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Fermi-liquid interactions and the superfluid density in d-wave superconductors
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We construct a phenomenological superfluid Fermi-liquid-theory for a two-dimensiewale supercon-
ductor on a square lattice, and study the effect of quasiparticle interactions on the superfluid density. Using
simple models for the dispersion and the Landau interaction function, we illustrate the deviation of these results
from those for the isotropic superfluid. This allows us to reconcile the value and doping dependence of the
superfluid density slope at low temperature obtained from penetration depth measurements, with photoemis-
sion data on nodal quasiparticles.
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[. INTRODUCTION v, measured in ARPES decreases marginally leading to a
slightincreasein the estimated slopeéD¢/dT on underdop-
The high-temperature superconductors appear to suppartg, while the slope obtained from penetration depth experi-
well-defined quasiparticléQP) excitations at low tempera- ments in Bi2212decreasessomewhat with underdoping.
tures (T<T,) as suggested by penetration depth, This is in contrast to the rather striking agreement between
transport—* and angle-resolved photoemission estimates from thermal transport measurenfeansl ARPES
spectroscopy (ARPES experiments. Low-temperature su- datd® for the ratiov /v,~20 at optimal doping in Bi2212.
perconducting SC) state properties of the cuprates thus ap- Following Refs. 14 and 15, we attribute this discrepancy
pear to be consistent wititwave BCS theory with nodal QP to residual QP interactions or Fermi-liquid corrections. We
excitations. However, the importance of correlations atTow here use a phenomenological superfluid Fermi-liquid theory
is evident with underdoping: experimehghow that the su- (SFLT) to explore the effects of lattice anisotropy on QP
perfluid stiffnesD((T=0)~x, and the QP weight at#,0) interactions in more detail than in earlier studisse, how-
diminishes on approaching the Mott insulafdn this paper ever, Ref. 16 Some of the results obtained below were sum-
we address the question of interaction corrections to the tenmarized without derivation in a conference repdiVe note
perature dependence Df(T). that thermal phase fluctuatidfisare ignored here, since we
The in-plane superfluid stiffnes®(T) = (c2d/4we?\2),  have shown elsewhéftthat a proper treatment of the long-
with d the mean interlayer spacing along thexis, can be range Coulomb interaction results in their contribution to
directly obtained from measurements of the in-plane penetrd>¢(T) being subdominant to that of the nodal QP’s.
tion depth,\(T). D¢(T) is found to decrease linearly with

temperaturé,D((T)=D4(0)—AT, for T<T,, with a slope Il. SUPERFLUID FERMI-LIQUID THEORY
A which is nearly doping independé&rit(or weakly decreas- . , ,
ing but nonsingularasx—o0. Fermi-liquid (FL) theory for a normal Fermi system is

Clearly the linear drop iD4(T) is due to thermally gen- based on the existence of well-defin@dherent QP excita-
erated excitations which contribute to the normal-fluid den-ions Which are adiabatic continuations of the single-particle

sity. BCS theory with noninteracting QP excitations aroundexcitgtions of a free Fermi gas. While transport andlARPES
the fourd-wave nodes leads to the result experiments suggest that the normal state of optimal and

underdoped high-, superconductivity is not a FL, neverthe-
2In2 vg less, sharp QP peaks do appear all over the Fermi surface
D(T)=D(0)— —T, (1)  (FS deep in the SC statdor T<T,). Naturally, one is then
T U2 led to consider a description of the SC state and its low-lying
whereu is the Fermi velocity and , is related to the slope QP excitations as an adiabatic continuation of a BCS state
of the SC gap viar,=(L1/ke)dA(6)/6] o 14, at the nodal With Bogoliubov QP excitations.
Fermi wave vectoks . Mesotet al° obtained the nodal QP 1he approach advocated in Refs. 14 and 15, and adopted
dispersion parametersy and v, as a function of doping Pe€low, assumes that such a SC state may be viewed as a
from ARPES data on BS,L,CaCuyOg, 5 (Bi2212), and com- corzréalated.FL in which a pairing interaction has been turned
pared theD, slope obtained from Eq) with A measure- ©N In tglls_zgase, one can use the SFLT developed many
ments. They found that the slope estimated in this manner ¥82rS agd,”~"and generalize it to the anisotropic case.
too large by more than a factor of 2 at optimal doping—the FOF @ normal Fermi system, the change in free energy due
ARPES resul® of v.=2.5x10' cm/sec andu,=1.25 to a change in the QP momentum distributiém, takes the
x10° cm/sec lead to an estimated slopdD./dT  Standard form
=0.77 meV/K, while the slope obtained from penetration 1
depth experiment~*3is approximately 0.33 meV/K. Fur- SF[on =2, &one+= > f(k,k)ondne, (2
thermore, this discrepancy increases with underdoping since k 2%
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where£l is the dispersion for the QP of momentunin the B. Quasiparticle current renormalization
absence of other QP'd,(k,k") is the Landau interaction The QP energy;, = &0+ =, f(k,k’) dny leads to the QP

