect since at low temperatures the neighbor particles ha
strong confining effect on the central particle.15 This gives
rise to strongly subdiffusive dynamics, i.e., to correlat
back and forth dynamics. Furthermore glass-forming syste
display dynamic heterogeneities.16–19This property has been
quantified by invoking appropriate three-time correlati
functions, containing information about the dynamics duri
two subsequent time intervals.20–22

Using these three-time correlation functions one can h
to answer several basic questions about the complexity of
dynamics. How relevant are backward correlations? Are b
and forth correlations restricted to nearest-neighbor ionic
sitions? How does the tendency of these back and forth
relations depend on the time scale of investigation? Do
namic heterogeneities depend on temperature and
invalidate the time-temperature superposition principle,
served for many other quantities such as the conductiv
This and other aspects of ionic dynamics will be analyzed
this paper by invoking appropriate three-time correlati
functions. They will be applied to computer generated traj
tories of lithium metasilicate (Li2O)(SiO2). Very recently,
first measurements of three-time correlations have been
©2002 The American Physical Society01-1
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ducted via multidimensional NMR. These results clea
showed that dynamic heterogeneities are omnipresent in
ordered ionic conductors.23

The organization of this paper is as follows. In Sec. II w
describe the technical aspects of the simulation and dis
the numerical tools. Section III introduces the concept
three-time correlations. Section IV contains the analysis
simple model systems for which we clarify the informatio
content of the three-time correlation functions. The results
our simulations as well as their interpretation are presen
in Sec. V. We close with a discussion and a summary in S
VI.

II. SIMULATION

The potential energy for the lithium silicate system is ch
sen to be the sum of a Buckingham and a Coulomb p
potential (i , j denote the species lithium, oxygen, or silico
respectively!

Ui j ~r !5
qiqje

2

r
2

Ci j

r 6
1Ai j exp~2Bi j r !. ~3!

The parameters have been determined by Habasakiet al.25,24

Details of our simulation can be found in Refs. 7 and 2
Summarizing, we performed molecular dynamics simu
tions with a time step of 2 fs and a density ofr52.34
g cm23. Periodic boundary conditions were used. The s
tem size is 1152 particles, thus containing 384 lithium io
The trajectories were generated by an appropriately mod
version of the MOLDY software package, supplied b
Refson.27 The length of the production runs was 16 ns af
an equilibration time of around 10 ns at the two lowest te
peratures. Even atT5640 K the mean square displaceme
during the production time was larger than 60 Å2 ~nearest-
neighbor Li-Li distance 2.6 Å); see Ref. 7. All configura
tions were equilibrated atT51500 K. The computer glas
transition is approximately 1100 K.7,26 In this work we
present simulations for five temperatures (T51240, 980,
750, 700, and 640 K!. For all temperatures, the lithium sub
system has been equilibrated before starting the produc
run. In particular at the lower temperatures the network fl
tuations are very small~mean square displacement
0.3 Å2).

III. THREE-TIME CORRELATIONS

A. Definition of three-time correlations

As mentioned above, the dispersive behavior of the c
ductivity or, equivalently, the nondiffusive behavior of th
mean square displacement, has been related to corre
back and forth dynamics. Here we want to introduce a f
malism which allows one to elucidate the properties of ba
and forth dynamics in detail. We remind the reader that st
dard observables for the characterization of dynamical pr
erties like the mean square displacement correlate the p
tion of individual ions at two successive timest0 andt1. For
a calculation of̂ r 2(t)& one averages over the configuratio
at all times t0 and t1 such thatt12t05t. Back and forth
22420
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dynamics, however, is related to the properties of partic
during two subsequent time intervals. Formally, this can
described as a three-time correlation, including a third ti
t2.t1. The idea is sketched in Fig. 1.r 01 denotes the dis-
tance a particle moves during the first time interval of leng
t015t12t0. The value ofr 12 denotes the motion during th
second time interval of lengtht125t22t1 as projected on the
direction of the motion during the first time interval. In ca
of a back jump, as shown, for example, in Fig. 1, the value
r 12 is counted negative. The additional information about
dynamics during two successive time intervals as compa
to the dynamics during a single time interval is contained
the conditional probability functionp(r 12ur 01) which denotes
the probability for a specific value ofr 12 under the condition
that the particle has moved the distancer 01 in the first time
interval.

B. Moments

Rather than analyzing the full probability function, w
concentrate on the first momentr̄ (r 01) and the second mo
ment v(r 01)[^@r 122 r̄ (r 01)#2(r 01)&. The interpretation of
both functions is straightforward.r̄ (r 01) contains information
about the relevance of back and forth dynamics. In case
the direction of the dynamics during two successive ti
intervals is uncorrelated one expectsr̄ (r 01)50. In contrast, a
negative value ofr̄ is direct evidence of the presence of ba
and forth dynamics.

