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Cooper pairing with finite angular momentum via a central attraction:
From the BCS to the Bose limits
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In the context of a simple model featuring an explicit,central interaction potential, and using a standard
functional-integral technique, we study superconductivity with angular momentum quantum numberl 52 as an
emergent property of the many-body system. Our interaction potential is attractive at a finite distancer 0, and
the breaking of the rotational symmetry is the result of an interplay betweenr 0 and the interparticle distance
r s . This interplay is generic to interactions of this type and is responsible for the existence ofd-wave pairing
for a range of densities. However, we find thatl 52 pairing takes place only in the BCS limit. In contrast, as
the Bose-Einstein~BE! limit is approached the internal energy of the ‘‘preformed pairs’’ becomes the dominant
contribution and there is a quantum phase transition in which thes-wave symmetry is restored. We also find
that the limiting value of the critical temperature iskBTc→3.315\2/2m* @n/2(2l 11)#2/3, which coincides
with the usual result only forl 50; for l .0, it differs in the degeneracy factor 1/(2l 11), which lowersTc .
Our results thus place constraints on exotic pairing in the BE limit, while at the same time indicating a
particularly interesting route to pairing withl .0 in a BCS superconductor.
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I. INTRODUCTION

It is a surprising consequence of BCS theory1 that certain
central interaction potentialsV(ur2r 8u) lead to Cooper pair-
ing with a finite value of the angular momentum, thus bre
ing the rotational symmetry of the continuum.2 The phenom-
enon is analogous to what happens in ‘‘Hubbard’’ mod
with attraction between nearest neighbors for which, as
well known,3 d-wave pairing can break the symmetry of th
crystal lattice. However, it is especially interesting in t
original context2 of a continuum model, because of the co
trast with the well-known theorem4 for two-body pairing in
real space, which demands that the ground state minim
the orbital angular momentum. This rotational symme
breaking is thus a many-body effect, and one expects tha
the limit of low densities and strong attraction, when t
BCS ground state is a Bose-Einstein~BE! condensate of non
overlapping pairs,5–8 the rotational symmetry of the syste
is restored. However, until now investigations of the BCS
Bose crossover for non-s-wave pairing were performed e
ther in the context of lattice models~see Ref. 3 for a review
and Refs. 9–14 for some examples of recent work! or for the
anisotropic interaction potential of Ref. 15.16

In this paper we take a slightly different approach
studying a continuum model, but choosing to work with
explicit, central interaction potentialV(ur2r 8u) which can
lead to pairing with more than one value of the angular m
mentum: the ‘‘d-shell’’ potential.17,18The resulting ‘‘d-shell’’
model ~DSM! captures, in an idealized way, the essen
feature leading to Cooper pairing with a finite value of t
angular momentum, namely, being attractive at a w
defined, finite distance.19 Thus we expect some of the nov
features that we shall describe, pertaining to the mechan
by which the rotational symmetry is broken in the BCS lim
0163-1829/2002/66~21!/214526~12!/$20.00 66 2145
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and restored in the BE limit, to be generic to a large class
central effective interactions. In particular we shall see t
for such models the evolution of a BCS superconductor w
exotic pairing towards the BE limit involves a phase tran
tion in which the symmetry of the superconducting ord
parameter is increased. This adds to the work by Babaev
Kleinert20 who also found, in the context of a chiral Gros
Neveu model, a phase transition associated with the BC
Bose crossover. However, the nature of the phase trans
that we describe here is quite different, as it takes place
the superconducting state, while that of Babev and Klein
corresponds to the formation of preformed pairs in the n
mal state.

II. d-SHELL MODEL

The first discussions of exotic Cooper pairing2 took place
in the context of the weak-coupling theory of superflu
3He. It was assumed that there existed a central, nonreta
interaction potentialV(ur2r 8u) acting between particles a
positionsr and r 8. One then writes

V~k2k8!5 (
l 850

`

Kl 8~ uku,uk8u!~2l 811!Pl 8~ k̂• k̂8!, ~1!

whereV(k2k8)[*d3r ei (k2k8)•r V(r ), and finds that each
of the terms in this series leads to pairing with a differe
value of the angular momentum quantum numberl. As it
can, and has been, argued, in the weak-coupling limit
can approximate

V~k2k8!'Kl ~2l 11!Pl~ k̂• k̂8!, ~2!

wherel is the value ofl 8 for which the coupling constant on
the Fermi surface,
©2002 The American Physical Society26-1
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Kl 8[Kl 8~kF ,kF!, ~3!

is largest. The approximate form~2! of the potentialV(k
2k8) is, for l .0, anisotropic, and it leads to pairing wit
finite angular momentum quantum numberl ~see Ref. 2!. For
l 50, it reduces to the BCS ‘‘contact potential,’’1 leading to
s-wave pairing. Although introduced in the context of
weak-coupling theory, the contact potential has often b
used to study the BCS to Bose crossover.21–30 Similarly,
Stintzing and Zwerger have considered a simplified poten
of the form~2! with l 52 to study the BCS to Bose crossov
for pairs withdx22y2 symmetry15 ~but in two dimensions and
with the additional assumption of separability to make
more tractable!. One of the key results of this later work15

was that the critical temperature is given, in the BE limit,
the same expression as in thes-wave case8,22,23:

kBTc'3.315
\2

2m*
S n

2D 2/3

for s and dx22y2 pairing.

~4!

