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Magnetic structures and reorientation transitions
in noncentrosymmetric uniaxial antiferromagnets

A. N. Bogdanov,* U. K. Rößler,† M. Wolf, and K.-H. Müller
Leibniz-Institut fu¨r Festkörper- und Werkstoffforschung Dresden, Postfach 270116, D-01171 Dresden, Germany

~Received 15 July 2002; published 12 December 2002!

A phenomenological theory of magnetic states in noncentrosymmetric tetragonal antiferromagnets is devel-
oped, which has to include homogeneous and inhomogeneous terms~Lifshitz invariants! derived from
Dzyaloshinskii-Moriya couplings. Magnetic properties of this class of antiferromagnets with low crystal sym-
metry are discussed in relation to the recently detected compounds Ba2CuGe2O7 and K2V3O8. Crystallo-
graphic symmetry and magnetic ordering in these systems allow the simultaneous occurrence of chiral inho-
mogeneous magnetic structures and weak ferromagnetism. Incommensurate magnetic structures,chiral helices,
with a rotation of the staggered magnetization accompanied by oscillations of the total magnetization, are
possible. Field-induced reorientation transitions into modulated states have been studied and corresponding
phase diagrams are constructed. Structures of magnetic defects~domain-walls and vortices! are discussed. In
particular, vortices, i.e., localized nonsingular line defects, are stabilized by inhomogeneous Dzyaloshinskii-
Moriya interactions in uniaxial noncentrosymmetric antiferromagnets.
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I. INTRODUCTION

In many magnetic crystals the magnetic properties
strongly influenced by the antisymmetric exchan
~Dzyaloshinskii-Moriya! coupling, which is generally de
scribed by a vector product formed by the magnetic mome
Si of two magnetic ions,

wD5Di j •~Si3Sj !, ~1!

and the so-called Dzyaloshinskii vectorDi j .1,2 Based on
phenomenological considerations, interaction~1! was intro-
duced by Dzyaloshinskii to explain the observation of
small net magnetization in a number of antiferromagnet
phenomenon calledweak ferromagnetism3 which is due to a
slight deviation of the sublattice magnetizations from an
parallel arrangement. Extending Anderson’s theory of sup
exchange Moriya later found a microscopic mechanism
to spin–orbit interactions that is responsible for the inter
tions ~1!. They arise in certain groups of magnetic cryst
with low symmetry where the effects of coupling~1! do not
cancel.2 During the following decades intensive theoretic
and experimental studies on theDzyaloshinskii-Moriyacou-
pling @Eq. ~1!# resulted in a deep insight into its microscop
origins and its manifestation in macroscopic properties
magnetic materials.4,5 Now it is known that weak ferromag
netism must essentially be attributed to many types of co
plex magnetic structures. It influences appreciably the m
netic properties of several important classes of magn
materials such as orthoferrites, manganites, some h
temperature superconducting cuprates, and others.4,6

Another fundamental macroscopic manifestation of
antisymmetric coupling@Eq. ~1!# takes place in noncen
trosymmetric magnetic crystals. Dzyaloshinskii showed th
in this case, the interaction~1! stabilizes long-periodic spa
tially modulated structures withfixedsense of rotation of the
vectorsSi .7 Within a continuum approximation for magnet
properties, the interactions responsible for these modulat
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are expressed by inhomogeneous invariants. We will
these contributions to the~free! magnetic energy, involving
first derivatives of magnetization or staggered magnetiza
with respect to spatial coordinates,inhomogeneous
Dzyaloshinskii-Moriya interactions. They are linear with r
spect to the first spatial derivatives of a magnetizationM of
type7

Mi

]M j

]h
2M j

]Mi

]h
, ~2!

whereMi andM j are components of magnetization vector~s!
that arise in certain combinations in expressions~2! depend-
ing on crystal symmetry, andh is a spatial coordinate.7 Such
antisymmetric mathematical forms were studied in the the
of phase transitions by E. M. Lifshitz, and are known
Lifshitz invariants.8 Later, magnetic modulated chiral struc
tures predicted in Ref. 7 were observed in the cubic nonc
trosymmetric crystals~space groupP213) MnSi ~Ref. 9! and
FeGe~Ref. 10!. The theory of these modulated states w
further developed in Ref. 11. During the following yea
modulated magnetic structures of this kind were discove
and investigated in several classes of magnetic crystals l
ing inversion center.12–14 Thesechiral helical structures are
essentially different from numerous other spatially mod
lated magnetic states in systems with competing excha
interactions~as, e.g., in rare-earth metals!.12,15 The latter are
characterized by rather short periods~usually including only
few unit cells! and an arbitrary rotation sense. Converse
chiral structures due to Eqs.~1! or ~2! have long period and
a fixed sense of rotation. For example, in MnSi the perio
icity length of the helix in zero magnetic field was found
be about 170 Å~39 unit cells!,9 and FeGe has an even larg
period ~700 Å or 149 unit cells!.13 Interactions of type~2!
may also stabilize periodic structures modulated in tw
dimensions~vortex lattices! and localized axisymmetric in
homogeneous states.16
©2002 The American Physical Society10-1
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BOGDANOV et al. PHYSICAL REVIEW B 66, 214410 ~2002!
Up to now both physical effects induced by antisymmet
exchange coupling~1! — weak-ferromagnetismand chiral
modulations— never have been observed simultaneously
the same magnetic system. Moreover, in noncentrosymm
ric magnetic crystals with chiral modulations described up
now, the existence of weak ferromagnetism is excluded
cause of their symmetry.12 In this paper, we show that bot
phenomena can coexist in the recently discovered non
trosymmetric tetragonal antiferromagnets Ba2CuGe2O7
~Refs. 17 and 18! and K2V3O8.19 Due to the crystallographic
and magnetic structures of these crystals, the Dzyaloshin
Moriya coupling @Eq. ~1!# favors noncollinearity along one
direction and spatial modulations along the others. Here
determine possible magnetic phases and study their evolu
in applied magnetic fields. It turns out that the unique co
istence of weak ferromagnetism and chiral modulations
ables the occurrence of incommensurate structures
weak ferromagnetic moments. In such systems, there
also exist specific localized structures~excitations! with
weak ferromagnetic moments including so calledmagnetic
vorticesor skyrmionswhich are generally unstable in othe
classes of magnetic materials.

