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Ward identities for disordered metals and superconductors
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This paper revisits Ward identities for disordered interacting normal metals and superconductors. It offers a
simple derivation based on gauge invariance and recasts the identities in a form that allows easy analysis of the
quasiparticle charge conservation~as, e.g., in a normal metal! or nonconservation~as, e.g., in ad-wave
superconductor!.
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I. INTRODUCTION

Interplay of interaction and disorder remains one of
central topics in condensed-matter physics. Given the c
plexity of the problem, constraints imposed by symmetr
acquire particular importance. An example of such a c
straint is given by Ward identities. In the early days of man
body theory, Ward identities were used to establish key pr
erties of the Fermi-liquid theory.1 In the context of the
coherent potential approximation for a disordered nonin
acting metal, similar identities were derived by Velicky´.2 In
the theory of superconductivity, Ward identities were us
earlier to establish gauge invariance of the electromagn
response.3 Subsequently, they were employed by Vollhar
and Wölfle4 in a self-consistent theory of the Anderson tra
sition, by Wegner and co-workers,5 and by McKane and
Stone6 in the S model approach to localization, and by Ca
tellani et al.7 in an early treatment of an interacting diso
dered metal. Very recently, Kirkpatrick and Belitz8 invoked
the Ward identities in an attempt to resolve the issue of
coherence at zero temperature.

This paper revisits the Ward identities for disordered
teracting normal metals and superconductors. Using ga
invariance, it derives the identities in a form that makes q
siparticle charge conservation~as, e.g., in a normal metal! or
absence thereof~as, e.g., in ad-wave superconductor! ex-
plicit. In a normal metal, the identity takes a particular
simple form:

LRA~v,v8;p,p!52
2iSR9 ~v,p!

v2v8
,

whereLRA is the disorder average of the retarded-advan
~RA! charge density vertex correction at zero moment
transfer Q5p2p50 and small frequency transfe
V5v2v8!v,v8, andSR9 (v,p) is the imaginary part of the
retarded quasiparticle self-energy, which is proportional
the quasiparticle scattering rate. The vertexLRA is closely
related to the correlation function of the quasiparticle cha
density, and the 1/~v2v8! behavior of the vertex at sma
frequency transfer and zero momentum transfer points
quasiparticle charge conservation and its diffusive propa
tion. By contrast, in ad-wave superconductor, the Ward ide
tity reflects the fact that impurity scattering causes excha
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of charge between the quasiparticle subsystem and the
densate, which leads to nonconservation of the quasipar
charge.

The structure of the paper is as follows. Section II give
detailed derivation of the Ward identities for a disorder
interacting normal metal. Section III briefly discusses t
Ward identities for ans-wave superconductor in the approx
mation of a spatially uniform gap. Section IV derives th
Ward identities for a disorderedd-wave superconductor in
the same approximation, and Sec. V illustrates the mean
of the identity by explaining how, in ad-wave supercon-
ductor, the impurity scattering leads to exchange of cha
between the quasiparticle subsystem and the conden
Section VI presents a summary and a brief discussion of
results.

II. WARD IDENTITIES FOR A NORMAL METAL

Consider a disordered interacting normal metal with
Matsubara action

S5E dtE drc1~r ,t!F i\]t2jS 2 i\¹W 2
e

c
AW D

1ef~r ,t!2u~r !Gc~r ,t!

2E dtdrE dt8dr8ca
1~r ,t!cb~r ,t!Vabgd

3~t2t8,r 2r 8!cg
1~r 8,t8!cd~r 8,t8!,

wherec1(c) are the electron creation~annihilation! opera-
tors,AW is the electromagnetic vector potential,f(r ,t) is the
scalar potential, andu(r ) is the impurity potential. This ac-
tion respects the continuous gauge symmetry

c→eix(r ,t)c; AW →AW 1
\c

e
¹W x; f→f1

\

e
]tx,

of which the sought Ward identities are a consequence
establish the scheme used throughout the rest of this pap
present below a detailed derivation.