The second momentv(r 01) yields information about the
presence of dynamic heterogeneities. In case that all part
have the same mobility, the distance moved in the sec
time interval is independent of the distance moved in the fi
time interval. Thusv(r 01) would not depend onr 01. A de-
pendence onr 01 will be observed if there exist fast and slo
ions. The subensemble of ions with smallr 01 will preferably
contain slow ions whereas for ions with larger 01 it is vice
versa. Therefore, ions with smallr 01 will on average move
less in the second time intervalt12 than ions with larger 01,
resulting in a monotonous increase ofv(r 01) with r 01.

C. First moment in the limit t01\0

It is possible to establish a direct relation between
mean square displacement and the first momentr̄ (r 01) for

FIG. 1. Sketch of a single-particle dynamics in order to clar
the definition ofr 01 and r 12.
1-2
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BACKWARD CORRELATIONS AND DYNAMIC . . . PHYSICALREVIEW B 66, 224201 ~2002!
the case of a discrete hopping model in the limitt01→0. For
reasons of simplicity we take a 1D model with distancesd0
between the individual sites. One may start with the sim
relation

^r 2~ t011t12!&5^r 2~ t01!&12^r ~ t01!r ~ t12!&1^r 2~ t12!&
~4!

which is valid for stationary processes. On the left side o
can perform a linear expansion aroundt0150. On the right
side one may use the fact that for very smallt01 the term
^r 2(t01)& can be written asGeffd0

2t01 ~corresponding to the
short-time diffusion in pure hopping models with an effe
tive escape rateGeff). Since for very short times the syste
can only jump to the nearest-neighbor site the te

^r (t01)r (t12)& can be expressed asGeffd0t01r̄ (d0). Inserting
these relations into Eq.~4! one finally ends up with

r̄ ~d0!

d0
5

1

2 Fw~ t12!

w~0!
21G . ~5!

This relation directly shows that exactly in case of diff
sive dynamics, i.e.,w(t)5const, one hasr̄ (d0)50, i.e., no
correlated back and forth dynamics. For subdiffusive beh
ior one obtains~beyond a possible oscillatory regime of th
mean square displacement! 0,w(t),w(0) and thus21/2
, r̄ (d0)/d0,0. Thus subdiffusive behavior is equivalent
the presence of correlated forward and backward jumps.
thermore validity of Eq.~5! implies that the first momen
r̄ (d0) has a lower limit2(1/2)d0 which is reached ifw(t)
50, i.e., for the long-time limit of localized dynamics whe
any forth jump is followed by a back jump. Finally one ca
see that the range of dispersion, i.e.,w(t→`)/w(0), can be
related to the first momentr̄ (d0) in the limit t01→0 and
t12→`.

This formal treatment has been performed for a hopp
model with discrete sites. This may be considered as an
propriate model also for more realistic systems for which
particles will fluctuate around the individual sites. In partic
lar this is the case for the ion conductor, studied in this w
~see below for more details!. In contrast, for glass-forming
systems hopping dynamics is not so relevant. Therefore
not possible to formulate such a simple relation between
derivativew(t) of the mean square displacement and the fi
momentr̄ (d0).

Equation~5! also implies that the first momentr̄ (d0) in
the limit t01→0 doesnot contain new information as com
pared to the mean square displacement. For finitet01, how-
ever, the first moment can no longer be predicted fromw(t).
Thus new information as compared to the mean square
placement about the nature of correlated back and forth
namics becomes available. Of particular interest is the
pendence of the first moment onr 01. For example, one can
learn whether there exists a long-range back-dragging ef
as implied, e.g., in the percolation approach of ion dynam
or whether after jumping to the next nearest-neighbor site
memory about the initial site has been basically wiped o
22420
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IV. MODEL CALCULATIONS

In order to clarify the information content of the first mo
ment r̄ (r 01) and the second momentv(r 01) we first calculate
them for some simple one-dimensional models. We alw
consider the case of stochastic dynamics since we are in
ested in time scales which are beyond the ballistic regim

A. Harmonic oscillator

This model is relevant to describe the backward and f
ward dynamics in the individual potential wells. We consid
a harmonic oscillator with minimum atr 50. Both times
t01,t12 are longer than the equilibration time of the oscillato
i.e., the mean square displacement is already constant
first calculate the probabilityp1(r 1) that after the first time
interval the system is atr 1 after a motion ofr 01 to the right.
This can be formally calculated as

p1~r 1!5E
0

`

dr0p0~r 0!p~r 1ur 0!d @r 012~r 12r 0!#, ~6!

where p0(r 0) denotes the equilibrium distribution an
p(r 1ur 0) is the probability to move fromr 0 to r 1 during time
t01. For larget01 the latter term is identical to the equilibrium
distribution, i.e.,p0(r 1). The resulting Gaussian integral ca
be easily solved. Here we are particularly interested in
first moment̂ r 1& of p1(r 1). One obtains

^r 1&5~1/2!r 01. ~7!

For long t12 the system acquires the average^r 2&50, yield-
ing

r̄ ~r 01!5^r 2&2^r 1&52~1/2!r 01. ~8!