function, andon,=2,0ny . We have ignored the spin- o iocitv vo=v2+ ., Vf(k.k'YSn., . The total OP currend
dependent part of(k,k") in order to simplify the notation; thenyEkli/knkk whkich r(e(;Iuc)es {‘O' Q

the generalization with spin is straightforward, but not rel-
evant for the present discussion. We will refer to the QP’s,
obtained by setting (k,k’)=0 in the above equation, as
noninteracting QP’s. The dispersion for these QP’sgﬁs
which does include the mass renormalization.

We now use the above functional to calculate the supefynere we have used, v2nd=0 in the first term, since the
fluid stiffness at low temperatures, in two stefi$:we cal-  gqyilibrium QP population does not carry any current. In the

culate the diamagnetic response to a vector potentialiand gecongd term, we have transferred tkederivative from
we calculate the renormalization of the current carried by thef(k,k,) to n,, with n~nC at this order. This relates the

interacting QP's, relative to free QP’s, and use this to COMEyrrent carried by the interacting QP, to that carried by a

pute the paramagneti_c_ curren_t correlator of the QP's. Wv_a ne)ﬂoninteracting QP which only has a mass renormalization.
use the above quantities as inputs to a Kubo formula in the To make further progress in the specific case dfvaave

QP basis, which allows us to determine the superfluid Stlf-f'superconductor, we note that the dominant excitations in the
nessD(T). low-temperature state are those near the gap nodes. We
therefore restrict our attention to the renormalization of the
A. Diamagnetic term current carried by the QP’s at the four nodal points located at

M H — H 0_ _ 0 0
Let n? be the unperturbed equilibrium QP distribution. In K¢ » With M=1---4. SettingV, n,= —2v,,,5(¢) as before,

shift of the momentum distributiod@n,=ny, .»,c—np. We

J=> voon— > f(k,k')dnvn?, (6)
k K.k’

calculate the diamagnetic teffras the chang@F to order 0 2 M s 0 o
AZ- 3 M) =J5(M)| 1+ - E F(kM Koy, , 8(80)
FM k
0 0, L puary o =J(MB,, Y
5F:; | AV S AFATY, 2 F

1 where Jﬁ(M)EvFﬂ(M)ﬁnk(M) is the noninteracting QP
t3 2 f(k,k")A*AYY, NV ng. (3 current. In arriving at the above result, we have interchanged
kk the k,k’ labels in the second term, used the symmetry

Here we sete=c=1, andV#,Vl’L denote derivatives with f(k,k’)=f(k’,k). There is no implicit sum over. in Eq.

. 7).
respect tk,, andk;, , respectively, wherg:, v=x,y and the @
sum overu,v is implicit. The term linear inA vanishes,
since the integrand is odd ik, and we get C. The superfluid stiffness
1 From the Kubo formula, we findd{"=K,,—A ,,(q
OF = SAKAY > &V, N0+ > f(k,k)V,ndv.ng —0iw,=0)  where A, (d,iwn)=(j.(qiwn)], (-0,
K Kk’ —iwy)) is the current correlator and we take the transverse
1 limit of g—0. In the QP basis, there are no excitations at
= EAMAVKMV, (4 T=0andD{"(T=0)=K,,. At low temperatures, there are

nodal QP excitations and the current operato\ifg,iw,)
) ) ) has matrix elements between the ground state and these ex-
whereK ,, is the diamagnetic response. cited states. The current carried by the QP’s is, however,
Given the jump discontinuity in the “normal” state QP enormalized by the factng which leads tcA=,8iA°, with

