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Fermi-liquid interactions and the superfluid density in d-wave superconductors
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We construct a phenomenological superfluid Fermi-liquid-theory for a two-dimensionald-wave supercon-
ductor on a square lattice, and study the effect of quasiparticle interactions on the superfluid density. Using
simple models for the dispersion and the Landau interaction function, we illustrate the deviation of these results
from those for the isotropic superfluid. This allows us to reconcile the value and doping dependence of the
superfluid density slope at low temperature obtained from penetration depth measurements, with photoemis-
sion data on nodal quasiparticles.
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I. INTRODUCTION

The high-temperature superconductors appear to sup
well-defined quasiparticle~QP! excitations at low tempera
tures (T!Tc) as suggested by penetration dept1

transport,2–4 and angle-resolved photoemissio
spectroscopy5 ~ARPES! experiments. Low-temperature su
perconducting~SC! state properties of the cuprates thus a
pear to be consistent withd-wave BCS theory with nodal QP
excitations. However, the importance of correlations at lowT
is evident with underdoping: experiments6 show that the su-
perfluid stiffnessDs(T50);x, and the QP weight at (p,0)
diminishes on approaching the Mott insulator.7 In this paper
we address the question of interaction corrections to the t
perature dependence ofDs(T).

The in-plane superfluid stiffnessDs(T)5(c2d/4pe2l2),
with d the mean interlayer spacing along thec axis, can be
directly obtained from measurements of the in-plane pene
tion depth,l(T). Ds(T) is found to decrease linearly wit
temperature,1 Ds(T)5Ds(0)2AT, for T!Tc , with a slope
A which is nearly doping independent8,9 ~or weakly decreas-
ing but nonsingular! asx→0.

Clearly the linear drop inDs(T) is due to thermally gen-
erated excitations which contribute to the normal-fluid de
sity. BCS theory with noninteracting QP excitations arou
the fourd-wave nodes leads to the result

Ds~T!5Ds~0!2
2 ln 2

p

vF

v2
T, ~1!

wherevF is the Fermi velocity andv2 is related to the slope
of the SC gap viav25(1/kF)]D(u)/]uuu5p/4 , at the nodal
Fermi wave vectorkF . Mesotet al.10 obtained the nodal QP
dispersion parametersvF and v2 as a function of doping
from ARPES data on Bi2Sr2CaCu2O81d ~Bi2212!, and com-
pared theDs slope obtained from Eq.~1! with l measure-
ments. They found that the slope estimated in this manne
too large by more than a factor of 2 at optimal doping—t
ARPES results10 of vF52.53107 cm/sec andv251.25
3106 cm/sec lead to an estimated slopedDs /dT
50.77 meV/K, while the slope obtained from penetrati
depth experiments11–13 is approximately 0.33 meV/K. Fur
thermore, this discrepancy increases with underdoping s
0163-1829/2002/66~21!/214517~5!/$20.00 66 2145
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v2 measured in ARPES decreases marginally leading t
slight increasein the estimated slopedDs /dT on underdop-
ing, while the slope obtained from penetration depth exp
ments in Bi2212decreasessomewhat with underdoping.13

This is in contrast to the rather striking agreement betw
estimates from thermal transport measurements4 and ARPES
data10 for the ratiovF /v2'20 at optimal doping in Bi2212.

Following Refs. 14 and 15, we attribute this discrepan
to residual QP interactions or Fermi-liquid corrections. W
here use a phenomenological superfluid Fermi-liquid the
~SFLT! to explore the effects of lattice anisotropy on Q
interactions in more detail than in earlier studies~see, how-
ever, Ref. 16!. Some of the results obtained below were su
marized without derivation in a conference report.17 We note
that thermal phase fluctuations18 are ignored here, since w
have shown elsewhere19 that a proper treatment of the long
range Coulomb interaction results in their contribution
Ds(T) being subdominant to that of the nodal QP’s.

II. SUPERFLUID FERMI-LIQUID THEORY

Fermi-liquid ~FL! theory for a normal Fermi system i
based on the existence of well-defined~coherent! QP excita-
tions which are adiabatic continuations of the single-parti
excitations of a free Fermi gas. While transport and ARP
experiments suggest that the normal state of optimal
underdoped high-Tc superconductivity is not a FL, neverthe
less, sharp QP peaks do appear all over the Fermi sur
~FS! deep in the SC state~for T!Tc). Naturally, one is then
led to consider a description of the SC state and its low-ly
QP excitations as an adiabatic continuation of a BCS s
with Bogoliubov QP excitations.

The approach advocated in Refs. 14 and 15, and ado
below, assumes that such a SC state may be viewed
correlated FL in which a pairing interaction has been turn
on.20 In this case, one can use the SFLT developed m
years ago,21–23 and generalize it to the anisotropic case.

