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Classical dimers on the triangular lattice
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We study the classical hard-core dimer model on the triangular lattice. Following Kasteleyn’s fundamental
theorem on planar graphs, this problem is soluble using Pfaffians. This model is particularly interesting for,
unlike the dimer problems on the bipartite square and hexagonal lattices, its correlations are short ranged with
a correlation length of less than one lattice constant. We compute the dimer-dimer and monomer-monomer
correlators, and find that the model is deconfining: the monomer-monomer correlator falls off exponentially to
a constant value 0.1494 . . . , only slightly below the nearest-neighbor value of 1/6. We also consider the
anisotropic triangular lattice model in which the square lattice is perturbed by diagonal bonds of one orienta-
tion and small fugacity. We show that the model becomes noncritical immediately and that this perturbation is
equivalent to adding a mass term to each of two Majorana fermions that are present in the long wavelength
limit of the square lattice problem.

DOI: 10.1103/PhysRevB.66.214513 PACS number~s!: 74.20.Mn, 05.50.1q, 71.10.2w
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I. INTRODUCTION

The study of classical dimer models—the statistical m
chanics of hardcore dimer coverings of graphs—has a v
erable history. These models have been of interest as d
representations of the physics, e.g., diatomic molecules
lattice but even more because of their equivalence to var
other statistical mechanical problems; for example, the tw
dimensional Ising model can be reformulated as a dim
model on a special lattice.1,2 The reduction to dimer form is
advantageous in that a wide class of dimer models, thos
planar graphs with independent fugacities on bonds,
soluble by Pfaffians following a theorem of Kasteleyn1 ~also
see Ref. 3!. This technique has been applied to comput
variety of correlation functions, in the dimer model on t
square lattice4 and in the Ising model.5

The interest in dimer models has received new and v
different impetus following the discovery of high
temperature superconductivity. Following Anderson
proposal6 that the superconducting state evolves out of a
uid of singlet~valence! bonds, Rokhsar and Kivelson~RK!
proposed aquantumdimer model7 to describe this so-called
short-range resonating valence bond~RVB! physics. The Hil-
bert space of their model consists of all pairings of the sp
on the square lattice into singlet bonds; these can simply
labeled by hardcore dimer coverings. The quantum dynam
provides off-diagonal matrix elements between these co
ings. This idea can be generalized to other lattices.

The properties of the classical dimer model enter the
lution of such quantum dimer models in two ways. Fir
trivially but usefully, the infinite temperature statics of th
quantum problem are given precisely by the classical pr
lem with equal fugacities. Second, non-trivially and ev
more usefully, quantum dimer models generically exhibi
‘‘RK’’ point—which generalizes Rokhsar and Kivelson
construction on the square lattice—where the quantum wa
function is an equal amplitude superposition of dimer cov
ings which is the paradigmatic RVB form. Static, dimer d
0163-1829/2002/66~21!/214513~14!/$20.00 66 2145
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agonal, ground state correlations at the RK point are t
again given by the correlations of the classical dim
model.7,8 For the square lattice, the known results on t
classical problem4 showed that the quantum dimer mod
was critical at the RK point, which thus turned out to be
isolated critical point between two solid phases, rather tha
representative of an RVB phase. A similar behavior occ
on the honeycomb lattice, where the classical model
equivalent to the five-vertex model on the square lattice.10

In recent work, two of the present authors showed that
triangular lattice leads to a a different outcome9 with a RVB
phase, including the RK point, characterized by liquid corr
lations. It was also noted that the model exhibits ‘‘topolog
cal order’’ in the sense of Wen11 ~ground state degeneracie
on closed surfaces in the absence of symmetry break!
characteristic of an Ising gauge theory.9,12 As part of this
work it was necessary to solve the isotropic classical dim
model on the triangular lattice and show that the dimer c
relations were short-ranged. As this does not appear to h
been done previously, with the exception of results for
thermodynamic limit entropy,13–17 we have carried out a
fuller analysis of the problem in this paper.

Two aspects of this expanded analysis are notewor
First, we show that monomers are deconfined on the trian
lar lattice. A monomer is a site which does not have a dim
touching it, and the classical monomer-monomer correla
is the ratio of the number of configurations with the tw
monomers to the number without them. Monomers are
confined if this ratio approaches a constant, nonzero valu
the distance between the two increases. In the quan
dimer model, two monomers have the interpretation of t
‘‘test spinons’’ obtained by breaking a valence bond ap
into its constituent spins. Hence our result proves t
spinons are deconfined at high temperatures in the triang
lattice quantum dimer model.18,19 Second, we study the in
terpolation between the critical square lattice and the n
critical triangular lattice by tuning the fugacity for one sp
cies of bond. The diverging correlation length near t
©2002 The American Physical Society13-1
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former allows a continuum limit to be taken and yields
theory of two Majorana fermions with the monomer opera
being identified with a linear combination of the spin ope
tors in the two sectors.

We begin by computing the partition function for gene
fugacities and show that the model undergoes phase tra
tions only when it reduces to the square lattice model. C
respondingly, it exhibits long-ranged dimer correlations
the square lattice limit. Next we derive asymptotic forms
the Green function and dimer correlations which show t
the correlation length is less than a lattice constant at
isotropic point. We extend the analysis to obtain the corre
tion length everywhere along the interpolation to the squ
lattice. In Sec. IV we turn to computing the free energy
two monomers in a background of dimers. We show tha
falls off exponentially to a constant, proving that spinons
deconfined in the quantum dimer model at infinite tempe
ture. In Sec. V we show that the continuum formulation
the critical square lattice problem is a theory of two Ma
rana fermions. The addition of the remaining bonds of
triangular lattice is equivalent to adding a mass term for e
fermion and hence a transition of the Ising universality cla
We end with some concluding remarks and two techn
Appendixes.

II. MODEL AND PARTITION FUNCTION

A dimer is a bond connecting two nearest neighbors o
lattice. We study the close-packed model with hard co
where an allowed dimer configuration has the property t
each site of the lattice is paired with exactly one of its nea
neighbors, such a pair being denoted by a dimer placed
the link between the two sites. In the simplest form of t
model, each dimer has the same fugacity; as the numbe
dimers is the same in all configurations, the correlations
the dimer model are thus given as the equally-weighted
erage over all possible dimer configurations. In the follo
ing, we will include unequal fugacities, so that the average
be taken then includes nontrivial weighting factors.