Everywhere hereafter, only infinitesimal time-depende
spatially uniform transformationsca(r ,t)→eix(t)ca(r ,t)
will be considered. Under such a transformation, the Gree
function changes according to
©2002 The American Physical Society03-1
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Gab~r ,r 8,t2t8!→eix(t)Gab~r ,r 8,t2t8!e2 ix(t8),

and thus, to first order inx, its variation equals

dGab~r ,r 8,t2t8!' i @x~t!2x~t8!#Gab~r ,r 8,t2t8!.

On the other hand, the same transformation induces e
terms in the action due to the presence of the temporal
rivative. Hence, the very same variation of the Green’s fu
tion can also be calculated by perturbation theory. The c
cial point is that the four-fermion interaction term in th
action is invariant under the gauge transformation and, th
fore, does not contribute to the perturbative correction to
Green’s function. Thus, to first order in infinitesimalx, the
same correction toG is equal to

dGab~x,x8,t2t8!52 i E dtdr^ca~x,t!cg
1~r ,t !

3cg~r ,t !cb
1~x8,t8!&] tx~ t !.

Equating the two expressions leads to the identity

@x~t!2x~t8!#Gab~x,x8,t2t8!

52E dtdr^ca~x,t!cg
1~r ,t !cg~r ,t !cb

1~x8,t8!&] tx~ t !

for a given disorder configuration. Disorder averaging
places the exact Green’s function on the left-hand side by
translationally invariant average. The average on the rig
hand side can be presented as the product of the two ave
Green’s functions plus the vertex correction term and, fox
5x0eiVt with V→0, the Fourier-transformed identity take
the form

G~ iv1 iV,p!2G~ iv,p!

5 iVG~ iv1 iV,p!@11L~ iv,iv1 iV;p,p!#G~ iv,p!,

whereL( iv,iv1 iV;p,p) is the disorder average of the sc
lar vertex correction. At this point, two different types
identities can be derived: one for the retarded-advanced
tex correctionLRA(v,v1V;p,p), and another one for the
retarded-retarded ~RR! vertex correction LRR(v,v
1V;p,p).

A. The identity for the retarded-advanced vertex

To obtain the identities for the retarded-advanced ver
chooseiv to be in the lower half plane andiv1 iV in the
upper half plane. Then, upon analytic continuationiv→v
6 i0, G( iv) transforms intoGA(v2 i0), whereasG( iv
1 iV) transforms intoGR(v1V1 i0). The identity then
takes the form

GR
21~v1V1 i0,p!2GA

21~v2 i0,p!

5V@11LRA~v1V,v;p,p!#.

The disorder averaged Green’s function readsGA/R
21 (v,p)

5v2SA/R(v,p)2j(p), whereSA/R(v,p) is the advanced
retarded self energy. Using the relationSR(v,p)
22050
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5SA* (v,p) and assuming that the derivative]vSR/A(v,p) is
nonsingular, for smallV5v2v8→0, one finds

22iSR9 ~v,p!5@v2v8#LRA~v,v8;p,p!. ~1!

Identifying 2SR9 (v) with the scattering rate 1/t, one imme-
diately recognizes inLRA the zero momentum transfer (Q
50) limit of the charge density vertexD(v2v8,Q),9

D~v2v8,Q!5
1

i ~v2v8!t1DQ2t
,

where D is the diffusion coefficient. For a noninteractin
disordered metal,D(v2v8,Q) is commonly obtained by a
direct calculation,9 first finding self-consistently the impurity
self energy, and then summing the ladder series for the
tex. In the presence of interactions, diagrammatic treatm
becomes much more involved, while the present derivat
appeals only to gauge invariance and is insensitive to turn
on the interaction.

B. The identity for the retarded-retarded vertex

By contrast with the identity just derived, the identity fo
the retarded-retarded vertex can be found in textbooks, a
present its derivation here only for completeness. In t
case, it is convenient to choose bothiv and iv1 iV in the
same~say, the upper! half plane. Upon analytic continuatio
and multiplication byG21( iv) andG21( iv1 iV), the iden-
tity takes the form

GR
21~v1V1 i0,p!2GR

21~v1 i0,p!