Although very useful, the above approach is not appro
ate to study the question that we are interested in here, s
it introduces a particular pairing symmetry at the level of t
interaction potential. In contrast, we want to find pairing w
l .0 as an emergent property of the many-body syst
Moreover, we would expect, on the basis of the above ar
ments, to recoverl 50 pairing in the BE limit, in which the
internal structures of the Cooper pairs are independent.
physics seems also to be absent from those studies, as E~4!
suggests that the critical temperature is degenerate fors and
dx22y2 superconductivity.

An alternative strategy is to do the calculations taking
full r dependence ofV(r ) into account. A study of this type
was carried out by Andrenacciet al.11 who took a Gaussian
form for V(r ). This allowed them to investigate the prope
ties of the crossover at finite densities~in contrast, as is well
known, the procedure required to regulate the ultraviolet
vergences associated with simplified potentials of the fo
~2! at all couplings is only valid in the dilute limit31!. They
also considered the highly idealized separable potential
troduced in the seminal paper by Nozie`res and Schmitt
Rink,8 which has been employed in several oth
instances29,30 on account of its mathematical simplicity~but
note that this is not, strictly speaking, a central potenti!.
However, in either case there was no rotational symme
breaking: even at high densities they only obtaineds-wave
superconductivity~the discussion ofdx22y2 superconductiv-
ity in Ref. 11 is based on a lattice model!.

On the other hand, a simple argument19 based on the BCS
‘‘gap equation’’ suggests thatl .0 Cooper pairing is associ
ated with central potentialsV(r ) that are nonmonotonic
functions of r, with maximum attraction near some finit
distancer;r 0.0. The d-shell potential was proposed i
Ref. 19 as the simplest form ofV(r ) that has this feature:

V~ ur2r 8u!52gd~ ur2r 8u2r 0!. ~5!

The resulting DSM can be regarded as the continuum an
of the lattice model with nearest-neighbor attraction d
21452
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cussed in Refs. 3,10–12, and 14, for example. But note
in the DSM the distancer 0 at which the fermions attract eac
other is a free parameter that can be varied continuously,
the noninteracting dispersion relation is that of free fermio
with an effective massm* .

The d-shell potential can also be considered an appro
mation to any central potential that is attractive only within
range of distances centred atr 0, of width r c!r 0, since Eq.
~5! is equivalent to performing, in the general expression

Kl~ uku,uk8u!5~21! lE
0

`

dr4pr 2 j l~ ukur !V~r ! j l~ uk8ur !,

~6!

valid for any central potential@ j l(x) denotes a spherica
Bessel function#, the approximation

E
0

`

dr 4pr 2 j l~ ukur !V~r ! j l~ uk8ur !

'r c 4pr 0
2 j l~ ukur 0!V~r 0! j l~ uk8ur 0!, ~7!

which corresponds to taking the limitr c→0 while keeping
V(r 0)3r c5const[2g (g thus has dimensions of energ
3 length). A particularly simple example of this is the squa
well of Fig. 1.

The two-body problem associated with thed-shell poten-
tial is very well known~see Refs. 17 and 18, for example!. In
particular, it can bind a pair in free space with any value
l 50,1,2, . . . . To simplify matters, we will assume that th
attraction takes place between particles with opposite sp
Finally, in k space thed-shell potential is given byV(k
2k8)52g4pr 0

2sin(uk2k8ur 0)/uk2k8ur 0, from which it is
evident that it reduces to the contact potential in the lim
r 0→0 ~keeping g4pr 0

2 equal to 2K0). Interestingly, the
d-shell potential, for any finiter 0, does not display the ul-
traviolet divergences affecting the contact potential.

We will study the BCS to Bose crossover in this ne
model using the standard functional-integral technique
Refs. 22,23,31, and 32. At zero temperature, it implies
description of the system in the saddle-point approximati
which amounts to using the BCS ground state31 ~as in Refs.
7,8,10,11, and 14, for example!. Thus our results for the
ground state will be approximate, but of variational signi
cance. At the critical temperature, Gaussian fluctuati

FIG. 1. Thed-shell interaction potential.Left: the two particles
attract each other only when each of them lay on a thin shell
radiusr 0, centered on the other one.Right: the d-shell interaction
potential can be regarded as an approximation to any central po
tial that is attractive only near some distancer 0 ~see text!.
6-2
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COOPER PAIRING WITH FINITE ANGULAR MOMENTUM . . . PHYSICAL REVIEW B66, 214526 ~2002!
about the saddle point are taken into account as in R
15,22, and 23@as is well known31 this is equivalent to the
random-phase-approximation-like~RPA-like! diagrammatic
technique introduced by Nozie`res and Schmitt-Rink8 ~NSR!#.
This approach is rather limited in that, in the strong-coupl
limit, it neglects interactions between the preformed pa
existing aboveTc , and so it can only describe the effect
fluctuations on the superconducting instability at lo
densities.26,27 Nevertheless, as we shall see it is enough
discuss the rotational symmetry breaking in the we
coupling limit, in which the fluctuations are negligible, a
well as the mechanism by which the critical temperature
comes larger fors-wave pairs in the BE limit~at strong cou-
pling and low densities!. The application of these standa
methods to the DSM is fairly straightforward, so we w
quote here only the key expressions; further details can
found in Ref. 33.