The close-packed hard-core dimer model can solved
any planar lattice by using Pfaffian techniques.~A planar
graph contains no overlapping links.! These techniques wer
introduced in the early 1960s by Kasteleyn,1 and Fisher and
co-workers.4,20,21The result is simple to describe: on a plan
graph one places arrows on the links so that each plaque
‘‘clockwise odd,’’ that is to say that the product of the orie
tations of the arrows around any even-length elemen
plaquette traversed clockwise is odd. The antisymmetric
trix Mi j is then defined withMi j 51 if an arrow points from
point i to point j, Mi j 521 if the arrow points fromj to i,
andMi j 50 if i and j are not nearest neighbors. Kasteleyn
theorem states that for any planar graphM can be found, and
that the number of dimer coverings~the partition function! is
given by the Pfaffian of the matrixM:

Z56Pf@M #.

The6 sign is chosen to makeZ positive; henceforth we will
omit this sign. This result is exceptionally useful because
Pfaffian is the square root of the determinant:
21451
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Pf@M #5~det@M # !1/2.

For regular lattices, this determinant can easily be compu
by using Fourier transformation. This result has been re
mulated in the more modern language of fermionic path
tegrals in Ref. 15. One places a Grassmann variablec i on
each site i of the lattice, and defines the actionS
5( i , jM i j c ic j . Then a basic result of Grassmannian in
grals gives

Z5E @Dc#exp~S!.

This form allows one easily to define different but equivale
M by rescaling the fermions.

For the triangular lattice, an appropriate choice of arro
is displayed in Fig. 1. To make contact with the work on t
square lattice, we however choose a different convent
First, we deform the triangular lattice into a topological
~but not symmetry! equivalent square lattice. Second, w
multiply the Grassmann variables on every other row by
ternating factors of6 i so that the values ofMi j are given as
in Fig. 1, where the weight is to be understood to be fo
convention of arrows pointing to the right/upwards. Final
in order to be able to interpolate between square and tr
gular lattice, we allow the fugacity of the diagonal bonds
be a variablet instead of 1. For completeness, we gi
fugacitiesv and u to horizontal and vertical bonds, respe
tively. Note that we must double the unit cell to contain tw
sites; in our convention, it is doubled in the vertical dire
tion. Each sitei is labeled by the location of its unit cell,x,
and its location in the basis,a, while the unit vectors be-
tween cells arex̂ and ŷ. The two fermions in the unit cel
located atx are thus denoted asca,x with a51,2. In this
form, the action is

S5 1
2 (

x,a
(
y,b

M xy
abca,xcb,y ~1!

whereM xy
ab52M yx

ba . With periodic boundary conditions~or
far away from the boundaries!, we haveM xy

ab5Mab(x2y),
where

M12~0!5M21~ ŷ!5 iu,

FIG. 1. Choice ofM for the triangular lattice.~a! A ‘‘clockwise
odd’’ sign convention.~b! By multiplying the Grassmann variable
on the sites by the phases indicated~italics!, one obtains the new
values for theMi j on the bonds. Bonds are in addition multiplied b
a fugacity. Note that in both cases, the unit cell is doubled.
3-2
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M11~ x̂!5M22~ x̂!5v,

M21~ x̂1 ŷ!52M12~ x̂!5 i t .

Since the action is quadratic in terms of the fermions,
model can be solved by Fourier transformation. Our conv
tion for Fourier transforms is

f̃ ~k!5(
x

eik•xf ~x!.

The action is then

S5
1

2 (
k,a,b

M̃ k
abc̃k,ac̃2k,b , ~2!

where the two-by-two matrixM̃ k is

M̃ k5S 2iv sinkx g~k!

g* ~k! 2iv sinkx
D ,

with22

g~k!5 i @u2teikx2ue2 iky2te2 i (kx1ky)#.

Finding the determinant and hence the Pfaffian is n
simple, because ink space the action is expressed in terms
the 434 blocks

S 0 M̃ k

M̃ 2k 0
D ~3!

on the diagonal. Note that this matrix is antisymmetric a
must be, becauseg* (k)52g(2k). The entropy per site,S,
of the dimer coverings on aN-site lattice is then

S5
1

N
ln Pf@M #5

1

4 (
k

lnuD~k!u, ~4!

where

D~k![det@M̃ k#5det@M̃ 2k#

524v2 sin2kx24u2 sin2~ky/2!24t2 cos2~kx1ky/2!.

For a system with periodic boundary conditions, one m
sum over four different sectors, according to the winding
the dimer configuration.1 In fermionic language, this corre
sponds to evaluating four Pfaffians, with symmetric and
tisymmetric boundary conditions, and combining them aZ
5(2Pfpp1Pfap1Pfpa1Pfaa)/2, where the subscripts de
note the~anti!periodic boundary conditions for the fermion
in the two directions. In a Fourier representation, this cor
sponds to the usual different choices of allowed wavevect
We have listed the number of dimer coverings thus obtai
for the isotropic case in Table I, along with the results fo
system with open boundary conditions.

In the thermodynamic limit, the sum overk in Eq. ~4!
turns into an integral. For the isotropic triangular latti
(t5u5v51), doing the integral numerically yields
21451
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S50.4286 . . . .

We note S has been obtained previously by seve
authors13–17 in different contexts, including the kagom
Heisenberg magnet16 and, implicitly, the fully frustrated
Ising model on the hexagonal lattice,17 where the ground
state entropy per spinSFFHIM 5S/2 is related to the dimer
model entropy via a duality mapping.12

This model simplifies in several limiting cases. If tw
fugacities vanish, the model reduces to decoupled cha
with order along the chains and disorder relative to one
other. More interesting is the case where one of the fugac
vanishes, the square-lattice dimer model. This model is c
cal, with algebraic decay of correlators.4,23 It is straightfor-
ward to show that the entropyS(t,v,u) is nonanalytic int at
t50 ~and likewise foru andv). We will discuss this in more
detail in Sec. V.

III. GREEN FUNCTION

We now turn our attention to the correlations of the tria
gular dimer model. We utilize the techniques developed

TABLE I. Number of dimer coverings,Z, of triangular lattices
of with Lx32Ly sites, with periodic and open boundary condition
For periodic boundary conditions, only those sizes (Lx>3 andLy

>2) are given in which any pair of sites is linked by at most o
bond.

Lx Ly Zopen Ztorus

1 1 1
2 1 2
3 1 3
4 1 5
5 1 8
6 1 13
1 2 1
2 2 5
3 2 15 344
4 2 56 1920
5 2 203 10608
6 2 749 59040
1 3 1
2 3 13
3 3 85 4480
4 3 749 59040
5 3 6475 767776
1 4 1
2 4 34
3 4 493 58592
4 4 10293 1826944
1 5 1
2 5 89
3 5 2871 766528
1 6 1
2 6 233
3 6 16731 10028288
3-3
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the square lattice in Ref. 4, and expressed in terms of Gr
mann variables in Ref. 15. Correlation functions can
straightforwardly expressed in terms of the Grassmann v
ables~see, e.g., Ref. 24!. Since the action is quadratic, usin
Wick’s theorem expresses all correlators in terms of
Green function

^c ic j&5
1

ZE @Dc#c ic j exp~S!.