5V@11LRR~v1V,v;p,p!#,

which, to first order inV→0, leads to the standard relatio
between the energy derivative of the retarded self-energy
the retarded-retarded vertex:10

]vSR~v!52LRR~v,v;p,p!. ~2!

III. WARD IDENTITY FOR AN s-WAVE
SUPERCONDUCTOR

In the Nambu notations, the BCS Hamiltonian of a
s-wave superconductor reads

H5E drC†Ft3jS pW 2
e

c
AW t3D1t1D~r !1t3ef1t3uGC.

HereC†[(c↑
† ,c↓) is the Nambu spinor,t i are the Nambu

matrices, andr denotes the center-of-mass coordinate o
Cooper pair. The pair fieldD(r ) has been chosen real for th
sake of simplicity.

A gauge transformation takes the formC
→exp@it3(e/\c)x#C and, in addition to the standard chang
of potentialsAW and f, has to be accompanied by the pa
field transformationD→Dexp@2i(e/\c)x#. One then proceeds
the same way as for a normal metal, with two importa
points to note. The first point amounts to the approximat
of a spatially uniform gap which, along with the frequenc
3-2
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gets renormalized by disorder. The second point stems f
the Nambu matrix structure of the theory: the vertices, t
appear after disorder averaging of the perturbative exp
sion for the Green’s-function variation, are defined in t
Nambu space, and thus carry a Nambu index. For insta
the disorder averaged term arising from the temporal der
tive of x5x0exp@iVt# has the form

E dy^c~x!c̄~y!iVt3c~y!c̄~x8!&

→E dydzdz8G~x,z!iV@t3d~z2y!d~y2z8!

1^t3&~z,y,z8!#G~z8,x8!,

where the vertex correction̂t3&(z,y,z8) appears as a resu
of disorder dressing of the corresponding bare vertex,
latter being simply the Nambu matrixt3. The disorder aver-
aged Green’s function has the form1

G~p,v!5@ i ṽt02j~p!t32D̃t1#21,

whereṽ and D̃ are the renormalized frequency and the g
amplitude, which yields the Ward identity

@ i ṽ2 i ṽ8#t32 i @D̃v1D̃v8#t2

5@ iv2 iv8#@t31^t3&#22iD@t21^t2&#.

This, in turn, indicates a diffusion pole in the quasipartic
charge-density vertex correction^t3&RA :

22iSR9 ~v,p!

v2v8
t35^t3&RA ,

where SR9 (v,p) is the imaginary part of the retarded se
energy renormalization of the frequency; the notation is c
sen to coincide with the normal-metal limit.

IV. WARD IDENTITY FOR A d-WAVE SUPERCONDUCTOR

In a d-wave superconductor, the situation turns out to
quite different. The BCS Hamiltonian of ad-wave supercon-
ductor reads

H5E drC†Ft3jS pW 2
e

c
AW t3D1t3ef1t3uGC

1E dRdrC†S R1
r

2D t1D~R,r !CS R2
r

2D ,

where the pair fieldD(R,r ) has been chosen real and havi
d-wave angular dependence on the relative coordinater, and
R denotes the center-of-mass coordinate of a Cooper pa

As in thes-wave case, the Hamiltonian respects the ga
symmetry, and the identities can be obtained similarly, w
one important difference: because of thed-wave symmetry
of the gap and its oscillating angular dependence, the
amplitudeDp ~although suppressed by impurities! does not
acquire a frequency-dependent renormalization. Hence
disorder average of the quasiparticle Green’s function is
22050
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G~ iv,p!5@ i ṽ2t1Dp2t3jp#21.

Another important point is that the angular dependence
the gap leads to the appearance of a vertex correction^Dpt2&
on the right-hand side of the Ward identity, which assum
the form

22i t3SR9 ~v,p!5@v2v8#^t3&RA12i ^Dpt2&RA . ~3!

