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Absence of singular superconducting fluctuation corrections to thermal conductivity

Douglas R. Niven and Robert A. Smith
School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, England

~Received 14 August 2002; published 6 December 2002!

We evaluate the superconducting fluctuation corrections to thermal conductivity in the normal state, which
diverge asT approachesTc . We find zero total contribution for one-, two- and three-dimensional supercon-
ductors for arbitrary impurity concentration. The method used is diagrammatic many-body theory, and all
contributions—Aslamazov-Larkin~AL !, Maki-Thompson~MT!, and density of states~DOS!—are considered.
The AL contribution is convergent, whilst the divergences of the DOS and MT diagrams exactly cancel.
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I. INTRODUCTION

The discovery of the high-Tc superconductors has led to
renewed interest1 in superconducting fluctuation correction
to normal-state transport properties.2 While much of the
work has focused on the electrical resistivity,r, several
experiments3–6 have reported fluctuation corrections to t
thermal conductivity,k. Since there is some dispute betwe
theorists7–12 as to the predicted magnitude of the effect, w
have performed a detailed microscopic calculation valid
all impurity concentrations. We find no divergent fluctuati
contribution, and conclude that the experimental featu
seen nearTc must have some other physical origin.

Let us try to understand the reason for the lack of singu
fluctuation contributions to thermal conductivity. There a
several processes involved, and we will try to develop
physical picture13 for each. The Aslamazov-Larkin~AL ! pro-
cess involves the transfer of heat by fluctuation Cooper pa
The corresponding term for the electrical conductivity ha
strong divergence,

sAL;~T2Tc!
d/222. ~1!

The size of the contribution to thermal conductivity can
estimated from Eq.~1! using the Wiedemann-Franz law
which has the general form

kT;S kBT0

Q0
D 2

s, ~2!

where kBT0 is the amount of heat andQ0 is the electric
charge, carried by the excitations in a given system. For fl
tuation Cooper pairs,T0;T2Tc andQ052e so that

kALT;S kB~T2Tc!

2e D 2

sAL;~T2Tc!
d/2, ~3!

which is clearly nonsingular asT→Tc . The density-of-states
~DOS! correction arises from the fact that when electro
form fluctuation Cooper pairs, they cannot simultaneou
act as normal electrons; there is a corresponding decrea
the normal-state density of states and hence normal-s
thermal conductivity,

kDOS;2
ncpkB

2T2t

m
;2~T2Tc!

d/221, ~4!
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wherencp;(T2Tc)
d/221 is the number density of fluctuat

ing Cooper pairs. This term is singular ford<2, but is ex-
actly canceled by Maki-Thompson~MT! terms. The latter
terms are due to new heat transport channels opened u
Andreev-scattering processes. An electron can Andreev s
ter into a hole, and since electrons and holes carry the s
heat current, this leads to a net increase in thermal cond
tivity. The amplitude for the Andreev scattering is exactly t
same as for an electron to scatter into a fluctuation Coo
pair, so the MT and DOS terms have the same magnitude
opposite sign, and hence cancel. These MT processes le
a further suppression of electrical conductivity since ho
carry electric charge opposite to electrons, i.e., the MT a
DOS contributions cancel for thermal conductivity and re
force for electrical conductivity.

Before we proceed to the details of our calculation,
present a short history of superconducting fluctuation corr
tions to thermal conductivity. They were first predicted7 in
1970 by Abrahamset al. in the diffusive regime. These au
thors concluded that the AL terms were convergent, but t
the DOS terms led to divergent contributions in two and o
dimensions, of the form ln(T2Tc) and (T2Tc)