Our model has four parameters: the distancer 0 at which
the attraction takes place, the coupling constantg, the density
of fermions n, and their massm* . In principle, the BCS
ground state can be characterized by the dependence o
zero-temperature gap functionDk and chemical potentialm
on these four parameters. Likewise, the superconducting
stability can be described by giving the critical values of t
temperatureTc and chemical potentialmc in terms of
r 0 ,g,n,m* . However, the DSM has the remarkable prope
that the four energiesDk , m, kBTc , mc , rescaled by the
‘‘localization energy’’«0[\2/2m* r 0

2 ~which we will denote

D̃ k̃ , m̃, T̃c , m̃c , wherek̃[r 0
21k), are functions of only two

parameters: the ‘‘dimensionless coupling constant’’g̃
[(«0r 0)213g and the number of fermions in a sphere
radiusr 0 : ñ[(4p/3)r 0

33n.

III. GROUND STATE

The kernelKl 8(uku,uk8u) in Eq. ~1! is given by

Kl~ uku,uk8u!52g4pr 0
2~21! l j l~ ukur 0! j l~ uk8ur 0!. ~8!

Thus, although evidently thed-shell potential is central and
therefore not separable in the sense of the NSR potentia
can be written as a sum of separable terms, each one c
sponding to a different value ofl. Accordingly the gap func-
tion D̃ k̃ , at the saddle point, has the following form:

D̃ k̃[(
l 50

`

(
m52 l

l

D̃ l ,mj l~ ukur 0!Yl ,m~ k̂!.

In terms of the amplitudesD̃ l ,m the usual ‘‘gap’’ and ‘‘den-
sity’’ equations, for a homogeneous, stationary, nonpolari
state with singlet pairing (D̃ l ,m[0 for odd l ), read

D̃ lm5 (
l 8,m8

H E d3k̃

~2p!3

g̃L̃ lm,l 8m8~ k̃!

2Ẽk̃
J D̃ l 8m8 , ~9!

ñ5E d3k̃

6p2 S 12
«̃ k̃

Ẽk̃
D , ~10!
21452
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where«̃ k̃[ k̃22m̃, Ẽk̃[A«̃ k̃1uD̃ k̃u2 and

L̃ lm,l 8m8~ k̃![~4p!2 j l~ uk̃u! j l 8~ uk̃u!Ylm* ~ k̂!Yl 8m8~ k̂!.

To assess the relative stability of different solutions to
self-consistency problem~9!, ~10!, corresponding to the
same values ofg̃ andñ, one has to compare the correspon
ing ground-state energies:

Ũ5E d3k̃

6p2
uk̃u2S 12

«̃ k̃

Ẽk̃
D 2(

l ,m

uD̃ l ,mu2

12pg̃
2

3

4
g̃ñ2. ~11!

Evidently Eq.~9! is an infinite system of nonlinear inte
gral equations with, presumably, an infinite number of no
trivial solutions and there is no systematic way of finding
of them. Nevertheless, a certain subset, selected by the
quirement that all but a few of theD̃ l ,m be equal to zero, can
be explored systematically. Since the effective coupling c
stant in the weak-coupling limit, Eq.~3!, is ~for evenl )

Kl52g4pr 0
2 j l~kFr 0!2, ~12!

it is clear that for smallg̃, and within the range of densitie
for which kFr 0&5, we can restrict our attention to the fir
two values ofl 50,2 ~see Fig. 2!. These are the two-body
states with the lowest energy~existing at g̃>2,10,
respectively17,18!, and therefore this simplification is als
valid for our purposes in the BE limit. Moreover, for sim
plicity we will considerd-wave states with a particular sym
metry, choosingdx22y2 which has been extensively studie
in other models3,10–12,14,15on account of its relevance to cu
prate superconductivity.34

For our two trial ground states the gap function has
following form, respectively:

D̃s~ k̃![D̃sj 0~ uk̃u!Y00, ~13!

D̃dx22y2~ k̃![D̃dx22y2 j 2~ uk̃u!
1

A2
@Y2,2~ k̂!1Y2,22~ k̂!#.

~14!

FIG. 2. The strength of the attraction in the BCS limit for pa
ing with the first four even values of the angular momentum qu
tum number,l 50,2,4,6.
6-3
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FIG. 3. The zeros~dashed lines! and sign~‘‘ 1 ’’ and ‘‘ 2 ’’ symbols! of the gap functionDk on the (kx ,ky) and (kx ,kz) planes, for~a! the
trial ground state withs symmetry and~b! the one withdx22y2 symmetry.
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Note that this is a more complicatedk dependence than tha
of gap functions arising from interactions of the form~2!,
which depend only on the anglek̂. In particular, the gap
function can change sign ask increases in theradial direc-
tion of increasinguku, not just as the anglek̂ is varied: see
Fig. 3. The oscillatory behavior as a function ofuku can be
regarded as a direct consequence of the singling out
particular distance by the attractive interaction~5!. More
generally, we expect these oscillations, of frequency;1/r 0,
to be a generic feature of interactions that are attractive
dominantly at some finite distancer 0.

Substitution of Eq. ~13! @Eq. ~14!# into the self-
consistency problem~9!, ~10! yields a much simpler prob
lem, which can be solved numerically for every value ofg̃

and ñ.
For low values ofg̃, we find thatm̃@D̃s (m̃@D̃dx22y2).
21452
a

e-

This is the usual weak-coupling condition8 characterizing the
BCS limit, and consequently the numerical results disp
the usual generalized BCS law35 D̃s}exp$1/NK0% (D̃dx22y2

}exp$1/NK2%) whereN is the free-fermion density of states
per spin, per unit volume. To illustrate this by an examp
Fig. 4 showsD̃dx22y2 vs g̃ for constantñ57.5. In this regime,
the nonmonotonic dependence of the effective we
coupling constantKl on the rescaled Fermi vectorkFr 0
@given in Eq. ~12!; see also Fig. 2# leads to the similarly
nonmonotonic dependence ofD̃s and D̃dx22y2 on ñ5(4/9p)

3(kFr 0)3 shown in Fig. 5.36

On the other hand, for large values ofg̃ we obtainm̃!