For a normal Fermi system, the change in free energy
to a change in the QP momentum distributiondnk takes the
standard form

dF@dnk#5(
k

jk
0dnk1

1

2 (
k,k8

f ~k,k8!dnkdnk8 , ~2!
©2002 The American Physical Society17-1
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wherejk
0 is the dispersion for the QP of momentumk in the

absence of other QP’s,f (k,k8) is the Landau interaction
function, anddnk5(sdnk,s . We have ignored the spin
dependent part off (k,k8) in order to simplify the notation;
the generalization with spin is straightforward, but not r
evant for the present discussion. We will refer to the QP
obtained by settingf (k,k8)50 in the above equation, a
noninteracting QP’s. The dispersion for these QP’s isjk

0

which does include the mass renormalization.
We now use the above functional to calculate the sup

fluid stiffness at low temperatures, in two steps:~i! we cal-
culate the diamagnetic response to a vector potential and~ii !
we calculate the renormalization of the current carried by
interacting QP’s, relative to free QP’s, and use this to co
pute the paramagnetic current correlator of the QP’s. We n
use the above quantities as inputs to a Kubo formula in
QP basis, which allows us to determine the superfluid s
nessDs(T).

A. Diamagnetic term

Let nk
0 be the unperturbed equilibrium QP distribution.

the presence of the vector potential,nk
0→nk1eA/c

0 leads to a
shift of the momentum distributiondnk5nk1eA/c

0 2nk
0 . We

calculate the diamagnetic term24 as the changedF to order
A2:

dF5(
k

jk
0S Am¹mnk

01
1

2
AmAn¹mnnk

0D
1

1

2 (
k,k8

f ~k,k8!AmAn¹mnk
0¹n8nk

0 . ~3!

Here we sete5c51, and¹m ,¹m8 denote derivatives with
respect tokm andkm8 , respectively, wherem,n5x,y and the
sum overm,n is implicit. The term linear inA vanishes,
since the integrand is odd ink, and we get

dF5
1

2
AmAnF(k

jk
0¹m,nnk

01(
k,k8

f ~k,k8!¹mnk
0¹n8nk

0G
[

1

2
AmAnKmn , ~4!

whereKmn is the diamagnetic response.
Given the jump discontinuity in the ‘‘normal’’ state Q

distribution at the FS, we use¹mnk
0522vkm

0 d(jk
0), where

the factor of 2 arises from summing over both spins. Us
the definitionvk

05¹jk
0 leads to

Kmn52(
k

vkm
0 vkn

0 d~jk
0!14(

k,k8
f ~k,k8!vkm

0 vkn
0 d~jk

0!d~jk8
0

!

[a
F
Kmn

0 , ~5!

where Kmn
0 [2(kvkm

0 vkn
0 d(jk

0) is the diamagnetic term fo
noninteracting QP’s.
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B. Quasiparticle current renormalization

The QP energyjk5jk
01(k8 f (k,k8)dnk8 leads to the QP

velocity vk5vk
01(k8¹ f (k,k8)dnk8 . The total QP currentJ

is then(kvknk , which reduces to

J5(
k

vk
0dnk2(

k,k8
f ~k,k8!dnk8¹nk

0 , ~6!

where we have used(kvk
0nk

050 in the first term, since the
equilibrium QP population does not carry any current. In t
second term, we have transferred thek derivative from
f (k,k8) to nk , with nk'nk

0 at this order. This relates th
current carried by the interacting QP, to that carried by
noninteracting QP which only has a mass renormalizatio

To make further progress in the specific case of ad-wave
superconductor, we note that the dominant excitations in
low-temperature state are those near the gap nodes.
therefore restrict our attention to the renormalization of
current carried by the QP’s at the four nodal points located
k

F

M , with M51•••4. Setting¹mnk
0.22vkm

0 d(jk
0) as before,

we find that the contribution to the current at theM th node is

Jm~M !5Jm
0 ~M !F11

2

v
Fm~M ! (

k8
f ~k

F

M ,k8!vk8m
0 d~jk8

0
!G

[Jm
0 ~M !b

F
, ~7!

where Jm
0 (M )[v

Fm(M )dnk(M ) is the noninteracting QP
current. In arriving at the above result, we have interchan
the k,k8 labels in the second term, used the symme
f (k,k8)5 f (k8,k). There is no implicit sum overm in Eq.
~7!.