21/2, respec-
tively. They appear to have missed the cancellation betw
DOS and MT contributions. Shortly afterwards, fluctuati
effects with the predicted power-law behavior we
observed14 in one-dimensional Pb-In wires. After this intia
work, there was apparently no theoretical or experimen
activity in this area for nearly two decades. Indeed,
Skocpol and Tinkham’s 1975 review,2 thermal conductivity
is described as one of those quantities which ‘‘have not
benefited from sustained interaction between theory and
periment, perhaps because such effects are small, and ha
interpret.’’ In 1990, Varlamov and Livanov8 predicted AL
contributions with the same strong divergence found in
electrical conductivity, (T2Tc)

d/222; this erroneous resul
appears to be due to an incorrect treatment of the h
current operator. The same authors9 also discussed the rela
tive magnitudes of DOS, MT, and AL contributions in lay
ered superconductors, and argued that the DOS and
terms dominate inkc while AL terms dominate inkab . The
predicted fluctuation effects have since been seen experim
tally in an YBa2Cu3O72d single crystal,3 and
Bi2Sr2CaCu2O8 and DyBa2Cu3O72d polycrystals.4,5 Excel-
lent quantitative agreement was found between theory
experiment; indeed, even the predicted two- to thr
©2002 The American Physical Society05-1
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dimensional crossover is seen at roughly the predicted t
perature. Fluctuation effects have also been seen in~Nd/
Y!BCO intergrowth crystals,6 although these have not bee
compared in detail with theory. However, there are proble
with this apparent agreement between theory and exp
ment. The AL contributions have been reanalyzed in t
works using phenomenological hydrodynamic10 and Gauss-
ian fluctuation11 approaches, and are argued to be conv
gent. Very recently Savonaet al.12 have agreed that there
no divergent AL correction, but argue that there are still
vergent DOS and MT terms; we believe that these auth
have missed the cancellation between the DOS and
terms.

II. THE CALCULATION

We now proceed to the details of our microscopic cal
lation. The thermal conductivity is obtained from the imag
nary time heat response kernel,Qhh( iVn), by analytic con-
tinuation from positive Bose-Matsubara frequencies,Vn
52pTn,

k5 lim
V→0

Qhh~ iVn→V1 i0!

iVT
. ~5!

The diagrammatic contributions to the heat response ke
of the lowest order in perturbation theory are detailed in F
1. The solid lines are disordered electron Green’s functio

G~k,i« l !5
1

i« l2jk1
i

2t
sgn~« l !

, ~6!

where « l52pT( l 11/2) is a Fermi-Matsubara frequenc
jk5k2/2m2m is the electronic excitation spectrum, andt is

FIG. 1. Feynman diagrams which give singular contributions
the heat-current response function. Diagrams~a! and ~b! are the
density-of-states~DOS! correction diagrams; diagram~c! is the
Maki-Thompson~MT! diagram; diagram~d! is the Aslamazov-
Larkin ~AL ! diagram.
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the elastic-scattering time. The black dots represent h
current vertices, which are given by

jh~k,« l ,« l1Vn!5
k

2m
i ~2« l1Vn!. ~7!

The shaded regions are impurity vertex renormalizatio
which, at zero momentum, take the form

C~q50,«1 ,«2!5Q~1«1«2!1
Q~2«1«2!

~ u«1u1u«2u!t
, ~8!

whilst the dashed lines are single impurity renormalizatio
The wavy lines are superconducting fluctuation propagat
L(q,ivm), which for smallq are given by

L~q,ivm!215N~0!F lnS T

Tc
D1cS 1

2
1

uvmu
4pTD

2cS 1

2D1A~vm!Dq2G , ~9!

whereN(0) is the electronic density of states per spin at
Fermi surface,vm52pTm is a Bose-Matsubara frequenc
c(x) is the digamma function,D5vF

2t/d is the diffusion
constant, andA(vm) is given by

A~vm!5
1

4pT
c8S 1

2
1

uvmu
4pTD2tFcS 1

2
1

uvmu
4pT

1
1

4pTt D
2cS 1

2
1

uvmu
4pTD G . ~10!

The zero-frequency fluctuation propagator,L(q,0), has a
1/q2 divergence asT approachesTc ,

L~q,0!215N~0!FT2Tc

Tc
1A~0!Dq2G . ~11!

It is this feature that leads to divergent contributions to va
ous physical properties asT approachesTc .