2D̃s (m̃!2D̃dx22y2), which is the opposite strong-couplin

condition, corresponding to the BE limit.8 Thus asg̃ is in-
creased, while keepingñ constant,m̃ goes from being ap-
6-4
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COOPER PAIRING WITH FINITE ANGULAR MOMENTUM . . . PHYSICAL REVIEW B66, 214526 ~2002!
proximately independent ofg̃, and equal to«̃F ([ the Fermi
energy«F[\2kF

2/2m* divided by«0), to having the behav-
ior

m̃'
«̃b

l

2
, ~15!

where«̃b
l is the binding energy of the two-body bound sta

with angular momentum quantum numberl 50,2 ~given ana-
lytically in Refs. 17 and 18, for example!, divided by «0.
This evolution of the chemical potential is represented
Fig. 6, for thedx22y2 trial ground state~the positive offset of
m̃ above «̃b

l /2 that can be seen in the graph becomes v

small, compared to«̃b
l /2, only at larger values ofg̃ than those

shown; additionally, it tends to zero asñ→0).
As is well known7,8 the qualitative change of the groun

state from BCS-like to BE-like behavior occurs when t
chemical potential goes below the bottom of the band,
m̃50. Figure 7 shows two superimposed ‘‘charts’’ of th
crossover, for thes anddx22y2 ground states, obtained usin
this condition. The charts include also two additional boun
aries for each trial ground state, corresponding tom̃

5D̃s ,D̃dx22y2 and m̃52D̃s ,2D̃dx22y2 , which indicate the

FIG. 4. Evolution of the amplitude of the gap function for th

dx22y2 trial ground state, as a function ofg̃, for fixed ñ57.5.

FIG. 5. Evolution of the amplitude of the gap function for thes

anddx22y2 trial ground states with increasing value ofñ, for fixed

g̃52.
21452
n
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extent of the ‘‘crossover region’’ between the BCS and B
limits. These charts are very similar to the ones presente
Ref. 11 fors-wave pairing via the NSR and Gaussian pote
tials, suggesting that the density-driven crossover beha
described in that reference is generic to continuum mod
The main difference that we observe fordx22y2-wave pairing
is the enlarged BCS region at low densities, due to the hig
value of the coupling constant required for a two-body bou
state. Interestingly, in contrast to this the charts fors- and
dx22y2-wave pairing seem to become quantitatively identi
as g̃ is increased. The oscillations of the boundary betwe
the BCS and crossover regions at high densities are dire
related to the nonmonotonic density dependence show
Fig. 5.

Evidently, Fig. 5 suggests that at intermediate densities
which D̃dx22y2@D̃s , the energy of the trial ground state wit

l 52 is lower than forl 50. The precise value of the densit
at which this breaking of the rotational symmetry takes pla
and the higher value at which the symmetry is restored
given, in the limit of smallg̃, by the first two positive solu-
tions of the following equation:

j 0~ k̃F!25 j 2~ k̃F!2, ~16!

FIG. 6. Evolution of the chemical potential for thedx22y2 trial

ground state, as a function ofg̃, for fixed ñ57.5.

FIG. 7. ‘‘Chart’’ of the BCS to Bose crossover for the tria
ground state withs pairing ~solid lines! and the one withdx22y2

pairing ~dashed lines!. The thicker lines are where the chemic
potential goes below the bottom of the band, while the thinner li
give an indication of the extent of the crossover region~see text!.
6-5
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where k̃F[kFr 0. These can be determined from Fig. 2. O

the other hand, for largeg̃ the system is always in the BE
regime, in which the energy~11! takes the form

Ũ5
1

2
ñ«̃b

l 2
3

4
g̃ñ2. ~17!

Since the Hartree term23/4g̃ñ2 is independent ofl, at first
sight this equation suggests that thel 50 trial ground state,

for which «̃b
l is lower,4 must have lower energy; howeve

note that in general lim(Ũs2Ũdx22y2)Þ lim Ũs2 lim Ũdx22y2

@whereŨs andŨdx22y2 are the energies of the two trial groun

states and the limit refers to takingm̃!2D̃s ,2D̃dx22y2 in
Eq. ~11!#. In fact there is an additional positive contributio
to the energy, similar to the positive offset of the chemi
potential, with respect to«b

l /2, seen in Fig. 6, which does no

appear in Eq.~17! because it varies slowly withg̃ and there-
fore becomes negligible for sufficiently largeg̃ ~just like the
offset of m̃). This repulsion is different for pairs with differ
ent internal structures, and so it is only in theñ→0 limit
which Eq. ~17! allows us to conclude that thel 50 state is
preferred at highg̃. At finite densities, the energies have
be evaluated numerically. Nevertheless, the result, show
Fig. 8, confirms our expectations: between the two dens
given by Eq.~16! thedx22y2 trial ground state is more stable
thus breaking the rotational symmetry of the system,
only for relatively small values of the coupling constant. A
g̃ is made larger, the range of densities in which this sy
metry is broken becomes progressively smaller until, ab
some critical value ofg̃;14, the system prefers thes state at
all densities. Thus the region in parameter space in which
rotational symmetry is broken is relatively small. In partic
lar, it is confined to the BCS side of the crossover diagra
i.e., m̃.0 everywhere inside thedx22y2 region.37