Thus the back-dragging effect in the second time interva
proportional to the distance moved in the first time interv

B. Periodic potential

In the next step, we analyze a potential which involv
local vibrations as well as hopping dynamics. Here we c
sider a periodic potentialEpot(r ) with minima at integer val-
ues ofr, defined as

V~r !5V0@12cos~2pr !#. ~9!

We are interested in the stochastic dynamics of a particle
general, one has to resort to numerical simulations to ca
late r̄ (r 01). Here we have modeled the dynamics via stand
kinetic Monte Carlo simulations at the temperatureT
50.4V0 with step sizes much smaller than the distance
two adjacent minima. The qualitative features of the result
not depend on the exact value of this temperature. We h
chosent01 such that on this time scale a particle leaves
initial well with a probability of approximately 50%. Fur
thermore we have chosent12510t01. The result of this simu-
lation is shown in Fig. 2. The dependence ofr̄ (r 01) on r 01
can be understood from simple arguments.~a! For r 01!1,
one basically has the behavior of a harmonic oscillator.~b!
For r 0150.5, the particle has typically moved to a positio
1-3
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A. HEUER, M. KUNOW, M. VOGEL, AND R. D. BANHATTI PHYSICAL REVIEW B66, 224201 ~2002!
close to the saddle between two wells. For infinitet01,
simple symmetry considerations show that^r 1& is exactly on
the saddle. Since a particle on a saddle does not experi
any effective net force to any side one hasr̄ (0.5)50. For
finite t01, a motion ofr 0150.5 on average leaves the partic
in the initial well.28 Thus the functionr̄ (r 01) has its zero for
r 01 slightly larger than 0.5.~c! For r 01 approaching 1, the
particle has definitely crossed a saddle. Now the effec
force points in the same direction as the initial jump dire
tion. This results in a positive value ofr̄ (r 01). ~d! For r 01

51, one has the same result as forr 0150, i.e., r̄ (r 01)50.

C. Potential with alternating barriers

So far we have only discussed backwards dynamics
to intrawell dynamics. For an ion conductor one expects t
dynamic forward backward correlations either result fro
static or from dynamic disorder. Here we briefly discuss
very simple model which contains nontrivial forward bac
ward dynamics. It is shown in the inset of Fig. 3. Due to t
alternating barrier heights a particle performs several
ward and backward jumps until it can escape from the lo

FIG. 2. r̄ (r 01) as obtained from Monte Carlo simulations of th
simple periodic cos potential. The potential is shown in the inse

FIG. 3. r̄ (r 01) as obtained from Monte Carlo simulations of
periodic potential with alternating barriers. The potential is sho
in the inset.
22420
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cage. We denote the two different transition rates byG1 and
G2 (G1@G2). Our goal is to calculater̄ (r 0151). For very
long t01, i.e., t01G2@1 the dynamics resembles that of
random walk so that forward backward correlations sho
not be relevant, i.e.,r̄ (1)'0. Therefore we restrict ourselve
to the caset01G2!1. The analysis is presented in Append
A.

We obtain

r̄ ~1!52~1/2!~122G2 /G1!~122G2 /G1!

3@12exp~22G1t12!#, t01G1!1, ~10!

r̄ ~1!52~1/2!~122G2 /G1!~12G2t01!

3@12exp~22G1t12!#, t01G1@1. ~11!

Thus there exists a limiting value fort01→0 which is
reached fort01'1/G1, i.e., the time scale of the fastest jum
process. For larger values oft01 the back-dragging effec
decreases with time; see Eq.~11!. r̄ (1) approaches zero fo
t01 of the order of 1/G2. The physical reason is that fo
longer timest01 the particle may also cross the high barri
during the first time interval. These events strongly redu
the total back-dragging effect in the subsequent time inter
Thus thet01 dependence contains valuable information ab
the time scales involved in the dynamics and indicates
which time scale~here, t01'1/G2) a simple random-walk
description becomes relevant.

For t12→0 one obtainsr̄→0. This limit is trivial since
there is no dynamics during the second time interval. In c
trast, fort12→` the backjump effect is largest. Thus it is th
limit which is relevant to judge the maximum backjump c
pabilities. The rest of the discussion for this model syst
deals with this case.

To show the full dependence ofr̄ (r 01) on r 01 we again
performed Monte Carlo simulations for a potential with a
ternating barriers. This potential was generated from the
potential, discussed above, by scaling the cos potential b
factor 1.5 in the intervals. . . , @21,0#, @1,2#, @3,4#, . . . .
The temperature wasT50.5V0 . t01 is chosen such that th
short-time limitt01,1/G1 is fulfilled whereast12 corresponds
to the long-time limitt12@1/G2. The transition rate is pro-
portional to the attempt frequency in the minimum, whi
scales with the square root of the force constant and with
Boltzmann factor. Thus one expectsG2 /G1'A1.5 exp@(2
23)/0.5#'0.17 which, according to Eq.~10!, yields r̄ (1)
'0.22.