Diagrams~a! and ~b! of Fig. 1, in which a fluctuation
propagator affects only one electron line yield the DOS c
tributions; diagram~c!, in which a fluctuation propagato
leads to interference between electron lines, yields the
contribution; diagram~d!, which possesses two fluctuatio
propagators, yields the AL contributions. Note that since
object of this paper is merely to show that there are no
vergent contributions tok at T5Tc , we have omitted all
diagrams that cannot have such divergences. In particular
have ignored all DOS and MT diagrams that have an im
rity line or ladder between the two heat-current vertic
Such diagrams possess an extra factor ofq2, which removes
the low-momentum singularity of the fluctuation propagat
L(q,0). We also need to consider only the lowest power oq
in any diagram since this will have the most diverge
behavior—we, therefore, setq50 in all terms except the
fluctuation propagators. Finally, since all DOS and MT d
grams have only one superconducting fluctuation propaga

o
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we can take the static limit and consider only term
L(q,ivm) with zero Cooper pair frequency,vm50. The AL
term has two fluctuation propagators, and here we have t
more careful and keep allvm terms as there is an anomalo
n

n
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region of frequencies, where one propagator can have p
tive frequency and the other negative frequency.

The regular parts of the DOS and MT diagrams, whi
come from diagrams~a! and ~c!, give the total contribution,
,
each

ecause the
e

Qhh
reg~ iVn!52pN~0!DT2 (

« l.0

~2« l1Vn!2

@11~2« l1Vn!t# H 1

« l
2 1

1

~« l1Vn!2 2
2

« l~« l1Vn!J (q
L~q,0!. ~12!

The sum of the three terms in the curly brackets is easily seen to be proportional toVn
2 , so upon analytical continuation

division by V, and settingV to zero, we get zero contribution. The two DOS and one MT term have exactly canceled
other. Note that the same terms in the electromagnetic response function reinforce rather than cancel each other b
electric current vertex has the opposite electron-hole parity to the heat-current vertex~i.e., holes carry opposite charge but th
same excitation energy to electrons!.

The anomalous parts of the DOS and MT diagrams give total contribution

Qhh
anom~ iVn!5

pN~0!D

~11Vnt!2 T2 (
0,« l,Vn

~2« l2Vn!2H 112« lt

« l
2 1

11Vnt

« l
2 2

1

« l
21

11Vnt

« l~Vn2« l !
J (

q
L~q,0!

5
N~0!DT

~11Vnt!2 H 22Vn
2t2VnFcS 1

2
1

uVnu
2pTD2cS 1

2D G1
~11Vnt!Vn

2

4pT Fc8S 1

2D2c8S 1

2
1

uVnu
2pTD G J (

q
L~q,0!,

~13!
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where we have explicitly carried out the« l sum. Upon ana-
lytically continuing iVn→V, dividing by V, and taking the
limit V→0, the above expression gives zero result. The
result is thus that the anomalous part of the DOS1MT dia-
grams do not yield a divergent contribution.

Finally, it only remains to show that there is no diverge

FIG. 2. Contour required to perform sum over Matsubara f
quenciesvm in the AL diagram. The branch cuts atIm(v)50 and
Im(v)52Vn come from the fluctuation propagatorsL(q,ivm)
andL(q,ivm1 iVn). The poles summed over fall into three regio
separated by the two branch cuts:~i! vm.0; ~ii ! 0.vm.2Vn ;
~iii ! 2Vn.vm . These contours can be deformed to contours p
allel to the real axis as shown in the figure. Note that the po
which lie on the branch cuts yield no singular contribution and c
be ignored.
et