For example, the probabilityP(d)( ĵ ) of finding a dimer on a
bond in the (ĵ ) direction at site 0 is given by

P(d)~ ĵ !5u^c0c ĵ&u. ~5!

In the original matrix language, the Green function eleme
make up the inverse of the matrixM, namely,

^c ic j&5~M 21! j i 52~M 21! i j .

In this section we explicitly determine the Green functi
and its asymptotic behavior. In Sec. IV we use these res
to determine the dimer-dimer and monomer-monomer c
elators.

As shown in Sec. II, in Fourier space the action is writt
in terms of the 434 blocks@Eq. ~3!#. These blocks can be
easily inverted to give the two-point functions in Fouri
space. Expressed in terms of the functionsg(k) and D(k),
we have

^c̃1,kc̃1,2k&5^c̃2,kc̃2,2k&5
2i sin~kx!

D~k!
,

^c̃1,kc̃2,2k&52
g* ~k!

D~k!
,

^c̃2,kc̃1,2k&52
g~k!

D~k!
.

To determine the Green functions in real space, we nee
invert the Fourier transform. This yields

^ca,xcb,y&5E dke2 ik•(x2y)^c̃a,kc̃b,2k& ~6!

where we define

E dk[
1

4p2E0

2p

dkxE
0

2p

dky .

For a finite number of sites, this integral is replaced with
usual sum. To simplify the resulting expressions, we spec
ize slightly in the subsequent analysis

~1! We work in the thermodynamic limit so we have in
tegrals overk.

~2! We setu5v51. Thus the fugacityt gives a way of
interpolating between the square and the isotropic triang
lattices, witht50 giving the former andt51 the latter.

~3! We study correlators where the fermions are in
same or adjacent rows.
21451
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It is also convenient to absorb some factors of6 i by
defining the Green functionsQs andRs as

^c1,xc1,x1sx̂&5^c2,xc2,x1sx̂&[~21!(s11)/2Qs ,

^c1,xc2,x1sx̂&52^c2,xc1,x2sx̂&[ i ~21! [(s11)/2]Rs ,

where @a# is the greatest integer less thana. Relatively
simple expressions forQs and Rs are obtained by shifting
kx→kx1p/2 andky→2ky1p. For odds,

Qs5E dkw~kx ,ky!cos~kx!cos~skx!, ~7!

Rs5tE dkw~kx ,ky!cos~kx1ky!cos~skx1ky!, ~8!

while for evens,

Qs50, ~9!

Rs5E dkw~kx ,ky!cos~ky!cos~skx1ky!, ~10!

where

w~kx ,ky!5
1

2

1

cos2~kx!1cos2~ky!1t2 cos2~kx1ky!
.

These integrands are all invariant under the interchange okx
andky , underk→2k, and under shifts ofp.

One of the two integrals in each of theQs andRs can be
done immediately by residue. We leta5kx1ky and b5kx
2ky so thatw2152@11cos(a)cos(b)1t2 cos2(a)#. The inte-
gral overb can be deformed so that the contour runs arou
the pole at

cos~b!5
11t2cos2~a!

cos~a!
.

This is done by changing the integration contour runn
from 2p to p along the real axis to one which first run
from 2p to 2p1 i`, then to1p1 i`, and finally back
down top. The two contours running parallel to the imag
nary axis cancel as the function is periodic underb→b
12p, and the contribution from the contour running paral
to the real axis vanishes when the integrand vanishes e
nentially as Im(b)→`. We thus pick up only the contribu
tion of the pole of the integrand. For example, we have

E
0

2p db

2p

1

11r cos~b!1t2r 2
5

1

A11~2t221!r 21t4r 4
.

The resulting expressions forQs and Rs are simpler on
the isotropic triangular latticet51 because of the additiona
symmetry. In particular, herew(kx ,ky) is invariant under the
transformationkx→2(kx1ky); this ensures that the Gree
functions are invariant under a 60° rotations of the latti
For example, this transformation allows us to change
numerator ofQs from cos(skx)cos(kx) to cos(sa)cos(a). This
gives us
3-4
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CLASSICAL DIMERS ON THE TRIANGULAR LATTICE PHYSICAL REVIEW B66, 214513 ~2002!
Qs~ t51!5
1

2pE0

p

da
cos~sa!cos~a!

A11cos2~a!1cos4~a!
, ~11!

and for odds

Rs~ t51!5
1

4pE0

p

da
cos~sa!eib01cos@~s21!a#

A11cos2~a!1cos4~a!
~12!

while for evens,

Rs~ t51!5
1

4pE0

p

da
cos@~s21!a#eib01cos~sa!

A11cos2~a!1cos4~a!
~13!

where

eib05
11cos2~a!2A11cos2~a!1cos4~a!

cos~a!
.

A. Asymptotic long-distance behavior

In this subsection, we study the long-distance behavio
the Green functionsQs andRs . We derive an expression fo
the correlation length of the fermions at anyt, and find that it
indeed vanishes only whent50.

Unlike the similar case of the square lattice, the integr
for the Green function cannot be evaluated asymptotically
partial integration. This method only works for algebraic c
relations, whereas in our case, the correlations decay e
nentially. One can nonetheless obtain the asymptotics by
forming the integration contour. Instead of there being po
in the complexa plane, there are now square-root bran
cuts. In the regionuRe(a)u,p/2, there is one branch cut i
the lower-half-plane and one in the upper. Fort,1/2, the
branch cut has Re(a)50, while for t.1/2, it is parallel to
the Re(a) axis. The general formula for the location of th
branch pointsa6 is

cos~a6!5
16A124t2

2t2
. ~14!

For the same reason we could deform theb integral around
the pole, we can now deform thea integral around the
branch cut, as depicted in first part of Fig. 2. To evaluate
integral by saddle point, we want a contour where theeisa

FIG. 2. The integration contours~dashed! used for the
asymptotic evaluation of the Green function whent.1/2. The sec-
ond is equivalent to the first if the integrand is multiplied by 2. F
t,1/2, the branch cuts have Re(a)50.
21451
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term in the integrand is decreasing exponentially. It is th
easiest to use the fact that with a square-root branch cut
integral around one side of the branch is equal to the inte
around the other. Thus the contour can be deformed
again, so that it goes from the two branch points toi`, as
long as we multiply the result by 2. This contour, denoted
C, is depicted in the second part of Fig. 2.

With this new contour, asymptotic evaluation of the int
gral is easy, because the integrands are sharply peaked a
branch points. For example, we have

Qs~ t51!5
1

2pEC
da

ei (s11)a1ei (s21)a

A11cos2~a!1cos4~a!
.