The result forr̄ (r 01) is shown in Fig. 3. It resembles tha
of a periodic potential except for a systematic downwa
trend. Thus we have a superposition of the correlation effe
of simple periodic potentials with wells and barriers and
barriers with different heights. Actually, it turns out that o
estimate ofr̄ (1) agrees reasonably well with the numeric
value of around 0.25.

n

1-4
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D. Random trap model

Finally, we want to present a very simple model whi
allows one to grasp the relevant features of the second
ment v(r 01). We start with an~possibly high-dimensional!
array of traps with different depths. Such models have b
extensively studied in the context of supercool
liquids.29–31Different ratesG i are randomly attributed to th
different traps. For such a simple model the dynamics
purely diffusive. Here we are specifically interested in t
ratio V(t)[v(r 0151,t)/v(r 0150,t) for t015t125t. Accord-
ing to our discussion in Sec. IIIV(t) is a measure for the
relevance of dynamic heterogeneities.

As shown in Appendix B one can derive the relation

V~ t→0!5^G&K 1

G L . ~12!

Without dynamic heterogeneities it does not matter whet
or not a particle moves in the first time interval such th
v(r 0151,t)5v(r 0150,t). In case of no dynamic heterogen
ities, i.e., a single value ofG, one trivially has ^G&
51/̂ 1/G& and thusV(t)51. For a distribution of jump rates
the product̂ G&^1/G& is larger than one. This can be eas
rationalized for a bimodal rate distribution with ratesG1 ,G2
and weightsa1 ,a2, respectively. A straightforward calcula
tion yieldsV(t)511(a1a2)(G12G2)2/(G1G2) which for a
bimodal distribution is strictly larger than 1. For strong
dynamic heterogeneities, i.e., a broader distribution of ra
G, V(t) also increases. ThusV(t→0) is a direct measure fo
dynamic heterogeneities.

In the opposite limitt→`, a particle withr 0150 has by
chance returned to the original position. This implies that
condition r 0150 no longer implies any dynamical selectio
of slow particles. Thus one expectsV(t→`)51. Whereas
the detailed time dependence ofV(t) depends on more de
tails of the model like the number of neighbor traps, t
limiting values are generally valid.

In order to visualize the full time dependence, and
check our analytic expression we have performed Mo
Carlo simulations for a one-dimensional random trap mod
We have chosen two escape rates, characterized bya1
50.035,a250.965,G150.005,G250.1. For this specific
choice of parameters one has^G&^1/G&51.61. The time de-
pendence ofV(t) is shown in Fig. 4 as obtained via Mont
Carlo simulations. For this simple model the algorithm c
be implemented in a straightforward way. One observes
the theoretical short-time and long-time limits are confirm
by the numerical data. Interestingly,V(t) displays a maxi-
mum. Qualitatively, this means that at the time scale of
maximum the effects of dynamic heterogeneities are m
pronounced. A more detailed discussion of the time dep
dence and of the maximum is beyond the scope of
present paper.

V. RESULTS

A. Previous results

It has been observed that lithium trajectories can be
scribed as a series of local vibrations and jumps betw
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adjacent ionic sites; see, e.g., Refs. 32 and 33 for sim
features in previous simulations on alkali silicates. In o
recent work we have shown that the van Hove se
correlation function displays a strong peak ford0'2.6 Å.
This peak is separated by a minimum at 1.5 Å from the pe
at the origin. The interpretation is straightforward. The p
tential energy landscape, as supplied by the network, p
vides lithium sites with an average distance of 2.6 Å whi
are separated by a saddle.

Furthermore, it turned out that the mean square displa
ment curves at different temperatures show time-tempera
superposition. In Fig. 5 we show their derivative, i.e.,w(t),
for the five temperatures analyzed in our prior work.7 As
shown in Ref. 7 the functionw(t) for t.1 ps is due to
processes which involve long-range dynamical proces

@ urW(t)2rW(0)u>1.5 Å#. Whether or not these processes c
always be interpreted as jumps is currently under invest
tion. Fort,1 ps the functionw(t) is dominated by localized
processes of the lithium ions. Since the presence of back
forth dynamics is equivalent to a decrease ofw(t) with time,
one directly sees that at least in the case of the two low
temperaturesT5700 K andT5640 K long-range back and

FIG. 4. V(t) as obtained from Monte Carlo simulations of
potential with random traps. The potential is shown in the inset

FIG. 5. The derivativew(t) of the mean square displaceme
shown for different temperatures. Note that fort.1 ps the function
w(t) is mainly governed by long-range dynamics~see text!.
1-5
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forth correlations are indeed important. In order to charac
ize the typical time scales of the long-range dynamical p
cesses we show in Fig. 6 the incoherent scattering func
S(qmax,t) whereqmax52p/d0. It is a measure of the probabi
ity that an ion is still~or again! at the initial site after time t.
All data can be consistently fitted with a KWW functio
f (t)}exp@2(t/t)b# with b50.45.

