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Field-dependent critical current in type-1l superconducting strips:
Combined effect of bulk pinning and geometrical edge barrier
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Recent theoretical and experimental research on low-bulk-pinning superconducting strips has revealed strik-
ing domelike magnetic-field distributions due to geometrical edge barriers. The observed magnetic-flux profiles
differ strongly from those in strips in which bulk pinning is dominant. In this paper we theoretically describe
the current and field distributions of a superconducting strip under the combined influence of both a geometri-
cal edge barrier and bulk pinning at the strip’s critical curigntwhere a longitudinal voltage first appears. We
calculatel . and find its dependence upon a perpendicular applied magneti¢ifiel@he behavior is governed
by a parametep, defined as the ratio of the bulk-pinning critical curréptio the geometrical-barrier critical
currentlg,. We find that wherp>2/7 andl, is field independent,; vs H, exhibits a plateau for smal, ,
followed by the dependende—| pocH;1 in higher magnetic fields.

DOI: 10.1103/PhysRevB.66.220506 PACS nunt®er74.60.Jg, 74.60.Ge, 74.60.Ec, 7476
The combination of a geometrical edge barrier and bulk 2H.x
pinning recently has been shown to strongly affect the prop- KaAX)= % (2
erties of low-dimensional superconductéiisin films, single VWo—X

crystals, and tapes with high demagnetizing fagtptaced

in either a perpendicular magnetic fi&ld or a transport- the Meissner-state current density induced by the applied
current-carrying stat®.° While most experimental studies of field H,. The divergences in Eqél) and(2) at|x|=W are

the field dependence of the critical curréptare being inter-  cut off whenx is within A of the edge.

preted solely on the basis of bulk-pinning thedsee for To account for the edge barrier, we assume that vortices
example Refs. 10—24a number of work&®>have shown nucleate and enter the superconductor whgnat either
that a geometrical edge barri¢or surface barrigrmay sample edge reaches the vakig=j.d at which the barrier
strongly affect ;. In this paper we study the combined effect is overcome. For an ideal edgg,is equal to the Ginzburg-

of a geometrical edge barrier and bulk pinning upon theLandau depairing current densify, ,*®° but for an ex-
magnetic-field dependence kf for type-Il superconducting tremely defected edge,s may become negligibly small.
strips. We shall show how the dependencd ofiponH, is  When H,=0, the sheet current at both edges is approxi-
controlled by the paramet@r=1,/1¢y, wherel is the bulk-  mately K,,~1/72WA, such that the edge-barrier critical
pinning critical current in the absence of a geometrical edg@urrent in zero external magnetic field ligy~ 7K 2WA .
barrier, andl g is the geometrical-barrier critical current in wWhenH_>0, the net sheet currentxat W is approximately

the absence of bulk pinning. . _ K,~ (I +27H,W)/(72WA), and the edge-barrier critical
We consider a superconducting strip of thicknesfly|  current becomed(H,)/1o=1—h for small h, where h
<d/2) and width 2V (|x|<W) centered on the axis. We  —y_/(] ,/2=W). This result is essentially the same as that

assume thadl is less than the London penetration depth  found in Ref. 8 for the critical current in low applied mag-
and thatW is much larger than the two-dimensional screen-netic fields for bulk-pinning-free strips.
ing lengthA =2)\?/d. The strip is subjected to a perpendicu-  we next account for bulk pinning, characterized via a
lar applied magnetic fieltf;= (0H,,0), and it carries atotal  pylk-pinning critical sheet current densiti,=j,d, such
currentl in thez direction described by a spatially dependentthat the critical current in the absence of an edge barrier is
sheet current densiti( (x) =Jd=[0,0K,(x)]. We wish to | =2K W. We first consider the case of relatively weak
determine the current-density and magnetic-field distribupylk pinning whenl ;< (2/m)l s, i.e.,p<2/m. In low fields
tions at the critical current at which a steady-state f|UX-f|OW(0<Ha< Hgq, region | of Fig. 1, vortices nucleate on the
voltag.e. appears anng. the length of the strip. For a striight-hand side ak=W when| slightly exceedd (H). As
containing no magnetic fluxK,(x) is the sum of WO |ong ask,(x)=K,(x)+K.(X) exceedX,, these vortices
contributions’: are driven entirely across the strip, traveling rapiggeed
governed solely by the force-balance equatipii,(x)
—Kpléo=nvd, where 5 is the viscous drag coefficignt
K p(X) = — =, (1) and annihilating with their images on the opposite side of the
W2 —x strip. The critical current is theh,(H,,p)=14(H,), and the
normalized critical current is

the Meissner-state current density generated by the applied
currentl, and ic(h,p)=I1:H,,p)/lsx=1—h. ©)]
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FIG. 1. Behavior at the critical current vs reduced fibldnd
bulk-pinning parametemp. In region |, the strip is vortex-free

