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We study the classical hard-core dimer model on the triangular lattice. Following Kasteleyn's fundamental
theorem on planar graphs, this problem is soluble using Pfaffians. This model is particularly interesting for,
unlike the dimer problems on the bipartite square and hexagonal lattices, its correlations are short ranged with
a correlation length of less than one lattice constant. We compute the dimer-dimer and monomer-monomer
correlators, and find that the model is deconfining: the monomer-monomer correlator falls off exponentially to
a constant value 0.149.., only slightly below the nearest-neighbor value of 1/6. We also consider the
anisotropic triangular lattice model in which the square lattice is perturbed by diagonal bonds of one orienta-
tion and small fugacity. We show that the model becomes noncritical immediately and that this perturbation is
equivalent to adding a mass term to each of two Majorana fermions that are present in the long wavelength
limit of the square lattice problem.
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[. INTRODUCTION agonal, ground state correlations at the RK point are then
again given by the correlations of the classical dimer
The study of classical dimer models—the statistical me-model”® For the square lattice, the known results on the
chanics of hardcore dimer coverings of graphs—has a verclassical probleth showed that the quantum dimer model
erable history. These models have been of interest as direatas critical at the RK point, which thus turned out to be an
representations of the physics, e.g., diatomic molecules oniaolated critical point between two solid phases, rather than a
lattice but even more because of their equivalence to variouspresentative of an RVB phase. A similar behavior occurs
other statistical mechanical problems; for example, the twoen the honeycomb lattice, where the classical model is
dimensional Ising model can be reformulated as a dimeequivalent to the five-vertex model on the square laffice.
model on a special lattick? The reduction to dimer form is In recent work, two of the present authors showed that the
advantageous in that a wide class of dimer models, those dniangular lattice leadta a different outconfewith a RVB
planar graphs with independent fugacities on bonds, arphaseg including the RK point, characterized by liquid corre-
soluble by Pfaffians following a theorem of Kasteléyalso lations. It was also noted that the model exhibits “topologi-
see Ref. R This technique has been applied to compute aal order” in the sense of Wéh(ground state degeneracies
variety of correlation functions, in the dimer model on theon closed surfaces in the absence of symmetry breaking
square lattickand in the Ising model. characteristic of an Ising gauge thedi?. As part of this
The interest in dimer models has received new and veryork it was necessary to solve the isotropic classical dimer
different impetus following the discovery of high- model on the triangular lattice and show that the dimer cor-
temperature  superconductivity. Following Anderson’srelations were short-ranged. As this does not appear to have
proposdi that the superconducting state evolves out of a lig-een done previously, with the exception of results for the
uid of singlet(valence bonds, Rokhsar and KivelsdiRK)  thermodynamic limit entrop}?~1’ we have carried out a
proposed ajuantumdimer modef to describe this so-called fuller analysis of the problem in this paper.
short-range resonating valence bdRYB) physics. The Hil- Two aspects of this expanded analysis are noteworthy.
bert space of their model consists of all pairings of the sping-irst, we show that monomers are deconfined on the triangu-
on the square lattice into singlet bonds; these can simply blar lattice. A monomer is a site which does not have a dimer
labeled by hardcore dimer coverings. The quantum dynamic®uching it, and the classical monomer-monomer correlator
provides off-diagonal matrix elements between these covelis the ratio of the number of configurations with the two
ings. This idea can be generalized to other lattices. monomers to the number without them. Monomers are de-
The properties of the classical dimer model enter the soeonfined if this ratio approaches a constant, nonzero value as
lution of such quantum dimer models in two ways. First,the distance between the two increases. In the quantum
trivially but usefully, the infinite temperature statics of the dimer model, two monomers have the interpretation of two
guantum problem are given precisely by the classical prob“test spinons” obtained by breaking a valence bond apart
lem with equal fugacities. Second, non-trivially and eveninto its constituent spins. Hence our result proves that
more usefully, quantum dimer models generically exhibit aspinons are deconfined at high temperatures in the triangular
“RK” point—which generalizes Rokhsar and Kivelson’s lattice quantum dimer modé¥:'® Second, we study the in-
construction on the square lattice—where the quantum waveerpolation between the critical square lattice and the non-
function is an equal amplitude superposition of dimer cover-<ritical triangular lattice by tuning the fugacity for one spe-
ings which is the paradigmatic RVB form. Static, dimer di- cies of bond. The diverging correlation length near the
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former allows a continuum limit to be taken and yields a 11111
theory of two Majorana fermions with the monomer operator i X 1 I 1
being identified with a linear combination of the spin opera- 144 A1 Al Al
tors in the two sectors. jl-i b -1
We begin by computing the partition function for general , Y P 1y 1 11
fugacities and show that the model undergoes phase transi- ATATAYAE ; i/}{i A 41
tions only when it reduces to the square lattice model. Cor- ‘ T A e e o A S
respondingly, it exhibits long-ranged dimer correlations in (a) (b)

the square lattice limit. Next we derive asymptotic forms for

the Green function and dimer correlations which show that FIG. 1. Choice oM for the triangular lattice(a) A “clockwise

the correlation length is less than a lattice constant at thedd” sign convention(b) By multiplying the Grassmann variables
isotropic point. We extend the analysis to obtain the correlaon the sites by the phases indicatédlics), one obtains the new
tion length everywhere along the interpolation to the squaré{alues for thel;; on the bonds. Bonds are in addition multiplied by
lattice. In Sec. IV we turn to computing the free energy of@ fugacity. Note that in both cases, the unit cell is doubled.

two monomers in a background of dimers. We show that it

falls off exponentially to a constant, proving that spinons are PTM]=(defM])*2

deconfined in the quantum dimer model at infinite tempera- . . ) )

ture. In Sec. V we show that the continuum formulation of FOr regular lattices, this determinant can easily be computed
the critical square lattice problem is a theory of two Majo- by using.Fourier transformation. This result ha_s peen refpr—
rana fermions. The addition of the remaining bonds of thanulated in the more modern language of fermionic path in-
triangular lattice is equivalent to adding a mass term for eacff9rals in Ref. 15. One places a Grassmann varigblen
fermion and hence a transition of the Ising universality class€ach site i of the lattice, and defines the actioB

We end with some concluding remarks and two technicaf= Zi<jMij#i#;. Then a basic result of Grassmannian inte-
Appendixes. grals gives

