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Field-dependent critical current in type-II superconducting strips:
Combined effect of bulk pinning and geometrical edge barrier
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Recent theoretical and experimental research on low-bulk-pinning superconducting strips has revealed strik-
ing domelike magnetic-field distributions due to geometrical edge barriers. The observed magnetic-flux profiles
differ strongly from those in strips in which bulk pinning is dominant. In this paper we theoretically describe
the current and field distributions of a superconducting strip under the combined influence of both a geometri-
cal edge barrier and bulk pinning at the strip’s critical currentI c , where a longitudinal voltage first appears. We
calculateI c and find its dependence upon a perpendicular applied magnetic fieldHa . The behavior is governed
by a parameterp, defined as the ratio of the bulk-pinning critical currentI p to the geometrical-barrier critical
currentI s0. We find that whenp.2/p and I p is field independent,I c vs Ha exhibits a plateau for smallHa ,
followed by the dependenceI c2I p}Ha

21 in higher magnetic fields.
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The combination of a geometrical edge barrier and b
pinning recently has been shown to strongly affect the pr
erties of low-dimensional superconductors~thin films, single
crystals, and tapes with high demagnetizing factors! placed
in either a perpendicular magnetic field1–5 or a transport-
current-carrying state.6–9 While most experimental studies o
the field dependence of the critical currentI c are being inter-
preted solely on the basis of bulk-pinning theory~see for
example Refs. 10–14!, a number of works6,8,15,16have shown
that a geometrical edge barrier~or surface barrier! may
strongly affectI c . In this paper we study the combined effe
of a geometrical edge barrier and bulk pinning upon
magnetic-field dependence ofI c for type-II superconducting
strips. We shall show how the dependence ofI c uponHa is
controlled by the parameterp5I p /I s0, whereI p is the bulk-
pinning critical current in the absence of a geometrical e
barrier, andI s0 is the geometrical-barrier critical current i
the absence of bulk pinning.

We consider a superconducting strip of thicknessd (uyu
,d/2) and width 2W (uxu,W) centered on thez axis. We
assume thatd is less than the London penetration depthl
and thatW is much larger than the two-dimensional scree
ing lengthL52l2/d. The strip is subjected to a perpendic
lar applied magnetic fieldHa5(0,Ha,0), and it carries a tota
currentI in thez direction described by a spatially depende
sheet current densityK (x)5Jd5@0,0,Kz(x)#. We wish to
determine the current-density and magnetic-field distri
tions at the critical current at which a steady-state flux-fl
voltage appears along the length of the strip. For a s
containing no magnetic flux,Kz(x) is the sum of two
contributions,8,17

KIz~x!5
I

pAW22x2
, ~1!

the Meissner-state current density generated by the app
currentI, and
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Kaz~x!5
2Hax

AW22x2
, ~2!

the Meissner-state current density induced by the app
field Ha . The divergences in Eqs.~1! and ~2! at uxu5W are
cut off whenx is within L of the edge.

To account for the edge barrier, we assume that vorti
nucleate and enter the superconductor whenKz at either
sample edge reaches the valueKs5 j sd at which the barrier
is overcome. For an ideal edge,j s is equal to the Ginzburg-
Landau depairing current densityj GL ,18,19 but for an ex-
tremely defected edge,j s may become negligibly small
When Ha50, the sheet current at both edges is appro
mately KIz'I /pA2WL, such that the edge-barrier critica
current in zero external magnetic field isI s0'pKsA2WL.
WhenHa.0, the net sheet current atx5W is approximately
Kz'(I 12pHaW)/(pA2WL), and the edge-barrier critica
current becomesI s(Ha)/I s0512h for small h, where h
5Ha /(I s0/2pW). This result is essentially the same as th
found in Ref. 8 for the critical current in low applied mag
netic fields for bulk-pinning-free strips.

We next account for bulk pinning, characterized via
bulk-pinning critical sheet current density,Kp5 j pd, such
that the critical current in the absence of an edge barrie
I p52KpW. We first consider the case of relatively wea
bulk pinning whenI p,(2/p)I s0, i.e., p,2/p. In low fields
(0,Ha,Hd , region I of Fig. 1!, vortices nucleate on the
right-hand side atx5W when I slightly exceedsI s(H). As
long asKz(x)5KIz(x)1Kaz(x) exceedsKp , these vortices
are driven entirely across the strip, traveling rapidly~speedv
governed solely by the force-balance equation@Kz(x)
2Kp#f05hvd, where h is the viscous drag coefficient!,
and annihilating with their images on the opposite side of
strip. The critical current is thenI c(Ha ,p)5I s(Ha), and the
normalized critical current is

i c~h,p!5I c~Ha ,p!/I s0512h. ~3!
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However,Kmin the minimum value ofKz(x) decreases with
increasingHa and reachesKp at I 5I s(Ha) whenHa5Hd ,
where

hd5Hd /~ I s0/2pW!5
1

2
@12~pp/2!2#. ~4!