The exponentials rapidly decrease as Im(a) is increased
along the contour, and moreover, the rest of the integrand
a square-root divergence at the branch points. It is thus
asymptotically exact approximation to substitu
A11cos2(a)1cos4(a)'CAa2a6 into the integrand. This
gives

Qs~ t51!' f ~ us11u!1 f ~ us21u!, ~15!

where

f ~s![ReF 1

ACp
E

a1

i`

da
e2 isa

Aa2a1
G .

We have used the fact that the integral froma2 to infinity is
the complex conjugate of the integral froma1 to infinity.
After shifting a→a1a1 , the integral is easily done, yield
ing

f ~s!5ReF 1

ACsp
eia1sG .

Finally, we breaka1 into its real and imaginary parts:a1

5a1 ib. For t51, cos(a1)5exp(2ip/3), so that C
533/42 exp(2ip/4), a51.1960 . . . and

b5
1

4
lnFA2131/4

A2231/4G50.83144 . . . . ~16!

Plugging this in gives

f ~s!5
1

A2p33/4

e2bs

As
cosS as1

p

8 D . ~17!

The asymptotic expression forRs can now easily be found
by noticing that at the branch pointa5a1 , eib0521. This
means that

Rs~ t51!'~21!s@ f ~ usu!2 f ~ us21u!#. ~18!

We have therefore shown that on the isotropic triangu
lattice, b is the inverse correlation length along the rows.
is only about one lattice spacing, so the exponential deca
the Green functions is quite rapid. Comparing the asympt
form to the exact values derived in Sec. III B~see Fig. 3 for
a plot of Qs), one finds that the agreement is excellent
3-5
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FENDLEY, MOESSNER, AND SONDHI PHYSICAL REVIEW B66, 214513 ~2002!
within a few percent—even for small values ofs. At occa-
sional values ofs ~e.g., s515); however, the agreement
only within a factor of 2 or so. The reason is that the osc
lating factor in Eq.~17! occasionally becomes very close
zero nears an odd integer, so that the terms we have
glected above can become larger than the one we kept.
however, does not change our results for the correla
length, because the neglected terms have the same exp
tial dependence ons @but a power law exponent differen
from 21/2 in Eq.~17!#.

For arbitraryt, the computations are similar but the equ
tions look fairly gruesome. Finding asymptotic expressio
for Qs andRs is more complicated because the transform
tion kx→2(kx1ky) no longer leavesw(kx ,ky) invariant.
However, we can easily extract the correlation length
Green functions in thex̂1 ŷ direction~the direction along the
links with t-dependent fugacity!. The reason is that the ex
pressions for the Green functions in this direction end
very similar to Eqs.~12! and~13!. The key fact is that there
are no terms in the integrand involvingeisb0, only eib0. Like
before, the integrand is peaked around the branch po
given in Eq.~14!. Thus the fermion correlation lengthj x̂1 ŷ is
given by

~j x̂1 ŷ!215ImFarccosS 12A124t2

2t2 D G . ~19!

We plot this correlation length in Fig. 4. Note that the kink

FIG. 3. The curve is the asymptotic expression foruQsu when
t51 @Eq. ~15!#. The points are the exact values at odds; Qs van-
ishes for evens.
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t51/2 in Fig. 4 is evidence of a level crossing between t
eigenvalues of the triangular lattice.

As t→0, the correlation length diverges as 1/t,

j x̂1 ŷ'
1

A2t
, t→0,

while j51/b51.2027 . . . at t51. In this expression, we
have taken the length of a diagonal bond as unit distan
Translating this back into square-lattice language~with the
length unit given by a lattice constant! removes the factor of
1/A2. The diverging correlation length in the square latti
limit will be used to take a continuum limit in Sec. V below

B. Short-distance behavior on the isotropic lattice

In this subsection we show how to derive exact expr
sions for the Green functions on the isotropic triangular l
tice, t51. We start by noting that a few of these Gre
functions can be evaluated immediately. In the isotropic ca
the probability of a dimer being on a given link is 1/6. Th
is of course related to the Green function for neighbor
fermions by Eq.~5!, so

Q15R15R05
1

6
.

Ironically, this fact is not easy to extract from the explic
integrals@Eqs.~11!–~13!#. It does follow from noting that the

FIG. 4. The correlation length as a function of the dimer fuga
ity: t50 is the square lattice,t51 the isotropic triangular lattice.
3-6



e

an

d

he

n

la

s
le

the
rm

ts

ed

nce

lue
he
ms
-

he
ing
ile
ned
pic

m
he

us
he

is
ne
ith

dd.
the
this
ows
row
nd
rse

urn
up

ne
n to
r is
o-
ig.

la-
i-
mer

8

6

3

3

9

5

8

CLASSICAL DIMERS ON THE TRIANGULAR LATTICE PHYSICAL REVIEW B66, 214513 ~2002!
transformationkx→2(kx1ky) in Eqs. ~7!,~8!, and ~10!
means thatQ15R15R0, and also thatQ11R11R051/2.

By generalizations of this argument, it is possible to d
rive recursion relations relatingQs and Rs . For the square
lattice they are discussed in Ref. 23. For the isotropic tri
gular lattice, the relations relating all theRs’s to theQs’s can
be derived using simple trigonometric identities. One fin
here that

R2 j 125R2 j 112R2 j1R2 j 211Q2 j 112Q2 j 21

and

2R2 j 11522R2 j2Q2 j 112Q2 j 211d j 0 .

The Kronecker delta in the latter identity arises from t
integral *dk cos(jx)5dj0. The recursion relations involving
only Qs are trickier to obtain; we discuss them in the Appe
dixes.

The recursion relations mean thatQs andRs for anys can
be expressed in terms ofQ1 , R2, andQ3. These in turn can
be evaluated in terms of elementary functions; in particu
the combination

U05
G~7/6!

2G~2/3!Ap
. ~20!

As detailed in Appendix A, along withQ151/6 we have

R25
1

3
22U0 ,

Q352
1

2
1

1

6

A3

U0p
.

Using these facts, we can evaluate the Green function
arbitrarily good accuracy numerically by using, e.g., Map

TABLE II. The Green functionQs explicitly.

s Qs Numerical value

1 1/6 0.166666666666666666667

3 21/211/6
A3

U0p
20.02455058145822676332

5 8U015/625/6
A3

U0p
0.002213263243038304334

7 256U01
25
6 17/3

A3

U0p
0.000069367921493899551

9 216U02
93
2 15/3

A3

U0p
20.00007620388084646556

11 2
1288

5 U01
1397

6 2
385

6

A3

U0p
0.000017066432646044316

13 2
16016

5 U02
3443

6 1
2509

6

A3

U0p
20.00000206850017272964

15 29232U02
2885

2 2
30970

21

A3

U0p
0.000000008625529538777
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Although it is easy to iterate the recursion relations on
computer, we have not succeeded in finding a closed-fo
expression for arbitraryQs andRs . We have collected some
of them in Table II. Note that even though the coefficien
are increasing exponentially withs, the three terms in each
cancel almost perfectly to give the exponential falloff ins.

