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Absence of singular superconducting fluctuation corrections to thermal conductivity
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We evaluate the superconducting fluctuation corrections to thermal conductivity in the normal state, which
diverge asT approached .. We find zero total contribution for one-, two- and three-dimensional supercon-
ductors for arbitrary impurity concentration. The method used is diagrammatic many-body theory, and all
contributions—Aslamazov-LarkifAL ), Maki-Thompson(MT), and density of state®OS)—are considered.

The AL contribution is convergent, whilst the divergences of the DOS and MT diagrams exactly cancel.
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l. INTRODUCTION whereng,~(T—T.)%? ! is the number density of fluctuat-
ing Cooper pairs. This term is singular fd2, but is ex-

The discovery of the higfi-, superconductors has led to a actly canceled by Maki-ThompsofMT) terms. The latter
renewed interedtin superconducting fluctuation corrections terms are due to new heat transport channels opened up by
to normal-state transport propertiedVhile much of the Andreev-scattering processes. An electron can Andreev scat-
work has focused on the electrical resistivify, several ter into a hole, and since electrons and holes carry the same
experiment$® have reported fluctuation corrections to the heat current, this leads to a net increase in thermal conduc-
thermal conductivityx. Since there is some dispute betweentivity. The amplitude for the Andreev scattering is exactly the
theorist$~? as to the predicted magnitude of the effect, wesame as for an electron to scatter into a fluctuation Cooper
have performed a detailed microscopic calculation valid forpair, so the MT and DOS terms have the same magnitude but
all impurity concentrations. We find no divergent fluctuation opposite sign, and hence cancel. These MT processes lead to
contribution, and conclude that the experimental features further suppression of electrical conductivity since holes
seen neail . must have some other physical origin. carry electric charge opposite to electrons, i.e., the MT and

Let us try to understand the reason for the lack of singulaDOS contributions cancel for thermal conductivity and rein-
fluctuation contributions to thermal conductivity. There areforce for electrical conductivity.
several processes involved, and we will try to develop a Before we proceed to the details of our calculation, we
physical picturé&® for each. The Aslamazov-LarkiL) pro-  present a short history of superconducting fluctuation correc-
cess involves the transfer of heat by fluctuation Cooper pairgions to thermal conductivity. They were first predicted
The corresponding term for the electrical conductivity has al970 by Abrahamet al. in the diffusive regime. These au-
strong divergence, thors concluded that the AL terms were convergent, but that

the DOS terms led to divergent contributions in two and one
oA~ (T-To%22 (1) dimensions, of the form IA-T,) and (T—T.) 2 respec-
tively. They appear to have missed the cancellation between
DOS and MT contributions. Shortly afterwards, fluctuation
effects with the predicted power-law behavior were
observedf* in one-dimensional Pb-In wires. After this intial
kgTo\2 work, there was apparently no theoretical or experimental
) o, (2)  activity in this area for nearly two decades. Indeed, in
Qo Skocpol and Tinkham’s 1975 revieéthermal conductivity
where kg T, is the amount of heat an®, is the electric is described as one of those quantities which “have not yet
charge, carried by the excitations in a given system. For flucbenefited from sustained interaction between theory and ex-
tuation Cooper pairsTo~T— T, andQq=2e so that periment, perhaps because such effects are small, and hard to
interpret.” In 1990, Varlamov and Livan8vpredicted AL
Ke(T—To)\2 a2 contributions with the same strong divergence found in the
26 AL~ (T=Te)™5 3 electrical conductivity, T—T.)%2 2 this erroneous result
appears to be due to an incorrect treatment of the heat-
which is clearly nonsingular a6— T . The density-of-states current operator. The same autHoasso discussed the rela-
(DOY) correction arises from the fact that when electronstive magnitudes of DOS, MT, and AL contributions in lay-
form fluctuation Cooper pairs, they cannot simultaneouslyered superconductors, and argued that the DOS and MT
act as normal electrons; there is a corresponding decreasetéyms dominate inc, while AL terms dominate inc,,. The
the normal-state density of states and hence normal-stajgedicted fluctuation effects have since been seen experimen-

The size of the contribution to thermal conductivity can be
estimated from Eq(1) using the Wiedemann-Franz law,
which has the general form

.

KaL

thermal conductivity, tally in an YBaCwO,_; single crysta? and
- Bi,Sr,CaCyOg and DyBaCu,O,_ 5 polycrystals®® Excel-

o NepkaT T~—(T—T yar2-1 4) lent quantitative agreement was found between theory and

Kpos m ¢ ’ experiment; indeed, even the predicted two- to three-
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A the elastic-scattering time. The black dots represent heat-
| ! current vertices, which are given by
in(k +Q,) <, 2e,+Q,) (7)
’ ’ =51 .
(A1) B1) In(k,e .8 V= om (2¢) n

The shaded regions are impurity vertex renormalizations
0 which, at zero momentum, take the form

v O(—e187)