When p,2/p andh.hd or whenp.2/p, i.e., for h andp
outside region I of Fig. 1, nucleated vortices stop inside
strip, and domelike flux distributions occur at the critic
current. To determine the critical current with domes pres
one must first calculate the vortex~and antivortex! density
n(x)5m0Hy(x,0)/f0 inside the dome, whereKz(x)5Kp ,
and the sheet current densityKz(x) outside, wheren(x)
50. We have obtained these mathematically by using
Cauchy integral inversion method2,4,7,9,20to invert the Biot-
Savart law. However, we shall use the method of comp
fields21 to give a physical interpretation of the mathematic
results.

Following Ref. 21, we express the two-dimensional fie
distribution as an analytic functionH(z)5Hy(x,y)
1 iH x(x,y) of the complex variablez5x1 iy , such that the
Biot-Savart law becomes

H~z!5Ha1
1

2pE2W

W Kz~u!

z2u
du. ~5!

FIG. 1. Behavior at the critical current vs reduced fieldh and
bulk-pinning parameterp. In region I, the strip is vortex-free
@Hy(x,0)50# and the sheet current density is everywhere above
bulk-pinning critical value@Kz(x).Kp#. In II, there is a vortex-free
zone whereKz(x).Kp on the right side of the strip and a vorte
dome~dot-dashed curve in inset! whereKz(x)5Kp ~solid curve in
inset!. In III, there are three zones: two vortex-free zones on eit
side of a vortex dome. In IV, there are four zones: a vortex do
whereHy(x,0).0, an antivortex dome whereHy(x,0),0, and two
vortex-free zones whereKz(x).Kp near the edges. The curv
hd(p) ~solid! separates regions I and III,h1(p) ~dashed! separates
III and IV, andh2(p) ~dotted! separates II and III.
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The inversion procedure yieldsH(z) of the following form
at the critical currentI c(Ha):

H~z!5
~z2a!1/2~z2b!1/2

~z22W2!1/2 FHa1
Kp

2p
Q~a,b,z!G , ~6!

where

Q~a,b,z!5E
a

b AW22u2

~z2u!A~u2a!~b2u!
du ~7a!

5
2~W1a!

A~W2a!~W1b!

3F ~W2z!

~z2a!
PS ~z1W!~b2a!

~z2a!~W1b!
,qD

1PS b2a

W1b
,qD G , ~7b!

and

q25
2W~b2a!

~W2a!~W1b!
. ~8!

In Eq. ~6!, the term proportional toHa is simply the complex
field describing the Meissner-state response to the app
field Ha of two parallel superconducting strips8,22 (2W,x
,a andb,x,W). The term proportional toKp is the com-
plex field describing the image-current response23 of the two
strips to currentsKpdu summed over the regiona,u,b.
We have evaluated the integral in Eq.~7a! in terms of com-
plete elliptic integrals of the third kind24–28P(n,k), wheren
is called either the characteristic or the parameter, andk is
called the modulus. Equation~7b! can be used to evaluat
Hy(x,0)5ReH(x) andKz(x)522ImH(x1 i e).

For p.2/p and small values ofh, i.e., for h and p in
region IV of Fig. 1, the vortex distribution at the critica
current can be described as a double dome, consisting
vortex dome adjacent to an antivortex dome~see inset!. Just
above the critical current, vortices nucleate atx5W (x8
51), where Kz(W2L)5Ks , move rapidly to the left
through an otherwise vortex-free region (b,x,W), and
then move slowly to the left through a vortex-filled regio
~the vortex dome! a1,x,b. Antivortices nucleate atx
52W, whereKz(2W1L)5Ks , move rapidly to the right
through an otherwise vortex-free region (2W,x,a), and
then move slowly to the right through an antivortex-fille
region ~the antivortex dome! a,x,b2 . Vortices and anti-
vortices annihilate where the two domes meet atx5b2

5a1 .
Two equations must be solved simultaneously fora andb

at the critical currentI c(Ha) for known values ofh andp in
region IV of Fig. 1. One condition is thatKz(W2L)5Ks ,
which yields from Eqs.~6! and ~7b!

A~12a8!~12b8!h1~11a8!A12b8

11b8
PS b82a8

11b8
,qD p51,

~9!

where we use the normalized quantitiesa85a/W and b8
5b/W. The other condition thatKz(2W1L)5Ks yields

e

r
e
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2A~11a8!~11b8!h1~12b8!A11a8

12a8
PS b82a8

12a8
,qD p

51. ~10!

Expansion of Eq.~5! for large z yields H(z)5Ha
1I /2pz1O(1/z2). Expanding Eqs.~6! and ~7a! in powers
of z and making use of Eq.~9!, we obtain the normalized
critical currenti c5I c /I s0:

i c~h,p!52
a81b8

2A~12a8!~12b8!
1

1

2
A11b8

12a8

3@~12a8!E~q!1~11a8!K ~q!#p, ~11!

wherea8 andb8 are determined from Eqs.~9! and ~10! for
the desired values ofh andp.

The double-dome vortex-antivortex distribution~region
IV of Fig. 1! occurs ati c only for h in the range 0,h,h1
for p.2/p. Here,h1(p) is the lowest value ofh that makes
Hy(x,0).0 in the regiona,x,b. Thus, one of the equa
tions determiningh1 is Ha1(Kp/2p)Q(a,b,a1e)50 @see
Eq. ~6!#, which yields

h1
1

~b82a8!A~12a8!~11b8!
F ~12a8!~11b8!E~q!