B. Back and forth dynamics

A quantitative analysis of the back and forth dynamics
possible on the basis of the first momentr̄ (r 01). In Fig. 7, we
have plotted this function for a fixed value oft015102.4 ps
and differentt12 at T5750 K. For larger 01 the statistics of
these curves becomes quite poor since only a few ions
ticipate. This problem becomes worse for shortt01 and/or
long t12. In this and the following plot we restrict ourselve
to ther 01 regions which possess a reasonable signal-to-n
ratio as estimated from the fluctuations of the curves.

On a qualitative level the dependence onr 01 resembles
that shown in Fig. 3. For smallr 01 one recovers the harmoni

FIG. 6. The incoherent scattering functionS(qmax,t) at different
temperatures. The solid lines correspond to KWW fits withb
50.45.

FIG. 7. The first momentr̄ (r 01) for t015102.4 ps and for dif-

ferent t12 at T5750 K. The broken line corresponds tor̄ (r 01)
52(1/2)01.
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behavior, as seen from the very good agreement with
broken line r̄ (r 01)52(1/2)r 01. Furthermore the nonmono
tonic behavior directly reflects the presence of a saddle
tween adjacent lithium sites. Figure 7 clearly reveals that
fraction of back and forth dynamics increases with increas
t12. This is expected from our theoretical considerations;
above.

Interestingly, for the two largest values oft12 the function
r̄ (r 01) decays further for r 01.d052.6 Å. Thus back-
dragging effects become stronger when jumping into the s
ond nearest-neighbor shell duringt01. This observation al-
ready goes beyond a scenario which is only based on b
and forth correlations between adjacent lithium sites.

Of particular interest is the dependence ont01 as already
discussed for the alternate barrier model. Since we
mainly interested in correlated back and forth dynamics
tween nearest-neighbor positions we focus on the value
r̄ (d0) which characterizes the subsequent dynamics of a
ticle which has jumped to the nearest neighbor distance
the first time interval. We choose a large but constant va
for t12 ~4.1 ns ps forT5640 K) and varyt01. Comparison of
different temperatures is achieved by choosing the respec
value of t12 approximately proportional to the inverse diffu
sion constant. This results int12526 ps (T51240 K), t12
5102 ps (T5980 K), t1250.8 ns (T5750 K), t1252.0 ns
(T5700 K), and t1254.1 ns (T5640 K). The data are
shown in Fig. 8. Obviously, for longer timest01 the back-
dragging effect becomes much smaller. This agrees with
theoretical considerations, discussed for the alternate ba
model. The limiting valuer̄ (d0)521.3 Å is only approxi-
mately reached for the lowest temperatureT5640 K. Inter-
estingly, the dependence ont01 is very gradual and extend
over several decades of time. This shows that there exis
broad distribution of barriers experienced by the lithiu
ions.

For a fixed value oft01 the relevance of correlated bac
and forth dynamics increases with decreasing temperat

FIG. 8. The first momentr̄ (d052.6 Å) in dependence oft01.
The value oft12 has been scaled for every temperature on the b
of the diffusion constant@ t12(T5640 K)53276.8 ps#. In the inset
also the values oft01 are scaled by the diffusion constant such th
t01(T5640 K)[t01* (T5640 K).
1-6
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From our previous discussion the short-time limit oft01
'1 ps is related to the dispersion according to Eq.~5!. Since
only for t01.1 ps long-range processes become relevant
should chooset0151 ps as the short-time limit in Eq.~5!.
Checking it, e.g., forT5750 K, one obtainsr̄ (d0)521 Å
which according to Eq. ~5! corresponds to w(t
→`)/w(1 ps)50.23. This agrees with the measured va
of around 0.2~see Fig. 5!. Note that Eq.~5! is based on a
strict hopping picture. Therefore one would not expect
exact agreement between both values. In any event, s
only for T<750 K r̄ (d0) comes close to the limiting value o
21.3 Å the back-dragging effect and, equivalently, the d
persion in the mean square displacement are relevant on
this low-temperature range.

In the inset of Fig. 8 the individual curves are scaled w
the scaling factorD(T)/D(T5640 K), thereby introducing
the scaled timet01* . Within the statistical noise one can see
decent superposition, in particular for the three lowest te
peratures. Thus one observes a time-temperature super
tion also for this rather involved quantity of correlated ba
and forth dynamics.

C. Dynamic heterogeneities

Finally we present results for the second momentv(r 01).
In Fig. 9 we have plottedv(r 01) for T5750 K and different
values fort015t12. One can clearly distinguish two regime
which are approximately separated by 2 Å. Forr 01!2 Å,
the second momentv(r 01) is significantly smaller than for
valuesr 01>2 Å. As discussed above this is a clear signat
of dynamic heterogeneities. After a jump of 2 Å an ion h
basically achieved to cross the saddle and is already pa
the adjacent ionic site. This means that a particle which
crossed the local saddle during the first time interval is m
faster during the subsequent time interval. Starting fromr 01
5d0 the second momentv(r 01) further increases with in-
creasing r 01. This further increase, however, is muc
weaker. This observation would be compatible with only m
nor spatial correlations among ionic sites of similar mobili
In particular, it would contradict the scenario of compa
regions of ionic sites each with a different ionic mobility.