II. MODEL

A. Phenomenological energy

The tetragonal antiferromagnet Ba2CuGe2O7 ~Refs. 17
and 18! ~space groupP4̄21m) belongs to the crystallo
graphic classD2d and K2V3O8 ~Ref. 19! ~space group
P4bm) to C4v . The magnetic~free! energy within a con-
tinuum description consistent with the symmetry and
two-sublattice magnetic structure of these antiferromagn
can be derived by the standard approach to phenomeno
cal theory.8 At temperatures sufficiently below the orderin
temperature the vectors of sublattice magnetizationM i ( i
51,2) do not change their modulus. In this practically im
portant case defined by neglecting theparaprocess, the vec-
tors M i have only orientational degrees of freedom and c
be described by the unity vectorsmi5M i /Ms , whereMs
5uM1u5uM2u is the sublattice saturation magnetization. F
tetragonal antiferromagnetic crystals, the two-sublatt
model described by the unity vectorsm1 andm2 yields the
magnetic energy in the following form:

W5E H a

2 (
i 51

3 F S ]m1

]xi
D 2

1S ]m2

]xi
D 2G1a8(

i 51

3 S ]m1

]xi

]m2

]xi
D

1
l

2
m1•m22h•~m11m2!2

b

2
~m1z

2 1m2z
2 !2b8m1zm2z

2d~m1xm2y2m2xm1y!1wDJ dV. ~3!

This includes inhomogeneous (a, a8) and homogeneou
(l) parts of the exchange coupling and the interaction
ergy with the external fieldh. The next two terms describ
the uniaxial second-order magnetocrystalline anisotropy w
constantsb and b8, where thez axis is taken along the
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tetragonal axis of the antiferromagnets. The homogene
part of the Dzyaloshinskii-Moriya interaction with a consta
d is responsible for weak ferromagnetism with small ma
netic moments in the basal plane. Finally the energy con
butionwD includes Lifshitz invariants of type~2!. The func-
tional form ofwD depends on the crystal symmetry and w
be specified later.

The next terms in a systematic expansion of the ene
for a two-sublattice antiferromagnet are much weaker fou
order terms of the magnetocrystalline anisotropy, includ
uniaxial parts with termsm1z

4 , m2z
4 andm1z

2 m2z
2 , and a mag-

netic anisotropy in the basal plane (XOY plane! composed
of x and y components of the vectorsmi . The former are
important in close vicinity to some reorientation transitio
and the latter is responsible for small variations of magne
structures when the magnetic field is rotated in the ba
plane. These secondary effects are omitted in this contr
tion dedicated to the principal magnetic properties of
system. We also neglect the stray field contribution in to
energy~3! because, due to the antiparallel alignment of ma
netic moments in antiferromagnets, stray fields are m
weaker than in ferromagnetic crystals. However, they pla
crucial role in stabilizing multidomain structures in the v
cinity of field-induced reorientation transitions.20

Functional ~3! includes all leading interactions in a
uniaxial two-sublattice antiferromagnetic crystal. Here w
briefly list several special cases of model~3! which describe
important special classes of antiferromagnetic systems.

~I! d50, wD50. Collinear antiferromagnets. The vast
group of these antiferromagnetic materials includes s
well-studied species as CuCl2•2H2O,21 MnF2,22 Cr2O3,23

and GdAlO3 ~Ref. 24! ~for further references and a review o
their magnetic properties see Refs. 20 and 25!.

~II ! dÞ0, wD50. Antiferromagnets with weak ferromag
netism. In this case energy~3! describes antiferromagneti
crystals with homogeneous Dzyaloshinskii-Moriya intera
tions resulting in weak ferromagnetism or collinear antife
romagnets with ‘‘hidden’’ weak ferromagnetism. Amon
many others, this group includes MnCO3,3 orthoferrites,26

manganites,27 and the most popular and well-studie
weak-ferromagnetic antiferromagnet hematite, i.e.,
a-Fe2O3.1,2,28–30

~III ! d50, wDÞ0. Chiral helimagnets. This case is real-
ized in the cubic helimagnets discussed above and in o
noncentrosymmetric magnetic systems.9,12 Usually interac-
tions of type~2! stabilize modulated chiral structures in the
materials.12

~IV ! dÞ0, wDÞ0. Chiral helimagnets with weak ferro
magnetism. This model@Eq. ~3!# represents systems whe
both, homogeneous and inhomogeneous, Dzyaloshin
Moriya interactions are operational and not forbidden by a
other additional symmetries. As will be shown, this uniq
coexistence of a mechanism for weak ferromagnetism
chiral coupling leads to specific modulated states with m
netization oscillations. The basic magnetic properties of s
systems are investigated in this paper. Thus, in the follow
we will generally consider systemsdÞ0 andwDÞ0.
0-2
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B. Simplified model and basic equations

It is convenient to use linear combinations of the sub
tice magnetizationmi , namely, the vector oftotal magneti-
zationm5(m11m2)/2 and thestaggeredmagnetization~or
vector ofantiferromagneticorder! l5(m12m2)/2 as internal
variables of the system. Because ofumi u51 these vectors
satisfy the constraintsm• l50, m21 l251.