II. MODEL AND PARTITION FUNCTION Z:J [Dylexp(S).

A dimer is a bond connecting two nearest neighbors on a ] ] . ]
lattice. We study the close-packed model with hard cores] his form aII_ows one ea_sny to define different but equivalent
where an allowed dimer configuration has the property thall by rescaling the fermions. _ _
each site of the lattice is paired with exactly one of its nearest For the triangular lattice, an appropriate choice of arrows
neighbors, such a pair being denoted by a dimer placed oi¢ displayed in Fig. 1. To make contact with the work on the
the link between the two sites. In the simplest form of theSquare lattice, we however choose a different convention.
model, each dimer has the same fugacity; as the number &fir'st, we deform the tr!angular lattice into a topologically
dimers is the same in all configurations, the correlations ofPut not symmetry equivalent square lattice. Second, we
the dimer model are thus given as the equally-weighted avultiply the Grassmann variables on every other row by al-
erage over all possible dimer configurations. In the follow-ternating factors of-i so that the values d¥l;; are given as
ing, we will include unequal fugacities, so that the average tdn Fig. 1, where the weight is to be understood to be for a
be taken then includes nontrivial weighting factors. convention of arrows pointing to the right/upwards. Finally,

The close-packed hard-core dimer model can solved o order to be able to interpolate between square and trian-
any planar lattice by using Pfaffian techniquéa. planar ~ gular Iattlpe, We.allow the fugacity of the diagonal bonds_ to
graph contains no overlapping link§hese techniques were Pe a variablet instead of 1. For completeness, we give
introduced in the early 1960s by Kasteléyand Fisher and fugacitiesv andu to horizontal and vertical bonds, respec-
CO-WOI’kerSA!'ZO’ZlThe result is Simp|e to describe: on a p|anartive|y. Note that we must double the unit cell to contain two
graph one p|aces arrows on the links so that each p|aquette$ges; in our Convention, it is doubled in the vertical direc-
“clockwise Odd,” that is to say that the product of the orien- tion. Each sitd is labeled by the location of its unit Cebt,,
tations of the arrows around any even-length elementar@nd its location in the basisy, while the unit vectors be-
plaquette traversed clockwise is odd. The antisymmetric matween cells arex andy. The two fermions in the unit cell
trix Mj; is then defined wittM;; =1 if an arrow points from  located atx are thus denoted ag, , with a=1,2. In this
pointi to pointj, M;;=—1 if the arrow points fronj toi,  form, the action is
andM;;=0 if i andj are not nearest neighbors. Kasteleyn’s
theorem states that for any planar grégttan be found, and . B
that the number of dimer coveringghe partition functiohis S=2 “ & My Vaxtlp.y @
given by the Pfaffian of the matrik: o
whereM /= —MJ¢. With periodic boundary condition®r
far away from the boundarigswe haveM ffyﬁ= MeB(x—y),

The = sign is chosen to mak2 positive; henceforth we will where
omit this sign. This result is exceptionally useful because the A
Pfaffian is the square root of the determinant: M%0)=M?Y(y)=iu,

Z=+PfM].
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Mll()“(): M22()A()=v TABLE I. Number of dimer coveringsZ, of triangular lattices
' of with L, X 2L sites, with periodic and open boundary conditions.
For periodic boundary conditions, only those sizes%3 andL,

200 Oy 1200
M=(x+y)=—-M™(x)=it. =2) are given in which any pair of sites is linked by at most one
bond.
Since the action is quadratic in terms of the fermions, the
model can be solved by Fourier transformation. Our conven- | L Zooen Ziorus
tion for Fourier transforms is 4 P
1 1 1
~ . 2 1 2
f(k)=2, e X (x).
(k) =2 e“*f(x) 3 N 3
o 4 1 5
The action is then 5 1 8
6 1 13
E M B3 i) KB (2 1 2 1
k a,B 2 2 5
L~ 3 2 15 344
where the two-by-two matrid is 4 5 56 1920
5 2iv sink, g(K) 5 2 203 10608
M, = L. 6 2 749 59040
k *
g* (k)  2ivsink, 1 3 1
with?2 2 3 13
_ _ _ 3 3 85 4480
g(k)=i[u—te*x—ue ky—te1(ktk)], 4 3 749 59040
Finding the determinant and hence the Pfaffian is now i i 64175 767776
simple, because ik space the action is expressed in terms of 5 4 34
the 4X 4 blocks
3 4 493 58592
0 My 4 4 10293 1826944
~ (3) 1 5 1
M_ O 2 5 89
on the diagonal. Note that this matrix is antisymmetric as it i 2 28171 766528
must be, becausg* (k) = —g(—k). The entropy per sites,
of the dimer coverings on H-site lattice is then 2 6 233
3 6 16731 10028288
- InPM] - 4
= — n ——
N 4
S§=0.428%....

where . .
We note § has been obtained previously by several

R T A & author$® Y7 in different contexts, including the kagome
Alk)=defM,]=defM ] Heisenberg magn¥t and, implicitly, the fully frustrated
= — 4v? sirPk, — 4u? sin(K,/2) — 4t2 o (K, + k, 12). Ising model on the hexagonal lattitewhere the ground
state entropy per Spigryiv =5/2 is related to the dimer
For a system with periodic boundary conditions, one musmodel entropy via a duality mappirg
sum over four different sectors, according to the winding of This model simplifies in several limiting cases. If two
the dimer configuratioh.In fermionic language, this corre- fugacities vanish, the model reduces to decoupled chains,
sponds to evaluating four Pfaffians, with symmetric and anwith order along the chains and disorder relative to one an-
tisymmetric boundary conditions, and combining thenZas other. More interesting is the case where one of the fugacities
=(—Pfypt+ Plp+PfatPfa)/2, where the subscripts de- vanishes, the square-lattice dimer model. This model is criti-
note the(ant)penodlc boundary conditions for the fermions cal, with algebraic decay of correlatdté® It is straightfor-
in the two directions. In a Fourier representation, this correward to show that the entropy(t,v,u) is nonanalytic int at
sponds to the usual different choices of allowed wavevectord.=0 (and likewise foru andv). We will discuss this in more
We have listed the number of dimer coverings thus obtainedetail in Sec. V.
for the isotropic case in Table I, along with the results for a
system with open boundary conditions.
In the thermodynamic limit, the sum ovérin Eq. (4) Il GREEN FUNCTION
turns into an integral. For the isotropic triangular lattice We now turn our attention to the correlations of the trian-
(t=u=v=1), doing the integral numerically yields gular dimer model. We utilize the techniques developed for
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the square lattice in Ref. 4, and expressed in terms of Grass- It is also convenient to absorb some factors:zof by
mann variables in Ref. 15. Correlation functions can bedefining the Green function®, andRg as
straightforwardly expressed in terms of the Grassmann vari-

ables(see, e.g., Ref. 24Since the action is quadratic, using (P1xthrxs 50 = Paxtaxs sy =(—1)EDZQ,
Wick's theorem expresses all correlators in terms of the ) [(s+1)/2]
Green function (P1xtoxrs) = —(Paxthrx-s)=1(—1) Rs,
1 where [a] is the greatest integer less than Relatively
V== IDU1w b exa S). simple expressions foDs and Rg are obtained by shifting
(i) ZJ[ V1t expS) ky— ky+ /2 andk,— 2k, + 7. For odds,

