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In the context of a simple model featuring an explicigntral interaction potential, and using a standard
functional-integral technique, we study superconductivity with angular momentum quantum rungas an
emergent property of the many-body system. Our interaction potential is attractive at a finite digtasice
the breaking of the rotational symmetry is the result of an interplay betwgand the interparticle distance
rs. This interplay is generic to interactions of this type and is responsible for the existedegasfe pairing
for a range of densities. However, we find that2 pairing takes place only in the BCS limit. In contrast, as
the Bose-EinsteifBE) limit is approached the internal energy of the “preformed pairs” becomes the dominant
contribution and there is a quantum phase transition in whictstivave symmetry is restored. We also find
that the limiting value of the critical temperaturekgT.— 3.315%2/2m* [n/2(2l +1)]?%, which coincides
with the usual result only for=0; for | >0, it differs in the degeneracy factor 1I(21), which lowersT,.

Our results thus place constraints on exotic pairing in the BE limit, while at the same time indicating a
particularly interesting route to pairing will>0 in a BCS superconductor.

DOI: 10.1103/PhysRevB.66.214526 PACS nuntber74.20.Fg, 74.25.Dw, 71.10.Hf, 74.20.Rp

[. INTRODUCTION and restored in the BE limit, to be generic to a large class of

central effective interactions. In particular we shall see that

It is a surprising consequence of BCS thédhat certain  for such models the evolution of a BCS superconductor with

centralinteraction potential¥/(|r —r’|) lead to Cooper pair- €xotic pairing towards the BE limit involves a phase transi-

ing with a finite value of the angular momentum, thus breaktion in which the symmetry of the superconducting order
ing the rotational symmetry of the continufrithe phenom- ~ Parameter is increased. This adds to the work by Babaev and

enon is analogous to what happens in “Hubbard” modelsKleinerf® who also found, in the context of a chiral Gross-
with attraction between nearest neighbors for which, as i&leveu model, a phase transition associated with the BCS to
well known? d-wave pairing can break the symmetry of the Bose crossover. However, the nature of the phase transition
crystal lattice. However, it is especially interesting in thethat we describe .here IS qune.dn‘ferent, as it takes plaqe n
original context of a continuum model, because of the Ccm_the superconducting state, while that of Babev and Kleinert

trast with the well-known theorehfor two-body pairing in corresponds to the formation of preformed pairs in the nor-
real space, which demands that the ground state minimizg]al state.

the orbital angular momentum. This rotational symmetry
breaking is thus a many-body effect, and one expects that in
the limit of low densities and strong attraction, when the  The first discussions of exotic Cooper paifingok place
BCS ground state is a Bose-EinstéBE) condensate of non- in the context of the weak-coupling theory of superfluid
overlapping pairs;® the rotational symmetry of the system 3He. It was assumed that there existed a central, nonretarded
is restored. However, until now investigations of the BCS tointeraction potentiaM(|r—r’|) acting between particles at
Bose crossover for nos-wave pairing were performed ei- positionsr andr’. One then writes

ther in the context of lattice mode(see Ref. 3 for a review
and Refs. 9—14 for some examples of recent workfor the
anisotropic interaction potential of Ref. 1%.

In this paper we take a slightly different approach by
studying a continuum model, but choosing to work with anwhereV(k—k’)=fd3 e <~k)'" v(r), and finds that each
explicit, central interaction potentiaM(|r—r’[) which can  of the terms in this series leads to pairing with a different
lead to pairing with more than one value of the angular MO-alue of the angu|ar momentum quantum numbeAs it
mentum: the 5-shell” potential!"*®The resulting ‘5-shell”  can, and has been, argued, in the weak-coupling limit one
model (DSM) captures, in an idealized way, the essentialcan approximate
feature leading to Cooper pairing with a finite value of the
angular r_‘n(_)mer_num, namely, being attractive at a well- V(k—k")=~K, (2l +1)p|(|2,|2/)’ )
defined, finite distanc¥. Thus we expect some of the novel
features that we shall describe, pertaining to the mechanisnwgherel is the value of ' for which the coupling constant on
by which the rotational symmetry is broken in the BCS limit the Fermi surface,

Il. 6-SHELL MODEL

V(k—k")= 2 K(|k[,[k'[)2I"+1)P.(k-k"), (1)
I'=0
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K=K,/ (ke Kg), () A
is largest. The approximate forif2) of the potentialV(k 7, N =
—k’) is, for >0, anisotropic, and it leads to pairing with > 0

finite angular momentum quantum numbésee Ref. 2 For { .
=0, it reduces to the BCS “contact potentidi leading to ¢

swave pairing. Although introduced in the context of a

weak-coupling theory, the contact potential has often been V(zo)
used to study the BCS to Bose crosscier’ Similarly,

Stintzing and Zwerger have considered a simplified potential FIG. 1. Thes-shell interaction potentialeft the two particles

of the form(2) with | = 2 to study the BCS to Bose crossover attract each other only when each c_>f them lay on a thin shell, of

for pairs withd, 2 Symmetr)}S (but in two dimensions and radlus_ro, centered on the other onﬁlgh_t: th(_e é-shell interaction

with the additional assumption of separability to make itpotentla! can be regarded as an approl)qmatlon to any central poten-
more tractable One of the key results of this later wdfk  tal that s attractive only near some distamge(see text

was that the critical temperature is given, in the BE limit, by
the same expression as in thevave casé??*

cussed in Refs. 3,10-12, and 14, for example. But note that
in the DSM the distance, at which the fermions attract each

2 2/3 other is a free parameter that can be varied continuously, and
kBTC~3.315—<— for s and dy2_y2 pairing. the noninteracting dispersion relation is that of free fermions
2m* | 2 with an effective massn* .
(4) The &-shell potential can also be considered an approxi-

; .mation to any central potential that is attractive only within a
Although ver ful, th \% roach is n ropri- ) . .
though very useful, the above approach is not approp gnge of distances centredrgt of width r <r, since Eq.

ate to study the question that we are interested in here, sin{ ) is equivalent to performing, in the general expression
it introduces a particular pairing symmetry at the level of the q P 9 9 P

interaction potential. In contrast, we want to find pairing with "