In most antiferromagnetic crystals the exchange coup
is much stronger than other internal interactions. Stro
magnetic fields of orderl destroy antiferromagnetic orde
and orientate the sublattice magnetizationsmi parallel to
each other~a so-calledspin-flip transition into the ‘‘paramag-
netic’’ phase withumu51, l50). For most investigated an
tiferromagnetic systems these ‘‘exchange’’ fields are
tremely large. Practically attainable values of magnetic fie
usually only slightly distort the antiparallel arrangement
ducing states with the total magnetization much smaller t
unity. The hierarchy for the strength of interactions,l
@d,b,b8, and the relations for the internal parameters,m
!1 andl'1, permit one to considerably simplify energy~3!
by excluding gradients ofm and taking into account only th
following terms~for details, see e.g., Ref. 29!

W̃5E H A(
i 51

3 S ] l

]xi
D 2

1lm222m•h

12d~mxl y2myl x!2Blz
21wDJ dV, ~4!

where A5a2a8 and B5b2b8. Functional forms ofwD
for all noncentrosymmetric crystallographic classes h
been derived in Ref. 31. In particular, for the antiferroma
nets under consideration the Lifshitz invariants quadratic
the components ofl have the following forms:

class D2d : wD5DS l z

] l x

]y
2 l x

] l z

]y
1 l z

] l y

]x
2 l y

] l z

]x D , ~5!

class Cnv : wD5DS l z

] l x

]x
2 l x

] l z

]x
1 l z

] l y

]y
2 l y

] l z

]y D . ~6!

The homogeneous part of the Dzyaloshinskii-Moriya int
action in~4! includes in-plane components ofm and l. They
originate from thez-component of a vector product~1!. Writ-
ing the Dzyaloshinskii vector in Eq.~1! as a sum of two parts
proportional toD andd, this contribution to Eq.~4! can be
derived from the vector directed along the tetragonal axid
5(0, 0,d). On the other hand, Lifshitz invariants~5! and~6!
can be derived by an expansion for the in-plane compon
of the vector product@Eq. ~1!# considering the contribution
due to the vectorD5(D,D,0). Theterminology in this field
is not yet fixedly formulated. Here, following Ref. 32, w
will call energy contributions given by Lifshitz invariant
Dzyaloshinskii or chiral interactions to distinguish them
from the homogeneous part of the Dzyaloshinskii-Mori
interaction.

Independent minimization of energy~4! with respect tom
leads to the result
21441
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m52@n3~d1n3h!#/l, ~7!

where n5 l/u lu is the unity vector parallel to the staggere
magnetization vector. After substitution of~7! into the energy
~4! one obtains the energy to leading approximation a
function of the vectorn,

W̃5E H A(
i , j

S ]ni

]xj
D 2

2
1

l
@~hx1dny!21~hy2dnx!

2

2~h•n!2#2Bnz
21wD~n!J dV, ~8!

wherewD(n) is determined by~5! or ~6!. Energy~8! and~7!
were derived from Eq.~3! by ignoring the paraprocess an
assuming weak total magnetization,umu!1, implying u lu
.1. Both assumptions are fulfilled in most realistic cases
interest. Thus energy~8! describing the orientation of the
staggered magnetization can be considered as general
nomenological description for realistic uniaxial two
sublattice antiferromagnets. Functional~8! is related to so-
called nonlinears models which are basic subjects in th
theory of solitons and which are intensively studied in ma
ematical and theoretical physics.33

Energy contributions~5! and ~6! can result in states with
modulations in the basal tetragonal plane, i.e., with a pro
gation vector in theXOY plane. Its actual direction is se
lected by some small in-plane anisotropy contributions t
are neglected here@see the discussion of expansion~3!
above#. On the other hand, there are no interactions in
systems violating homogeneity along the tetragonalz axis.
Hence we infer that, within model~8!, the most general so
lutions are inhomogeneous only in the basal plane but ho
geneous along thez axis. It is convenient to write the vecto
n(x,y) and the magnetic fieldh in spherical coordinates:

n5~sinu cosc, sinu sinc, cosu!,
~9!

h5~h sinz cosh, h sinz sinh, h cosz!.

In these variables the total energy is given by

W̃5LzE H A(
i 51

2 F S ]u

]xi
D 2

1sin2u S ]c

]xi
D 2G1wD1w̃J dxdy,

~10!

where the integration with respect toz was performed for a
system with linear sizeLz , x15x, x25y. The Lifshitz in-
variants are given by

wD5DFsinc
]u

]x
1cosc

]u

]y

1sinu cosu S cosc
]c

]x
2sinc

]c

]y D G for D2d ,

~11!
0-3
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wD5DFcosc
]u

]x
1sinc

]u

]y

2sinu cosu S sinc
]c

]x
2cosc

]c

]y D G for Cnv ,

~12!

and the energy termw̃ does not depend on spatial deriv
tives:

lw̃52~lB2d22h2 cos2z!cos2u2~h2 sin2z1d2!

1h2 sin2z cos2~c2h!sin2u

22dh sinz sinu sin~c2h!

1h2 sinz cosz sin 2u cos~c2h!. ~13!

Functional~10! with Eq. ~13! provides the basic expressio
for the total energy of uniaxial two-sublattice antiferroma
nets belonging to crystallographic classes without invers
symmetry. By inserting the appropriate Lifshitz invaria
from Eqs.~11! or ~12! for wD , the functional describes th
magnetic energy of the two tetragonal crystals of inter
here.