FIG. 8. Phase diagram of the relative stability of trial grou
state withs anddx22y2 pairing symmetry. The dashed lines indica

the position of the phase boundary in theg̃→0 limit, given by Eq.
~16!.
21452
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IV. CRITICAL TEMPERATURE

Unlike the theory of the ground state that of the equil
rium phase at finite temperatures does not follow from
usual BCS theory when the superconducting instability c
responds to the BE condensation of ‘‘preformed pair
~PP’s!. To describe such a situation one must go beyond
mean-field theory and include fluctuations. This is mo
readily done within the framework of a path integral repr
sentation of the partition functionZ.38,39 We shall now pro-
ceed following this approach and keeping only the low
significant corrections to the mean-field theory. Namely,
start with a Grassman path-integral representation ofZ for
the electrons, implement the usual Hubbard-Stratonov
transformation38–40 to a functional integral over a comple
pairing fieldD, and, finally, expand the effective action fo
the fluctuations,Sb@D* ,D#, about the saddle point of th
functional integral aboveTc to quadratic ~Gaussian!
order.12,15,22,23,32This is a well-tied approximation for the
problem at hand31 and therefore suitable for studying th
effects of pairing fluctuations onTc in our particular model.
In short, using Eqs.~1! and ~8! to write the Hamiltonian as

Ĥ2mN̂5(
k,s

«kĉk,s
† ĉk,s1 (

l ,m,q

Vl

L3
b̂l ,m,q

† b̂l ,m,q ~18!

@where L3 is the sample volume and Vl[
(21)l 11g(4pr 0)2] suggests that we introduce boson
fields D l ,m,q(vn) conjugate to the operators

b̂l ,m,q
† [(

k
j l~ ukur 0!Yl ,m~ k̂!ĉq/21k↑

† ĉq/22k↓
† , ~19!

b̂l ,m,q[(
k

j l~ ukur 0!Yl ,m* ~ k̂!ĉq/22k↓ĉq/21k↑ , ~20!

which evidently create and annihilate, respectively, a p
with total momentumq and angular momentum quantu
numbersl ,m. As usual, the momentum and frequency d
pendence of the fields captures the dynamics of the bos
degrees of freedom. The additionall ,m dependence reflect
the fact that our explicit interaction potential can bind pa
with different internal structures. Obviously theD l ,m of the
previous section correspond to a homogeneous, statio
configuration of the fields,D l ,m,q(vn)[dq,0D l ,m .

Proceeding in the usual way12,15,22,23,32we obtain

Sb@D* ,D#5b(
qn

(
l ,l 8

(
m,m8

D l ,m,q* ~vn!

3G l ,m,l 8,m8
21

~q,ivn!D l 8,m8,q~vn!, ~21!

where the sum onl ,l 8 extends only over values of the ang
lar momentum quantum number with the same parity~both
even or both odd!, b[1/kBT is the inverse temperature, an
the vn[2np/b are bosonic Matsubara frequencies. To fu
ther simplify the problem and facilitate the discussion of t
BE limit, we follow the procedure employed by Zwerger an
co-workers15,22to write a low-frequency, low-momentum ex
pansion of the inverse propagator for the preformed pair
6-6
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G l ,m,l 8,m8
21

~q,ivn!/@dl~b,m!dl 8~b,m!#1/2

5S 2 ivn1 (
i 5x,y,z

\2qi
2

2ml ,m,l ,m
b,i i ~b,m!

2m l
b~b,m!D

3d l ,l 8dm,m81S (
i , j 5x,y,z

\2qiqj

2ml ,m,l 8,m8
b,i j

~b,m!
D

3~12d l ,l 8dm,m8!. ~22!

This expansion takes into account the two-body bound st
leading to the formation of PP’s, and so it can be used
interpolate between the BCS limit, where fluctuations can
neglected, and the Bose limit, where such states domin
Thus after appropriate rescaling of the bosonic fields
known functionsml ,m,l 8,m8

b,i j (b,m) andm l
b(b,m) play the role

of effective boson masses and chemical potentials, a
Refs. 8,15,22, and 23, for example. These two functions
the rescaling factordl(b,m) are given in the Appendix. On
the other hand, in the crossover regime, Eq.~22! does not
adequately describe a potentially important contribut
from scattering states,8 and thus our results in that region o
parameter space must be regarded simply as a conve
interpolation scheme.

Note the different chemical potentials for bosons with d
ferent values of the angular momentum. Moreover, the
isotropic dispersion relation given byml ,m,l 8,m8

b,i j (b,m) can
describe not only the ‘‘rigid’’ propagation of a boson witho
changing its internal state, but also changes in its inte
angular momentum through the off-diagonal terms, w
l ,mÞ l 8,m8. However, in the BE limit, which as usual co
responds tomb→2`, we haveml ,m,l 8,m8

b,i j (b,m)→` for
l ,mÞ l 8,m8, and therefore in what follows we shall ignor
these off-diagonal terms@for l ,m5 l 8,m8, on the other hand
we recover the expected behavior8,15,22,23: ml ,m