>0 as an emergent property of the many-body system. K,(|k|,|k’|)=(—1)'f draar2j([k[r)V(r)ji(k'[r),
Moreover, we would expect, on the basis of the above argu- 0

ments, to recover=0 pairing in the BE limit, in which the (6)
internal structures of the Cooper pairs are independent. Th
physics seems also to be absent from those studies, #4)Eq.
suggests that the critical temperature is degenerate dod
dy2_,2 superconductivity.

k?alid for any central potentialj;(x) denotes a spherical
Bessel functiofy the approximation

An alternative strategy is to do the calculations taking the f dr 4mr? ji(|k[o)V(n)j (K [r)
full r dependence 9¥(r) into account. A study of this type 0
was carried out by Andrenacet al.~ who took a Gaussian ~re 4mr2 i (KIroV(ro)ii([K|ro), @

form for V(r). This allowed them to investigate the proper-

ties of the crossover at finite densitiés contrast, as is well \which corresponds to taking the limit—0 while keeping
known, the procedure required to regulate the ultraviolet div/(r ) xr.=cons=—g (g thus has dimensions of energy
vergences associated with simplified potentials of the formx |ength). A particularly simple example of this is the square
(2) at all couplings is only valid in the dilute linft). They  \ell of Fig. 1.

also considered the highly idealized separable potential in- The two-body problem associated with theshell poten-
troduced in the seminal paper by Naze and Schmitt g is very well known(see Refs. 17 and 18, for examplin
Rink,” which has been employed in several otherparticular, it can bind a pair in free space with any value of
instance®* on account of its mathematical simplicitiput 1=0,1,2 ... . Tosimplify matters, we will assume that the
note that this is not, strictly speaking, a central poteptial attraction takes place between particles with opposite spins.
However, in either case there was no rotational symmetry-ina|ly, in k space thes-shell potential is given by/(k
breaking: even at high densities they only obtaisedave —K')=—g4mrisin(k—k'|ro)/|[k—K'|ro, from which it is
superconductivitythe discussion ofl,>_2 superconductiv-  gyident that it reduces to the contact potential in the limit

ity in Ref. 11 is based on a lattice moglel r . 2 _ .
. 0—0 (keepingg4mry equal to —Kg). Interestingly, the
On the other hand, a simple argumiéiitased on the BCS o-shell potential, for any finitey, does not display the ul-

‘gap equation" suggests t_ha1>0 Cooper pairing is assocj— traviolet divergences affecting the contact potential.
ated with central potential®/(r) that are nonmonotonic We will study the BCS to Bose crossover in this new
fgncnons ofr, with maximum attract!on hear some f|n|_te model using the standard functional-integral technique of
distancer ~ro>0. The o-shell potential was proposed in pots 25 2331, and 32. At zero temperature, it implies a
Ref. 19 as the simplest form &f(r) that has this feature:  yegeription of the system in the saddle-point approximation,
/ / which amounts to using the BCS ground stafas in Refs.
V([r=r"|)=—=gd(|r=r'|=ryp). 5

(Ir=r'D 9(|r=r'|=ro) © 7,8,10,11, and 14, for exampleThus our results for the
The resulting DSM can be regarded as the continuum analoground state will be approximate, but of variational signifi-
of the lattice model with nearest-neighbor attraction dis-cance. At the critical temperature, Gaussian fluctuations

214526-2



COOPER PAIRING WITH FINITE ANGULAR MOMENTUM.. .. PHYSICAL REVIEW B66, 214526 (2002

about the saddle point are taken into account as in Refs. 1
15,22, and 23as is well knowr' this is equivalent to the
random-phase-approximation-likgR PA-like) diagrammatic
technique introduced by Nozies and Schmitt-Rirtk(NSR)].
This approach is rather limited in that, in the strong-coupling
limit, it neglects interactions between the preformed pairs,
existing aboveT., and so it can only describe the effect of
fluctuations on the superconducting instability at low
densities®?” Nevertheless, as we shall see it is enough to
discuss the rotational symmetry breaking in the weak-
coupling limit, in which the fluctuations are negligible, as 0.0001
well as the mechanism by which the critical temperature be- 0 1 2 3 4 5
comes larger fos-wave pairs in the BE limitat strong cou- ke To

pling and low densitieg. The application of these standard FIG. 2. The strength of the attraction in the BCS limit for pair-

methods to the DSM s fairly Stralghtforward, SO we will ing with the first four even values of the angular momentum quan-
quote here only the key expressions; further details can bg, number] =0.2,4.6.

found in Ref. 33.
Our model has four parameters: the distang@t which ~ ey o~ = e
the attraction takes place, the coupling constatite density ~Whereek=k*—u, Ex=Vei+|A¢/* and
of fermionsn, and their massn*. In principle, the BCS ~ ~ D S PP A
ground state can be characterized by the dependence of the Mm,irm (K)=(4m) %1 ([K[) i1 ([K[) Y{in(K) Yyrme (K).
zero-temperature gap functiah and chemical potentigk 14 assess the relative stability of different solutions to the

on these four parameters. Likewise, the superconducting irEeIf—consistency problen{9), (10), corresponding to the
stability can be described by giving the critical values of the

temperatureT, and chemical potentiajs, in terms of same values of andn, one has to compare the correspond-

ro.9,n,m*. However, the DSM has the remarkable propertymgl ground-state energies:

that the four energied\,, u, kgT., ©e, rescaled by the 4% ~ X2 3
“localization energy”e,=%2/2m*r3 (which we will denote a:f _mz( 1_f_k) _ | |,m~| ~259n2. 1
Ag, w, T¢, me, wherek=r k), are functions of only two 67 Bx/ fm 127zg 4
parameters: the “dimensionless coupling constarg”

=(eolo) 1Xg and the number of fermions in a sphere of

J1 (kgry)

0.001

Evidently Eq.(9) is an infinite system of nonlinear inte-
gral equations with, presumably, an infinite number of non-

H A= 3
radiusro: n=(4m/3)rgXxn. trivial solutions and there is no systematic way of finding all
of them. Nevertheless, a certain subset, selected by the re-
lll. GROUND STATE quirement that all but a few of th&, ,, be equal to zero, can
The kernelk,,(|k|,|k’|) in Eq. (1) is given by be explored systematically. Since the effective coupling con-

stant in the weak-coupling limit, Eq3), is (for evenl)
Ki(Ik], [k D =—g4mr§(—=D'ji([klro)ii([k'[re). (8