FIG. 9. v(r 01) at T5750 K for different choices oft015t12.
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this case, a particle which has jumped twice would, on av
age, belong to a faster region than particles which o
jumped once during the first time interval. This differen
would show up in the mean square displacement during
second time interval since particles in the faster reg
would, on average, also jump further in the second time
terval. This would lead to a strong increase ofv(r 01) beyond
the nearest-neighbor distanced0.

In order to study the temperature dependence and the
dependence in greater detail we have calculatedV(t)
[v(d0)/v(0) in dependence oft5t015t12 and for different
temperatures.V(t) is a direct measure for the degree of d
namic heterogeneity on the length scale of the near
neighbor distance. In order to compare the different tempe
tures we have again scaled all times by the ra
D(T)/D(T5640 K). The results are shown in Fig. 10. On
can clearly see that the degree of heterogeneity changes
temperature. The lower the temperature the stronger the
namic heterogeneity. Thus on the level of dynamic hetero
neities the time-temperature superposition principle does
hold. For the lowest temperatureV(t) is approximately 5.5 at
the maximum. This number directly implies that the me
square displacement of a particle~corrected for possible
backwards correlations! is 5.5 times larger in the second tim
interval if it has performed a jump in the first time interv
as compared to particles which are still at the initial s
after t01.

VI. DISCUSSION

In this paper we have shown how analysis of three-ti
correlations can be used to get model-free information ab
the nature of the complex ion dynamics. The characteris
of back and forth dynamics is reflected by the first mom
of the three-time conditional probability function, the d
namic heterogeneities by the second moment. The main
sults are~i! the long-range backward correlations beyond
nearest neighbor position,~ii ! the gradual decrease of bac
ward correlations with increasingt01, ~iii ! the time-
temperature superposition principle for correlated back
forth dynamics,~iv! the significant dynamic heterogeneitie

FIG. 10. V(t* )5v(d0)/v(0) at different temperatures usin
scaled times.
1-7
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at low temperatures, and~v! the lack of time-temperature
superposition for the dynamic heterogeneities. In what
lows we discuss these results in more detail.

For ion conductors at low temperatures the basically
mobile network serves as a pseudoexternal field for
lithium ions. Therefore it has been attempted to model
lithium dynamics by simple lattice models like the rando
barrier or the random energy model.2,34Also in these models
the long-range backward correlations are present. Only
simple models such as the alternate barrier model, discu
in this paper, back and forth jumps are restricted to
nearest-neighbor position. The reason for these long-ra
backward correlations is quite intuitive: the ions look f
paths which can can be accessed rather easily. In particu
low temperatures these paths can be rather extended.
for long times the ions manage to escape such a local p
This picture is consistent with the percolation approa
which has been successfully applied to describe the dyn
ics in the random barrier and the random energy model.2,35

It may be interesting to compare this scenario with tha
supercooled liquids. There all particles move on the sa
time scale. No pseudoexternal fields are present. The c
plexity of the dynamics is due to the necessity of coopera
dynamics of the strongly interacting particles. A simple p
ture is to view a particle localized in the cage of the adjac
particles. The relevant relaxation process is to escape
local cage and afterwards being trapped in a new cage
this case the first momentr̄ (r 01) is constant for values ofr 01
larger than the typical nearest-neighbor distance.21 This is
due to the fact that after leaving the initial cage no signific
memory to that cage is left. Ther 01 dependence ofr̄ (r 01) for
r 01.d0 shows that this simple cage picture cannot be u
for the ionic dynamics. A possible explanation for this effe
is the relevance of the static disordered energy landscap
ion conductors which leads to a dramatic reduction of m
tiparticle correlations7 such that cages, formed by adjace
ions, are less relevant. Alternatively, one might argue that
presence of long-range Coulomb interaction gives rise
long-range backward correlations. This aspect still has to
clarified.

In the alternate barrier model the dependence ofr̄ (d0) on
t01 reflects the values of the lowest and highest relevant
riers present in the system. On the time scale for which
highest relevant barrier is crossed no back and forth dyn
ics should be visible. Indeed, we see in Fig. 8, e.g., foT
5750 K, that the back and forth dynamics becomes sm
for t01 of the order of 1 ns. The relaxation time, i.e., th
decay time ofS(qmax,t), is of the same order. Within th
alternate barrier model one expects that fort01 somewhat
smaller than 1/G2 but still larger than 1/G1 one expects a
linear dependence ofr̄ (d0) on t01 in marked contrast to the
numerical results. This clearly shows that in contrast to
alternate barrier model the lithium metasilicate system
characterized by a broad distribution of relevant barrie
Furthermore no short-time limit is visible in Fig. 8 butr̄ (d0)
decreases also for the shortest times which could be
lyzed. This indicates the presence of transitions with v
small saddles or, possibly, broad anharmonic potent
22420
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which are already relevant on the time scale of a few h
dred femtoseconds.