stribt 0_ 0 0
SAStrf'butt'on fatz ”“? FS,f we US§Mn'§_ _kaﬂbﬁ(ik)' yvherLJe . A9 being the correlator for the noninteracting QP’s. The cor-
€ factor o Oa“seﬁ‘ rom summing over both spins. Usingg|qtor A0 i easily evaluated within BCS theory using the
the definitionv, =V ¢ leads to dispersiongﬁ, and is linear inT at low temperature in a
d-wave superconductor. Further, there are polarization effects
_ 0.0 0 N0 0 0 0 by which the flowing QP’s lead to an internéictitious)
K‘”_zg Uk“vkva(gk)+4§, F kD viuvi 0810 2(Ei) vector potential arising from th&(k,k’), in addition to the
0 ’ applied vector potentiaf This effect is important close B,
=a K., () when there are a large number of QP’s, but it is unimportant
at low temperature when there are very few thermally ex-
where K =250p v}, 8(&) is the diamagnetic term for cited QP's**?® The superfluid stiffness in d-wave super-
noninteracting QP’s. conductor at lowT is thus given by
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2In2 UF)

e ® v, (0)= ;0 V{Ocog (2¢+1) 6], (10

DS(T):aFKO—,gﬁ(

where K°= (1/d) Tery in d dimensions, assuming cubic o
symmgtry. We now proceed to discuss the FL corrections v ()= 2 V(f)sir[(2€+1)0], (11)
a_,B_in more detail. FY =0 Y

lil. ISOTROPIC LIMIT K(0)=k + 3 kOcog4t0) (12)
F Fo /=4 F !
For an isotropic systemF and kF are independent of the

location on the FS anah* =k /v is the effective mass. The where we have used the symmetries of the square lattice to
Landau interactiorf (k,k")=f(k-k") and depends only on restrict the form of the expansion, and also used the vector
the angle between the two momenta on the FS. Retainin@scalay character of the_ (k). We may also generally

only the single Landau parameter relevant for this d'scus'expand the interactiorf,(a,0’)=2€,mF€’mei”eim"’. We re-

sion, f(k-k')=(dn/de) *'F;cosé, where cog=k-k' and  grict the form off (6, 6') using the following symmetriesi)
(dn/de)=m*/7 is the total “normal’-state QP density of f(0,0')=1(0",0), (i) f(6,0)=F(—6,—0'), and (iii)
states for both spins. It is then easy to see that in two dimenr(w/z_ 0,7/2—6")=1(6,0"). While (i) is generally valid
sions, (2D) (i) and(iii ) are valid for a square lattice. This finally leads to

n
Ku=08,,—(1+F4/2), 9) f(6,0')= > F¢m[cog€6+me’)+cog €6’ +mo)],
m* {=m
(13
i i i 12
where the two-dimensional electron density k%/2z. From where ¢,m:—o—o with (€+m)=4p and p=0,*1,

Eq.(5), we thus findx_= (1+F4/2). [For the special case of +2 wehave set=m to avoid overcounting. We note

a Galilean-invariant system, using the Landau relation (lthat (i) the interaction function depends @hand 6’ sepa-
+F41/2)=m*/min 2D, we findK ,,=&,,(n/m).] Itis also  rately in general and not only ord(- ') as in the isotropic
easy to find that the renormalization of the current in thecase, andii) there are many more Landau parameters on the
isotropic case is given hy szL (1+F4/2), and the current lattice, labeled by two integerd (m). As we shall see, this
correlator is then/\:BiAg with B_=(1+F,/2). These re- considerably complicates our problem since many Landau
sults fora_,3_ are in agreement with the earlier work of Parameters may contribute to a given response function,
Larkin and Migdaf® and Leggetf? which prevents their unique determinatignThis is unlike

We now discuss the shortcomings of isotropic SFLT asthe isotropic casésay, in Hé) where usually a single Lan-

applied to the highF, superconductors following Ref. 14. dau parameter renormalizes a particylar correlation func_tion.
Low-temperature penetration depth experim@rgsiggest We now V\{me the rgsults fan,ﬁ N these new coordi-
thatD¢(x,T=0)~x. At the same time, ARPES experiments, Nates. The diamagnetic term is given by

as well as theoretical studies of superconductivity in doped
Mott insulators?® suggest tham* does not diverge on un- 2r dg  K.(0)
derdoping. Within the isotropic SFLT framework, these two XX f

together imply (& F4/2)~x which in tgrn ryeans the slope
of Dg¢(x,T) is proportional to (& F4/2)°~x~. This scaling , /
of the slope® however, is in strong disagreement with pen- N wa dode kF(H) kF(a )

etration depth measurements. Following the sugge$tibat o (2m* |vF(0)| lv_(6")]

this problem may be resolved by including anisotropy of the F

Landau interaction function over the FS, we next try to un- XUFX( e)va(a’)f(B,H’) (14
derstand FL corrections in the anisotropic case.