For example, the probabilitp(?(j) of finding a dimer on a
bond in the {) direction at site 0 is given by Qs_f dkw(ky.ky)cosky)cogsky), @)
POG) =Koy, (5)

In the original matrix language, the Green function elements
make up the inverse of the matri®, namely, while for evens,

(igy=(M"H;=—=(M"1);;. Qs=0, 9

RS=tJ dkw(ky,ky)cogk,+ky)cogsk,+ky),  (8)

In this section we explicitly determine the Green function
and its asymptotic behavior. In Sec. IV we use these results Rs=f dkw(k,,ky)cogky)cogsk+ky), (10
to determine the dimer-dimer and monomer-monomer corr-
elators. where
As shown in Sec. Il, in Fourier space the action is written
in terms of the 4«4 blocks[Eq. (3)]. These blocks can be Wik, k) 1 1
easily inverted to give the two-point functions in Fourier xRy) = 5 2 :
space. Expressed in terms of the functig&) and A(k), 2 cos'(ky) + cos'(ky) +t* cosi(kyt k)

we have These integrands are all invariant under the interchangg of
o andky, underk— —k, and under shifts ofr.
T = (I _ 2i sin(ky) One of the two integrals in each of i@, andR, can be
Paih 10 = (Voo 10 = Ak) done immediately by residue. We lat=k,+k, and b=k,
—k, so thatw™'=2[ 1+ cos@)cosp)+t*cos(a)]. The inte-
~ o~ g* (k) gral overb can be deformed so that the contour runs around
(Y1) =~ AR the pole at
1+t’cog(a)
~ o~ g(k) cogb)=——
(Yapihn )=~ AR <b) coga)

This is done by changing the integration contour running
tﬁ]om — to 7 along the real axis to one which first runs
from — 7 to — 7 +io, then to+ 7 +iw, and finally back

down tosr. The two contours running parallel to the imagi-

To determine the Green functions in real space, we need
invert the Fourier transform. This yields

<l//a,x4//5,y>:J dke NG s i) (6) nary axis cancel as the function is periodic undes b
+ 24r, and the contribution from the contour running parallel
where we define to the real axis vanishes when the integrand vanishes expo-
nentially as Imp)—cc. We thus pick up only the contribu-
1 (2w 2m tion of the pole of the integrand. For example, we have
f dk=—: dkxf dk, .
47Jo 0 27db 1 1
For a finite number of sites, this integral is replaced with the fo 27 141 cogb)+t2r2 1+ (22— 1)rZ+t%*

usual sum. To simplify the resulting expressions, we special-

ize slightly in the subsequent analysis The resulting expressions f@s and Rg are simpler on
(1) We work in the thermodynamic limit so we have in- the isotropic triangular lattice=1 because of the additional
tegrals ovelk. symmetry. In particular, hene(k,,ky) is invariant under the

(2) We setu=v=1. Thus the fugacity gives a way of transformationk,— — (ky+ky); this ensures that the Green
interpolating between the square and the isotropic triangulafiunctions are invariant under a 60° rotations of the lattice.

lattices, witht=0 giving the former and=1 the latter. For example, this transformation allows us to change the
(3) We study correlators where the fermions are in thenumerator ofQ, from cosék)cosk,) to coséacos@). This
same or adjacent rows. gives us
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| | term in the integrand is decreasing exponentially. It is thus
[ [ easiest to use the fact that with a square-root branch cut, the
- | | integral around one side of the branch is equal to the integral

XK XU around the other. Thus the contour can be deformed yet
T again, so that it goes from the two branch points#q as
long as we multiply the result by 2. This contour, denoted by
C, is depicted in the second part of Fig. 2.
XU NUX b LAVA VAVA < With this new contour, asymptotic evaluation of the inte-
gral is easy, because the integrands are sharply peaked at the
branch points. For example, we have

FIG. 2. The integration contour§dashedl used for the
asymptotic evaluation of the Green function whenl/2. The sec- O t=1)= — | da
ond is equivalent to the first if the integrand is multiplied by 2. For s 2m7)e “\/1+CO§(a)+CO§1(a) '
t<1/2, the branch cuts have R§E0.

ei(s+ 1)a+ ei(s;fl)a

The exponentials rapidly decrease as djn(s increased

- cogsa)coga) along the contour, and moreover, the rest of the integrand has

1
Qs(t=1)= ﬂ 0

a . (11 a square-root divergence at the branch points. It is thus an
V1+cos'(a)+cos(a) asymptotically ~exact approximation to  substitute
and for odds J1+cos(a)+cod(a)~Cya—a. into the integrand. This
gives
T ib0 —
R(t=1)= [ Tga2ot2@e Prcos(s- Dal ) Qut=1)~f(|s+1[)+f(|s—1]), 15)
41 Jo JV1+cos(a)+cod(a) where

while for evens,

1 joo efisa
1 (7 cog(s—1)alePo+cogsa f(s)=Re| — | da——=|.
Rs(t=1)=—J da i(s-dal isa) 13) JCmla,  a-a.
4mJo J1+cog(a)+cod(a) _ o
We have used the fact that the integral fram to infinity is
where the complex conjugate of the integral froa. to infinity.
After shiftinga—a-+a, , the integral is easily done, yield-
by 1+cog(a)— J1+cos(a)+cos(a) ing g " g y y
€= coqa) '
— ia;s
A. Asymptotic long-distance behavior f(s)=Re Cswe '