Thus, although evidently thé-shell potential is central and 5

therefore not separable in the sense of the NSR potential, it is clear that for small, and within the range of densities
can be written as a sum of separable terms, each one corrr which kerp<5, we can restrict our attention to the first
sponding to a different value &f Accordingly the gap func- two values ofl =0,2 (see Fig. 2 These are the two-body

tion Zi;, at the saddle point, has the following form: states with the lowest energyexisting at g=2,10,

respectively’'8, and therefore this simplification is also
~ - - . A valid for our purposes in the BE limit. Moreover, for sim-
AEEEO m:z—l Ay mii([KIro) Yi m(k). plicity we will considerd-wave states with a particular sym-

metry, choosingd,2_,2 which has been extensively studied

In terms of the amplituded, ,, the usual “gap” and “den-  in other model$19-12141%n account of its relevance to cu-

sity” equations, for a homogeneous, stationary, nonpolarizedrate superconductivi’ .

state with singlet pairingZ, =0 for oddl), read For_ our two trial grqund states the gap function has the

’ following form, respectively:

Ki=—g4mrj ji(Kero)?, (12)

~ d*k A1 (K) | ~ -
- ’ . Agk)=A4o([k]) Yoo, 13
Aim = |f 2n°  2& ]A| mo (9 (K)=Asjo([k[) Yoo (13
- - o~ - 1 ~ ~
o~ ~ _
- f d k(l-f), w0 Roo o 0=Ba, oK) S 1Y2dk) + Yo ()
67\ Eg (14)
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Note that this is a more complicatéddependence than that This is the usual weak-coupling conditfocharacterizing the

of gap functions arising from interactions of the for(®),
which depend only on the angle In particular, the gap
function can change sign &sincreases in theadial direc-
tion of increasingk|, not just as the angl is varied: see
Fig. 3. The oscillatory behavior as a function |&f can be

BCS limit, and consequently the numerical results display
the usual generalized BCS I&WA ;< exp{1/NK,} (dezfyz

«exp1/NK,}) whereN is the free-fermion density of states,
per spin, per unit volume. To illustrate this by an example,

Fig. 4 showsEdXLy2 vs g for constanh=7.5. In this regime,

regarded as a direct consequence of the singling out of fhe nonmonotonic dependence of the effective weak-

particular distance by the attractive interacti®). More
generally, we expect these oscillations, of frequencir g,
to be a generic feature of interactions that are attractive pr
dominantly at some finite distancg.

Substitution of Eq. (13) [Eg. (14)] into the self-
consistency problent9), (10) yields a much simpler prob-

lem, which can be solved numerically for every valuegof

andn.

For low values ofg, we find thatu>A (7‘>dez_y2)'

coupling constant, on the rescaled Fermi vectdr,
[given in Eq.(12); see also Fig. RPleads to the similarly

Sonmonotonic dependence At and Aq, ,onn=(4/9m)
X (ker )2 shown in Fig. 5°° ’

On the other hand, for large values @fwe obtainu<
—Ag (< _dez,yz)’ which is the opposite strong-coupling

condition, corresponding to the BE linfitThus asg is in-
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FIG. 4. Evolution of the amplitude of the gap function for the
d,2_y2 trial ground state, as a function gf for fixed n=7.5.

proximately independent @f, and equal tar (= the Fermi
energys-=7%2k2/2m* divided bye,), to having the behav-
ior

(19

whereE'b is the binding energy of the two-body bound state
with angular momentum quantum numbber0,2 (given ana-
lytically in Refs. 17 and 18, for exampledivided by .
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FIG. 6. Evolution of the chemical potential for thigz_ trial
ground state, as a function gf for fixedn=7.5.

extent of the “crossover region” between the BCS and BE
limits. These charts are very similar to the ones presented in
Ref. 11 fors-wave pairing via the NSR and Gaussian poten-
tials, suggesting that the density-driven crossover behavior
described in that reference is generic to continuum models.
The main difference that we observe fhe_,2-wave pairing

is the enlarged BCS region at low densities, due to the higher
value of the coupling constant required for a two-body bound
state. Interestingly, in contrast to this the charts $oand
dy2_y2-wave pairing seem to become quantitatively identical

asg is increased. The oscillations of the boundary between

This evolution of the chemical potential is represented inthe BCS and crossover regions at high densities are directly

Fig. 6, for thed,2_2 trial ground statéthe positive offset of

w abovez}/2 that can be seen in the graph becomes very

small, compared te}/2, only at larger values af than those
shown; additionally, it tends to zero as-0).

As is well knowr(*® the qualitative change of the ground
state from BCS-like to BE-like behavior occurs when the

chemical potential goes below the bottom of the band, i.e.

n=0. Figure 7 shows two superimposed “charts” of the
crossover, for the andd,2_,2 ground states, obtained using

this condition. The charts include also two additional bound-

aries for each trial ground state, corresponding o

=AS,ZdX2_y2 and ZL=—ZS,—ZdX2_y2, which indicate the

T 1 KS_

A<:1Xz_yz T

15 20

FIG. 5. Evolution of the amplitude of the gap function for the
andd,2_,2 trial ground states with increasing valueraf for fixed
g=2.

related to the nonmonotonic density dependence shown in
Fig. 5.

gEvidently, Fig. 5 suggests that at intermediate densities, at
which dez,szy the energy of the trial ground state with
=2 is lower than fol =0. The precise value of the density
at which this breaking of the rotational symmetry takes place
and the higher value at which the symmetry is restored are
given, in the limit of smalig, by the first two positive solu-
tions of the following equation:

jo(ke)?=]2(ke)?, (16)