b,i (b,m)
[ml ,m,l ,m

b,i i (b,m)→2m* ].
As usual,Tc is determined by the BE condensation co

dition m l
b(b,m)50. This gives a different critical tempera

ture for each value ofl. On the other hand,Tc is degenerate
in m52 l , . . . ,l , as in BCS theory.2 Since the presen
method can only describe an instability of the normal sta
our philosophy will be to compute thel 50 andl 52 critical
temperatures and then take the highest of the two as
critical temperature of the system. Moreover, we will assu
that, near the critical temperature, only fluctuations with
appropriate value ofl have to be taken into account. In ge
eral, pairs with the other value of the angular moment
quantum numberl 8 will also be present atTc , but in a
smaller number due to the lower value of their effecti
chemical potential,m l 8

b (b,m),0. Our approximation thus
amounts to assuming that the bosonic chemical potentia
these additional PP’s is indeed well below zero at the su
conducting instability. This is only adequate if thel 50 and
l 52 critical temperatures differ considerably, which as
shall see is the case in the BE limit. Of course in the op
site, BCS limit the fluctuations can be neglected complet
Thus again this simplified scheme should serve well as
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interpolation between the two limits, but one must bear
mind that the description of the intermediate, crossover
gime is only schematic.

Under the above assumptions the ‘‘Tc’’ and ‘‘density’’
equations take the form

1

g̃
5~21! l

2

pE0

`

duk̃uuk̃u2 j l~ uk̃u!2
122 f ~ b̃«̃ k̃!

2«̃ k̃

, ~23!

ñ5ñ01(
m

dñl ,m , ~24!

whereñ05(4/3p)*0
`duk̃uuk̃u2f (b̃«̃ k̃) is the density of fermi-

ons that are unpaired aboveTc and the additional contribu
tion coming from Gaussian fluctuations is made up of ter
of the form

dñl ,m5
4

3pE0

`

duq̃uuq̃u2gS b̃
uq̃u2

2
D w̃~ uq̃u!, ~25!

which correspond to fermions bound in PP’s with angu
momentum given byl ,m. The notationsf (x) andg(x) have
been used for the Fermi and Bose distributions functio
respectively. The ‘‘weight’’w̃(uq̃u) is given by

w̃~ uq̃u![S )
i 51

3

m̃l ,m
b,i D 1/2

3F11
1

d̃l
S d̃l8

d̃l

l̃ l2l̃ l8D
3

1

3 S (
i

k l ,m
i m̃l ,m

b,i D uq̃u2

2 G , ~26!

where the dimensionless functionl̃ l(b̃,m̃) and the factor
k l ,m

i are defined in the Appendix and each ‘‘primed’’ repr

sents differentiation with respect tom̃. This weight becomes
unity in the BE limitmb→2`, corresponding to bosons o
mass 2m* each.

Numerical solution of the self-consistency equations~23!

and ~24! for b̃ and m̃, at the relatively low value of the
densityñ50.5, shows the expected8,15,22,23smooth evolution
between the BCS and BE limits, analogous to the one see
the ground state: see Fig. 9. In particular, we find that
critical temperature for angular momentum quantum num
l is

T̃c
l }exp$1/NKl% ~27!

for small g̃ but saturates to a constant value given by

kBTc'3.315
\2

2m*
F n

2~2l 11!G
2/3

~28!

in the large-g̃ limit. This asymptotic behavior follows quite
generally from the self-consistency equations~23! and ~24!.
6-7
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Notably, Eq.~28! differs from the standard result~4! in
the presence of the degeneracy factor 1/(2l 11) multiplying
the density of bosonsn/2. For an instability to ans-wave
superconducting state, withl 50, Eq.~28! reduces to Eq.~4!
and thus our result for the DSM coincides with those o
tained earlier for models featuring the NSR~Ref. 8! and
contact22,23,26potentials. On the other hand, the degener
of the l 52 bound state means that, atTc , five Bose gases
condense simultaneously, but independently, leading t
much lower critical temperature. This is in contrast with t
result for the anisotropic potential of Ref. 15. On the basis
this we conclude that thel 50 state always has higher critica
temperature in the BE limit.

On the other hand, for small values ofg̃ (;3.5) we find a
nonmonotonic density dependence of thes- andd-wave criti-
cal temperatures similar to the one that we described for
amplitude of the gap function in the respective trial grou
states: see Fig. 10. In particular, note that there is an in
mediate range of densities for which thed-wave critical tem-
perature is the highest.

FIG. 10. The critical temperature for an instability to a sup
conducting state withl 50 ~solid line! and l 52 ~dashed line!, as a

function of ñ, for fixed g̃53.5. The dotted lines represent the B
condensation temperatures given by Eq.~28!.

FIG. 9. The critical temperature for an instability to a superco
ducting state withl 50 ~solid line! and l 52 ~dashed line!, as a

function of g̃, for fixed ñ50.5. The increasing dotted lines a
obtained by neglecting the contribution of Gaussian fluctuation
the total density, i.e., the second term on the right-hand side of
~24!, while the constant dotted lines are the BE condensation t
perature given in Eq.~28!.
21452
-

y
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f

e

r-

As expected,8,15,22the evolution from the BCS to the Bos
limits is also evidenced in the fraction of fermions that a

bound in PP’s just aboveTc dn/n ~with dñ[(mdñl ,m), and
in the effective mass of such PP’s,ml ,m

b,i ~see Figs. 11 and 12

respectively!: both are negligible for smallg̃, while in the
large-g̃ limit we havedn'n andml ,m

b,i '2m* .
Like any theory based on a Gaussian expansion,

present one displays a nonmonotonic behavior of the crit
temperature as a function ofg̃ in the intermediate regime
~see Fig. 9!. Such an enhancement8,22,23 is not present27 in
the self-consistent theory26 due to Haussmann, suggestin
that it is an artifact. It can be understood in terms of Eq.~28!
and Fig. 12 as a result of the PP’s getting lighter (ml ,m

b,i

&2m* ) as the value ofg̃ is reduced. In the self-consisten
theory, at least for a model based on the contact poten
repulsive interactions between the PP’s overcompensate
this, leading to a monotonic dependence ofTc on the cou-
pling constant27 ~for a more advanced treatment of these

-

FIG. 11. The fraction of fermions that are bound into PP’s ju
aboveTc for an instability to a superconducting state withl 50

~solid line! andl 52 ~dashed line!, as a function ofg̃, at the density
of Fig. 9.