In this subsection, we study the long-distance behavior Of:inally, we breaka, into its real and imaginary partst.
the Green function®g andRg. We derive an expression for _ a+iB. For t=1, cosh,)=exp(dm/3), so that C

the correlation length of the fermions at anwnd find thatit  _ 33/, explinl4), «=1.19®... and
indeed vanishes only wher-=0. '

Unlike the similar case of the square lattice, the integrals 1 [2+314
for the Green function cannot be evaluated asymptotically by BzZIn = =0.8314.... (16)
partial integration. This method only works for algebraic cor- J2-3

relations, whereas in our case, the correlations decay eXPP1ugging this in gives
nentially. One can nonetheless obtain the asymptotics by de-

forming the integration contour. Instead of there being poles 1 e Bs -
in the complexa plane, there are now square-root branch f(s)= ——cos( as+ = |. (17)
cuts. In the regionRe(@)| < /2, there is one branch cut in V23 s 8

the lower-half-plane and one in the upper. kerl/2, the  The asymptotic expression f&, can now easily be found
branch cut has Ra=0, while fort>1/2, it is parallel to by noticing that at the branch poiat=a, , e®o=—1. This
the Re@) axis. The general formula for the location of the 1 eans that ’

branch pointsa.. is
Ry(t=1)~(=Df(|s)—f(|s=1)]. (18)

1+/1—4t?

coga+ )=
sa.) 2t2

(14 We have therefore shown that on the isotropic triangular

lattice, B8 is the inverse correlation length along the rows. It
For the same reason we could deform thmtegral around is only about one lattice spacing, so the exponential decay of
the pole, we can now deform the integral around the the Green functions is quite rapid. Comparing the asymptotic
branch cut, as depicted in first part of Fig. 2. To evaluate thdéorm to the exact values derived in Sec. ll(Bee Fig. 3 for
integral by saddle point, we want a contour where ¢#  a plot of Q,), one finds that the agreement is excellent—
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FIG. 3. The curve is the asymptotic expression [fQg] when t

t=1 [Eg. (15)]. The points are the exact values at a&ld), van- ) ] )
ishes for evers. FIG. 4. The correlation length as a function of the dimer fugac-

ity: t=0 is the square lattice =1 the isotropic triangular lattice.

within a few percent—even for small values ®fAt occa-
sional values of (e.g.,s=15); however, the agreement is
only within a factor of 2 or so. The reason is that the oscil-
lating factor in Eq.(17) occasionally becomes very close to
zero nears an odd integer, so that the terms we have ne- 1

glected above can become larger than the one we kept. This EV~ — -0,
however, does not change our results for the correlation V2t

length, because the neglected terms have the same expone

: : wq{ile £E=1/=1.20Z ... att=1. In this expression, we
Prilmd(ipﬁgdiinég an;)%but a power law exponent different have taken the length of a diagonal bond as unit distance.

For arbitraryt, the computations are similar but the equa_TransIatmg this back into square-lattice languageth the

tions look fairly gruesome. Finding asymptotic expressionéength unit given by a lattice constanemoves the factor of

for Q. and R, is more complicated because the transforma-ll‘/i' The diverging correlation length in the square lattice

tion k,— — (ky+k,) no longer leavesv(k,,k,) invariant. limit will be used to take a continuum limit in Sec. V below.
However, we can easily extract the correlation length for

Green functions in th&+y direction(the direction along the
links with t-dependent fugacily The reason is that the ex-  In this subsection we show how to derive exact expres-
pressions for the Green functions in this direction end ugsions for the Green functions on the isotropic triangular lat-
very similar to Eqs(12) and(13). The key fact is that there tice, t=1. We start by noting that a few of these Green
are no terms in the integrand involvirg®, only ePo. Like  functions can be evaluated immediately. In the isotropic case,
before, the integrand is peaked around the branch point$ie probability of a dimer being on a given link is 1/6. This

given in Eq.(14). Thus the fermion correlation Iengﬂ%*y is Is of course related to the Green function for neighboring
given by fermions by Eq(5), so

1- \/1—4t2)
arccoy ———— |.
2t?

t=1/2 in Fig. 4 is evidence of a level crossing between two
eigenvalues of the triangular lattice.
As t—0, the correlation length diverges ag,1/

B. Short-distance behavior on the isotropic lattice

1
(&%) 1=1m (19 Q=Ri=Re=5-

Ironically, this fact is not easy to extract from the explicit
We plot this correlation length in Fig. 4. Note that the kink at integrals[Egs.(11)—(13)]. It does follow from noting that the
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TABLE II. The Green functiorQ, explicitly. Although it is easy to iterate the recursion relations on the
computer, we have not succeeded in finding a closed-form
s Qs Numerical value expression for arbitrar); andRg. We have collected some
of them in Table Il. Note that even though the coefficients
1 16 0.166666666666666666667 o increasing exponentially wity the three terms in each
3 1241 U\/§ —0.024550581458226763328 cancel almost perfectly to give the exponential falloffsin
° 3 IV. CORRELATORS
° 8Uo+5/6- S/GW 0.0022132632430383043346 A. Dimer-dimer correlation function
V3 The dimer-dimer correlation function is easily expressed
7 —56Uo+ 2+ (e 0.0000693679214938995513 iy tarms of the Green functions. The operalgy,, creates
V3 a dimer at sitex pointing in they direction. The probability
9 216U,— L +5/3— —0.000076203880846465563 that there are two parallel dimers in the same row a distance
UOT/_ s apart is therefore
3
11 %BUOJ,_ %97_ %5U_077 0.0000170664326460443169 p(dd)(s) =( '7/f1,xl//2,xl//1,x+s>21//2,x+s>2>-
3 By Wick’s theorem, this decomposes into
13 _ MUO_ 3443, 2509 Y7 = —(0.000002068500172729645 dd 5 2
° ° o Uom P! )(S):(RO) —(Qs)"—RsR_s.
15  pgp3a),— 2885 30870 V3 0.0000000086255295387778 This, therefore, dec:?\ys exponentially to its asymptotic value
2 L Uom with half the correlation length of the Green function. For the

isotropic lattice, one can easily plug in the asymptotic forms
[Egs.(15) and(18)] derived in Sec. lll, and find the correla-
transformationk,— — (ky+ky) in Egs. (7),(8), and (10)  tion length 1/(28)~0.6014, less than one lattice spacing.
means thaQ,;=R;=R,, and also thaQ;+ R;+Ry=1/2.