[Hy(x,0)=0] and the sheet current density is everywhere above th

bulk-pinning critical valug K,(x)>K_]. In Il, there is a vortex-free

zone whereK,(x)>K,, on the right side of the strip and a vortex

dome(dot-dashed curve in ingetvhereK(x) =K (solid curve in
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The inversion procedure yield$({) of the following form

at the critical current ,(H,):

({-a)*A-b)"
(ZZ_WZ)]'/Z

H())=

HﬁﬁQ(a,bl)}, )

where
b Ny
a,b, )= du
ol o L ({—uw(u—a)(b—u)
2(W+a)
J(W=a)(W+Db)
X[(W—D ({+W)(b—a)
((—a) \({-a)(Wtb)'?
b—a
w+p'?

(7a)

+11

} (7b)
and

2W(b—a)
= W-a) (WD) ®

In Eq. (6), the term proportional tbl, is simply the complex
field describing the Meissner-state response to the applied
field H, of two parallel superconducting strfp®® (—W<x

e

insed. In Ill, there are three zones: two vortex-free zones on either<a andb<x<W). The term proportional t&, is the com-

side of a vortex dome. In IV, there are four zones: a vortex domd?lex field describing the image-current resp

whereH(x,0)>0, an antivortex dome wheig, (x,0)<0, and two

vortex-free zones wher&,(x)>K, near the edges. The curve

hy(p) (solid) separates regions | and Ih,(p) (dashed separates
Il and 1V, andh,(p) (dotted separates Il and Ill.

However,K i, the minimum value oK,(x) decreases with

increasingH, and reache&, atl=14(H,) whenH,=Hg,
where

hdsz/(IS()/ZTrW):%[1—(7-rp/2)2]. (4)

When p<2/m andh>hy or whenp>2/m, i.e., forh andp

¢ the two
strips to currentdK,du summed over the regioa<u<b.
We have evaluated the integral in E@a) in terms of com-
plete elliptic integrals of the third kirfd=28II(n,k), wheren

is called either the characteristic or the parameter, laisl
called the modulus. Equatiofrb) can be used to evaluate
Hy(x,0)=ReH(x) andK,(x) =—2ImH(x+ie).

For p>2/7 and small values of, i.e., forh and p in
region IV of Fig. 1, the vortex distribution at the critical
current can be described as a double dome, consisting of a
vortex dome adjacent to an antivortex dofsee inset Just
above the critical current, vortices nucleate xat W (x’
=1), where K,(W—A)=Kg, move rapidly to the left
through an otherwise vortex-free regiob<({x<W), and

outside region | of Fig. 1, nucleated vortices stop inside théNen move slowly to the left through a vortex-filled region
strip, and domelike flux distributions occur at the critical (the vortex domg a,<x<b. Antivortices nucleate ax

current. To determine the critical current with domes presen

one must first calculate the vortéand antivortex density
n(x) = uoHy(x,0)/¢q inside the dome, wher&,(x) =K,
and the sheet current densi,(x) outside, wheren(x)

= — W, whereK,(—W+A)=Ks, move rapidly to the right

through an otherwise vortex-free regior \W<x<a), and
then move slowly to the right through an antivortex-filled
region (the antivortex domea<x<b_. Vortices and anti-

—0. We have obtained these mathematically by using thé(_ortices annihilate where the two domes meetxatb_

Cauchy integral inversion metho8”°?°to invert the Biot-

Savart law. However, we shall use the method of complex
fields’! to give a physical interpretation of the mathematica

results.

Following Ref. 21, we express the two-dimensional fiel

distribution as an analytic functionH({)=Hy(X,y)

+iH,(x,y) of the complex variablé=x+iy, such that the
Biot-Savart law becomes
H —H+1JWKZ(u)d 5
(O)=H, 27) wi-u u. )

- a+ .
Two equations must be solved simultaneouslyd@ndb

jat the critical current(H,) for known values oh andp in

region IV of Fig. 1. One condition is th&,(W—A)=Kq,

gWhich yields from Eqgs(6) and(7b)

1-b'
V(l-a')(1-b")h+(1+a")\/——II

1+b’

b'—a’
1+b’

€)

where we use the normalized quantiti@s=a/W and b’
=b/W. The other condition that,(—W+ A)=Kj yields
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[1+a’ [b'—a’
—y(1+a')(1+b")h+(1-b") H( ,q)p
1-a’ 1-a’

=1. (10)

Expansion of Eq.(5) for large ¢ yields H({)=H,
+1/27¢+0O(1/L?). Expanding Eqs(6) and (7a in powers
of £ and making use of Eq9), we obtain the normalized
critical currenti .= 1./l 4:

a'+b’ +3 [1+b’
2J(1-a’)(1-b’) 2 Vi-a
X[(1—a")E(q)+(1+a")K(q)]p,

wherea’ andb’ are determined from Eq$9) and (10) for
the desired values df andp.