III. PHASE DIAGRAM OF EQUILIBRIUM SOLUTIONS

The equilibrium distributions ofu(x,y) and c(x,y) are
determined by solving a set of equations minimizing ene
~10!. Depending on the values of the phenomenological c
stants in energy~10! and the components of magnetic fiel
different spatially homogeneous and modulated phases
be realized in the system. Due to isotropy of the model in
basal plane only the component of magnetic field along
tetragonal axis (hz) and the value of its projection onto th
basal planeh' are of importance. A reduction of the numb
of control parameters is obtained by rescaling the spa
variables and the energy. We use the following units for
lengths, magnetic field, and strengthD of the inhomoge-
neous Dzyaloshinskii-Moriya interaction:

x05AAl/uKu, h05AuKu,
~14!

D05
4

p
AAuKu/l, K5lB2d2,

introducing an effective anisotropy constantK acting on the
staggered magnetization that is comparable to a consta
uniaxial anisotropy in ferromagnets. In centrosymmetric
tiferromagnets (D50) and zero external field, the collinea
state with staggered magnetizationl along the tetragonal axi
and m50 is the ground state forK.0 ~easy-axissystem!;
for K,0 the vectorsl and a nonzerom lie in the in the basal
plane~weak ferromagnetic states!. The characteristic length
x0 is of the order of the effective size of an isolated dom
wall between the homogeneous states at zero field
uniaxial ferromagnetic materials the corresponding exp
sion for an intrinsic length is known asexchangeor Bloch
length.34 The characteristic fieldh0 is the so-calledspin-flop
field. Finally, the parameterD0 is equal to the lowest value
21441
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of the ~Dzyaloshinskii! constantD that stabilizes modulated
states at zero field~see below!. In these reduced units@Eq.
~14!#, energy ~10! includes as independent parameters
rescaled constantsK, involving d, andD as well as the two
components of the applied field (hz , h'). Thus these param
eters span a four-dimensional phase space for the soluti

Before giving the detailed analysis, let us point out so
general features of the possible magnetic configuration
this system. The equilibrium magnetic structures are g
erned by two opposing tendencies. The rotation of the s
gered vectorl with propagation vectors in the basal plan
and an appropriate sense of rotation leads to negative va
of invariants ~11! and ~12!. An unlimited reduction of the
pitch for this winding of the staggered magnetizations wo
lead to infinitely negative values of this Dzyaloshinskii e
ergy. This is counter-acted by the inhomogeneous part of
exchange energy in Eq.~10! providing the ‘‘stiffness’’ of the
magnetic structure. In isotropic systems, i.e.,w̃50 for ex-
pression~13!, the ratio of these competing energy contrib
tions yields the optimal period for the spiral, which is of th
order of A/D.7 Such chiral modulations with uniform rota
tion are observed in low-anisotropy systems as cu
helimagnets13 or in hexagonal chiral magnets with in-plan
rotation of the magnetization vectors.14 The uniform rotation
of l in spirals is disturbed by anisotropic interactions and
by application of a magnetic field, i.e., the energy terms
cluded in Eq.~13!. These interaction terms result in preferre
directions for the staggered vectorl corresponding to the
minima of the energy density@Eq. ~13!#. Hence, they distort
the chiral modulations and may even suppress them by f
ing the staggered magnetization to point fixedly into ‘‘eas
directions. Thus, chiral modulations may occur only beyo
a certain threshold: interactions~5! or ~6! must be strong
enough to overcome the anisotropic energy contributi
suppressing modulated states. Below this threshold the
tem takes on the homogeneous states which are determ
by minimization of energy~10! with D5A50. In the fol-
lowing subsections we will demonstrate this competition b
tween homogeneous and inhomogeneous states for
model in detail.

Another important property of the system is related to
role played by the homogeneous Dzyaloshinskii-Moriya
teraction: in-plane components of the staggered vector
duce corresponding nonzero components of the total ma
tization vectorm ~weak-ferromagnetic moments! according
to Eq.~7!. Thus collinear antiferromagnetic statesm50 exist
only when the staggered vectorl is parallel to the tetragona
axis. All magnetic structures with a vectorl deviating from
this direction perforce have a locally nonzero magnetizat
m. In a zero field, these magnetic moments are in the b
plane. Helix states ofl are accompanied by magnetizatio
components oscillating in sign and with the same period
the antiferromagnetic modulations. This peculiar mechan
leading to modulated antiferromagnetism and a related m
netizationm may become operational and important, even
the ground-state is not modulated, for the more general c
hÞ0 ~see below!.

In the general case the four-dimensional phase diag
(d,D,hz ,h') includes regions with different modulated an
homogeneous states separated by ‘‘hypersurfaces’’ co
sponding to different phase transitions. As remarked up
0-4
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above, there are numerous experimental and theoretica
sults on magnetic properties of centrosymmetric antifer
magnets @model ~10! with wD50] describing weak
ferromagnetism.26,28,29The phase space of the control para
eters in this case (d,hz ,h') was found to have a very com
plex topology and, depending on the orientations and
relative strengths of the vectorsh andd, a number of non-
trivial transitions occur in these systems.29 This phase dia-
gram can be considered as a ‘‘cross section’’ given by
three-dimensional ‘‘hyperplane’’D50 through the genera
(d,D,hz ,h') space investigated here. On the other side
chiral antiferromagnets described by the cased50 for our
model, both the spin arrangements in a spiral and the co
sponding propagation directions are found to be very se
tive to the orientation and strength of the applied field.35 In
the general case of nonzero values of the constantsd andD,
there is an even wider variety of homogeneous and inho
geneous solutions characterized by complex noncollin
magnetic structures and variable directions of propaga
vectors. Clearly, the full set of homogeneous and inhomo
neous states corresponding to energy~10! together with Eqs.
~11!–~13! are of general interest and well-worth of furth
investigations. Here we restrict ourselves to the approxim
tion valid for antiferromagnetic systems with small magne
anisotropy and their specific hierarchy of the interactio
The physically expected relationd@B turned out to be valid
in all known systems with weak ferromagnetism, and
based on the common relativistic origin of both magne
energy contributions in these~low-anisotropy! systems. It is
specifically valid for systems in which magnetism is due tod
electrons. In these systems, the Dzyaloshinskii-Moriya in
actions generally overcome the magnetocrystalline ani
ropy. This is expected to apply also in noncentrosymme
antiferromagnets withd-electron magnetism for which th
values ford are still unknown. This allows to narrow consid
erably the range of physically meaningful control paramet
in our model.