By generalizations of this argument, it is possible to de- B. Monomer-monomer correlation function
rive recursion relations relatin@, and Rg. For the square As noted in Sec. |, the asymptotic behavior of the
lattice they are discussed in Ref. 23. For the isotropic trianmonomer-monomer correlation function is quite interesting
gular lattice, the relations relating all tli&’s to theQg's can  physically. A zero value means the model is confining, while
be derived using simple trigonometric identities. One findsa nonzero value means that the model is in a deconfined

here that phase. We will show in this subsection that on the isotropic
triangular lattice, the latter is true.
Roj+2=Roj+1— Roj+Roj -1+ Q24 1—Qpj-1 A monomer placed on a lattice site forbids a dimer from

being placed on any of the links connected to the site. The
monomer-monomer correlat®™™(q,r) is the ratio of the
_ number of configurations with monomers at siteandr to
2Roj+1= = 2R~ Q25117 Q2j 11 Jjo- the number of gonfigurations without the mor??)mers. Thus
The Kronecker delta in the latter identity arises from thecomputing a monomer-monomer correlator follows from the
integral fdk COSGX)=5J-0. The recursion relations involving partition function of the Iatt_ice with the _tWO sit¢and all '_[he_
only Qs are trickier to obtain; we discuss them in the Appen-links connected to these sijedeleted. Since such a lattice is
dixes. planar, Kasteleyn’s construction is still applicable. The one

The recursion relations mean th@g andR; for any's can complication is that we must ensure that on the lattice with
be expressed in terms @, R,, andQ,. These in turn can deleted sites, the number of arrows is still clockwise odd.
be evaluated in terms of elementary functions; in particulatVIth the assignment in Fig. 1, one sees immediately that the
the combination number of arrows arounq.a deleted site is even. Thus this
assignment must be modified by reversing one of the arrows
in the plaquette around the deleted site. Reversing the arrow

and

- I'(7/6) . (200 ©On this link then ruins the clockwise-odd assignment around

2T (213 \7 the other plaquette this link borders. Thus we must reverse

o . ) one of the other arrows on this other plaguette. This in turn
As detailed in Appendix A, along witQ,=1/6 we have ruins another assignment, and so on. We thus must build up
a string of reversed arrows, which must stretch from one
R =E—2U monomer to the other. As long as the arrows are chosen to

273 0 make all plaguettes clockwise odd, the monomer correlator is

independent of the choice of path of the string. For mono-

1 1 43 mers in adjacent rows, this construction is illustrated in Fig.

Q3=~— > + 3 U_ow' 5; links with the thick lines are part of the string.

This is very much like constructing the spin-spin correla-
Using these facts, we can evaluate the Green functions tiion function in the Ising model in terms of fermionic vari-
arbitrarily good accuracy numerically by using, e.g., Maple.ables. In fact, on the square lattice, the monomer-monomer
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(mmy_ PM™)
e 7 Pf(M)

N 5 W 8 s whereM (MM is the Kasteleyn matrix with the monomer sites
L removed, and the signs reversed on the links of the string
\/\/\ connecting the monomers. The advantage of this formulation

2 ° <> is that one can manipulate a matrix without changing the
1 W“ determinant. For example, if one adds any row of a matrix to
: B any other row, the determinant is left unchanged. Thus the

strategy is to find explicitly the matrif ~*M (™™ describ-
FIG. 5. The string in the monomer-monomer correlator with NG the monomer correlator, and manipulate it to make it

p=4. more tractablé.On the square lattice, it is simple to show
that

correlator was showtf®to have the same long-distance be- . 5

havior (falloff as the square root of the distanaes the spin- def M~ *M(™M)=de(T)?,

spin correlation function in two decoupled Ising models. The
precise relation between the two correlators for the squar
lattice was given in Ref. 25. In Sec. V, we will extend this
relation away from the square lattice.

We define as the monomer-monomer correlation function
P(MM a5 the ratio of the number of configurations with the™
monomers to the number without. This can be written in
terms of the fermions. Deletin'g a site mgrely corrgsponds to PMM(p) = Ede(RJr Q). (23
inserting a fermion at that site. Changing the sign of the 2
arrow corresponds to changing the sign of the term of the i i
fermion in the action. In our theory with action Where the entries of thex p matricesQ andR are

2 <kMjk ¥, for a monomers at siteg andr,

hereT is apX p matrix. After a variety of manipulations
escribed in appendix B, one finds the same behavior on the
triangular lattice.

Deferring the details to Appendix B, our result is that the
onomer-monomer correlator is

Riy=(—DOVAR o+t 70700 —), (24

P(mm)(qu):<¢qH (1_2Mab¢awb)¢r> (21) Qij:i(_l)[(j+i)/2]Qp+1—i—j , (25)
where the product is over all the links connecting sgg@md ~ whered(x) =1 for x>0 and 0 forx<0. Unlike the case of

r which have reversed arrows. We specialize to the case dhe square lattice, the matrik + Q is not Toeplitz(the en-
one monomer being at the origin and the other in an adjacerities in a Toeplitz matrixT;; depend only oni—j). For
row p lattice spacings apart, as illustrated in Fig. 5. LabelingToeplitz matrices, Szego’s theorem provides a simple way of
the fermions in the lower rovt ...p and those in the upper finding the asymptotic behavior of the determinant as the

row asp+1...2p gives matrices get large. Her&;; depends only om—j, but Q;
depends only on+j. We do not know if there is a gener-
P (p) =y (1= 2i ¢hy 1 1902) (1 + 2it by o) alization of Szego’s theorem to our case.
i To evaluate this correlator for=1, we can plug the
(1= 2 1) thop) (22 Green functions derived in Sec. Il into the expression for

(mm) . .
Since the theory is free in terms of the fermions, one can us% [Eq. (23)]. Expressing them in terms &f, as before,

Wick's theorem to express this correlator as a product ofhe final form of the determinant simplifies substantidfy

Green functions. Evaluating it by brute force, however, is togough it is still fairly horrible. For example, fop=3 one

difficult for all but low values ofp, because the number of finds
contractions grows exponentially. For a two-site separation,
J P Y P V3+(2m—33)Uy— 144703+ 864U}

PIM(3) = 277U,

PMM(2)=R,(1—Ry) — 2RZ—2Q%.

Using the results of the previous section for the Green funcWe have collected some numerical values in Table Ill. The
tions, one has, for=1, correlator falls off exponentially to the value

P(MM(2)=4U,/3— 1/9=.1465767259. .. . P(MM (00)=0.1494292453613422540173151748269 .