C. The superfluid stiffness

From the Kubo formula, we findDs
mn5Kmn2Lmn(q

→0,ivn50) where Lmn(q,ivn)[^ j m(q,ivn) j n(2q,
2 ivn)& is the current correlator and we take the transve
limit of q→0. In the QP basis, there are no excitations
T50 andDs

mn(T50)5Kmn . At low temperatures, there ar
nodal QP excitations and the current operator inL(q,ivn)
has matrix elements between the ground state and thes
cited states. The current carried by the QP’s is, howe
renormalized by the factorb

F
which leads toL5b

F

2L0, with

L0 being the correlator for the noninteracting QP’s. The c
relator L0 is easily evaluated within BCS theory using th
dispersionjk

0 , and is linear inT at low temperature in a
d-wave superconductor. Further, there are polarization eff
by which the flowing QP’s lead to an internal~fictitious!
vector potential arising from thef (k,k8), in addition to the
applied vector potential.23 This effect is important close toTc
when there are a large number of QP’s, but it is unimport
at low temperature when there are very few thermally
cited QP’s.22,23 The superfluid stiffness in ad-wave super-
conductor at lowT is thus given by
7-2
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Ds~T!5a
F
K02b

F

2S 2 ln 2

p

vF

v2
DT, ~8!

where K05(1/d) Tr Kmn
0 in d dimensions, assuming cubi

symmetry. We now proceed to discuss the FL correcti
a

F
,b

F
in more detail.

III. ISOTROPIC LIMIT

For an isotropic systemv
F

andk
F

are independent of the

location on the FS andm* [kF /vF is the effective mass. The
Landau interactionf (k,k8)[ f (k•k8) and depends only on
the angle between the two momenta on the FS. Retain
only the single Landau parameter relevant for this discu
sion, f (k•k8)5(dn/de)21F1cosu, where cosu5k̂• k̂8 and
(dn/de)5m* /p is the total ‘‘normal’’-state QP density o
states for both spins. It is then easy to see that in two dim
sions,~2D!

Kmn5dmn

n

m*
~11F1/2!, ~9!

where the two-dimensional electron densityn5k
F

2/2p. From

Eq. ~5!, we thus finda
F
5(11F1/2). @For the special case o

a Galilean-invariant system, using the Landau relation
1F1/2)5m* /m in 2D, we findKmn5dmn(n/m).# It is also
easy to find that the renormalization of the current in
isotropic case is given byJm5Jm

0 (11F1/2), and the current
correlator is thenL5b

F

2L0 with b
F
5(11F1/2). These re-

sults for a
F
,b

F
are in agreement with the earlier work o

Larkin and Migdal21 and Leggett.22

We now discuss the shortcomings of isotropic SFLT
applied to the high-Tc superconductors following Ref. 14
Low-temperature penetration depth experiments6 suggest
thatDs(x,T50);x. At the same time, ARPES experiment
as well as theoretical studies of superconductivity in dop
Mott insulators,25 suggest thatm* does not diverge on un
derdoping. Within the isotropic SFLT framework, these tw
together imply (11F1/2);x which in turn means the slop
of Ds(x,T) is proportional to (11F1/2)2;x2. This scaling
of the slope,26 however, is in strong disagreement with pe
etration depth measurements. Following the suggestion14 that
this problem may be resolved by including anisotropy of
Landau interaction function over the FS, we next try to u
derstand FL corrections in the anisotropic case.

IV. ANISOTROPIC CASE

In order to set up a phenomenological SFLT on a tw
dimensional square lattice, we first rewrite all our functio
in terms of an angle variableu which sweeps over the larg
hole-barrel FS centered around (p,p). Then, the Fermi mo-
mentumk

F
[k

F
(u), the Fermi velocityv

F
[v

F
(u), and the

Landau interaction functionf (k,k8)[ f (u,u8). We expand
these in an orthogonal basis,
21451
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v
FX

~u!5 (
,50

`

V
X

(,)cos@~2,11!u#, ~10!

v
FY

~u!5 (
,50

`

V
Y

(,)sin@~2,11!u#, ~11!

k
F
~u!5k

F0
1 (

,51

`

k
F

(,)cos~4,u!, ~12!

where we have used the symmetries of the square lattic
restrict the form of the expansion, and also used the ve
~scalar! character of thev

F
(k

F
). We may also generally

expand the interaction,f (u,u8)5(,,mF,,mei ,ueimu8. We re-
strict the form off (u,u8) using the following symmetries:~i!
f (u,u8)5 f (u8,u), ~ii ! f (u,u8)5 f (2u,2u8), and ~iii !
f (p/22u,p/22u8)5 f (u,u8). While ~i! is generally valid,
~ii ! and~iii ! are valid for a square lattice. This finally leads

f ~u,u8!5 (
,>m

F,,m@cos~,u1mu8!1cos~,u81mu!#,

~13!

where ,,m:2`→` with (,1m)54p and p50,61,
62, . . . . Wehave set,>m to avoid overcounting. We note
that ~i! the interaction function depends onu and u8 sepa-
rately in general and not only on (u2u8) as in the isotropic
case, and~ii ! there are many more Landau parameters on
lattice, labeled by two integers (,,m). As we shall see, this
considerably complicates our problem since many Lan
parameters may contribute to a given response funct
which prevents their unique determination.27 This is unlike
the isotropic case~say, in He3) where usually a single Lan
dau parameter renormalizes a particular correlation funct

We now write the results fora
F
,b

F
in these new coordi-

nates. The diamagnetic term is given by

Kxx52E
0

2p du

~2p!2

k
F
~u!

uv
F
~u!u v

FX

2 ~u!