0.001

0.0001

le-05

1e-06 b

FIG. 7. “Chart” of the BCS to Bose crossover for the trial
ground state withs pairing (solid lineg and the one withd,>_2
pairing (dashed lings The thicker lines are where the chemical
potential goes below the bottom of the band, while the thinner lines
give an indication of the extent of the crossover regisee texk
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22 T T T T T T IV. CRITICAL TEMPERATURE
fZ B s 4 Unlike the theory of the ground state that of the equilib-
16 F 4 rium phase at finite temperatures does not follow from the
14 | g usual BCS theory when the superconducting instability cor-
o 12T . responds to the BE condensation of “preformed pairs”
10 . (PP’9. To describe such a situation one must go beyond the
8 [ 1 mean-field theory and include fluctuations. This is most
6 d,2_,? 1 readily done within the framework of a path integral repre-
ar 7 sentation of the partition functiod.>®3° We shall now pro-
z Cl o ceed following this approach and keeping only the lowest
0 2 4 6

significant corrections to the mean-field theory. Namely, we
start with a Grassman path-integral representatio@ édr
the electrons, implement the usual Hubbard-Stratonovich
FIG. 8. Phase diagram of the relative stability of trial ground transformatio®~*°to a functional integral over a complex
state withs andd,2_,2 pairing symmetry. The dashed lines indicate pairing field A, and, finally, expand the effective action for
the position of the phase boundary in fe-0 limit, given by Eq.  the fluctuations,S;[A*,A], about the saddle point of the
(16). functional integral aboveT. to quadratic (Gaussiah
order'?1%22.2332Thjs is a well-tied approximation for the
~ ) ) problem at hantt and therefore suitable for studying the
wherekg=kero. These can be determined from Fig. 2. Ongffects of pairing fluctuations ofi; in our particular model.
the other hand, for largg the system is always in the BE In short, using Eqs(1) and(8) to write the Hamiltonian as
regime, in which the energfll) takes the form

10 12 14 16

[oXI- -

. . Vi, .
H_MN:; Skcl,ock,o+|%:q FblT,m,qbl,m,q (18)

- 1., 3. ’ N

UZEHSL—Zgnz- (17 [where L® is the sample volume andV,=

(—1)'"1g(4mry)?] suggests that we introduce bosonic
fields Ay o(w,) conjugate to the operators

Since the Hartree term 3/4gn? is independent of, at first

sight this equation suggests that fhe0 trial ground state, Bl mq=2 1(KIr) Y m(K)Chos i Cho (19
for which E'b is lower? must have lower energy; however, X
note that in general Iini(s—ljldxzfyz);ﬁlim ﬂs—limZ{dXLy2 b =S (lklro Y (R)E ) 20
[wherel/, andadXLy2 are the energies of the two trial ground Lma~= < JI(KIro) Y7 m(K)Cqo—k | Carzekr»  (20)
states and the limit refers to taking<—As,~Aq, . IN  which evidently create and annihilate, respectively, a pair
Eg. (1D)]. In fact there is an additional positive contribution with total momentumg and angular momentum quantum
to the energy, similar to the positive offset of the chemicalnumbersl,m. As usual, the momentum and frequency de-
potential, with respect te'b/2, seen in Fig. 6, which does not pendence of the fields captures the dynamics of the bosonic
appear in Eq(17) because it varies slowly witg and there- ~ degrees of freedom. The additioiain dependence reflects
fore becomes negligible for sufficiently large(just like the the fact that our explicit interaction potential can bind pairs

~ . Lo . - with different internal structures. Obviously thg , of the
offset of u). This repulsion is different for pairs with differ- previous section correspond to a homogeneous, stationary

ent internal structures, and so it is only in the-0 limit configuration of the fieldsA| m o(®,)= g oA| m-
which Eq.(17) allows us to conclude that tHe=0 state is Proceeding in the usual Wld?yls,zz,zs,s we obtain
preferred at highy. At finite densities, the energies have to
be evaluated numerically. Nevertheless, the result, shown in S,[A* A]—,BE S S A (o)

’ - I,m,q v

Fig. 8, confirms our expectations: between the two densities @
given by Eq.(16) thed,2_ 2 trial ground state is more stable, . .
thus breaking the rotational symmetry of the system, but XTI o m (@i @) A o g(w,), (2D

only for relatively small values of the coupling constant. As
y y piing where the sum oh,|’ extends only over values of the angu-

g is made larger, the range of densities in which this sym1o. o omentum quantum number with the same paliiyth
metry is broken becgmes progressively smaller until, abov<=even or both odg B=1/kgT is the inverse temperature, and
some critical value ofj~ 14, the system prefers tisstate at  the w,=2v#/8 are bosonic Matsubara frequencies. To fur-
all densities. Thus the region in parameter space in which thgher simplify the problem and facilitate the discussion of the
rotational symmetry is broken is relatively small. In particu- BE |imit, we follow the procedure employed by Zwerger and
lar, it is confined to the BCS side of the crossover diagrameo-workers®??to write a low-frequency, low-momentum ex-

i.e., »>0 everywhere inside theyo 2 region®’ pansion of the inverse propagator for the preformed pairs:
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. . . . - .
Ut (Qie)/[d(B,m)d i (8,m)]H2 interpolation between the two limits, but one must bear in
B mind that the description of the intermediate, crossover re-

ﬁZqi2 gime is only schematic.
=| —iw,+ M——,uf’(ﬁ,,u) Under the above assumptions th&. " and “density”
i=xy.z 2min g m(B. ) equations take the form
ﬁzClqu' ~~
X5|’|/5m’m/+ N PPN E: B szw ~T2: T 21_21:(,38]2)
1L,]=XY,Z Zmlvrlrj]Jr’mr(,BaM) 5 ( 1) 7)o d|k||k| JI(|k|) —;;E ) (23)
X (1= 61 6mm)- (22
_ _ _ N=Ng+ >, 8N m, (24)
This expansion takes into account the two-body bound states m

leading to the formation of PP’s, and so it can be used to ~ o I 20 5 ) )
interpolate between the BCS limit, where fluctuations can béVhereno:(4/3”)fpd|k||k| f(Bex) is the density of fermi-
neglected, and the Bose limit, where such states dominat@ns that are unpaired aboile and the additional contribu-
Thus after appropriate rescaling of the bosonic fields thdion coming from Gaussian fluctuations is made up of terms

known functionsmyy, . (8,4) andup(B, ) play the role  ©f the form

of effective boson masses and chemical potentials, as in . ~5

Refs. 8,15,22, and 23, for example. These two functions and s, :ij d|a||a|29(f3ﬁ> Vv(|a|) (25)
the rescaling factod,(3,u) are given in the Appendix. On M 3w 2 '

the other hand, in the crossover regime, E22) does not ) . ) o
adequately describe a potentially important contributionVhich correspond to fermions bound in PP’s with angular

from scattering statésand thus our results in that region of Momentum given by, m. The notationd (x) andg(x) have
parameter space must be regarded simply as a convenigdigen used for the Fermi and Bose distributions functions,

interpolation scheme. respectively. The “weight'w(|q|) is given by

Note the different chemical potentials for bosons with dif- 3 "
ferent values of the angular momentum. Moreover, the an- ~ ~pi
isotropic dispersion relation given hy\b‘” (B w(|q|)=(H M, )