To proceed further, one must in revert to the PfaffianSo the monomers clearly are deconfined in this phase, since
methods developed for the square latfic®ur calculation the monomer one-point functidr= JPMM ()] is nonvan-
generalizes these methods to the triangular lattice. Thishing. Numerically, one can check that the correlation length
monomer-monomer correlatfiEq. (22)] can be expressed in here is the same as for the dimer-dimer correlation, namely,
Pfaffian language as 1/(2B), or about 0.6 of a lattice spacing.
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TABLE lll. The monomer-monomer correlation function for the V. PERTURBING ABOUT THE SQUARE LATTICE:

isotropic triangular lattice. FIELD THEORY
s pmm(s) As we noted earlier, the general triangular lattice dimer
model is critical in the square lattice limit. This suggests that
1 0.166666666666666666666667 we can gain some insight into its properties by considering a
2 0.146576725991984081282220 continuum limit when the diagonal fugacityis small. We
3 0.150263558036976118604604 should immediately enter one caveat: our exact computation
4 0.149354528957809826733084 shows that there is a level crossing in the excited state spec-
5 0.149441157286260650652237 trum of the transfer matrixthe kink in Fig. 4 en routefrom
6 0.149430105031348455969637 the square lattice to the isotropic triangular lattice so there
7 0.149429091105386654359851 are details of the latter that the continuum theory will not
8 0.149429312376742966925414 reproduce very well.
9 0.149429243123620452470446 Returning to the fermion action and settityg O, it turns
10 0.149429245483558265741555 out that in the absence of diagonal bonds we no longer need
11 0.149429245691495770851350 to d(_)uble the unit cell as was necessary for in B); the
12 0.149429245319212097747918 fgrmmn operatorsy; use_d in this section thus refer to the
13 0.149429245371125328892038 sitesx of the square lattice. _ L
14 0.149429245361581959940523 In momentum space, the resulting action is given by
15 0.149429245361256645973930 1 o
So=5 % (2i sink,— 2 sink,) g, (26)
C. Vison-vison correlation function where we have now reverted to the standard Euclidean field

theory convention of including an explicit minus sign with
In the quantum dimer model, ar-flux vortex or the action in writing down the Grassmann integral. We see
“vison” 2?7 involves a semi-infinite string on the dual lat- that the fermion dispersion has nodeskat(0,0), (0a),
tice. A particular dimer configuration acquires a factor of (,0), and @, ). Linearizing near these points and defin-
(—1)Nstind), whereNgying(C) is the number of dimers inter- ing
secting that string. For two visons separatedxithe string

can be taken to run from one vison to the other and hence no Xk= e
flux is visible at infinity. At the RK point, the calculation of
the static two vison correlator reduces to the evaluation of E:I}m;ﬂ,

S o(— 1)Nsting29(®) which is now a purely classical problem.
We will henceforth refer to this sum and its generalizations
to unequal fugacities as the two-vison correlator even though
the latter do not correspond to any known quantum problem. “2_ iV 27)
We should also note that the choice of string, which needs to Xk merko
be made for each separation, lead to an ambiguity of a sign gfe obtain the long wavelength forng£ 9, —i dy, E;%ax
each separation. +idy)
The two-vison correlator was studied recently in Ref. 28
for a Kagome spin problem equivalent to a generalized dimer
model on the triangular lattice requiring three dimers per
site. There are some special features of this problem, arisi
from the “particle-hole” symmetry of occupying three
dimers out of a possible six at each site and among them i
the presence of two species of visdifer details the reader
should consult the original woykln our problem, that of one
dimer per site on the triangular lattice, life is simpler. Here
the two-vison correlator can be seen, most simply by dualityfu
arguments described in Appendix A of Ref. 12, to be equal in
magnitude(we have already commented on the sign ambi- 1 — . x+y+1. 2
guitil/) to the spin-spin corre?/ation function averagedgover the YOO = X700+ (=10 () i (= 1) (x)
ground state manifold of the fully frustrated Ising model on +i(— 1) H2(x),
the honeycomb lattice. The latter is known, and decays ex-
ponentially with a correlation length computed in Ref. 17. Aand using the continuum correlators
direct computation of the vison correlator is in progféss
and should obviate the need for the detour we have taken in
this section.

25 .
Xk= 1 azey)+ko

Sp=2 J d?x(x axt+ xraxt+ x2ox?+ x2ox?, (29

"Rhich is a theory of two Majorana fermions, both holomor-

hic (x*, x?) and antiholomorphicx*,x?) fields. The labels

and 2 here are not the same as those used to label the two
fermions in the unit cell; now the variablgsandy run over

all sites.

The leading asymptotic behavior of the lattice Green
nction can be recovered by inverting Eg7),

1
OO0 =7
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characterized by decay on the scale¢eflft, in agreement

1
(X*x)x4(0))=7— with our earlier, exact lattice computati¢gg. (19)].

am x=ly It is interesting to ask where the order/disorder fields
for a=1,2. This procedure yields (a/p) of the Ising operator algebra appear in the lattice
oy y . problgm. The two known cgndidat_es her'e are the monomer
G(x)— 1A= DTY] N [(-1)'=(=D)] and vison fields, both of which exhibit an inverse square root
4 x+iy X—iy ’ decay on the square lattiéé® In the Ising model at the criti-

(29 cal point, order and disorder two-point functions decay as

which exhibits the two sublattice structure that characterize | , S0 the monomer and vison flelds_ must be bilinear in
the square lattice problem. From this form we can recove e order and disorder fields, as proven in Ref. 25. To narrow

the asymptotics of the dimer correlations established in Rei‘.jown the correspondence, we invoke four further con-

4. For example, the connected correlation function for twotraints: (@ At t=0, the monomer-monomer correlator is

. . : o nonzero only when the monomers are on different sublat-
horizontal dimers displaced byis given by the Grassmann .
P byis g y tices. (b) Whent#0, monomer correlators decay to a con-

expression stant.(c) The vison-vison correlation function does not ex-
— " 9 hibit any sublattice structure and decays exponentially to
= +
Col )= (YOI UHX) YO Y (X)) zero whent#0. (d) Under dualityt— —t, ¢ and u change
— () (X + §()><¢(o) d;(f()). places in each of Majorana sectors. Because of the opposite