As already discussed above, the vectord induces a total
magnetization in the basal plane which tends to orien
itself parallel to the in-plane components of an applied fi
h' . Correspondingly, the staggered magnetization is rota
into the plane perpendicular to theh' direction. The stronger
the values ofd, h' and of the in-plane components ofl the
stronger is this effect. We may assume that the deviation
the staggered magnetization,«5uc2h2p/2u, from this
plane perpendicular to theh' direction is small. By optimiz-
ing energy~13! with respect to«, one obtains

«5uc2h2p/2u5U h cosz cosu

d1h sinz sinuU, ~15!

providing the consistency criterion for our assumption«
!1. This approximation is always valid ford@h, and gen-
erally in a broad range of the orientations for the vectorh
andl. This includes almost all physically interesting cases
the following analysis, we assume as central approxima
that the staggered magnetization is always restricted
the plane perpendicular toh' , i.e., «50. By substituting
21441
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c2h 5p/2 energy density~13! can be simplified and re
duced to the following form using the scaled quantities@Eqs.
~14!#

w̃5
uKu
l

F~u!

with

F~u!5sgnKS 12
h2

K
cos2z D ~sinu2n!2,

~16!

n5
dh sinz

K2h2 cos2z
.

~Here we drop constant terms inw̃, i.e., those independent o
u.! In the following subsections, we investigate spatially h
mogeneous phases, helical phases, and their respective
bility limits with approximation~16!.

A. Homogeneous states

The homogeneous states are described by the behavi
energy functional~16!. Depending on the sign ofK energy
~16! describes two different types of antiferromagnetic ord
ing.

1. KÌ0 Easy-axis system

At zero field and in a magnetic field along the tetragon
axis for h,h0 the antiferromagnetic phasewith l i z direc-
tion andm50 has the lowest energy. This magnetic structu
is sketched in Fig. 1~a!. At the field h05AK the vectorl
‘‘flops’’ down onto the basal plane. This is a so–calledspin-
flop transition. In the resulting spin-flop phasewith u
5p/2, the total magnetization under influence of the hom
geneous Dzyaloshinskii-Moriya interaction is slightly in
clined from the tetragonal axis@Fig. 1~b!#. In the region
whereumu!1 the components ofm, mz5h/l, um'u5d/l,
are obtained from Eq.~7!. In the regionh0,h,l the total
magnetization increases linearly with increasing field and
nally at the ‘‘exchange’’ fieldhex5l the spin-flop phase con
tinuously transforms into the saturated ‘‘paramagnet
phase withumu51, l50 by aspin-flip transition. Note, in the
spin-flop phase the magnetic state has an infinite degene
with respect to rotation of the vectorl around the tetragona
axis. The in-plane anisotropy reduces the degeneracy to
tain preferable directions related by symmetry in the ba
plane. That is, in the case of fourth-order tetragonal anis
ropy there are two mutually perpendicular directions
‘‘easy’’ magnetization. In an increasing magnetic field de
ating from the tetragonal axis the staggered magnetizatil
rotates to the basal plane in the plane perpendicular to
projection ofh onto the basal plane. The angleu between the
vector l and thez axis is sinu 5n for n,1 ~16!. We name
this state with a finite angle between staggered magnetiza
and z-axis canted phase@Fig. 1~c!#. Finally, at the critical
line hc(h' ,hz) ~Fig. 2! wheren from expression~16! attains
the critical valuen51, a phase transition occurs into a pha
with the staggered vector lying in the basal plane, sinu 51,
0-5
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FIG. 1. Basic spin configurations described by the staggered magnetizationl and the total magnetizationm ~for clarity, umu!u lu.1 is not
obeyed in the pictures! in homogeneous states of easy-axis systems (K.0). ~a! and ~b! external fieldh along the tetragonal axis.~a!
Collinear orantiferromagnetic~AF! phase withl i z axis and zero magnetization exists in the applied field along the tetragonal a
<h<h0. ~b! Spin-flopphase withl in the basal plane is an important particular case of theweak ferromagnetic~WF! phase forh.h0 along
the tetragonal axis.~c! and ~d! magnetic field with oblique direction. The low symmetrycanted phase~c! exists for n,1 ~16! and
continuously transforms into the WF phase~d! at the critical linen51. In the canted phase the staggered magnetization is in the p
perpendicular to the the in-plane component of the applied field and all components of the vectorm have generally nonzero values@cf. Eq.
~17!#. ~d! General case of the WF phase. The staggered magnetizationl lies in the basal plane, the component of the total magnetization a
the tetragonal axis (mz) is induced by the corresponding component of the applied field, the in-plane components are due to the h
neous Dzyaloshinskii-Moriya interaction and in-plane components of magnetic field. In easy-plane systems (K,0) only the WF phase is
stable for all values of the applied field.
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and perpendicular to the applied field@Fig. 1~d!#. This is a
weak ferromagnetic~WF! phase. The phase-diagram for th
transition between canted and WF phase is depicted in Fi
The total magnetization is deduced by substituting the e
librium values ofn5 l/u lu into Eq. ~7!. Assuming that the
applied field is in theXOZ plane, then the staggered magn
tization rotates in theYOZplane. From Eq.~7! the following
expressions for the magnetization components result:

FIG. 2. (h' ,hz) phase diagram for the homogeneous states
easy-axis systems (K.0). The low symmetry canted phase tran
forms into the WF phase by a second-order phase transition a
critical line hc(h' ,hz) determined by the conditionn51 in Eq.
~16!. Scales are given byh05K1/2 andh'

0 5K/d.
21441
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mx5~h sinz1d sinu!/l,

my52h cosz sinu cosu/l, ~17!

mz5h cosz sin2u/l,

where u5arcsinn for the canted phase andu5p/2 in the
weak-ferromagnetic phase.