IV. CORRELATORS

A. Dimer-dimer correlation function

The dimer-dimer correlation function is easily express
in terms of the Green functions. The operatorc1,xc2,x creates
a dimer at sitex pointing in theŷ direction. The probability
that there are two parallel dimers in the same row a dista
s apart is therefore

P(dd)~s!5^c1,xc2,xc1,x1sx̂c2,x1sx̂&.

By Wick’s theorem, this decomposes into

P(dd)~s!5~R0!22~Qs!
22RsR2s .

This, therefore, decays exponentially to its asymptotic va
with half the correlation length of the Green function. For t
isotropic lattice, one can easily plug in the asymptotic for
@Eqs.~15! and~18!# derived in Sec. III, and find the correla
tion length 1/(2b)'0.6014, less than one lattice spacing.

B. Monomer-monomer correlation function

As noted in Sec. I, the asymptotic behavior of t
monomer-monomer correlation function is quite interest
physically. A zero value means the model is confining, wh
a nonzero value means that the model is in a deconfi
phase. We will show in this subsection that on the isotro
triangular lattice, the latter is true.

A monomer placed on a lattice site forbids a dimer fro
being placed on any of the links connected to the site. T
monomer-monomer correlatorP(mm)(q,r ) is the ratio of the
number of configurations with monomers at sitesq and r to
the number of configurations without the monomers. Th
computing a monomer-monomer correlator follows from t
partition function of the lattice with the two sites~and all the
links connected to these sites! deleted. Since such a lattice
planar, Kasteleyn’s construction is still applicable. The o
complication is that we must ensure that on the lattice w
deleted sites, the number of arrows is still clockwise o
With the assignment in Fig. 1, one sees immediately that
number of arrows around a deleted site is even. Thus
assignment must be modified by reversing one of the arr
in the plaquette around the deleted site. Reversing the ar
on this link then ruins the clockwise-odd assignment arou
the other plaquette this link borders. Thus we must reve
one of the other arrows on this other plaquette. This in t
ruins another assignment, and so on. We thus must build
a string of reversed arrows, which must stretch from o
monomer to the other. As long as the arrows are chose
make all plaquettes clockwise odd, the monomer correlato
independent of the choice of path of the string. For mon
mers in adjacent rows, this construction is illustrated in F
5; links with the thick lines are part of the string.

This is very much like constructing the spin-spin corre
tion function in the Ising model in terms of fermionic var
ables. In fact, on the square lattice, the monomer-mono
3-7
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correlator was shown4,23 to have the same long-distance b
havior ~falloff as the square root of the distance! as the spin-
spin correlation function in two decoupled Ising models. T
precise relation between the two correlators for the squ
lattice was given in Ref. 25. In Sec. V, we will extend th
relation away from the square lattice.

We define as the monomer-monomer correlation funct
P(mm) as the ratio of the number of configurations with t
monomers to the number without. This can be written
terms of the fermions. Deleting a site merely correspond
inserting a fermion at that site. Changing the sign of
arrow corresponds to changing the sign of the term of
fermion in the action. In our theory with actio
( j ,kM jkc jck , for a monomers at sitesq and r,

P(mm)~q,r !5U K cq) ~122Mabcacb!c r L U ~21!

where the product is over all the links connecting sitesq and
r which have reversed arrows. We specialize to the cas
one monomer being at the origin and the other in an adja
row p lattice spacings apart, as illustrated in Fig. 5. Label
the fermions in the lower row1 . . .p and those in the uppe
row asp11 . . . 2p gives

P(mm)~p!5u^c1~122icp11c2!~112i tc2cp12!

. . . ~122ic2p21cp!c2p&u. ~22!

Since the theory is free in terms of the fermions, one can
Wick’s theorem to express this correlator as a product
Green functions. Evaluating it by brute force, however, is
difficult for all but low values ofp, because the number o
contractions grows exponentially. For a two-site separati

P(mm)~2!5R2~12R0!22R1
222Q1

2 .

Using the results of the previous section for the Green fu
tions, one has, fort51,

P(mm)~2!54U0/321/95.14657672599 . . . .

To proceed further, one must in revert to the Pfaffi
methods developed for the square lattice.4 Our calculation
generalizes these methods to the triangular lattice.
monomer-monomer correlator@Eq. ~22!# can be expressed i
Pfaffian language as

FIG. 5. The string in the monomer-monomer correlator w
p54.
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P(mm)5
Pf~M (mm)!

Pf~M !

whereM (mm) is the Kasteleyn matrix with the monomer site
removed, and the signs reversed on the links of the st
connecting the monomers. The advantage of this formula
is that one can manipulate a matrix without changing
determinant. For example, if one adds any row of a matrix
any other row, the determinant is left unchanged. Thus
strategy is to find explicitly the matrixM 21M (mm) describ-
ing the monomer correlator, and manipulate it to make
more tractable.4 On the square lattice, it is simple to sho
that

det~M 21M (mm)!5det~T!2,

whereT is a p3p matrix. After a variety of manipulations
described in appendix B, one finds the same behavior on
triangular lattice.

Deferring the details to Appendix B, our result is that t
monomer-monomer correlator is

P(mm)~p!5
1

2
det~R1Q!. ~23!

where the entries of thep3p matricesQ andR are

Ri j 5~21! [( j 2 i )/2]Rj 2 i 111t i 2 j 21u~ i 2 j !, ~24!

Qi j 5 i ~21! [( j 1 i )/2]Qp112 i 2 j , ~25!

whereu(x)51 for x.0 and 0 forx<0. Unlike the case of
the square lattice, the matrixR1Q is not Toeplitz~the en-
tries in a Toeplitz matrixTi j depend only oni 2 j ). For
Toeplitz matrices, Szego’s theorem provides a simple way
finding the asymptotic behavior of the determinant as
matrices get large. Here,Ri j depends only oni 2 j , but Qi j
depends only oni 1 j . We do not know if there is a gener
alization of Szego’s theorem to our case.

To evaluate this correlator fort51, we can plug the
Green functions derived in Sec. III into the expression
P(mm) @Eq. ~23!#. Expressing them in terms ofU0 as before,
the final form of the determinant simplifies substantially~al-
though it is still fairly horrible!. For example, forp53 one
finds

P(mm)~3!5
A31~2p23A3!U02144pU0

31864pU0
4

27pU0
.