R . signs in Eqg. (31), one of the sectors is in the high-
By Wick's theorem,c,,=—G?(x)+G(x+x)G(x—x) and temperature phase, while the other is in a low-temperature
using our asymptotic form fo&(x) we find phase. In an Ising low-temperature phdséx)o(0)) goes
to a constant at largkx|, while in a high-temperature phase
(—D)*Y[ 1 L (—1) 1)\? (30 (m(x)(0)) goes to a constant. Thus fo0 only one of
Am?  \X+iy (=1 x—iy/ "’ the four bilinears decays to a constant, eitén? or o2 u?,
where the superscripts refer to the two Majorana sectors.
where we have ignored constants in the denominators thakjith these we can identify the monomer operators on the
generate subleading corrections in the generic case. For th&o sublattices witho 2+ i a2t the relative+i ensures
special case of two dimers in the same column, separated Q)at the correlator vanishes &t 0 when the monomers are
an even distance, this expression vanishes. However, even § the same sublattice. In the absence of further constraints,
that case one can recover the correct subleading form bie vison operator can be identified with either of the com-

Cxx(x) ~

reinstating the constants, as can be readily verified. _ binationsota?+ utu2. Afourth dimension 1/4 operator still
Next we consider adding in the diagonal bonds withneeds to be identified to complete this set of identifications.
fugacity t and find that near the nodes &f it adds Finally, we should note that in the standard Ising model
on the square lattice, equivalent to a dimer model on Fisher’s
S,= it (—1)YP(X) p(X+X+Y) lattice, thinlgs work somewhat differently, as we shall discuss
X elsewheré? In that problem the two Ising phases correspond

to confined/deconfined phases of the dimer problem.
=it exp(—iko)exp —i(ky = m) iy
VI. CONCLUDING REMARKS

Expanding this near the nodes of the dispersion yields
P g P y We have shown that the classical model on a triangular

— . lattice is generically in a liquid phase with deconfined mono-
Sp:2itj d>(—x'x'+ x*x?), (3D mers. This result contrasts with the critical correlations found

on the bipartite square and honeycomb lattices. The more

i.e., two mass terms of opposite signs. This means that theomplicated, nonbipartite, Fisher lattice also exhibits a de-

model is invariant under the standard Kramers-Wannier dueonfined phase along with a confinement-deconfinement
ality of the Ising model, which sends- —t. Here this just transition. It would clearly be interesting to see if other, as
interchanges the two fermions. It is easy to check that ouyet unstudied, examples follow this classification. In this
Pfaffian analysis gives results independent of the sigh of context it is worth noting that the two critical dimer models

Changingt— —t leaves invariant the Green functiog;, admit height representations on account of their bipartite
andR for evens, while it flips the sign ofRg for odds. This  character—a feature often associated with criticality in two
leaves all monomer and dimer correlators invariant. dimensions. It is also worth remarking that this correlation

It follows that perturbing away from the square lattice between criticality and bipartedness connects, via the quan-
results in a non-analyticity in the thermodynamics, with be-tum dimer model, to the Fradkin-Shenker theorem in lattice
havior in thed=2 Ising universality claséwith a doubling gauge theory? Finally, for reasons noted in Sec. |, any fur-
of the degrees of freedomSpecifically, Onsager’s results for ther work along these lines would also be immediately useful
the Ising model give the dimer entropy density to S) in advancing our understanding of quantum magnetism.
—8(0)x —t?logt?, so that the model is indeed non-analytic  Note addedAfter we submitted this paper, a preprint by
att=0. Fort near zero, the correlation functions are nowA. loselevich, D.A. Ivanov, and M.V. Feigelman appeared
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(cond-mat/0206491 who studied the triangular dimer corre-

PHYSICAL REVIEW B66, 214513 (2002

(k—1)Uy+2(2k—3)Uy_1+6(k—2)Uy_»

lations in the absence of monomers. Beyond the results re-

ported here, they pointed out that the dimer correlation

length depends on direction.
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APPENDIX A: RECURSION RELATIONS

To obtain the recursion relations for the Green functions

terms of theB function as

I'(7/6)

= =0.1932658778273213.....
2U (2137

0 (A3)

efficiently, it is helpful to do changes several of variables.SinceQ,=1/6, this yields immediately that

First of all, we definez=cos(2). Sinces is always odd, one

can rewrite 2cos@cos@)=cog(s+1)a]+cog(s—1)a] in

U,;=1/6—U,. (A4)

terms of powers of cos@). That is, we use the Chebyshev This then gives us our first nontrivial Green function explic-
polynomials T;(y), which are defined by the relation ity becauser,=2U,=—0.0531984223.... Toutilize the

T;[cos@)]=cos(a). For example,T;(y)=y, Tu(y)=2y?

recursion relations given above, we also na¢g Using

—1, T5(y)=4y>—3y, and so on; a closed-form expression various properties of the complete elliptic integrfisye

can be found in Ref. 33. Using this gives

1 (1

Q - _'T(S+ l)/2( Z) + T(S, 1)/2( Z)
S 2m)_

v =D (T+4z+ D)

(A1)

This means that an@); can be expressed as a sum of the

functions

1 fl K
Ue=-— dt
“2w) T (1= (7+4z+ D)
fork=1...(s+1)/2. For example,
Q1=U;+Uy,
Q3:2U2+U1_U0,
Q3:4U3_3U2+2U1_U0,
4:8U4+4U3_8U2_3U1+U0.
One also has
R2:2U1.

The reason we write things in terms of tble is that it is

easy to derive recursion relations for them. This is usefu[Mer Siteés 1 or P. Thusg; =
because there are simple explicit expressions for the first fe

U,. Denoting the denominator dAl1) asY, the recursion
relations follow from the fact that

L[ 1y2 1 d(y?)) d my
vim T2% 4z TP

is a total derivative. For our case, this yields the identity

have shown that remarkably enoudh, is simply related to
the reciprocal olU,, namely,

1

1
Up=Ug+t ————=.
2 0 47T\/§U0 3

(A5)

APPENDIX B: DERIVATION OF THE MATRIX FOR THE
MONOMER CORRELATOR

The monomer-monomer correlafdtq. (22)] is written in
terms of matrices as

P(MM(p)=Pf(M~tM(mM)
We define
E=MMM—M,

Since by definition the Green’s functioij=(M‘1)jk
=—(4;), we have

P =[det| +GE)]"?,

wherel is the identity. As seen from E¢22), there are three
types of entries irk.