2~11a8!~12b8!K ~q!2~b82a8!~12b8!

3PS b82a8

12a8
,qD Gp50. ~12!

h1 can be determined for a given value ofp as the value ofh
when Eqs.~9!, ~10!, and ~12! are simultaneously solved fo
a8,b8, andh.

For known values ofh and p in region III of Fig. 1, the
left and right boundaries of the vortex domea8 and b8 are
determined by simultaneously solving Eqs.~9! and~12!; Eq.
~12! also gives the condition thatdKz(x)/dx50 at x5a.
Once a8 and b8 are found, Eq.~11! again can be used t
calculate the critical current. Just above the critical curre
vortices nucleate atx5W, move rapidly to the left through
the vortex-free regionb,x,W, move slowly to the left
through the vortex domea,x,b, escape from the dome
and finally move rapidly to the left through the vortex-fre
region2W,x,a.

For increasing values ofh, the left boundary of the
vortex-filled region moves closer to the left edge of the str
a becomes equal to2W1L when h5h2, which can be
determined for a given value ofp as the value ofh when Eqs.
~9! and ~12! are numerically solved forb8 andh, taking a8
5211L/W. ~For Figs. 1 and 2,L/W50.01 was assumed.!
For h.h2, the field and current distributions andi c can be
calculated with good accuracy by simply settinga5W in Eq.
~6!. The complex field in region II of Fig. 1 is then

HII ~z!5
~z2b!1/2

~z2W!1/2FHa1
Kp

2p
Q~b,z!G , ~13!
22050
t,

;

where

Q~b,z!5E
a

b AW2u

~z2u!Ab2u
du ~14a!

52 sinh21AW1b

W2b
22 sinh21A~W1b!~z2W!

~W2b!~z1W!
.

~14b!

The conditionKz(W2L)5Ks , which determinesb85b/W
at I c for h andp in region II of Fig. 1, becomes

A2~12b8!@h1p sinh21A~11b8!/~12b8!#51 ~15!

instead of Eq.~9!, and the normalized critical current can b
expressed as

i c~h,p!5
1

4
A2~12b8!1

p

2
A2~11b8! ~16!

instead of Eq.~11!. The reduced critical currenti c as a func-
tion of h, calculated from Eq.~11! or ~16!, is shown in Fig. 2
for various values ofp. For p50 and h.1/2, we find i c
51/4h, as obtained in Refs. 6 and 8 for pin-free strips w
an edge barrier. In the opposite limit,p@1, we obtaini c
'p, as expected for bulk-pinning-dominated behavior. F
h@p, we see from Eq.~15! that b8 approaches 1, and Eq
~16! yields i c'p11/4h. A generic feature of Fig. 2 is the

FIG. 2. i c(h,p) ~critical current normalized toI s0) vs reduced
field h for fixed values of the bulk-pinning parameterp. The solid
straight line and solid circles denote values ofi c in region I, where
h5hd(p); the dashed curve and solid squares showi c at h
5h1(p); and the dotted curve and solid triangles showi c at h
5h2(p). Forp,2/p, i c decreases linearly withh @Eq. ~3!# up tohd

and then decreases more slowly in regions III@Eq. ~11!# and II @Eq.
~16!#. The bold curve showsi c for the special case ofp52/p. For
p.2/p, i c increases by a few percent in the double-dome region
and then decreases more gradually in regions III and II. In all ca
i c asymptotically approachesp for largeh ~short dotted lines along
the right side of the figure!.
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plateau ini c vs h to the left of the dashed curve in region IV
actually, i c increases by a few percent ash increases from 0
to h1. This increase is due to a significant decrease in
width b2a over whichKz(x) is restricted toKp . This effect
is partially compensated by a change in shape ofKz(x) in the
vortex-free zones@e.g., dKz(x)/dx50 at x5a at h5h1].
Field-dependent critical current densitiesj c(Ha) have been
found experimentally in Refs. 10–14, but the behavior w
interpreted solely in terms of bulk pinning.

In agreement with earlier work,9,29 our results show tha
the critical current of a strip is not a simple superposition
currentsI s andI p , as was suggested in Refs. 16, 30, and
Only in the limit h@p is it possible to express the critica
current asI c(Ha)5I p1I s(Ha).

We have assumed here thatKp is a constant. Because o
the nonlocal current-field relation@Eq. ~5!#, it would be a
challenging task to findI c(Ha) when Kp depends upon the
local magnetic fieldHy(x,0).

In summary, we have solved for the field dependence
the critical current density in a superconducting strip
counting for both bulk pinning and a geometrical edge b
.
s.

z.

s.

v,

B

22050
e

s

f
.

f
-
r-

rier, and we have developed a procedure for finding
magnetic-field and current-density distributions inside
strip at the critical current. In the presence of a strong e
barrier, we have found strong field dependencies of the c
cal current. Such effects should be taken into account w
interpreting experimental critical currents in low and mod
ate magnetic fields.
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