I,m,1”,m’ 'IU’) can i=1

describe not only the “rigid” propagation of a boson without _
changing its internal state, but also changes in its internal 1(di~ -,
angular momentum through the off-diagonal terms, with X 1+ﬁa_ a_)\l_)\l)
I,m#1",m’". However, in the BE limit, which as usual cor- P
responds touB— —x, we haVemIb]’rH]I,‘m,(ﬂ,/.L)HOO for 1 G |q/2
I,m#1",m’, and therefore in what follows we shall ignore Xg(Z K:,mmu’r'n)T (26)

these off-diagonal termgor I,m=1",m’, on the other hand,

16 22,23 b,i ~ o~ o~
we recover the expected behaioh**** mpy(5,u) where the dimensionless function(3,u) and the factor

— b
=P m(B,p) —2m*]. _ K| are defined in the Appendix and each “primed” repre-
As usual, T is determined by the BE condensation con-_ ' . i : ~ . .
diti b —0. This ai diff t critical t sents differentiation with respect 0. This weight becomes
ition uy'(8,4)=0. This gives a differen criical tempera- unity in the BE limit u8— — o, corresponding to bosons of
ture for each value df. On the other handl . is degenerate mass n* each

in m=—1,...|, as n BCS .theorlﬁ._ Since the present Numerical solution of the self-consistency equati¢2d)
method can only describe an instability of the normal state,

our philosophy will be to compute tHe=0 andl =2 critical and (2‘!), for 5 and 4, at the relatively low value of the
temperatures and then take the highest of the two as tHéensityn=0.5, shows the expectétP****smooth evolution
critical temperature of the system. Moreover, we will assumd€tween the BCS and BE limits, analogous to the one seen in
that, near the critical temperature, only fluctuations with thethe ground state: see Fig. 9. In particular, we find that the
appropriate value df have to be taken into account. In gen- Crltlcal temperature for angular momentum quantum number
eral, pairs with the other value of the angular momentund 1S

guantum numbet’ will also be present af., but in a _

smaller number due to the lower value of their effective T exp{1UNK} (27

chemical potential,ulb,(ﬂ,,u)<0. Our approximation thus ; I3 but saturates t tant val ) b
amounts to assuming that the bosonic chemical potential fop’ Smallg but saturales o a constant value given by
these additional PP’s is indeed well below zero at the super-

S . L i %2 213
cgnduc_tl_ng instability. This is only adequate if thre_O and keT.~3.315 (28)
|=2 critical temperatures differ considerably, which as we 2m* [2(21+1)

shall see is the case in the BE limit. Of course in the oppo- _
site, BCS limit the fluctuations can be neglected completelyin the largeg limit. This asymptotic behavior follows quite
Thus again this simplified scheme should serve well as agenerally from the self-consistency equati@g@8) and (24).
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T T 7T T 1

1.4 E
1.2 . 0.8 T
1F B 0.6 .
00.8 F - =
Qe ?E 0.4 4
0.6 . «

FIG. 9. The critical temperature for an instability to a supercon-  F|G. 11. The fraction of fermions that are bound into PP’s just
ducting state withl =0 (solid line) and =2 (dashed ling as a  apove T, for an instability to a superconducting state witk 0

function ofa, for fixed n=0.5. The increasing dotted lines are (solid line) andl =2 (dashed ling as a function oﬁ, at the density
obtained by neglecting the contribution of Gaussian fluctuations tey Fig. 9.

the total density, i.e., the second term on the right-hand side of Eq.

(24), while the constant dotted lines are the BE condensation tem- 1522 ]
perature given in Eq28). As expected;>#the evolution from the BCS to the Bose

limits is also evidenced in the fraction of fermions that are

Notably, Eq.(28) differs from the standard result) in bound in PP’s just abové; én/n (with ﬁﬁzzmﬁﬁ,ym), and
the presence of the degeneracy factor l4(2) multiplying  in the effective mass of such PPI‘ER}'n (see Figs. 11 and 12,
the density 01_‘ bosona/2._ For an instability to ars-wave respectively: both are negligible for smalfj, while in the
superconducting state, with=0, Eq.(28) reduces to Eq4) ~ _ bi ok
and thus our result for the DSM coincides with those Ob_larg_eg limit we havedn~n and m,‘m~2m.. .
tained earlier for models featuring the NSRef. 8 and Like any theory based on a G.au55|an.expan5|on,. .the
contact?2328 potentials. On the other hand, the degenerac;Present one displays a nonnlonotonlc behavior of the critical
of the =2 bound state means that, Bt, five Bose gases temperature as a function of in the intermediate regime
condense simultaneously, but independently, leading to &€e Fig. 9 Such an enhancemé&rt**is not preserit in
much lower critical temperature. This is in contrast with thethe self-consistent thedfy due to Haussmann, suggesting
result for the anisotropic potential of Ref. 15. On the basis ofhat it is an artifact. It can be understood in terms of &3)
this we conclude that the=0 state always has higher critical and Fig. 12 as a result of the PP’s getting lightens

temperature in the BE limit. <2m*) as the value ofj is reduced. In the self-consistent
On the other hand, for small values@f{ ~3.5) we find a  theory, at least for a model based on the contact potential,
nonmonotonic density dependence of handd-wave criti- ~ repulsive interactions between the PP’s overcompensate for

cal temperatures similar to the one that we described for th#his, leading to a monotonic dependenceTgfon the cou-
amplitude of the gap function in the respective trial groundpling constartt’ (for a more advanced treatment of these re-
states: see Fig. 10. In particular, note that there is an inter-

mediate range of densities for which ttevave critical tem- 1

T
perature is the highest.
0.8 | -
L] T 7 L] T T T T
1.4 | / 1=0 .
1=2 - * L -
1.2 | i g 0.6
T/ 1 ot 7
v0.8 \ -
e JRE——
o.6e H /7 \  _. ”,_,--" . 0.2 F E
/’f
0.4 H/ ) // N 0 )
0.2 e - 0 12
O 1 L 1 L L L é’