As for an s-wave superconductor,SR9 (v,p) is the retarded
self-energy renormalization of the frequency:ṽ5v2S.
Due to thed-wave symmetry of the gap and its oscillato
angular dependence,^Dpt2&RA}^t3&RA , which leads one to
conclude that the vertex correction^t3&RA has to remain fi-
nite asv2v8→0. Hence, in a disorderedd-wave supercon-
ductor, the quasiparticle charge is not conserved. Note t
upon transition to the normal state, the quasiparticle cha
diffusion mode reappears, as can be seen by sendingDp to
zero in Eq.~3! and identifying^t3&RA with LRA(v,v8;p,p)
of Sec. II.

V. QUALITATIVE ARGUMENT FOR A d-WAVE
SUPERCONDUCTOR

The absence of quasiparticle charge conservation i
d-wave superconductor can be understood based on a si
argument going back to the studies of charge imbalance
laxation in superconductors.11 I reproduce the argument her
for the sake of completeness. Consider the Bogolyubov q
siparticle creation operator:

gp↑
1 5upcp↑

1 1vpc2p↓ , up
25

1

2 F11
jp

Ajp
21Dp

2G ,

up
21vp

251.

Impurity scattering is elastic, i.e., it conserves the quasip
ticle energy Ep5Ajp

21Dp
2. In an s-wave superconducto

with uniform gap,Dp is a constant; and, in the absence
the Andreev scattering that turnsjp into 2jp , the energy
conservation implies conservation ofup and vp . Hence
the impurity scattering conserves the particle-hole cont
of a quasiparticle, and this leads to the effective cha
conservation—even though a Bogolyubov quasiparticle,
ing a superposition of a particle and a hole, does not hav
well-defined charge quantum number. The same conclu
can be reached by considering directly the expectation va
of the quasiparticle chargeQp :

Qp5up
2~11!1vp

2~21!5
jp

Ajp
21Dp

2
.

In an isotropics-wave superconductor, the gap does not va
around the Fermi surface, and hence, in the absence o
Andreev processes,Qp is conserved by the impurity scatte
ing, which leads to the charge diffusion pole.

By contrast, in ad-wave superconductor, the gapDp is
strongly anisotropic. Thus, even in the absence of the
dreev scattering processes, neitherQp nor the moduli of the
Bogolyubov factorsup andvp are conserved: impurity scat
3-3
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tering changes the particle-hole content of a quasiparti
Physically, this means that the impurity scattering indu
exchange of charge between the quasiparticle subsystem
the condensate.

Indeed, this quasiparticle charge nonconservation is n
consequence of thed-wave symmetry of the gap, but rathe
of the gap anisotropy around the Fermi surface, and
present not only in other superconductors with nontriv
symmetry, but even ins-wave superconductors with aniso
tropic gap. However, in the latter case, the effect is smal
the measure of the relative gap anisotropy, which is its
reduced by disorder. As a result, the quasiparticle cha
nonconservation appears only at time scales that are
compared with the scattering time. By contrast, in ad-wave
superconductor, the gap anisotropy is large, and the quas
ticle charge changes at the time scale of the order of
impurity scattering time, which eliminates quasipartic
charge conservation at any time scale beyond the elastic
tering time.

VI. SUMMARY AND DISCUSSION

In this paper, I revisited the Ward identities for superco
ductors and disordered interacting normal metals, and
sented a simple derivation based solely on gauge invaria
The identities were recast in a form that made quasipart
charge conservation~as in a normal metal or an isotrop
s-wave superconductor! or absence thereof~as in ad-wave
s

.
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superconductor! explicit. Using the Ward identities, I showe
how, in ad-wave superconductor, impurity scattering caus
exchange of charge between the quasiparticle subsystem
the condensate, thus leading to the quasiparticle charge
conservation.

Transparency of the Ward identities is particularly appe
ing in comparison with microscopic approaches. The s
plicity of the identities is insensitive to the strength of th
impurity potential or to whether disorder has to be treated
the Born or in the unitary limit—or to the presence of inte
action. By contrast, to achieve a controllable approximat
even in the Born limit, microscopic calculations, e.g., for
d-wave superconductor, have to resort to rather comp
methods and/or unrealistic approximations, such as exp
sion in the inverse number of gap nodes.12

Analogous identities, following from the spin rotation in
variance, can be derived similarly.
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