The relative orientation of the vectorsl andm is fixed by
the sign of the constantd. This handedness of the magnet
structures reflects the chiral character of interaction~1! and
leads to the nonequivalence of energies for the states
antiparallel directions ofl in oblique magnetic fields. One
can understand this considering the shapes of the potentiF
@Eq. ~16!# with applied fields~Fig. 3!. In the general case
@Fig. 3~a!# of an oblique field, i.e., an applied field deviatin
from the tetragonal axis, the antiferromagnetic phase w
u5pn transforms into the WF phase (h.hc) via the canted
phase. From the potential profile for this canted phase@Fig.
3~a!, 0,h,hc] one immediately sees for a given state th
the corresponding state with antiparallel orientation ofl has a
different energy and generally is not an equilibrium sta
Thus, the symmetry between states with antiparallell pecu-
liar to ordinary antiferromagnetic phases is violated. T
stable states in this canted phase are separated by two
of potential barriers. At the transition into the WF phase t
lower potential barrier disappears and the higher separ

n

he
0-6
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FIG. 3. Schematic evolution of the potential profilesF(u) under the influence of an applied field for easy-axis systems (K.0) in an
oblique field ~a! and in a field in direction of the tetragonal axis~b!. In ~a! for the canted phase two different barriers occur betwe
equivalent equilibrium states. Different domain walls correspond to these barriers: DW I between states~1! and ~2!, and DW II between
states~1! and ~3!.
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states withu5p/212np. In a magnetic field along the te
tragonal axis@Fig. 3~b!# the potential barriers inF ~16! dis-
appear as the field approaches the spin-flop field from b
sides, i.e., in the antiferromagnetic (h,h0) and in the spin-
flop phases (h.h0). This means that at the transition fie
h5h0 the potential barriers between coexisting antifer
magnetic and spin-flop states are anomalously low and
determined by the values of the fourth-order anisotropy.

2. KË0 Easy-plane system

In the ground state for easy-plane systemsK,0 the stag-
gered magnetization lies in the basal plane with a sponta
ous magnetization,umu5d/l, perpendicular to the vectorn.
Therefore, this is aweak-ferromagnetic phase. The behavior
of the system under the influence of a magnetic field is si
lar to that in the easy-axis system~Sec. III A 1! for hz larger
than the spin-flop field, namely, the vectorl is oriented per-
pendicular toh, and the total magnetization gradually in
creases in increasing field.

B. Helical structures

The equations minimizing functional~10! also permit so-
lutions with chiral modulations propagating in the bas
plane. First we consider structures modulated along a ce
fixed direction in the basal plane and homogeneous per
dicular to this direction. This yields one-dimensional spira
modulated states comprisinghelicoids and cycloids. In the
absence of in-plane anisotropy all propagation directions
equivalent. The structure of these modulated states dep
on the crystal symmetry which manifests itself in differe
functional forms of the Lifshitz invariants@see Eqs.~5! and
~6!#. For antiferromagnets belonging to the crystallograp
classD2d the staggered vectorl rotates in the plane perpen
dicular to the propagation direction, i.e.,c5p/2. These
states arehelicoids@Fig. 4~a!#. This rotation ofl reminds the
behavior of the magnetization vector for Bloch walls in fe
romagnets~see Ref. 34!. In the case ofCnv symmetry, l
rotates in the plane formed by the tetragonal axis and
propagation direction (c50) forming cycloids @Fig. 4~b!#.
This is akin to Ne´el domain walls in ferromagnets. The ro
tation in the spirals has a fixed sense determined by the
dition that the inhomogeneous Dzyaloshinskii-Moriya e
21441
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ergy must be negative. In both cases, the spirals
accompanied by oscillations of the magnetizationm perpen-
dicular to the plane of rotation according to Eq.~7! ~Fig. 4!.
In zero field,m5d sinu/l.

Under the influence of an applied magnetic field the s
rals orientate in such a way that the rotation ofl occurs in the
plane perpendicular to the projection ofh onto the basal
plane. As above for the homogeneous structures, we ass
that the magnetic field lies in theXOZ plane and the vecto
n in the YOZ plane. Forhelicoids (D2d symmetry! the
propagation direction is along thex axis and forcycloids
(Cnv symmetry! along they axis. The spatial coordinate
along the propagation direction is measured in reduced u
of x0 according to Eq.~14!, j5xi /x0. In these reduced units
energy functional~10! for one-dimensional modulations as
sumes the form

W̃̃5AAuKu
l E H S du

dj D 2

1F~u!1
4D

pD0
S du

dj D J dj,

~18!

where the multiplicative constants due to the integrations

directions ofz and perpendicular toj are absorbed inW̃̃.

