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This paper revisits Ward identities for disordered interacting normal metals and superconductors. It offers a
simple derivation based on gauge invariance and recasts the identities in a form that allows easy analysis of the
guasiparticle charge conservatigas, e.g., in a normal mejabr nonconservatior(as, e.g., in ad-wave

superconductor
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[. INTRODUCTION of charge between the quasiparticle subsystem and the con-

densate, which leads to nonconservation of the quasiparticle

Interplay of interaction and disorder remains one of thecharge.
central topics in condensed-matter physics. Given the com- The structure of the paper is as follows. Section Il gives a
plexity of the problem, constraints imposed by symmetriesetailed derivation of the Ward identities for a disordered
acquire particular importance. An example of such a coninteracting normal metal. Section Il briefly discusses the
straint is given by Ward identities. In the early days of many-Ward identities for ars-wave superconductor in the approxi-
body theory, Ward identities were used to establish key propmation of a spatially uniform gap. Section IV derives the
erties of the Fermi-liquid theory.In the context of the Ward identities for a disordered-wave superconductor in
coherent potential approximation for a disordered noninterthe same approximation, and Sec. V illustrates the meaning
acting metal, similar identities were derived by Velickin of the identity by explaining how, in a-wave supercon-
the theory of superconductivity, Ward identities were usedluctor, the impurity scattering leads to exchange of charge
earlier to establish gauge invariance of the electromagnetibetween the quasiparticle subsystem and the condensate.
responsé. Subsequently, they were employed by VollhardtSection VI presents a summary and a brief discussion of the
and Wdfle? in a self-consistent theory of the Anderson tran-results.
sition, by Wegner and co-worketsand by McKane and

Stoné in the S model approach to localization, and by Cas- Il. WARD IDENTITIES FOR A NORMAL METAL
tellani et al.” in an early treatment of an interacting disor- ) ) ) ) )
dered metal. Very recently, Kirkpatrick and Befitmvoked Consider a disordered interacting normal metal with the

the Ward identities in an attempt to resolve the issue of deMatsubara action
coherence at zero temperature.
This paper revisits the Ward identities for disordered in- _ +
) . S=| dr| dry"(r,7)
teracting normal metals and superconductors. Using gauge
invariance, it derives the identities in a form that makes qua-

. el
ih&f—g(—ihV—EA)

siparticle charge conservatigas, e.g., in a normal mejabr +ed(r,r)—u(r)|y(r,7)
absence theredfas, e.g., in ad-wave superconductprex-
plicit. In a normal metal, the identity takes a particularly
simple form: —fdrdrf dr'dr ¢l (r, 1) a(r, 7)Vopys
, 2i3"(w.p) X (=7, r=r") g (r', 7 ) ps(r', 1),
App(@,0";p,p)=— T where ¢ () are the electron creatiof@nnihilation opera-

tors, A is the electromagnetic vector potentigi(r, 7) is the

] ] scalar potential, and(r) is the impurity potential. This ac-
WhereARA is the disorder average of the retarded'advancegon respects the continuous gauge Symmetry

(RA) charge density vertex correction at zero momentum

transfer Q=p—p=0 and small frequency transfer , . . hc. 3
Q=w—0'<w,0', and3(o,p) is the imaginary part of the Yp—e XUy Ao At VX b=t g,

retarded quasiparticle self-energy, which is proportional to

the quasiparticle scattering rate. The vertex, is closely  of which the sought Ward identities are a consequence. To
related to the correlation function of the quasiparticle chargestablish the scheme used throughout the rest of this paper, |
density, and the lo—w') behavior of the vertex at small present below a detailed derivation.