(1) We need to remove the links connected to the mono-
— M, if eitherj or k is either

W or 2p.

(2) We need to change the sign on the links on the string.
ThusEj = —2Myy if the link (jk) is part of the string.

(3) We need to account for the, ¢, in Eq. (22). This is
done byEzp’]_: - El,a): | .

We now specialize to the case of monomers in adjacent
rows a distance apart. Here the matri has nonzero en-
tries in 2(p+4) columns and rows. I&,,, the indices and
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s run over 1...p for the sites in the_ Ipwer row, ang (1+GE)ap=06apt2iGazp-1—itGa -

+1...2p for the upper row. The remaining 8 columns and , . .

rows correspond to the sites surrounding the two monomer&he last piece can be removed without changing the deter-

which are not part of the string; we denote those adjacent tglinant by adding times the first column of\1 to this col-

the left monomer as 12',3'.4’, and those adjacent to the Umn. This gives

right monomer as 56',7',8'. Moo= 8. +2iG
Since we evaluated all the Green functions in Sec. Il for ap™ “ap a2p-1

t=1, at this point we could just plug in all the numbers, Now consider thep— 1th column:

multiply the matrices, evaluate the determinant, and take the

square root to get the monomer correlators. However, the — (1+GE), 1= 8,p-112i1G42p 2= 2itGa2p-1-

determinant can be simplified a great deal, and is quite el- imolify this by adding thigi theoth col i
egant. In fact, we can rewrite the correlator as a determina € can simp ify this by a aing Imes thepth column 1o
of a matrix half the size. this, yielding, for the modified matrix,

Let us first consider the first column of- GE. The non-
zero entries of E,; are when b=2p or b=2p
+1,1',2",3',4' (the latter sites surrounding the site 1). Note Continuing in this fashion gives
that 2.G,.M.1= 41 When c is summed over the sites
around 1. Then

Ma,p—lz 6a’p_1+t5ap+ 2iGa,2p—2 .

p
Mab:gb 8ot P+ 2iGap s p s

GabEbl:'Ga'Zp_g GacMe1=Gazp™ ar: forb=2...p anda=1...2p. We already have

Thus Ma1=iGazp.

(1+GE)a1=iG4 - We can do the analogous manipulations for the columns

Similarly, (I+GE),2=—iG,;. We now consider the col- =p+1...2p—1. This yields

umns coming from the sites adjacent to site 1 but not part of c
the string. For these sites’=1',2",3',4', we havekE,, M= > St 2iGuc pi1
* §41. Thus in thekth column ofl + GE we haveG,,Ep j=p+1
=G,1E1. - However, we can essentially remove this col-
umn without affecting the determinant. If we add thptt2
column timesiE ./ to thec’th column, thec’th column of Mazp=—1Ga1.
(I+GE) is just ;. . Thus the only non-zero entry in the ' '
c’th column is on the diagonal, and is 1. The determinant \We can now writeM in terms of theQ, andR; defined in
with these rows and columns removed is thus identical tahe last section. For example,
those with these columns present. The rows and columns
5',6',7',8 are removed in a similar manner. i(—1AQ,_,, l<a<p

We denote the modified 2<2p matrix (with the same M 2p= (—1)la-p-Dr2IR p+l<a<2p
Pfaffian as. M. We can continue with such column manipu- ap '
lations to simplify the matrix further. Consider tipgh col-  where[x] is the greatest integer less thanPutting this all

and

umn. We have together yields, for example, far=4

[ —R, 2R, 2R, -2R;  2iQ, 0 -2iQ; 0 1

-R; 1-2R, 2R, 2R, 0 2iQ, 0 -iQ,

R, t-2R; 1-2R, 2R, -—2iQ, 0 2iQ, 0

R, t>+2R_, t—2R_; 1-2R, 0 -2iQ, 0 iQs
M=l o, 0 —2iQ, 0 1-2R, t—2R,; t’+2R_, R, |’

0 2iQ, 0 -2iQ; 2R; 1-2R, t-2R; R,

-iQ, 0 2iQ, 0 2R, 2R, 1-2R, —Ry

L O -2iQ, 0 2iQ; —-2R; 2R, 2R, —Ry

where we have used the facts @t ;= Qg and Qs=0 for s even. This matrix looks much nicer if we reshuffle rows and
columns. We permute the first column through the others so that it becomeshticelumn, and permute thepgh column
through so that it becomes the+1th column. This does not change the determinant. We then relabel the indices

214513-12



CLASSICAL DIMERS ON THE TRIANGULAR LATTICE PHYSICAL REVIEW B66, 214513 (2002

p+1...2p in reverse orderi.e., interchange g—p-+1, WwhereR andQ are thepXp matrices defined by
2p—1+~p+2, etc) We also multiply thepth and thep

+1th columns by 2, so that we need to divide the resulting Rij=(—DWU=D22R, , +o(i—t17Y, (B2
determinant by 4. These manipulations put the matrix into
the form Qij=i(— 1)[(]+|)/2]2Qp+1—i—j , (B3)
R Q (B1) where 6(x)=1 for x>0 and 0 forx<0. For example, for
Q R’ p=6 we have
|
2R1 2R2 _2R3 _2R4 2R5 2R6
1_2R0 2R1 2R2 _2R3 _2R4 2R5
t—-2R_; 1-2R, 2R, 2R, —2R; —2R,
R=| t2+2R_, t-2R_, 1-2R, 2R, 2R, — 2R,

t3+2R_; t?+2R_, t—-2R_; 1-2Ry, 2R, 2R,
t*—2R_, t3-2R_; t?+2R_, t—-2R_; 1-2R, 2R,

2iQs 0 -2iQ; O 2iQ, 0

0 —2iQ; O 2iQ, 0 —2iQ,
—-2iQ; 0 2iQ, 0 -2Q;, O

Q= 0 2iQ, 0 -2iQ, O 2iQ,
2iQ, 0 -2iQ; O 2iQ, 0

0 -2iQ; O 2iQ, 0  —2iQs

The determinant of matrices of the forrfB1) can be upper right to lower left while Q is antisymmetric around

simplified>® the off-diagonal. Thus
e =de =de 1
9 R 0+R R 0 R-Q detM= 7 [de(R+ Q)12

=de(R+ Q)de(R— Q).

In our case, the latter two determinants are the same, becaushis yields resuli{23) for the monomer-monomer correlator
R is symmetric around the off-diagonéhe diagonal from above.
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