2 (6)

o (2m2 v (O)]

and the current renormalization for nolieis
IV. ANISOTROPIC CASE

. 2n dg' k(0") v (6"
In order to set up a phenomenological SFLT on a two- I(M) :1+2f do F FX f(6 .0,
dimensional square lattice, we first rewrite all our functions J2(M) 0 (2m)% [v (6")] v (0,) M
in terms of an angle variableé which sweeps over the large (15)

hole-barrel FS centered around,@r). Then, the Fermi mo-
mentumk_=k_(6), the Fermi velocityy_=v _(6), and the whereg is the angular position of nodd. We can express

Landau interaction functiori(k,k’)=f(#,60'). We expand this in a more compact form by defining{O),
these in an orthogonal basis, = S”dekF(0)0(0)/[277|UF(6)|]. This yields
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(v (0o _(0)(0,0"))) 60 a b
a =1+ ——— , (16) 0.3 |- ( ), (b)]
7T<UFX>0 2 L
pel | ge
(v, (6F(6,.61)), po2 Fr /
=1+ [Su] —//’
= 17 I F
FxC % 0.1 - oF
For f(6,6')=(m/m*)Ficos@—6') and k_,u_ independent i i
of 6, we easily recover the isotropic limit. 0 et T
0 0.1 0 0.1
V. SIMPLE MODELS FOR THE DISPERSION AND f(k,k") Doping (x)  Doping (x)
We now consider special cases of the general result which FIG. 1. Doping dependence of the SFLT renormalizatiﬂj)(
serve to illustrate the deviation from the isotropic limit. of the slope ofD(T) for a model with anisotropic QP dispersion
and a single Landau parameter chosen such (a)ahp(x):l.Sx
A. Case | and (b) aF(X):Z.SX (see case Il, Sec. V B for detgildn the iso-

AR AT . o .
Consider an isotropic dispersion, with andk_ indepen- .tI’OpIC Ilm!t, ’BF(X_)_aF(X)’ but ther_e _|s marked deviation from_thls
. F F in the anisotropic case—most striking8?(x) #0 asx—0, as in
dent of #, but we retain all allowed Landau parameters on . o F . ; ,
the lattice. In this case. with* =k /v . we find the experlment_s. Fpr this simple model and ch'0|ce of dispersion, a
) ! FOR larger renormalization dD4(0) [smallera(x), as in(a)] appears to

N correlate with a weaker doping dependenc$§¢x).

m
a =1+ —(Fy1tF; 1), — .
F ™ ' ' plotted in Figs. 1a) and Xb), where we see a marked devia-

tion from the isotropic result[ﬁzaﬁ) in the anisotropic
case, anqei is nonsingular ax—0, in qualitative agree-

m*
B=1+ 5| 2 (~1PF g1+ 2 (—1)PFapis ! |
| p=<0 p=0 ment with penetration depth results.

+ 2 (“1)PFup 10t 2 (“1PF p ] (18)
p>0 p<0 VI. CONCLUSIONS
Thus, many Landau parameters contribute to the renormal- e have used a phenomenological SFLT fod-wave
ization in this anisotropic case unlike in the isotropic limit. ynerconductor to determine the renormalizationDaf T
Furthermore, different Landau parameters contributerto  —0) anddD,/dT due to FL factors. Within simple models
andg_. Itis then easily possible that_# 8_and they could  for the dispersion and the Landau interaction function, we
then also behave very differently with doping if several Lan-find that anisotropy can cause strong deviations from the
dau parameters are nonzero. isotropic result. This allows us to understand the discrepancy
between penetration depth and photoemission experiments
for the temperature and doping dependence of the superfluid
] ] density in terms of SFLT corrections. While we discussed the
We next consider the case where we keep a single Landaase of al-wave order parameter as appropriate for the high-
parameteF, _;#0, and set all otheff, ,=0. However,we  T_superconductors, our results are easily generalized to any
retain the full anisotropy of the dispersion, as measured innconventional superconductor with point nodes and well-
ARPES. We take the tight-binding fit to tH@ormal-state  gefined QP's.
ARPES dispersiof and numerically compute the above in-
tegrals to determinexF,,BF. In order to study the doping

dependence ofaF,,BF, we assume a doping dependence ACKNOWLEDGMENTS
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