We have collected some numerical values in Table III. T
correlator falls off exponentially to the value

P(mm)~`!50.14942924536134225401731517482693 . . . .

So the monomers clearly are deconfined in this phase, s
the monomer one-point function@[AP(mm)(`)# is nonvan-
ishing. Numerically, one can check that the correlation len
here is the same as for the dimer-dimer correlation, nam
1/(2b), or about 0.6 of a lattice spacing.
3-8
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C. Vison-vison correlation function

In the quantum dimer model, ap-flux vortex or
‘‘vison’’ 26,27 involves a semi-infinite string on the dual la
tice. A particular dimer configurationc acquires a factor of
(21)Nstring(c), whereNstring(c) is the number of dimers inter
secting that string. For two visons separated byx the string
can be taken to run from one vison to the other and henc
flux is visible at infinity. At the RK point, the calculation o
the static two vison correlator reduces to the evaluation
(c(21)Nstring(0,x)(c) which is now a purely classical problem
We will henceforth refer to this sum and its generalizatio
to unequal fugacities as the two-vison correlator even tho
the latter do not correspond to any known quantum probl
We should also note that the choice of string, which need
be made for each separation, lead to an ambiguity of a sig
each separation.

The two-vison correlator was studied recently in Ref.
for a Kagome spin problem equivalent to a generalized dim
model on the triangular lattice requiring three dimers p
site. There are some special features of this problem, ari
from the ‘‘particle-hole’’ symmetry of occupying thre
dimers out of a possible six at each site and among the
the presence of two species of visons~for details the reade
should consult the original work!. In our problem, that of one
dimer per site on the triangular lattice, life is simpler. He
the two-vison correlator can be seen, most simply by dua
arguments described in Appendix A of Ref. 12, to be equa
magnitude~we have already commented on the sign am
guity! to the spin-spin correlation function averaged over
ground state manifold of the fully frustrated Ising model
the honeycomb lattice. The latter is known, and decays
ponentially with a correlation length computed in Ref. 17.
direct computation of the vison correlator is in progres29

and should obviate the need for the detour we have take
this section.

TABLE III. The monomer-monomer correlation function for th
isotropic triangular lattice.

s P(mm)(s)

1 0.166666666666666666666667
2 0.146576725991984081282220
3 0.150263558036976118604604
4 0.149354528957809826733084
5 0.149441157286260650652237
6 0.149430105031348455969637
7 0.149429091105386654359851
8 0.149429312376742966925414
9 0.149429243123620452470446
10 0.149429245483558265741555
11 0.149429245691495770851350
12 0.149429245319212097747918
13 0.149429245371125328892038
14 0.149429245361581959940523
15 0.149429245361256645973930
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V. PERTURBING ABOUT THE SQUARE LATTICE:
FIELD THEORY

As we noted earlier, the general triangular lattice dim
model is critical in the square lattice limit. This suggests th
we can gain some insight into its properties by considerin
continuum limit when the diagonal fugacityt is small. We
should immediately enter one caveat: our exact computa
shows that there is a level crossing in the excited state s
trum of the transfer matrix~the kink in Fig. 4! en routefrom
the square lattice to the isotropic triangular lattice so th
are details of the latter that the continuum theory will n
reproduce very well.

Returning to the fermion action and settingt50, it turns
out that in the absence of diagonal bonds we no longer n
to double the unit cell as was necessary for in Eq.~3!; the
fermion operatorsc i used in this section thus refer to th
sitesx of the square lattice.

In momentum space, the resulting action is given by

S05
1

2 (
k

~2i sinkx22 sinky!c̃kc̃Àk , ~26!

where we have now reverted to the standard Euclidean fi
theory convention of including an explicit minus sign wi
the action in writing down the Grassmann integral. We s
that the fermion dispersion has nodes atk5(0,0), (0,p),
(p,0), and (p,p). Linearizing near these points and defi
ing

x̃k
15c̃k ,

x̃̄k
15c̃p ŷ1k ,

x̃k
25 i c̃p( x̂1 ŷ)1k ,

x̃̄k
25 i c̃p x̂1k , ~27!

we obtain the long wavelength form (][ 1
2 ]x2 i ]y , ]̄[ 1

2 ]x
1 i ]y)

S052E d2x~x1]̄x11x̄1]x̄11x2]̄x21x̄2]x2!, ~28!

which is a theory of two Majorana fermions, both holomo
phic (x1,x2) and antiholomorphic (x̄1,x̄2) fields. The labels
1 and 2 here are not the same as those used to label the
fermions in the unit cell; now the variablesx andy run over
all sites.

The leading asymptotic behavior of the lattice Gre
function can be recovered by inverting Eq.~27!,

c~x!5x1~x!1~21!yx̄1~x!1 i ~21!x1y11x2~x!

1 i ~21!x11x̄2~x!,

and using the continuum correlators

^xa~x!xa~0!&5
1

4p

1

x1 iy
,

3-9
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^xa~x!xa~0!&5
1

4p

1

x2 iy

for a51,2. This procedure yields

G~x!5
1

4p H @12~21!x1y#

x1 iy
1

@~21!y2~21!x#

x2 iy J ,

~29!

which exhibits the two sublattice structure that characteri
the square lattice problem. From this form we can reco
the asymptotics of the dimer correlations established in R
4. For example, the connected correlation function for t
horizontal dimers displaced byx is given by the Grassman
expression

cxx~x!5^c~x!c~x1 x̂!c~0!c~ x̂!&

2c~x!c~x1 x̂!&^c~0!c~ x̂!&.

By Wick’s theorem,cxx52G2(x)1G(x1 x̂)G(x2 x̂) and
using our asymptotic form forG(x) we find

cxx~x!;
~21!x1y

4p2 S 1

x1 iy
1~21!y

1

x2 iy D 2

, ~30!

where we have ignored constants in the denominators
generate subleading corrections in the generic case. Fo
special case of two dimers in the same column, separate
an even distance, this expression vanishes. However, ev
that case one can recover the correct subleading form
reinstating the constants, as can be readily verified.

Next we consider adding in the diagonal bonds w
fugacity t and find that near the nodes ofS0 it adds

Sp5 i t(
x

~21!yc~x!c~x1 x̂1 ŷ!

5 i t(
k

exp~2 ikx!exp~2 i ~ky2p!!c̃kc̃2k1p ŷ .