-

to
q.
-

FIG. 12. The effective mass of the PP’s existing just aboveTc

for an instability to a superconducting state withl 50 ~solid line!

andl 52 ~dashed line!, as a function ofg̃, for the density of Fig. 9.
For the case of an instability to a superconducting state witl
52, only the heaviest and lightest of the massesml ,m

b,i ~correspond-
ing to i 5z and umu52 and 0, respectively! have been plotted.
6-8
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pulsive forces see Ref. 41; alternative methods to desc
phase fluctuations and strong pairing correlations in su
conductors are described in Refs. 42 and 13!. Such interac-
tions are completely neglected in the present treatment a
evidenced, for example, in Fig. 13 which shows the evo
tion of the chemical potential, lacking a positive offset lik
the one we found in the ground state~compare thel 52
curve of Fig. 13 to Fig. 6!. Moreover, the description of th
Gaussian fluctuations afforded by Eq.~22! turns out to be
valid only for densities below the first maximum ofT̃c , as a
function of ñ. At the maximum, the mass of the PP’s@given
in Eq. ~A9!, below# becomes negative, thus makingdñ di-
verge. The present treatment is therefore only valid at sm
values of the coupling constant, for which the fluctuatio
can be neglected~as in Fig. 10: the only part of the plot tha
shows a significant contribution from fluctuations is at de
sities well below the first maximum ofT̃c) or at low densi-
ties, which are below the first maximum for all sizable valu
of g̃ ~as in Fig. 9!.

V. CONCLUSIONS

We have studied exotic pairing in the context of a sim
model featuring fermions in a continuum with an explic
nonretarded, central interaction potentialV(r ): the d-shell
model. Its novel feature is that the interaction is attract
only at some finite distancer 0. Because of this, it provides
to our knowledge, the first explicit example of BCS pairin
with angular momentum quantum numberl .0 via a spheri-
cally symmetric ~central! attraction. By using a standar
functional integral approach, we have studied this break
of the rotational symmetry in relation to the BCS to Bo
crossover.

By considering two trial ground states, withs anddx22y2

symmetries, we have found thatthe ground state with broken
rotational symmetry is separated from the BE regime b
quantum phase transition, in which the symmetry of the su
perconducting order parameter is increased. This is du
the higherenergyof two-body bound states withl .0, and

FIG. 13. The critical value of the chemical potential for an i
stability to a superconducting state withl 50 (s-wave, solid line!

and l 52 (d-wave, dashed line!, as a function ofg̃, for fixed ñ

50.5. The dotted lines indicate the Fermi energy«̃F and the two-

body binding energies per particle«̃b
l /2.
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so it can be extrapolated to any central interaction poten
More generally, for other models~such as those in which th
single-particle dispersion relation and the interaction pot
tial are anisotropic!, our analysis suggests that a two-bo
ground state withdx22y2 symmetry is required in order fo
pairing to take that form in the BE regime. Such scenario
realized, for example, in a lattice model with neare
neighbor ~NN! attraction and large next-nearest-neighb
~NNN! hopping.43

Similarly, the critical temperature for superconductivi
with angular momentum quantum numberl 50 is found to
be higher than forl 52 in the BE limit ~of strong coupling
and low densities!. However, interestingly, this is due not t
the higher energy, but to the related higherdegeneracyof the
two-body bound state withl 52. Thus together these tw
observations place severe constraints on any interaction
tential V(r ) leading to pairing withl .0 in the BE limit.

In our model, the rotational symmetry breaking is a dire
consequence of a nonmonotonic dependence of the su
conducting properties on the fermion density which
present only in the BCS regime. Such rise and falls can
understood in terms of the oscillatory form of the ‘‘gap fun
tion’’ in k space, whose frequency is;r 0

21, and presumably
they are generic to interaction potentials that are attrac
predominantly at a finite distance. In Refs. 19 and 44
possible implications of our model to cuprate supercondu
ors, on the basis of the similar behavior observed in
doping dependence of the superconducting gap and the
cal temperature, were discussed. A similar rise and fall
been known for some time in nuclei~see Ref. 45, for ex-
ample!. Of particular interest, in connection with recent th
oretical speculations on superfluidity in magnetically trapp
gases of fermionic atoms46–49 ~for an informal review and
further references see Ref. 50!, is the possibility that the
present mechanism would lead to exotic pairing for su
ciently high densities in these systems. Interestingly, beca
the change froms- to d-wave pairing is a quantum phas
transition, it can take place at arbitrarily low temperatur
On the other hand, the density would have to be raised u
r s;r 0 ~where, in order to achieve a phenomenological d
scription of the interatomic potential,r 0 may be taken to be
roughly the size of a diatomic molecule!.