FIG. 12. The effective mass of the PP’s existing just abdye
for an instability to a superconducting state with0 (solid line)

FIG. 10. The critical temperature for an instability to a super-andl=2 (dashed ling as a function oﬁ, for the density of Fig. 9.
conducting state with=0 (solid line) andl =2 (dashed ling as a  For the case of an instability to a superconducting state With
function ofn, for fixed g=3.5. The dotted lines represent the BE =2, only the heaviest and lightest of the masm;ﬁ;#1 (correspond-
condensation temperatures given by E28). ing toi=z and|m|=2 and 0, respectivejyhave been plotted.
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So it can be extrapolated to any central interaction potential.
More generally, for other modelsuch as those in which the
single-particle dispersion relation and the interaction poten-
tial are anisotropig our analysis suggests that a two-body
ground state withd,2 > symmetry is required in order for

i pairing to take that form in the BE regime. Such scenario is
-6 | realized, for example, in a lattice model with nearest-
s F neighbor (NN) attraction and large next-nearest-neighbor
ok - (NNN) hopping™
i 1= Similarly, the critical temperature for superconductivity

with angular momentum quantum numbef O is found to
- be higher than fot=2 in the BE limit (of strong coupling
andlow densitie$. However, interestingly, this is due not to
FIG. 13. The critical value of the chemical potential for an in- the higher energy, but to the related higdegeneracyf the
stability to a superconducting state with-0 (s-wave, solid ling two-body bound state with=2. Thus together these two
and|=2 (d-wave, dashed ling as a function ofg, for fixed " observations place severe constraints on any interaction po-
=0.5. The dotted lines indicate the Fermi energyand the two-  tential V(r) leading to pairing with >0 in the BE limit.
body binding energies per partici/2. In our model, the rotational symmetry breaking is a direct
consequence of a nonmonotonic dependence of the super-
pulsive forces see Ref. 41; alternative methods to describeonducting properties on the fermion density which is
phase fluctuations and strong pairing correlations in supefpresent only in the BCS regime. Such rise and falls can be
conductors are described in Refs. 42 angl Bich interac-  understood in terms of the oscillatory form of the “gap func-
tions are completely neglected in the present treatment as {n” in k space, whose frequencysr, X, and presumably
evidenced, for example, in Fig. 13 which shows the evoluyhey are generic to interaction potentials that are attractive
tion of the chemical potential, lacking a positive offset like predominantly at a finite distance. In Refs. 19 and 44 the

the one we found n the ground sta([eompar_e _thel =2 possible implications of our model to cuprate superconduct-
cGUNe 9f F'f? 13 to Fig. )?fMgr((ajo\éer, th; description of;he ors, on the basis of the similar behavior observed in the
ayssmn uctuatl_o_ns aftorde y EG2) tgrns out to be doping dependence of the superconducting gap and the criti-
valid only for densities below the first maximum®f, asa 5| temperature, were discussed. A similar rise and fall has
function ofn. At the maximum, the mass of the PRgiven  poon known for some time in nuclésee Ref. 45, for ex-
in Eq. (A9), below] becomes negative, thus makig@ di- ample. Of particular interest, in connection with recent the-
verge. The present treatment is therefore only valid at smaletical speculations on superfluidity in magnetically trapped
values of the coupling constant, for which the quctua’uons(‘:](.jlSes of fermionic atorf&“° (for an informal review and
can be neglecteths in Fig. 10: the only part of the plot that f,rther references see Ref.)50s the possibility that the
shows a significant contribution from fluctuations is at de”'present mechanism would lead to exotic pairing for suffi-
sities well below the first maximum of.) or at low densi-  ciently high densities in these systems. Interestingly, because
ties, which are below the first maximum for all sizable valuesthe change frons- to d-wave pairing is a quantum phase
of g (as in Fig. 9. transition, it can take place at arbitrarily low temperatures.
On the other hand, the density would have to be raised until
V. CONCLUSIONS rs~To (where, in order tq achievg a phenomenological de-
scription of the interatomic potentialy may be taken to be
We have studied exotic pairing in the context of a simpleroughly the size of a diatomic molecile
model featuring fermions in a continuum with an explicit, In relation to possible future work, we end by noting that
nonretarded, central interaction potenti&(r): the 5-shell  we have described the ground state of the DSM in terms of a
model. Its novel feature is that the interaction is attractivehomogeneous saddle point, and we have only taken into ac-
only at some finite distancg,. Because of this, it provides, count pairing fluctuations around that saddle point. In prin-
to our knowledge, the first explicit example of BCS pairing ciple, by performing a more general Hubbard-Stratonovich
with angular momentum quantum numbberO via a spheri-  transformation, including additional fields associated with
cally symmetric (centra) attraction. By using a standard the density(not just the pairing amplitudeone could study
functional integral approach, we have studied this breakinghe effect of density fluctuations as well as the possibility of
of the rotational symmetry in relation to the BCS to Bosephase separation through a first-order gas-liquid phase tran-
crossover. sition: physically, one expects that the attraction dinéte
By considering two trial ground states, wistandd,2_,2  distance could favor, in addition to the pairing with-0
symmetries, we have found thiée ground state with broken which we have considered here, the formation of clusters of
rotational symmetry is separated from the BE regime by amore than two particlegas in lattice models with nearest-
quantum phase transitiorin which the symmetry of the su- neighbor attractiot and unlike those with on-site
perconducting order parameter is increased. This is due tattractiorf; for a discussion of the similar phenomenon of
the higherenergyof two-body bound states with>0, and  “quartetting” see Ref. 52; see also footnote 19 of Ref).41
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Evidently, this would be very interesting in the light of recent
discussions of inhomogeneity in cuprate superconductors.
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APPENDIX: EXPANSION OF THE INVERSE BOSONIC
PROPAGATOR