14E
0

2p dudu8

~2p!4

k
F
~u!

uv
F
~u!u

k
F
~u8!

uv
F
~u8!u

3v
FX

~u!v
FX

~u8! f ~u,u8! ~14!

and the current renormalization for nodeM is

Jx~M !

Jx
0~M !

5112E
0

2p du8

~2p!2

k
F
~u8!

uv
F
~u8!u

v
FX

~u8!

v
FX

~u
M

!
f ~u

M
,u8!,

~15!

whereu
M

is the angular position of nodeM. We can express

this in a more compact form by defininĝ O&u

[*0
2pduk

F
(u)O(u)/@2puv

F
(u)u#. This yields
7-3
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a
F
511

^^v
FX

~u!v
FX

~u8! f ~u,u8!&&uu8

p^v
FX

2 &u

, ~16!

b
F
511

^v
FX

~u8! f ~u
M

,u8!&u8

pv
FX

~u
M

!
. ~17!

For f (u,u8)5(p/m* )F1cos(u2u8) and k
F
,v

F
independent

of u, we easily recover the isotropic limit.

V. SIMPLE MODELS FOR THE DISPERSION AND f „k,k8…

We now consider special cases of the general result w
serve to illustrate the deviation from the isotropic limit.

A. Case I

Consider an isotropic dispersion, withv
F

andk
F

indepen-

dent of u, but we retain all allowed Landau parameters
the lattice. In this case, withm* [k

F
/v

F
, we find

a
F
511

m*

p
~F1,11F1,21!,

b
F
511

m*

2p F (
p<0

~21!pF1,4p211 (
p>0

~21!pF4p11,21

1 (
p.0

~21!pF4p21,11 (
p,0

~21!pF21,4p11G . ~18!

Thus, many Landau parameters contribute to the renorm
ization in this anisotropic case unlike in the isotropic lim
Furthermore, different Landau parameters contribute toa

F

andb
F
. It is then easily possible thata

F
Þb

F
and they could

then also behave very differently with doping if several La
dau parameters are nonzero.

B. Case II

We next consider the case where we keep a single Lan
parameterF1,21Þ0, and set all otherF,,m50. However, we
retain the full anisotropy of the dispersion, as measured
ARPES. We take the tight-binding fit to the~normal-state!
ARPES dispersion,28 and numerically compute the above i
tegrals to determinea

F
,b

F
. In order to study the doping

dependence ofa
F
,b

F
, we assume a doping dependen

F1,21(x)5B1Cx, such thata
F
(x);x in agreement with

the Uemura plot,6 with reasonable valuesa
F
(x50.2)'0.3

20.5. This fixesB,C and we use this to determine the do
ing dependence ofb

F
(x). The result of this calculation is
g,

L

21451
h
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plotted in Figs. 1~a! and 1~b!, where we see a marked devia
tion from the isotropic result (b

F

25a
F

2) in the anisotropic

case, andb
F

2 is nonsingular asx→0, in qualitative agree-
ment with penetration depth results.

VI. CONCLUSIONS

We have used a phenomenological SFLT for ad-wave
superconductor to determine the renormalization ofDs(T
50) anddDs /dT due to FL factors. Within simple model
for the dispersion and the Landau interaction function,
find that anisotropy can cause strong deviations from
isotropic result. This allows us to understand the discrepa
between penetration depth and photoemission experim
for the temperature and doping dependence of the super
density in terms of SFLT corrections. While we discussed
case of ad-wave order parameter as appropriate for the hi
Tc superconductors, our results are easily generalized to
unconventional superconductor with point nodes and w
defined QP’s.
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FIG. 1. Doping dependence of the SFLT renormalization (b
F

2)
of the slope ofDs(T) for a model with anisotropic QP dispersio
and a single Landau parameter chosen such that~a! a

F
(x)51.5x

and ~b! a
F
(x)52.5x ~see case II, Sec. V B for details!. In the iso-

tropic limit, b
F

2(x)5a
F

2(x), but there is marked deviation from thi
in the anisotropic case—most strikinglyb

F

2(x)Þ0 asx→0, as in
the experiments. For this simple model and choice of dispersio
larger renormalization ofDs(0) @smallera(x), as in~a!# appears to
correlate with a weaker doping dependence ofb

F

2(x).
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