The alternate barrier model differs from our lithium met
silicate system also in another respect. For the alternate
rier model the typical jump time is of the order of 1/G1. One
can show that~i! the decay ofw(t) is strongest for exactly
this time scale and~ii ! S(q52p,t'1/G1) is already signifi-
cantly smaller than unity. For the lithium metasilicate syste
at, e.g.,T5640 K the decay ofw(t) ~due to long-range pro-
cesses; see above! is strongest in the ps range where
S(q,t) is still close to the short-time plateau value. This d
crepancy could be alleviated by introducing an additio
variation of site energies. This would shift the decay
S(q,t) to times of the order of 1/G2. On a qualitative level
this would imply that the short-time dynamics occurs
asymmetric double-well potentials. It remains an importa
question whether the same scenario also holds in lith
metasilicate, i.e., whether fast back and forth jumps
strongly asymmetric double-well potentials are present. A
other scenario to rationalize the abovementioned discrepa
will be presented further below.

In Ref. 9 it has been reported that for sodium silicate
T52000 K no backward correlations were observed. This
compatible with the experimental data for sodium silica
where the dispersion disappears forT'1000 K.5 For the
present system the dispersion disappears around a sim
temperature. This shows up in a very little time-depende
of w(t) at 980 K in Fig. 5 beyond 1 ps. Nevertheless, ev
these weak backward correlations are directly visible
analysis of the three-time correlations in Fig. 8. As discus
below these backward correlations may be due to a sm
number of ions. Thus a less detailed analysis may ove
these backward correlations.

The approximate time-temperature superposition princ
as seen in Fig. 8 implies that the back-dragging effect
mains the same if analyzed on appropriately adjusted t
scales. Note that this statement goes beyond the prev
result that the mean square displacement displays ti
temperature superposition. As discussed above the latter
servable is only related to thet01→0 limit of r̄ (r 01). The
time-temperature superposition in Fig. 8 may be used to
criminate between different models of ion dynamics.

The significant heterogeneities, as characterized by
second moment, is compatible with the abovemention
broad distribution of relevant barriers. Actually, such a d
tribution complicates the interpretation of the dispersi
w(t→`)/w(0) in terms of correlated back and forth dynam
ics. This is exemplified for the simple case of two~tempo-
rarily distinct! ionic species with jump ratesG1@G2 which
are present with probabilitiesp1 andp2, respectively. If we
have in mind a log-Gauss distribution of rates one sho
choosep1.p2. Generalizing Eq.~5! we get

w~ t→`!

w~ t→0!
5

1

2
1

1

d0

p1G1r̄ 11p2G2r̄ 2

p1G11p2G2
. ~13!

The termsG i pi imply that during the short time intervalt01
the probability of a particle of speciesi to perform a hop is
proportional to the rate and its occurrence probability. In
1-8
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limit, discussed above, and under the additional assump

that u r̄ 1u is not much smaller or even larger thanu r̄ 2u, this can
be approximated by

w~ t→`!

w~ t→0!
'

1

2
1

r̄ 1

d0
. ~14!

This result shows that the dispersion is to a large deg
determined by the backjump properties of thefast species.
Thus in case of significant dynamic heterogeneities one
to be careful to relate the dispersion of the mean squ
displacement to the average backjump properties@here

(p1r̄ 11p2r̄ 2)/d0] of the ions.
This observation allows one to envisage another expla

tion of the very different time scales where the decay ofw(t)
is maximum~ps regime! and where the incoherent scatterin
functionS(qmax,t) decays~ns regime!; see above. A few fas
ions with significant back and forth correlations can dom
nate the time dependence ofw(t) but hardly contribute to the
decay of the incoherent scattering function. Actually, for t
random energy model we have observed that the back
forth correlations are strongest for the fast particles such
this effect is indeed present there. Whether it is this scen
or the above-discussed presence of energetic disorder, w
dominates the different time dependence ofw(t) and
S(qmax,t) for lithium metasilicate, awaits further clarifica
tion.

We have shown that the degree of heterogeneity depe
on temperature. In contrast, the incoherent scattering fu
tion S(qmax,t) fulfills the time-temperature superpositio
principle. Actually, the same observations have been m
for glass-forming liquids.11 For these systems the nonexp
nentiality of S(qmax,t) mainly reflects the broad distributio
of relaxation times. Thus naively one would expect a low
value of the KWW exponentb with increasing degree o
heterogeneity. It still has to be shown why at least in
temperature range, accessible to simulations, this is not
case.

It may be interesting to compare our approach with tha
Habasaki and Hiwatari.10 For the same system atT5700 K
they determined during 1 ns the distribution of square d
placements of all particles. They observed a large varia
thus indicating some distribution of relaxation times. On
qualitative level this result is compatible with the results
ported above. One advantage of the present approach is
via study of the r 01 dependence also information abo
length scales are available. Furthermore, the value ofV(t
→0) has a direct interpretation in terms of local rate dis
butions.