t

contribution from the AL terms. Paradoxically, although th
result does not appear to be in dispute, it is the trickies
prove. The method used is simple power counting, applie
the analytical continuation of the complete Matsubara f
quency sum. We need the complete sum because there
anomalous region of Bose frequency,vm , for which the two
superconducting propagators, L(q,ivm1 iVn) and
L(q,ivm), have opposite signs of Matsubara frequency.
cannot, therefore, simply take the static approximati
where one or the other superconducting propagator has
Matsubara frequency. Instead, we must evaluate the two
angle blocks for generalvm , and distinguish between th
three summation regions:~i! vm1Vn.0, vm.0; ~ii ! vm
1Vn.0, vm,0; ~iii ! vm1Vn,0, vm,0. Note that the
two summation terms,vm50 andvm52Vn , which pos-
sess one divergent fluctuation propagator,L(q,0), are both
zero after analytic continuationiVn→V1 i0, division by
V, and taking the limitV→0. It follows that when we ana-
lytically continue using the contours shown in Fig. 2, w
need not worry about contours passing through the pole

The contributions from regions~i! and ~iii ! give identical
results, and their sum is

Q1
AL~ iVn!52T (

vm.0
(

q

q2

d
B1~ ivm ,iVn!2

3L~q,ivm!L~q,ivm1 iVn!, ~14!

where theB1( ivm ,iVn) are from the triangle blocks. Upon
replacing summation overvm by integration overv, and
analytically continuingiVn→V1 i0, we get

Q1
AL~V!52

1

4p i E2`

1`

dv coth~v/2T!(
q

q2

d
B1~v,V!2

3L~q,v!L~q,v1V!. ~15!

-
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For small v, V, we can show thatB1(v,V)'av1bV,
where a and b are constants, so that for power-counti
purposes Eq.~15! at T5Tc becomes, ignoring all irrelevan
coefficients,

Q1
AL~V!;E

2`

1`

dv coth~v/2T!E ddqq2

3
~v1V!2

~q22 iv!~q22 iv2 iV!
. ~16!

The O(V) piece can be found by expanding either the n
merator or denominator. In both cases, the behavior av
;q2;0 is O(qd), and hence there is no infrared singular
for d.0.

The contribution from region~ii ! has the form,

Q2
AL~ iVn!52T (

0.vm.2Vn
(

q

q2

d
B2~ ivm ,iVn!2

3L~q,ivm!L~q,ivm1 iVn!, ~17!

which upon replacing summation overvm by integration
over v, gives

Q2
AL~ iVn!52

1

4p i F E2`

1`

2E
2`2 iVn

1`2 iVnGdv coth~v/2T!

3(
q

q2

d
B2~v,iVn!2LA~q,v!LR~q,v1 iVn!.

~18!

Shifting the variable in the second integral,v→v2 iVn ,
analytically continuingiVn→V1 i0, shifting the variable
back,v→v1V, dividing throughout byV, and lettingV
→0 gives

lim
V→0

Q2
AL~V1 i0!

V
5

1

8p iTE2`

1` dv

sinh2~v/2T!

3B2~v,0!2(
q

q2

d
LA~q,v!LR~q,v!.

~19!
n

o

ev
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For smallv, we can show thatB2(v,0)5gv, whereg is a
constant, so that for power-counting purposes Eq.~19! at T
5Tc becomes

lim
V→0

Q2
AL~V1 i0!

V

;E
2`

` dv

sinh~v/2T!2E ddqq2
v2

~q22 iv!~q21 iv!
. ~20!

The behavior asv;q2;0 is O(qd), and hence there is no
infrared singularity ford.0. We have, therefore, shown tha
there is no singular contribution from the AL diagrams.

III. CONCLUSIONS

We have shown that there are no superconducting fluc
tion corrections to the thermal conductivity above the tran
tion temperature, which are singular asT approachesTc .
The experimental features seen nearTc must, therefore have
some other physical explanation, such as reduced pho
scattering from normal-state electrons. We hope that th
will be continued experimental interest in thermal conduct
ity nearTc in one- and two-dimensional superconductors,
both the high-Tc and low-Tc variety. In future work, we also
intend to evaluate the nonsingular fluctuation contributio
to the thermal conductivity to see whether this can expl
any of the experimental features~although, given their
power-law behavior, this seems unlikely!.
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