FIG. 4. Basic modulated structures~a! helicoid for systems with
D2d symmetry, and~b! cycloid for antiferromagnets withCnv sym-
metry.
0-7
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BOGDANOV et al. PHYSICAL REVIEW B 66, 214410 ~2002!
F(u) is given by Eq.~16! and D0 by Eq. ~14!. The first
integral of the Euler equation for functional~18! is readily
derived,

S du

dj D 2

2F~u!5E, ~19!

where E is an integration constant. In passing, we rem
that the Euler equation with the potentialF(u) from Eq.~16!
is related to thedouble sine-Gordonequation.36

Typical phase trajectories of Eq.~19! in the (uj , u)-phase
plane are plotted in Fig. 5~here we use the abbreviationuj

[du/dj). The separatrices obtained forE50 cross each
other in the points corresponding to the minima of the fu
tion F(u). They divide the phase plane into regions w
closed (E,0) and open (E.0) trajectories~Fig. 5!. The
closed trajectories correspond to alternating rotation of
staggered vector and obviously are not of interest for
model, as they describe inhomogeneous states with alte
ing senses of rotation that do not minimize the energy rela
to the inhomogeneous Dzyaloshinskii-Moriya interactio
The modulated states with fixed rotation sense are descr
by opentrajectories. The integration of Eq.~19! with F(u)
from Eq.~16! yields the set of solutionsu(j,E) parametrized
by the constantE ~Fig. 6!. These solutions can be express

FIG. 5. Typical phase portrait of the solutions for Eq.~19! in the
canted phase. The separatrix curves between open~continuous
lines! and closed~dashed lines! orbits are highlighted by a thick
line.

FIG. 6. Series of solutions of Eq.~19! u(j,E) corresponding to
the open orbits in Fig. 5. Solutions shown by thinner lines cor
spond to open orbits withE.0 close to the separatrix curve of Fig
5 ~not shown there!.
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analytically as certain cumbersome combinations of ellip
functions37 ~see, e.g., Refs. 7, 31, and 35!. Here, for simplic-
ity, we have derived representative solutions by direct
merical integration of Eq.~19!. Using Eq.~19! the energy
densityw̄ averaged over a periodJ of a modulated state ca
be written as functions of the parameterE:

w̄5
1

J~E!
E

0

2p @E12F~u!#du

AF~u!1E
2

2pD

J~E!
,

~20!

J~E!5E
0

2p du

AF~u!1E
.

Note that Eq.~19! does not involve contributions from th
inhomogeneous chiral Dzyaloshinskii interactions and, th
its solutions~Fig. 6! do not depend on these chiral intera
tions. Therefore, these solutions~Fig. 6! have the same func
tional form as those for the corresponding model withD

50 ~centrosymmetric systems!. However, the energyw̄ @Eq.
~20!# of the system depends on the contribution from t
Lifshitz invariants. This energy has different values for d
ferent integral curvesu(j,E). The equationdw̄/(dE)50 to
derive the optimal valuesẼ can be reduced to the following
form:

E
0

2p

duAF~u!1E54D/D0 . ~21!

Hence the spiral structure described by the integral cu
u(j,Ẽ) obeying Eq. ~21! corresponds to the equilibrium
magnetic structure realized in a noncentrosymmetric syst
where inhomogeneous Dzyaloshinskii interactionswD are
operational. From the solutions of Eqs.~19! and ~21! the
other equilibrium parameters of the spiral structures
readily calculated. In particular, Eq.~20! yields the period of
the structureJ, and the oscillating components of the vect
m are expressed via~7! as functions ofu(j,Ẽ). Depending
on the ratioD/D0 for the relative strength of the chiral in
teractions the modulated structures display the follow
characteristic evolution: For strong chiral interactionsD/D0
@1 the influence of the energy@Eq. ~16!# is negligible and in
the equilibrium states the staggered vector rotates with
essentially fixed ‘‘velocity’’ uj corresponding to the phas
trajectories withuj52D/(pD0). Perturbations of the uni-
form rotation for the spirals are related to the shape of
potential profiles~cf. Fig. 3 and the open trajectories in Fig
5!. Thus the functional dependencies ofu(j,Ẽ) contain im-
portant information on internal interactions of a syste
When values of the parameter are smaller,D/D0.1 the in-
fluence of the potentialF(u), which determines preferabl
orientations in the crystal, violates uniform rotation of th
staggered magnetizationl in a spiral. A further weakening o
the chiral interactions leads to ‘‘pinning’’ ofl along certain
~‘‘easy’’ ! directions and squeezes the regions with ‘‘disa
vantageous’’ orientations of the vectorl. This tendency re-
sults in the formation of structures consisting of large d
mains with homogeneous states separated by nar

-
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MAGNETIC STRUCTURES AND REORIENTATION . . . PHYSICAL REVIEW B66, 214410 ~2002!
transition regions in which the vectorl rotates from one eas
direction to another similar to domain walls. Finally, for
certain critical value ofD the modulated phase is tran
formed into the homogeneous state. This transition is
nalled by an unlimited growth of the period for the mod
lated state. In the phase space, states at this transition int
homogeneous state correspond to the separatrix~Fig. 5!
which describes a set of isolated domain walls, i.e., w
with infinite separation between them. The finite stiffness
the exchange interaction prevents a complete annihilatio
the domain walls and they may exist with finite thickne
within homogeneous states as metastable topologically st
objects acting as nucleation centers during a reverse tra
tion from the homogeneous into the modulated state.

Finally, it should be stressed that Eqs.~19! and ~21! pro-
vide general and rigorous solutions for one–dimensio
modulated structures in magnets with Lifshitz invariants
type~2! with arbitrary functional form for the potentialF(u)
in functional ~18!. The above described evolution of th
modulated states is not restricted to any particular form
F(u); the qualitative picture of this evolution rather has u
versal character for physically reasonable choices forF(u).
Particular cases for such chiral spirals have been investig
starting from the paper7 for several groups of helical ferro
magnets and antiferromagnets.12,16,31,38

C. Stability limits of the modulated states

At the transition into homogeneous states the chiral s
rals disintegrate into a system of noninteracting planar
main walls. Such a transition can be found by comparing
energy of the chiral spiral to the energy of domain wa
separating regions with different homogeneous states of
system.16,31 Below in Sec. IV, we will discuss domain wall
as topological defects in the magnetic system which req
an excitation energy. Here we are concerned with the c
petition between homogeneous and modulated equilibr
states. Then a gain of energy through proliferation of dom
walls indicates the instability of homogeneous states co
pared to a modulated state.