Having identified several properties of the complex i
dynamics in quantitative terms one would like to relate th
to more microscopic properties such as the distribution
oxygens around the lithium ions and to see whether ma
the interaction among the different ions or the interact
with the basically static network gives rise to the obser
tions reported in this work.
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APPENDIX A

Calculation ofr̄ (r 0151) proceeds in two steps. First w
calculate the probability that a particle has moved by o
unit to the right during some timet01. Since we have two
nonequivalent sites we have to calculate, on the one h
the transition probabilityqeo (eo stands for even-odd! from
r 50 to r 51 and, on the other hand, the transition probab
ity qoe from r 51 to r 52. In the second step we calcula
the average motionDr e ~starting, e.g., fromr 52) andDr o
~starting, e.g., fromr 51) during the second time interva
One expectsDr e.0 andDr o,0 and for reasons of symme
try Dr e52Dr o which we abbreviate asDr . With this infor-
mation we can finally calculate

r̄ ~1!5
Dr oqeo1Dr eqoe

qeo1qoe
52Dr

qeo2qoe

qeo1qoe
. ~A1!

For the calculation ofqeo and qoe we take into account
that in the limitt01G2!1 multiple transitions over the highe
barrier can be neglected. We start with a particle either ar
50 or r 51 and we are interested in the probability to be
r 51 or r 52 after timet01, respectively. Neglecting thos
terms, which are only relevant in case that a particle
crossed a high barrier at least twice, we end up with
following system of rate equations for the site populatio
pi :

~d/dt!p052~G11G2!p01G1p1 , ~A2!

~d/dt!p152~G11G2!p11G1p0 , ~A3!

~d/dt!p252G1p21G1p31G2p1 , ~A4!

~d/dt!p352G1p31G1p2 . ~A5!

This set of differential equations can be directly solved.qeo
can be identified asp1 with initial condition r 50 andqoe as
p2 with initial condition r 51. One obtains after a short ca
culation

qeo5~1/2!~12G2t01!@12exp~22G1t01!# ~A6!

and

qoe5
G2

4G1
$12exp~22G1t01!1G1t01@11exp~22G1t01!#%.

~A7!

Thus we finally get~using againG1@G2)

qeo2qoe

qeo1qoe
5122

G2

G1
~ t01G!1! ~A8!

and
1-9
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qeo2qoe

qeo1qoe
512G2t01 ~ t01G@1!. ~A9!

As a second ingredient we want to calculateDr which is
the average coordinatêr & after timet12 for the initial con-
dition r 50. Using the standard trick of introducing the fun
tions

Sq[(
j

pjexp~ iq j ! ~A10!

and

Tq[(
j

~21! j pjexp~ iq j ! ~A11!

one can write down two linear differential equations invo
ing Tq andSq

~d/dt!Sq~ t !52~G11G2!Sq~12cosq!2 i ~G12G2!Tqsinq,
~A12!

~d/dt!Tq~ t !52~G11G2!Tq~11cosq!1 i ~G12G2!Sqsinq
~A13!

which can be solved with standard methods after specifi
tion of the initial condition. Of interest for us is the expe
tation value^r & for the initial conditionr (0)50. This ex-
pression can be calculated from

^r &52 i lim
q→0

~d/dq!Sq . ~A14!

It turns out that

Dr 5~1/2!
G12G2

G11G2
$12exp@22~G11G2!t12#% ~A15!

which in the limit G1@G2 can be rewritten asDr 5(1/2)(1
22G2 /G1)@12exp(22G1t12)#. Thus we have calculated a
ingredients which are necessary for determination ofr̄ (1).
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APPENDIX B

Here we calculate the short-time limit of the random tr
model. We always chooset015t125t. We define the prob-
ability that a trap has the escape rateG i aspi . In equilibrium
the probability that a particle is in a trap with escape rateG i
is proportional topi /G i . Then we can write

v~r 0151,t !5

(
i , j

~pi /G i !pjqi~ t !r j
2~ t !

(
i , j

~pi /G i !pjqi~ t !

. ~B1!

Here qi(t) denotes the probability that after timet the par-
ticle has moved by one unit, starting in a trap with esca
rate G i and r j

2(t) the short-time expression for the mea
square displacement, starting from a trap with rateG j . One
simply hasqi(t)5G i t andr j

2(t)5G j t. After a short calcula-
tion one obtains

v~r 0151,t→0!5(
i

piG i[^G&. ~B2!

In analogy one obtains for the short-time expansion
v(r 0150,t)

v~r 0150,t !5

(
i , j

~pi /G i !pj@12qi~ t !#r i
2~ t !

(
i , j

~pi /G i !pj@12qi~ t !#

5
1

^1/G&
.

~B3!

Thus one obtains

v~r 0151,t !

v~r 0150,t !
5^G&^1/G&. ~B4!
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