frequency transfer and zero momentum transfer points to Everywhere hereafter, only infinitesimal time-dependent
quasiparticle charge conservation and its diffusive propagaspatially uniform transformationsy,(r,7)—eX(y (r,7)

tion. By contrast, in @-wave superconductor, the Ward iden- will be considered. Under such a transformation, the Green'’s
tity reflects the fact that impurity scattering causes exchangunction changes according to
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Gap(r,r', 7= ) —ex(NG s(r,r’ 7 7 )e ix() =37(w,p) and assuming that the derivativg> g/a(w,p) is
apllr, apllr, ) \ )
nonsingular, for small)=w—w'—0, one finds

and thus, to first order iy, its variation equals
—2i3k(w,p)=[0—o'JAgA(®,0";p,p). 1)

OG 5(r,r' 7= 7") =i —x (7' "r—1').

a0, 7= )= () =X ()]G ap(r. 1 7= 77) Identifying 23 %(w) with the scattering rate 2/ one imme-
On the other hand, the same transformation induces extigately recognizes im s, the zero momentum transfe€)(
terms in the action due to the presence of the temporal de= ) jimit of the charge density verteR(w—’,Q),°
rivative. Hence, the very same variation of the Green'’s func-
tion can also be calculated by perturbation theory. The cru-
cial point is that the four-fermion interaction term in the D(w—w',Q)=- - >
action is invariant under the gauge transformation and, there- (w=-0")7+DQ"r
fore, does not contribute to the perturbative correction to thgyhere D is the diffusion coefficient. For a noninteracting
Green’s function. Thus, to first order in infinitesimal the  gisordered metalD (w—w’,Q) is commonly obtained by a

same correction t& is equal to direct calculatior?,first finding self-consistently the impurity
self energy, and then summing the ladder series for the ver-
5G,5(X, X" 7—1') = _if dtdr( (X, 7) i (r 1) tex. In the presence of interactions, diagrammatic treatment

aﬁ 1 1 a 1 Y 1 b . . . .
ecomes much more involved, while the present derivation

X1 WX 7)) (). appeals only to gauge invariance and is insensitive to turning
T D1 (X)) X (1) on the interaction.
Equating the two expressions leads to the identity

B. The identity for the retarded-retarded vertex

—x(7)]1G s(X, X", 7= 7' . ) L . . .
(D =x(7)]G gl ™) By contrast with the identity just derived, the identity for

_ n N the retarded-retarded vertex can be found in textbooks, and |
T dtdr('/’a(X’T)‘/’v(r't)‘/’y(r't)'pﬁ(x 7)) X (1) present its derivation here only for completeness. In this
case, it is convenient to choose both andiw+i{) in the

for a given disorder configuration. Disorder averaging re-same(say, the upperhalf plane. Upon analytic continuation
places the exact Green’s function on the left-hand side by itg, 4 multiplication byG (i w) andG (i w+iQ), the iden-

translationally invariant average. The average on the rightﬂty takes the form
hand side can be presented as the product of the two average

Green’s functions plus the vertex correction term and,xfor Ggl(w+Q+i0,p)—Ggl(aﬂrio,p)

= xo€'*” with QO —0, the Fourier-transformed identity takes

the form =Q[1+Arg(0+Q,0;p,p)],
Gliw+iQ,p)—Gliwp) which, to first order in(—0, leads to the standard relation

between the energy derivative of the retarded self-energy and
=i0G(io+iQ,p)[1+A(iw,iw+iQ;p,p)]G(iw,p), the retarded-retarded verték:

whereA (iw,iw+i€Q;p,p) is the disorder average of the sca- d,2r(w)=—Agr(w,®;p,p). (2)

lar vertex correction. At this point, two different types of

identities can be derived: one for the retarded-advanced ver-

tex correctionAga(w,w+Q;p,p), and another one for the

retarded-retarded (RR) vertex correction Agrg(w,®

+Q;p,p). In the Nambu notations, the BCS Hamiltonian of an
s-wave superconductor reads