Expanding this near the nodes of the dispersion yields

Sp52i t E d2x~2x̄1x11x̄2x2!, ~31!

i.e., two mass terms of opposite signs. This means that
model is invariant under the standard Kramers-Wannier
ality of the Ising model, which sendst→2t. Here this just
interchanges the two fermions. It is easy to check that
Pfaffian analysis gives results independent of the sign ot.
Changingt→2t leaves invariant the Green functionsQs ,
andRs for evens, while it flips the sign ofRs for odds. This
leaves all monomer and dimer correlators invariant.

It follows that perturbing away from the square latti
results in a non-analyticity in the thermodynamics, with b
havior in thed52 Ising universality class~with a doubling
of the degrees of freedom!. Specifically, Onsager’s results fo
the Ising model give the dimer entropy density to beS(t)
2S(0)}2t2logt2, so that the model is indeed non-analy
at t50. For t near zero, the correlation functions are no
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characterized by decay on the scale ofj;1/t, in agreement
with our earlier, exact lattice computation@Eq. ~19!#.

It is interesting to ask where the order/disorder fie
(s/m) of the Ising operator algebra appear in the latt
problem. The two known candidates here are the mono
and vison fields, both of which exhibit an inverse square r
decay on the square lattice.4,30 In the Ising model at the criti-
cal point, order and disorder two-point functions decay
uxu21/4, so the monomer and vison fields must be bilinear
the order and disorder fields, as proven in Ref. 25. To nar
down the correspondence, we invoke four further co
straints: ~a! At t50, the monomer-monomer correlator
nonzero only when the monomers are on different sub
tices. ~b! When tÞ0, monomer correlators decay to a co
stant.~c! The vison-vison correlation function does not e
hibit any sublattice structure and decays exponentially
zero whentÞ0. ~d! Under dualityt→2t, s andm change
places in each of Majorana sectors. Because of the oppo
signs in Eq. ~31!, one of the sectors is in the high
temperature phase, while the other is in a low-tempera
phase. In an Ising low-temperature phase^s(x)s(0)& goes
to a constant at largeuxu, while in a high-temperature phas
^m(x)m(0)& goes to a constant. Thus fortÞ0 only one of
the four bilinears decays to a constant, eithers1m2 or s2m1,
where the superscripts refer to the two Majorana sect
With these we can identify the monomer operators on
two sublattices withs1m26 is2m1; the relative6 i ensures
that the correlator vanishes att50 when the monomers ar
on the same sublattice. In the absence of further constra
the vison operator can be identified with either of the co
binationss1s26m1m2. A fourth dimension 1/4 operator stil
needs to be identified to complete this set of identificatio

Finally, we should note that in the standard Ising mod
on the square lattice, equivalent to a dimer model on Fish
lattice, things work somewhat differently, as we shall discu
elsewhere.31 In that problem the two Ising phases correspo
to confined/deconfined phases of the dimer problem.

VI. CONCLUDING REMARKS

We have shown that the classical model on a triangu
lattice is generically in a liquid phase with deconfined mon
mers. This result contrasts with the critical correlations fou
on the bipartite square and honeycomb lattices. The m
complicated, nonbipartite, Fisher lattice also exhibits a
confined phase along with a confinement-deconfinem
transition. It would clearly be interesting to see if other,
yet unstudied, examples follow this classification. In th
context it is worth noting that the two critical dimer mode
admit height representations on account of their bipar
character—a feature often associated with criticality in t
dimensions. It is also worth remarking that this correlati
between criticality and bipartedness connects, via the qu
tum dimer model, to the Fradkin-Shenker theorem in latt
gauge theory.32 Finally, for reasons noted in Sec. I, any fu
ther work along these lines would also be immediately use
in advancing our understanding of quantum magnetism.

Note added: After we submitted this paper, a preprint b
A. Ioselevich, D.A. Ivanov, and M.V. Feigelman appear
3-10
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~cond-mat/0206451!, who studied the triangular dimer corre
lations in the absence of monomers. Beyond the results
ported here, they pointed out that the dimer correlat
length depends on direction.
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APPENDIX A: RECURSION RELATIONS

To obtain the recursion relations for the Green functio
efficiently, it is helpful to do changes several of variable
First of all, we definez[cos(2a). Sinces is always odd, one
can rewrite 2cos(sa)cos(a)5cos@(s11)a#1cos@(s21)a# in
terms of powers of cos(2a). That is, we use the Chebyshe
polynomials Tj (y), which are defined by the relatio
Tj@cos(a)#5cos(ja). For example,T1(y)5y, T2(y)52y2

21, T3(y)54y323y, and so on; a closed-form expressio
can be found in Ref. 33. Using this gives

Qs5
1

2pE21

1

dz
T(s11)/2~z!1T(s21)/2~z!

A~12z2!~714z1z2!
. ~A1!

This means that anyQs can be expressed as a sum of t
functions

Uk[
1

2pE21

1

dt
zk

A~12z2!~714z1z2!

for k51 . . . (s11)/2. For example,

Q15U11U0 ,

Q352U21U12U0 ,

Q354U323U212U12U0 ,

Q458U414U328U223U11U0 .

One also has

R252U1 .

The reason we write things in terms of theUi is that it is
easy to derive recursion relations for them. This is use
because there are simple explicit expressions for the first
Uk . Denoting the denominator of~A1! as Y, the recursion
relations follow from the fact that33

1

Y S mzm21Y21
1

2
zm

d~Y2!

dz D5
d

dz
~zmY!

is a total derivative. For our case, this yields the identity
21451
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.

a

d

s
.

l
w

~k21!Uk12~2k23!Uk2116~k22!Uk22

22~2k25!Uk2327~k23!Uk2450.

Even though the expressions forXs and Uk look un-
wieldy, they can be made much nicer by a simple change
variable. Namely, definingz5(j24)/(j12) yields

Uk5
1

4pE1

`

djS j24

j12D k 1

Aj321
. ~A2!

These turn out to be related to the complete elliptic integ
K(k) with k5sin(p/12), an integral whose properties we
originally investigated by Legendre.34 We can evaluateU0 in
terms of theb function as

U05
G~7/6!

2G~2/3!Ap
50.19326587782732139 . . . . ~A3!

SinceQ151/6, this yields immediately that

U151/62U0 . ~A4!

This then gives us our first nontrivial Green function expl
itly, becauseR252U1520.05319842232 . . . . Toutilize the
recursion relations given above, we also needU2. Using
various properties of the complete elliptic integrals,34 we
have shown that remarkably enough,U2 is simply related to
the reciprocal ofU0, namely,

U25U01
1

4pA3U0

2
1

3
. ~A5!

APPENDIX B: DERIVATION OF THE MATRIX FOR THE
MONOMER CORRELATOR

The monomer-monomer correlator@Eq. ~22!# is written in
terms of matrices as

P(mm)~p!5Pf ~M 21M (mm)!.

We define

E[M (mm)2M .