The double-dome vortex-antivortex distributigregion
IV of Fig. 1) occurs ati; only for h in the range 8<h<<h;
for p>2/a. Here,h,(p) is the lowest value oh that makes
Hy(x,0)>0 in the regiona<x<b. Thus, one of the equa-
tions determiningh; is H,+ (Ky/2m)Q(a,b,a+¢€)=0 [see
Eq. (6)], which yields

IC(hip):_

(11)

1
(b’—a’)VJ(1—-a’)(1+b")

—(1+a’)(1-b")K(g)—(b"-a")(1-b’)

h+

(1-a")(1+b")E(q)

b'—a’
1-a’ 4

h,; can be determined for a given valueés the value oh
when Eqgs.(9), (10), and(12) are simultaneously solved for
a’,b’, andh.

For known values oh andp in region Il of Fig. 1, the
left and right boundaries of the vortex doraé andb’ are
determined by simultaneously solving E¢8) and(12); Eq.
(12) also gives the condition thatK,(x)/dx=0 at x=a.
Oncea’ andb’ are found, Eq(11) again can be used to

X1I

p=0. (12)
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FIG. 2. i.(h,p) (critical current normalized tdyy) vs reduced
field h for fixed values of the bulk-pinning parameterThe solid
straight line and solid circles denote valued poin region |, where
h=hy(p); the dashed curve and solid squares shiqwat h
=hy(p); and the dotted curve and solid triangles shigwat h
=h,(p). Forp<2/m, i, decreases linearly with[Eqg. (3)] up tohy
and then decreases more slowly in regiongfd. (11)] and Il [Eq.
(16)]. The bold curve showg, for the special case qf=2/#7. For
p>2/m, i, increases by a few percent in the double-dome region IV
and then decreases more gradually in regions Il and Il. In all cases,
i asymptotically approachgsfor largeh (short dotted lines along
the right side of the figune

where
b JW-—u
Q(b.0)= | w5 _b_udu (149

o wEb o (WAD(-W)
=2 sinh 1 m—z sinh 1 m

(14b

calculate the critical current. Just above the critical currentpo conditionK (W— A) =K, which determine®’ =b/W

vortices nucleate at=W, move rapidly to the left through
the vortex-free regiorb<x<W, move slowly to the left
through the vortex doma<x<h, escape from the dome,

and finally move rapidly to the left through the vortex-free

region —W<x<a.
For increasing values oh, the left boundary of the

vortex-filled region moves closer to the left edge of the strip;

a becomes equal to- W+ A when h=h,, which can be
determined for a given value pfas the value oh when Egs.
(9) and (12) are numerically solved fob’ andh, takinga’
=—1+A/W. (For Figs. 1 and 2A/W=0.01 was assumed.
For h>h,, the field and current distributions amgcan be
calculated with good accuracy by simply settarg W in Eq.
(6). The complex field in region Il of Fig. 1 is then

((~b)¥”

" 1
(L=W)H? W

H({)=

Kp
Hat52Q(b,0)

atl. for h andp in region Il of Fig. 1, becomes

J2(1=b)[h+psinh }(1+b)/(1-b')]=1 (15

instead of Eq(9), and the normalized critical current can be
expressed as

1
ic(h,p)=Z\/Z(l—b’)+g\/2(1+b’) (16)
instead of Eq(11). The reduced critical curreimt as a func-
tion of h, calculated from Eq(11) or (16), is shown in Fig. 2
for various values op. For p=0 andh>1/2, we findi,
=1/4h, as obtained in Refs. 6 and 8 for pin-free strips with
an edge barrier. In the opposite limp>1, we obtaini,
~p, as expected for bulk-pinning-dominated behavior. For
h>p, we see from Eq(15) thatb’ approaches 1, and Eg.
(16) yieldsi.~p+1/4h. A generic feature of Fig. 2 is the
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plateau ini . vs h to the left of the dashed curve in region IV; rier, and we have developed a procedure for finding the
actually,i, increases by a few percent hsncreases from 0 magnetic-field and current-density distributions inside the
to h,. This increase is due to a significant decrease in thétrip at the critical current. In the presence of a strong edge

width b—a over whichK ,(x) is restricted tK . This effect barrier, we have found strong field dependencies of the criti-
cal current. Such effects should be taken into account when

interpreting experimental critical currents in low and moder-
ate magnetic fields.

is partially compensated by a change in shapié gk) in the
vortex-free zonege.g., dK,(x)/dx=0 at x=a at h=h].
Field-dependent critical current densitiggH,) have been

found experimentally in Refs. 10—14, but the behavior was ) i , i , )
interpreted solely in terms of bulk pinning. We thank Y. Mawatari for stimulating discussions. This
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