Ill. WARD IDENTITY FOR AN sWAVE
SUPERCONDUCTOR

A. The identity for the retarded-advanced vertex

To obtain the identities for the retarded-advanced vertex, H= f dro’
choosei w to be in the lower half plane andv+i€) in the
upper half plane. Then, upon analytic continuatien— w Here\lfTE(lp}r,wl) is the Nambu spinorr; are the Nambu
*i0, G(iw) transforms intoGa(w—1i0), whereasG(iow  matrices, and denotes the center-of-mass coordinate of a
+iQ) transforms intoGgr(w+Q+i0). The identity then  Cooper pair. The pair field (r) has been chosen real for the

+ TlA(r)+T3e¢+ 73U v,

. e.
73€ D_EATs

takes the form sake of simplicity.
4 . 4 ) A gauge transformation takes the formW¥
Gr (0+Q+i0p) =G (w—i0p) —exflims(e/7ic)x]¥ and, in addition to the standard change
=Q[1+Agp(@+Q,0;p,p)]. of potentialsA and ¢, has to be accompanied by the pair

field transformatiom\ — Aexf 2i(e/iic) x]. One then proceeds
The disorder averaged Green’s function re@i,;c,lR(w,p) the same way as for a normal metal, with two important
=w—2r(w,p)— &(p), whereX 5r(w,p) is the advanced/ points to note. The first point amounts to the approximation
retarded self energy. Using the relatiokg(w,p) of a spatially uniform gap which, along with the frequency,
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gets renormalized by disorder. The second point stems from Gliw,p)=[i®—71A,— ngp]—l_

the Nambu matrix structure of the theory: the vertices, that , o

appear after disorder averaging of the perturbative expredinOther important point is that the angular dependence of
sion for the Green's-function variation, are defined in thethe gap leads to the appearance of a vertex corre¢figm,)
Nambu space, and thus carry a Nambu index. For instanc@ the right-hand side of the Ward identity, which assumes

the disorder averaged term arising from the temporal derival'e form
tive of y= xoexdiQ 7] has the form — 23 (w,p)=[w— 0 [(7s)rat 21(ApmIra.  (3)

Wi T As for ans-wave superconducto® i(w,p) is the retarded
d X iQ X R
f PP Qr3(y) px)) self-energy renormalization of the frequency=w—2..

Due to thed-wave symmetry of the gap and its oscillatory

_>f dydzdZzG(x,2)iQ[738(z—y)8(y—2') angular dependencé) ,7,)ra*( 73)ra, Which leads one to
conclude that the vertex correctidmz)ra has to remain fi-
+(13)(2,y,2")]1G(Z' ,x), nite asw—w’—0. Hence, in a disorderedtwave supercon-

. , ductor, the quasiparticle charge is not conserved. Note that,
where the vertex correctiofrs)(z,y,z') appears as a result non transition to the normal state, the quasiparticle charge

of disorder dressing of the corresponding bare vertex, thgjtfusion mode reappears, as can be seen by sentiinp
latter being simply the Nambu matri. The disorder aver-  zerg in Eq.(3) and identifying( 73)ra With Aga(@,o’;p,p)
aged Green’s function has the form of Sec. Il

I _ _A -1
G(p,w)=liB7o=&(p) 73— AT ] 7, V. QUALITATIVE ARGUMENT FOR A d-WAVE

where® andA are the renormalized frequency and the gap SUPERCONDUCTOR

amplitude, which yields the Ward identity The absence of quasiparticle charge conservation in a

e =~ d-wave superconductor can be understood based on a simple
[lo—io]rs—i[A,+A, ] argument going back to the studies of charge imbalance re-
=[iw—iw [ 73+(75)]—2iA[ 7o+ (75)]. laxation in superconductot$| reproduce the argument here

for the sake of completeness. Consider the Bogolyubov qua-
This, in turn, indicates a diffusion pole in the quasiparticlesiparticle creation operator:

charge-density vertex correcti@rs)ga:

2iS(w,p) Yo =UpCo +0pCp) u2=l 1+i

—2i2g(w, p1 = UpCp1 TUpC—py,  Up 2 A2|’