The inverse bosonic propagator in Eg1l) is given by

3
F[nlmrlm,(q,iwv): E&|‘|r5m’m;

1

3 2 g i e (K)

g+k,lwn>G0(g—

X Gy k,iw,,—ia)n),

(A1)

where Go(k,iwp)=(iw,—&¢) "t (With e,=ge) is the
free-fermion Green'’s function and the,=(2n+ 1)/ 8 are

fermionic Matsubara frequencies. The derivation, starting

from Eq. (18), is entirely analogous to that of the similar
expression in Ref. 22, for example. In Ref. 23, the full fre-
quency dependence bf 1(q,iw,) was taken into account to
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A

a

Y

A
N

e

FIG. 14. The contours used to perform the summation over the
fermionic Matsubara frequencies, in Eq. (Al).

T (@i @) ~a mir o (B.) =10 s (B ) 0,

2
+

Lj=xy.z 2m* C::Jm’lr'm'(’B'M)qiqi

(A3)

by simply differentiating with respect tq andw.>* We find
that the coefficients, , |, v andd, |, v are diagonal in
I,m and degenerate in m amim (B )

=a(B, 1) 61,11 Smm and dimirm (B )

=di(8,1) 8 1 Smm: - The dimensionless functiors (3, )

=roeol 3ai(B,p) and d\(B.m)=roel *di(B,n) are
given by

obtain the critical temperature of a model featuring the con-

tact potential. The procedure that we follow H&r& yields

the same results in the BCS and BE limits and a much sim-

pler numerical problem in the crossover regifménere any
theory based on a Gaussian expansion must be regarded
an interpolation scheme anywayirst we analytically con-

tinue the second Green’s function on the right-hand side of
Eqg. (A1) with respect to the bosonic Matsubara frequency,

Go(a2—k,iw,—iw,)—Go(g/2—k,w—iw,), and then we
perform the summation over. Using the contoulC in Fig.
14 (which we deform intoC,; andC,) we obtain

3

L o
: E5|,|'5m,m'_; i A e (K)

Fl_’myl”m’(qiw) =

1-f(Begp+k) —F(Blega—k—W])
Eq2+k T Eq-k— W '

X

(A2)

It is now easy to write a low-frequency, low-momentum ex-
pansion of the form

s~ 1 2 o, 1= 2(BeR)
e e R LB e
(A4)
~ A
(3=~ 1'= | "dRIKZR)?
aS o~ Y
x{l_zi(fskuﬁf (fg")}, (A5)
dey o

where we have used the notatibh(x)=df(x)/dx and the

dimensionless inverse temperatureAs=s,8. The coeffi-
cient ing? has the form

- 1
C::'mJ,Ym,(B,,u): §d|(ﬂ,ﬂ)5|,|/5m,m'5i,j

+K::L1,|r,mr7\|,|'(ﬁyﬂ), (AB)

where k') 1, =[5 1yd2K Y (K)KiK; Y e (K), which can
be evaluated easily by writing it in terms of the Gaunt coef-
ficients of relativistic quantum mechani¢see Ref. 55, for
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example; note in particular thaﬂ m..m=0 foralli#j) and, wW(Bw)=—2(B. A (B, (A8)
finally, X1 (B, 1) =T 0go\1 /(B ) is given by
. 2Ki’j X ’ -t

N —f dlk|[k|? ~bij ~ Lt ,me ML

11 B | || | ml,m,|’,m'(ﬁ'lu')_ 5I’I’5m’m/+—(ala|,)l/2
2 ” (A9)

f"(Beq)
XJi([KDjir( |k|)|k|2T- (A7)

The | ds of EqsA4), (A5) d(A7) h where we have introduced the definitions
e integrands of EqsiA4), , an ave N0 ~b% ~y__.—1 b -
poles on the domain of integration, and therefore ar '(’B’i}“) 18°b Hi(B.) and Myt (B )
straightforward to evaluate numerically. From comparison of = (2M") "My i) 1 m(B.1) and we have omitted the depen-
Eq. (A3) to Eq.(22) it is evident that the masses and chemi-dence of some of the functions defined above,am for

cal potentials of the PP’s are given by brevity.
*Electronic address: quintanilla@if.sc.usp.br; 22\M. Drechsler and W. Zwerger, Ann. Phy8/\einheim) 1, 15
URL: http://www.if.sc.usp.br- quintanilla (1992.

13. Bardeen, L. Cooper, and J. Schrieffer, Phys. R®8 1175 “°C.S. de Melo, M. Randeria, and J. Engelbrecht, Phys. Rev. Lett.

(1957. 71, 3202(1993.
24 ;

2R. Balian, inThe Many-Body Problemedited by E. Caianiello * J- Engelbrecht, M. Randeria, and C.S. de Melo, Phys. Ré&b,B

(Academic, New York, 1964 \ol. 2. 15 153(1997.

3R. Micnas, J. Ranninger, and S. Robaskiewicz, Rev. Mod. Phys N(Ilggaar'm F. Pistolesi, and G. Strinati, Eur. Phys. J.18151

\ 62, 113(1990. 26R. Haussmann, Z. Phys. B: Condens. Ma#i&r291 (1993.
L. Landau and E. LifshitzQuantum Mechanics, non-Relativistic 27R. Haussmann, Phys. Rev.4, 12 975(1994.