C(g=0,e,,85)=0(+¢ge,)+ —mm——, 8
(A2) (B2) (q 1 2) ( 1 2) (|81|+|82|)T ( )
whilst the dashed lines are single impurity renormalizations.
The wavy lines are superconducting fluctuation propagators,
L(q,iwy), which for smallg are given by
(©) (D) L 1 oy
L(g,iwy) "=NO)|In|=|+¢| =+ —=
FIG. 1. Feynman diagrams which give singular contributions to " Te 2 AxwT
the heat-current response function. Diagraf@sand (b) are the
density-of-state§DOS) correction diagrams; diagrarn) is the — | = |+ A(w,)DG? (9)
Maki-Thompson(MT) diagram; diagram(d) is the Aslamazov- 2

Larkin (AL) diagram. . . . .
whereN(0) is the electronic density of states per spin at the

dimensional crossover is seen at roughly the predicted tenf-6'Mi surfacewy,=27Tmis a BosegMatgubara frequency,

perature. Fluctuation effects have also been seefNaf ~ ¥(X) is the digamma functionD=vg7/d is the diffusion

Y)BCO intergrowth crystal§,although these have not been constant, and\(wr,) is given by

compared in detail with theory. However, there are problems

with this apparent agreement between theory and experi—A(w )=—¢’(E+M) _T[ (£+M+ 1 )

ment. The AL contributions have been reanalyzed in two ™ 4nT 2 4nT 2 47T AxTr

works using phenomenological hydrodynatfliand Gauss-

ian fluctuatiot® approaches, and are argued to be conver- _ (E M)

gent. Very recently Savonet al!? have agreed that there is 2 4xnT

no divergent AL correction, but argue that there are still di- .

vergent DOS and MT terms; we believe that these authorgh% zero-frequency fluctuation propagaterq,0), has a

have missed the cancellation between the DOS and M#/d° divergence aJ approached,

terms.

. (10

T-T,
Te

L(q,0)"*=N(0) +A(0)DG?|. (11)

II. THE CALCULATION

We now proceed to the details of our microscopic calcu-t is this feature that leads to divergent contributions to vari-
lation. The thermal conductivity is obtained from the imagi- 0us physical properties aapproached.

nary time heat response kern@l,,(iQ2,), by analytic con- Diagrams(a) and (b) of Fig. 1, in which a fluctuation
tinuation from positive Bose-Matsubara frequenci€s,  Propagator affects only one electron line yield the DOS con-
=27Tn, tributions; diagram(c), in which a fluctuation propagator
leads to interference between electron lines, yields the MT
C Qu(iQ,—Q+i0) contribution; diagram(d), which possesses two fluctuation
k= lim OT . (5 propagators, yields the AL contributions. Note that since the
Q-0

object of this paper is merely to show that there are no di-
. . I vergent contributions toc at T=T., we have omitted all
The diagrammatic pontrlbutlon_s to the heat response ker.n(aiagrams that cannot have such divergences. In particular, we
of the lowest order in perturbation theory are detailed in Figy . o ignored all DOS and MT diagrams that have an impu-
1. The solid lines are disordered electron Green'’s functions;rity line or ladder between the two heat-current vertices.
Such diagrams possess an extra factagpfwhich removes
G(Kig)= 1_ 6 the low-momentum singularity of the fluctuation propagator,
(kis) , , (6) .
. L(q,0). We also need to consider only the lowest poweq of
le)— &t 5 sgrte) in any diagram since this will have the most divergent
behavior—we, therefore, set=0 in all terms except the
where ¢ =27T(l+1/2) is a Fermi-Matsubara frequency, fluctuation propagators. Finally, since all DOS and MT dia-
&.=k2/2m— u is the electronic excitation spectrum, anés  grams have only one superconducting fluctuation propagator,

214505-2



ABSENCE OF SINGULAR SUPERCONDUCTING. .. PHYSICAL REVIEW &5, 214505 (2002

we can take the static limit and consider only termsregion of frequencies, where one propagator can have posi-
L(q,iwy) with zero Cooper pair frequency,,,=0. The AL  tive frequency and the other negative frequency.

term has two fluctuation propagators, and here we have to be The regular parts of the DOS and MT diagrams, which
more careful and keep ad,, terms as there is an anomalous come from diagramsa) and(c), give the total contribution,

. (2e,+Q,)? 1 1 2
re O)=— 2
i (1€2) = N(O)DT s,§>:0 [1+(2¢,+Q,) 7] s|2 (e1+ Q)% g(g+Q,) Eq: L(a.0). (12

The sum of the three terms in the curly brackets is easily seen to be proportioﬁ(ﬁl, teo upon analytical continuation,
division by ), and setting() to zero, we get zero contribution. The two DOS and one MT term have exactly canceled each
other. Note that the same terms in the electromagnetic response function reinforce rather than cancel each other because the
electric current vertex has the opposite electron-hole parity to the heat-current Werteioles carry opposite charge but the
same excitation energy to electrons

The anomalous parts of the DOS and MT diagrams give total contribution

anomy N(0)D
QR =T e T, D, (201~ 00

0<g<Qp

> L(q,0

S ——
2 2 2
gj g ef e(Qn—eg)| G

1+2¢7 1+Q,7 1 1+Qn7}

_ N(0)DT y02 e () (1 |Qn|) (1)
T @ranz| T I e T gt T2 )T

(1+Q,nQ5[ (1) (1
v(3)-o

|2y
47T §+m)”§q: H(a.0)