In relation to possible future work, we end by noting th
we have described the ground state of the DSM in terms
homogeneous saddle point, and we have only taken into
count pairing fluctuations around that saddle point. In pr
ciple, by performing a more general Hubbard-Stratonov
transformation, including additional fields associated w
the density~not just the pairing amplitude!, one could study
the effect of density fluctuations as well as the possibility
phase separation through a first-order gas-liquid phase t
sition: physically, one expects that the attraction at afinite
distance could favor, in addition to the pairing withl .0
which we have considered here, the formation of clusters
more than two particles~as in lattice models with neares
neighbor attraction51 and unlike those with on-site
attraction8; for a discussion of the similar phenomenon
‘‘quartetting’’ see Ref. 52; see also footnote 19 of Ref. 4!.
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Evidently, this would be very interesting in the light of rece
discussions of inhomogeneity in cuprate superconductor53
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APPENDIX: EXPANSION OF THE INVERSE BOSONIC
PROPAGATOR

The inverse bosonic propagator in Eq.~21! is given by

G l ,m,l 8,m8
21

~q,ivn!5
L3

g
d l ,l 8dm,m8

2
1

b (
n

(
k

i l 82 lL l ,m,l 8,m8~k!

3G0S q

2
1k,ivnDG0S q

2
2k,ivn2 ivnD ,

~A1!

where G0(k,ivn)[( ivn2«k)
21 ~with «k[«0«̃ k̃) is the

free-fermion Green’s function and thevn[(2n11)p/b are
fermionic Matsubara frequencies. The derivation, start
from Eq. ~18!, is entirely analogous to that of the simila
expression in Ref. 22, for example. In Ref. 23, the full fr
quency dependence ofG21(q,ivn) was taken into account to
obtain the critical temperature of a model featuring the c
tact potential. The procedure that we follow here15,22 yields
the same results in the BCS and BE limits and a much s
pler numerical problem in the crossover regime~where any
theory based on a Gaussian expansion must be regard
an interpolation scheme anyway!. First we analytically con-
tinue the second Green’s function on the right-hand side
Eq. ~A1! with respect to the bosonic Matsubara frequen
G0(q/22k,ivn2 ivn)→G0(q/22k,w2 ivn), and then we
perform the summation overn. Using the contourC in Fig.
14 ~which we deform intoC1 andC2) we obtain

G l ,m,l 8,m8
21

~q,w!5
L3

g
d l ,l 8dm,m82(

k
i l 82 lL l ,m,l 8,m8~k!

3
12 f ~b«q/21k!2 f ~b@«q/22k2w# !

«q/21k1«q/22k2w
.

~A2!

It is now easy to write a low-frequency, low-momentum e
pansion of the form
21452
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G l ,m,l 8,m8
21

~q,ivn!'al ,m,l 8,m8~b,m!2 idl ,m,l 8,m8~b,m!vn

1 (
i , j 5x,y,z

\2

2m*
cl ,m,l 8,m8

i , j
~b,m!qiqj

~A3!

by simply differentiating with respect toq andw.54 We find
that the coefficientsal ,m,l 8,m8 and dl ,m,l 8,m8 are diagonal in
l ,m and degenerate in m: al ,m,l 8,m8(b,m)
5al(b,m)d l ,l 8dm,m8 and dl ,m,l 8,m8(b,m)
5dl(b,m)d l ,l 8dm,m8 . The dimensionless functionsãl(b̃,m̃)
[r 0«0L23al(b,m) and d̃l(b̃,m̃)[r 0«0

2L23dl(b,m) are
given by

ãl~ b̃,m̃ !5
1

g̃
2~21! l

2

pE0

`

duk̃uuk̃u2 j l~ uk̃u!2
122 f ~ b̃«̃ k̃!

2«̃ k̃

,

~A4!

d̃l~ b̃,m̃ !5~21! l
2

pE0

`

duk̃uuk̃u2 j l~ uk̃u!2

3H 122 f ~ b̃«̃ k̃!

4«̃ k̃
2 1

b̃ f 8~ b̃«̃ k̃!

2«̃ k̃
J , ~A5!

where we have used the notationf 8(x)[d f(x)/dx and the
dimensionless inverse temperature isb̃[«0b. The coeffi-
cient in q2 has the form

cl ,m,l 8,m8
i , j

~b,m!5
1

2
dl~b,m!d l ,l 8dm,m8d i , j

1k l ,m,l 8,m8
i , j l l ,l 8~b,m!, ~A6!

wherek l ,m,l 8,m8
i , j [*S(1)d

2kYl ,m* ( k̂) k̂ i k̂ jYl 8,m8( k̂), which can
be evaluated easily by writing it in terms of the Gaunt co
ficients of relativistic quantum mechanics~see Ref. 55, for

FIG. 14. The contours used to perform the summation over
fermionic Matsubara frequenciesvn in Eq. ~A1!.
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example; note in particular thatk l ,m,l ,m
i , j 50 for all iÞ j ) and,

finally, l̃ l ,l 8(b̃,m̃)[r 0«0l l ,l 8(b,m) is given by

l̃ l ,l 8~ b̃,m̃ !5 i l 82 l
2

pE0

`

duk̃uuk̃u2

3 j l~ uk̃u! j l 8~ uk̃u!uk̃u2
b̃2f 9~ b̃«̃ k̃!

2«̃ k̃

. ~A7!

The integrands of Eqs.~A4!, ~A5!, and ~A7! have no
poles on the domain of integration, and therefore
straightforward to evaluate numerically. From comparison
Eq. ~A3! to Eq. ~22! it is evident that the masses and chem
cal potentials of the PP’s are given by
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