. Theory(Addison-Wesley, Reading, MA, 1958 28E. Babev and H. Kleinert, Phys. Rev.5®, 12 083(1999.
D. Eagles, Phys. Red86 456 (1969. 29F pistolesi and G. Strinati, Phys. Rev.4B, 6356(1994.
®p. Pincus, P. Chaikin, and I.C.F. Coll, Solid State Commii#).  30f pistolesi and G. Strinati, Phys. Rev.5B, 15 168(1996).
1265(1973. 31M. Randeria, irBose-Einstein Condensatioedited by A. Griffin,
’A. Leggett, inModern Trends in the Theory of Condensed Matter D, Snorke, and S. StringafCambridge University Press, Cam-
edited by A. Pekelski and J. Przystay&pringer-Verlag, Berlin, bridge, England, 1995
1980. 32/, Alexandrov and S. Rubin, Phys. Rev.45, 5141(1993.
8P, Nozires and S. Schmitt-Rink, J. Low Temp. Phys9, 195  33J. Quintanilla, Ph.D. thesis, University of Bristol, 2001.
(1985. 34J.F. Annett, N. Goldenfeld, and A. Leggett,fysical Properties
°J.R. Engelbrecht, A. Nazarenko, and M. Randeria, Phys. Rev. B of High-Temperature Superconductoedited by D. Ginsberg
57, 13 406(1998. (World Scientific, Singapore, 1996Vol. V.

108 C. den Hertog, Phys. Rev. &, 559 (1999. 35p, Anderson and W. Brinkman, ifihe Helium Liquids: Proceed-
YN. Andrenacci, A. Perali, P. Pieri, and G. Strinati, Phys. Rev. B ings of the 15th Scottish Universities Summer School in Physics,
60, 12 410(1999. 1974 edited by J. Armitage and |. Farquhgkcademic Press,

123 p. Wallington and J.F. Annett, Phys. Rev6B 1433(2000. New York, 1975 [reprinted in P.W. AndersorBasic Notions of

13Q. Chen, I. Kosztin, and K. Levin, Phys. Rev. Le85, 2801 Condensed Matter PhysidBenjamin/Cummings, New York,
(2000. 1984].

14M.B. Soares, F. Kokubun, J.J. Ragiiez-Ninez, and O. Rendy %Note the similarity of this behavior to that of some lattice models
Phys. Rev. B65, 174506(2002. (cf., for example, the dependence of the critical temperature on

155, stintzing and W. Zwerger, Phys. Rev.5B, 9004(1997). band filling shown in Fig. 18 of Ref.)3

For fermions in a continuum with a repulsive interactig(r), 37Note that the fact that the phase transition at these quantum criti-
the Kohn-Luttinger mechanisfW. Kohn and J.M. Luttinger, cal points is of first order is due to our choice of trial ground
Phys. Rev. Lettl5, 524 (1969] can lead to pairing with high states, Eqs(13) and (14). Had we allowed for mixing of the
angular momenturpA.V. Chubukov and M.Yu. Kagan, J. Phys.: andd,2_,2 order parameters, we would presumably have found

Condens. Mattefl, 3135(1989]. But note that in this case the two second-ordefinstead of one first-ordgphase transitions, in
BE limit can never be realized, since obviously there is no two-  analogy with the similar results in Ref. 12. Clearly, such more

body bound state. elaborate variational calculation would be a necessary first step
7K. Gottfried, Quantum MechanicéBenjamin, New York, 1965 for an analysis of the critical behavior at these points.

Vol. 1. %N. NagaosaQuantum Field Theory in Condensed Matter Physics
8D, Villarroel, Eur. Phys. J. BL9, 85 (1998. (Springer-Verlag, Berlin, 1999
193, Quintanilla and B. Gyorffy, Physica B34-288 421 (2000). 39J. Negele and H. OrlandQuantum Many-Particle Systems
20E. Babev and H. Kleinert, Phys. Lett. 838 311(1998. (Addison-Wesley, Reading, MA, 1988
21\, Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. RedB327  “°J. Hubbard, Phys. Rev. Le8, 77 (1959.

(1990. 4P Pieri and G. Strinati, Phys. Rev.@, 15 370(2000.

214526-11



QUINTANILLA, GYO RFFY, ANNETT, AND WALLINGTON

42B. Gyorffy, J. Staunton, and G. Stocks, Phys. Rew® 5190
(1991).

43M. Bak and R. Micnas, in Proceedings of the European Confer-
ence Physics of Magnetism 99, Poznaf99[Acta Phys. Pol. A
97 (2000)].

443, Quintanilla and B. Gyorffy, J. Phys.: Condens. Mattér6591
(2002.

4SE. Garrido, P. Sarriguren, E.M. de Guerra, U. Lombardo, P.
Schuck, and H.J. Schulze, Phys. Rev6& 037304(2001).

46G. Bruun, Y. Castin, R. Dum, and K. Burnett, Eur. Phys. J7,D
433(1999.

4’R. Combescot, Europhys. Lefi5, 150 (2007).

48M. Holland, S.J.J.M.F. Kokkelmans, M.L. Chiofalo, and R.
Walser, Phys. Rev. Let87, 120406(2001.

4%y, Ohashi and A. Griffin, Phys. Rev. Le®9, 130402(2002.

50p. Jin, Phys. WorldL5, 27 (2002.

51H. Lin and J. Hirsch, Phys. Rev. 83, 8155(1986.

52G. Ripke, A. Schnell, P. Schuck, and P. Nazs, Phys. Rev. Lett.
80, 3177(1998.

533, Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, and E. Dagotto,

PHYSICAL REVIEW B 66, 214526 (2002

Phys. Rev. Lett87, 277202(200J).

54Note that Eq(A2) does not coincide with the similar expression

in Ref. 23, obtained by analytical continuation of the inverse
bosonic propagatorFfri', m,(q,iwv)—d“fnl”, m(0L,W). Apart
from the model-specifid féatures, which are our main concern
here, it differs also in the presence of the continuous variable
in the argument of one of the Fermi distribution functions. At the
bosonic Matsubara frequenciesv=iw,, we can write
f(Blego-k—iw,])=f(Beqr-) and therefore both expressions
are identical when the full frequency dependence of
F[nlml,vm,(q,iwv) is taken into account. However, the expression
in Ref. 23 does not admit a small-frequency expansion of the
form (A3) because as is well knowtRefs. 8 and 3)Lit has a
branch cut along the real axis that crosses the imaginary axis
wheneveru>0. (On the other hand, such an expression is the
correct starting point for the derivation of a time-dependent
Ginzburg-Landau theor§Ref. 23, which obviously involves an
expansion along theeal axis)

55p. strangeRelativistic Quantum Mechani¢€ambridge Univer-

sity Press, Cambridge, England, 1998

214526-12