- T3=(T3)RA, 2 §tap
w—w

2, 2_
where 3 4(w,p) is the imaginary part of the retarded self- Uptup=1.
energy renormalization of the frequency; the notation is chotmpurity scattering is elastic, i.e., it conserves the quasipar-
sen to coincide with the normal-metal limit. ticle energy Ep= ‘/§2p+ Azp_ In an sswave superconductor
with uniform gap,A, is a constant; and, in the absence of
IV. WARD IDENTITY FOR A d-WAVE SUPERCONDUCTOR the Andreev scattering that turra:% into —gp, the energy
conservation implies conservation of, and v,. Hence
She impurity scattering conserves the particle-hole content
of a quasiparticle, and this leads to the effective charge
conservation—even though a Bogolyubov quasiparticle, be-
ing a superposition of a particle and a hole, does not have a
v well-defined charge quantum number. The same conclusion
can be reached by considering directly the expectation value

In a d-wave superconductor, the situation turns out to b
quite different. The BCS Hamiltonian ofcawave supercon-
ductor reads

Hzf drwt

e.
7'3§( p— EAT3 + 738+ 73U

r r of the quasiparticle charg®,:
+f dRAr¥ | R+ 5 AR Y| R- 5]
£p
e - Qu=U3(+1)+v3(-1)= =2=.
where the pair field\(R,r) has been chosen real and having P~ Hp p m

d-wave angular dependence on the relative coordinaed

R denotes the center-of-mass coordinate of a Cooper pair. In an isotropics-wave superconductor, the gap does not vary
As in thes-wave case, the Hamiltonian respects the gaugearound the Fermi surface, and hence, in the absence of the

symmetry, and the identities can be obtained similarly, withAndreev processe§), is conserved by the impurity scatter-

one important difference: because of tthevave symmetry ing, which leads to the charge diffusion pole.

of the gap and its oscillating angular dependence, the gap By contrast, in ad-wave superconductor, the gdy, is

amplitudeA, (although suppressed by impuritiedoes not ~ strongly anisotropic. Thus, even in the absence of the An-

acquire a frequency-dependent renormalization. Hence thareev scattering processes, neitl@grnor the moduli of the

disorder average of the quasiparticle Green’s function is  Bogolyubov factorsu, andv,, are conserved: impurity scat-
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tering changes the particle-hole content of a quasiparticlesuperconductgrexplicit. Using the Ward identities, | showed
Physically, this means that the impurity scattering inducesiow, in ad-wave superconductor, impurity scattering causes
exchange of charge between the quasiparticle subsystem aagchange of charge between the quasiparticle subsystem and
the condensate. the condensate, thus leading to the quasiparticle charge non-

Indeed, this quasiparticle charge nonconservation is not eonservation.
consequence of the-wave symmetry of the gap, but rather  Transparency of the Ward identities is particularly appeal-
of the gap anisotropy around the Fermi surface, and isng in comparison with microscopic approaches. The sim-
present not only in other superconductors with nontrivialplicity of the identities is insensitive to the strength of the
symmetry, but even irs-wave superconductors with aniso- impurity potential or to whether disorder has to be treated in
tropic gap. However, in the latter case, the effect is small irthe Born or in the unitary limit—or to the presence of inter-
the measure of the relative gap anisotropy, which is itselfaction. By contrast, to achieve a controllable approximation
reduced by disorder. As a result, the quasiparticle chargeven in the Born limit, microscopic calculations, e.g., for a
nonconservation appears only at time scales that are londrwave superconductor, have to resort to rather complex
compared with the scattering time. By contrast, id-wave  methods and/or unrealistic approximations, such as expan-
superconductor, the gap anisotropy is large, and the quasipasion in the inverse number of gap nodés.
ticle charge changes at the time scale of the order of the Analogous identities, following from the spin rotation in-
impurity scattering time, which eliminates quasiparticle variance, can be derived similarly.
charge conservation at any time scale beyond the elastic scat-
tering time.
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