(13

where we have explicitly carried out the sum. Upon ana- contribution from the AL terms. Paradoxically, although this

lytically continuingiQ,— Q, dividing by Q, and taking the result does not appear to be in dispute, it is the trickiest to

limit Q—0, the above expression gives zero result. The neprove. The method used is simple power counting, applied to

result is thus that the anomalous part of the DO&T dia-  the analytical continuation of the complete Matsubara fre-

grams do not yield a divergent contribution. guency sum. We need the complete sum because there is an
Finally, it only remains to show that there is no divergent@nomalous region of Bose frequenay,, for which the two

superconducting  propagators, L(q,io,+i€,) and
x L(q,iwy), have opposite signs of Matsubara frequency. We

cannot, therefore, simply take the static approximation,
* where one or the other superconducting propagator has zero
3 Matsubara frequency. Instead, we must evaluate the two tri-
« angle blocks for generab,,, and distinguish between the
C, three summation regionsi) w,+Q,>0, 0,>0; (i) oy,
X +Q,>0, 0,<0; (i) oy+Q,<0, v,<0. Note that the
x two summation termse,,=0 and w,=—Q,, which pos-
\_/ Im(z)=0 sess one divergent fluctuation propagatqg,0), are both
N B zero after analytic continuation),—Q+i0, division by
X ), and taking the limit) —0. It follows that when we ana-
A Cy Iytically continue using the contours shown in Fig. 2, we
need not worry about contours passing through the poles.
x The contributions from region@) and (iii) give identical
\_/ . X
AN AN N AN AN i ormrrrrns - ITm(z)=- Q, results, and their sum is
() o2
Cs ?L(iQn):_T 2 2 EBl(iwmviQn)2
b3 on>0 g
FIG. 2. Contour required to perform sum over Matsubara fre- XL(g,iog)L(g,ion+iQy), (14

quencieswp, in the AL diagram. The branch cuts lah(w)=0 and
Im(w)=—Q, come from the fluctuation propagatotfq,i )
andL(q,iw,+iQ,). The poles summed over fall into three regions
separated by the two branch cut®: w,,>0; (i) 0> w>—Qp;
(ii) —Qp>wn. These contours can be deformed to contours par- AL 1 [+ q2 5
allel to the real axis as shown in the figure. Note that the poles, Q7 ({)=— mj dw coth( w/2T) X, EBl(va)
which lie on the branch cuts yield no singular contribution and can o q

be ignored. XL(q,w)L(g,0+ ). (15

where theB,(iw,,i{},) are from the triangle blocks. Upon
replacing summation ove®,, by integration overo, and
analytically continuing Q,—Q+i0, we get
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For small w, 2, we can show thaB;(w,Q)~aw+ BQ, For smallw, we can show thaB,(w,0)= yw, wherevy is a
where @ and 8 are constants, so that for power-counting constant, so that for power-counting purposes @&§) at T
purposes Eq(15) at T=T. becomes, ignoring all irrelevant =T_ becomes

coefficients,

. _
’fL(Q)~f dw cotf‘(w/ZT)f ddq0? i QM (Q+i0)
O—0 Q

(0+Q)?
i) P—ie—i0)

The O(Q) piece can be found by expanding either the nu-

merator or denominator. In both cases, the behaviowas

2 ) i d : ; ; ;

fo?d>(()) isO(g"), and hence there is no infrared singularity The behavior ase~g2~0 is O(q
The contribution from regioftii) has the form,

fo d—wf dd 2 wz (20)
— sinh(w/2T)? o) (@)

(16)

), and hence there is no
infrared singularity fod>0. We have, therefore, shown that
there is no singular contribution from the AL diagrams.
2
: q : .
2HiQy)=-T 3 X Bylion,iQ)?

0>wn>—-Qn q

XL(9,ion)L(0,iwn+iQy), 7

IIl. CONCLUSIONS

which upon replacing summation over,, by integration . We have. shown that there are no su_pgrconducting quctu.a—
over w, gives tion corrections to the thermal conductivity above the transi-
tion temperature, which are singular @sapproachesr..
+oo +oo—iQy The experimental features seen n&amust, therefore have
f_w - —emiq, some other physical explanation, such as reduced phonon
scattering from normal-state electrons. We hope that there
q° ) o A R ) will be continued experimental interest in thermal conductiv-
x 2 EBz(“’"Qn) L(Q,0)L7(q,0+iQy). ity nearT, in one- and two-dimensional superconductors, of
K both the hight. and low-T variety. In future work, we also
(18 intend to evaluate the nonsingular fluctuation contributions
Shifting the variable in the second integral—w—iQ,, © the thermal conductivity to see whether this can explain
analytically continuingiQ,—Q+i0, shifting the variable any of the experimental feature@lthough, given their
back, w— w+(Q, dividing throughout byQ2, and lettingQ ~ Power-law behavior, this seems unlikgly
—0 gives

1

AL : _
2 (lQn)_ A

dw coth( w/2T)
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