Since by definition the Green’s functionGjk5(M 21) jk
52^c jck&, we have

P(mm)5@det~ I 1GE!#1/2,

whereI is the identity. As seen from Eq.~22!, there are three
types of entries inE.

~1! We need to remove the links connected to the mo
mer sites 1 or 2p. ThusEjk52M jk if either j or k is either
1 or 2p.

~2! We need to change the sign on the links on the stri
ThusEjk522M jk if the link ( jk) is part of the string.

~3! We need to account for thec1c2p in Eq. ~22!. This is
done byE2p,152E1,2p5 i .

We now specialize to the case of monomers in adjac
rows a distancep apart. Here the matrixE has nonzero en-
tries in 2(p14) columns and rows. InEab , the indicesr and
3-11
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s run over 1 . . .p for the sites in the lower row, andp
11 . . . 2p for the upper row. The remaining 8 columns a
rows correspond to the sites surrounding the two monom
which are not part of the string; we denote those adjacen
the left monomer as 18,28,38,48, and those adjacent to th
right monomer as 58,68,78,88.

Since we evaluated all the Green functions in Sec. III
t51, at this point we could just plug in all the number
multiply the matrices, evaluate the determinant, and take
square root to get the monomer correlators. However,
determinant can be simplified a great deal, and is quite
egant. In fact, we can rewrite the correlator as a determin
of a matrix half the size.

Let us first consider the first column ofI 1GE. The non-
zero entries of Eb1 are when b52p or b52,p
11,18,28,38,48 ~the latter sites surrounding the site 1). No
that (cGacMc15da1 when c is summed over the site
around 1. Then

GabEb15 iGa,2p2(
c

GacMc15Ga,2p2da1 .

Thus

~ I 1GE!a15 iGa,2p .

Similarly, (I 1GE)a,2p52 iGa1. We now consider the col
umns coming from the sites adjacent to site 1 but not par
the string. For these sitesc8518,28,38,48, we haveEab
}da1. Thus in thekth column of I 1GE we haveGabEbc8
5Ga1E1c8 . However, we can essentially remove this c
umn without affecting the determinant. If we add the 2pth
column timesiE1c8 to thec8th column, thec8th column of
(I 1GE) is just dac8 . Thus the only non-zero entry in th
c8th column is on the diagonal, and is 1. The determin
with these rows and columns removed is thus identica
those with these columns present. The rows and colu
58,68,78,88 are removed in a similar manner.

We denote the modified 2p32p matrix ~with the same
Pfaffian! asM. We can continue with such column manip
lations to simplify the matrix further. Consider thepth col-
umn. We have
21451
rs
to

r

e
e
l-
nt

f

t
o
ns

~ I 1GE!ap5dap12iGa,2p212 i tGa,2p .

The last piece can be removed without changing the de
minant by addingt times the first column ofM to this col-
umn. This gives

Map5dap12iGa,2p21 .

Now consider thep21th column:

~ I 1GE!a,p215da,p2112iGa,2p2222i tGa,2p21 .

We can simplify this by adding thet times thepth column to
this, yielding, for the modified matrix,

Ma,p215da,p211tdap12iGa,2p22 .

Continuing in this fashion gives

Mab5(
j 5b

p

da jt
a2b12iGa,b1p21

for b52 . . .p anda51 . . . 2p. We already have

Ma15 iGa,2p .

We can do the analogous manipulations for the columnc
5p11 . . . 2p21. This yields

Mac5 (
j 5p11

c

da jt
c2a22iGa,c2p11

and

Ma,2p52 iGa,1 .

We can now writeM in terms of theQs andRs defined in
the last section. For example,

Ma,2p5H i ~21! [a/2]Q12a , 1<a<p

~21! [(a2p21)/2]Ra2p , p11<a<2p,

where@x# is the greatest integer less thanx. Putting this all
together yields, for example, forp54
nd

dices
M53
2R4 2R1 2R2 22R3 2iQ1 0 22iQ3 0

2R3 122R0 2R1 2R2 0 2iQ1 0 2 iQ1

R2 t22R21 122R0 2R1 22iQ1 0 2iQ1 0

R1 t212R22 t22R21 122R0 0 22iQ1 0 iQ3

iQ3 0 22iQ1 0 122R0 t22R21 t212R22 R1

0 2iQ1 0 22iQ1 2R1 122R0 t22R21 R2

2 iQ1 0 2iQ1 0 2R2 2R1 122R0 2R3

0 22iQ3 0 2iQ1 22R3 2R2 2R1 2R4

4 ,

where we have used the facts thatQ2s5Qs and Qs50 for s even. This matrix looks much nicer if we reshuffle rows a
columns. We permute the first column through the others so that it becomes thepth column, and permute the 2pth column
through so that it becomes thep11th column. This does not change the determinant. We then relabel the in
3-12
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p11 . . . 2p in reverse order~i.e., interchange 2p↔p11,
2p21↔p12, etc.! We also multiply thepth and thep
11th columns by 2, so that we need to divide the result
determinant by 4. These manipulations put the matrix i
the form

S R Q
Q RD , ~B1!
a

tta

l

21451
g
o

whereR andQ are thep3p matrices defined by

Ri j 5~21! [( j 2 i )/2]2Rj 2 i 111u~ i 2 j !t i 2 j 21, ~B2!

Qi j 5 i ~21! [( j 1 i )/2]2Qp112 i 2 j , ~B3!

whereu(x)51 for x.0 and 0 forx<0. For example, for
p56 we have
R5S 2R1 2R2 22R3 22R4 2R5 2R6

122R0 2R1 2R2 22R3 22R4 2R5

t22R21 122R0 2R1 2R2 22R3 22R4

t212R22 t22R21 122R0 2R1 2R2 22R3

t312R23 t212R22 t22R21 122R0 2R1 2R2

t422R24 t322R23 t212R22 t22R21 122R0 2R1

D
Q5S 2iQ5 0 22iQ3 0 2iQ1 0

0 22iQ3 0 2iQ1 0 22iQ1

22iQ3 0 2iQ1 0 22iQ1 0

0 2iQ1 0 22iQ1 0 2iQ3

2iQ1 0 22iQ1 0 2iQ3 0

0 22iQ1 0 2iQ3 0 22iQ5

D

r

The determinant of matrices of the form~B1! can be
simplified:35

detS R Q
Q RD 5detS R1Q Q

Q1R RD 5detS R1Q Q
0 R2QD

5det~R1Q!det~R2Q!.

In our case, the latter two determinants are the same, bec
R is symmetric around the off-diagonal~the diagonal from
use

upper right to lower left!, while Q is antisymmetric around
the off-diagonal. Thus

detM5
1

4
@det~R1Q!#2.

This yields result~23! for the monomer-monomer correlato
above.
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