Let us consider a planar isolated domain wall betwe
two infinitely extended regions with different spatially h
mogeneous magnetic structures that are described by f
tional ~16!, i.e., equilibrium states in Fig. 3. The equilibrium
structure of this isolated wall is determined by solving E
~19! with the boundary conditions uuj56`5u1,2,
(du/dj)j56`50, whereu1,2 are homogeneous configura
tions determined byF`[min@F(u)#5F(u1)5F(u2) for
functional~16!. The direct integration of~19! yields the fol-
lowing results for the dependence ofu(j) in the wall and for
the domain wall energys ~see Refs. 20 and 39!:

j2j~u1!5E
u1

u du8

A@F~u8!2F`#
, ~22!

s5
p

2
D0E

u1

u2A@F~u!2F`#du6Duu12u2u. ~23!
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The function@F(u)2F`# is the deviation of energy densit
~13! from the minimal valuew̃` corresponding to the homo
geneous states in adjacent domains. The first term in Eq.~23!
is positive and represents increased energy contribut
compared to those of the homogeneous statesu1 and u2.
This increase is due to inhomogeneous exchange interac
and interactions included into the functionalF @Eq. ~16!#.
These defect energies are typical for the energy of magn
domain walls.34 The second term is specific fornoncen-
trosymmetricsystems. Its sign is determined by the rotati
sense of the staggered vectorn in the domain wall. Clearly,
for any sign of the constantD there exists a rotation sense
the staggered magnetization leading tonegativevalues for
this energy contribution and, consequently, to a decreas
the domain wall energy. For sufficiently strong inhomog
neous chiral Dzyaloshinskii-Moriya interactions the total e
ergy of the domain wall may be negative compared to
energy of homogeneous states. This manifests an instab
of the homogeneous state with respect to chiral modulatio
As already discussed above, such a transition takes plac
coefficientsD larger than a certain threshold value necess
to overcome the positive energy contribution for inhomog
neous states due to the conventional magnetic interactio

The wall energy@Eq. ~23!# can be expressed via the heig
of the potential barrier,DF5max@F(u)#2F` , that separates
the equilibrium statesu1 andu2. This can be written in the
form

s5@gD0ADF6D#uu12u2u, ~24!

where g is a numerical factor determined by the avera
value of the integrand in Eq.~23!. These results have clea
physical meaning. The higher the energy barrierDF the
stronger the chiral interaction necessary to overcome it
to stabilize modulated states. As was shown above, the
tential profile F(u) @Eq. ~16!# strongly depends on the
strength and direction of the applied field~Fig. 3!. Corre-
spondingly, the critical valuesDc of the Dzyaloshinskii-
Moriya constantD for transitions between homogeneo
(D,Dc) and modulated chiral states (D.Dc) vary strongly
with an applied magnetic field. The critical surfaces for the
transitions in parameter space are given by the equatios
50 using functional~16!. For easy-plane systems (K,0)
the critical surface is

Dc

D0
5AUhz

2

K
21UFA12n2

n

2
lnS A12n11

A12n21
D G . ~25!

This equation also describes the boundaries of the modul
states for easy-axis systems (K.0) in magnetic fields larger
than the spin-flop field (hz.h0). For lower fields (hz,h0)
the equation

Dc

D0
5A12

hz
2

h0
2@A12n21n arcsinn# ~26!

gives the transition into the canted phase (n<1). Finally, the
equation
0-9
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FIG. 7. Magnetic phases in the magnetic field along the tetragonal axis in dependence on the strengthD of the inhomogeneous
Dzyaloshinskii interactions~a! K,0 and ~b! K.0. Note that for easy-axis antiferromagnets~b! in the vicinity of a spin-flop field the
modulated phases exists at arbitrarily small values ofD.
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D0
5A12

hz
2

h0
2FAn211n arcsinA1

nG ~27!

describes the transition into the weak-ferromagnetic ph
(n.1). In particular, at zero field the critical valueDc
equalsD0. Thus, this constant is the lowest value for t
Dzyaloshinskii constantD to induce modulated groun
states. The (D,hz) phase diagrams for an applied field
direction of the tetragonal axis are shown in Fig. 7 for t
two casesK"0.

For easy-plane systems (K,0) the critical surface
Dc(h' ,hz) has a minimum in the origin withDc(0,0)5D0
and monotonically increases with increasing magnetic fi
for any direction@Fig. 8~a!#. WhenD,D0 the chiral inter-
actions are too weak to overcome the pinning due to
uniaxial easy-plane anisotropy. Then the system exists in
homogeneous state with the staggered magnetization in
basal plane and a weak spontaneous magnetization~WF
phase!. For D.D0 the WF phase becomes unstable. Und
the influence of the inhomogeneous chiral interactions
vectorn ‘‘escapes’’ from the basal plane and a chiral helix
formed. We add a remark about the peculiarity of this type
helix. In known easy-plane systems with helical structu
the magnetization~or the staggered magnetization in the ca
of antiferromagnets! rotates in the ‘‘easy plane’’ and th
propagation vector is perpendicular to this plane. In th
noncentrosymmetric magnets such spirals are stabilized

FIG. 8. Contour linesDc(h' ,hz)5const of the critical surfaces
for modulated states.~a! K,0 surface given by Eq.~25!. ~b! K
.0 surface according to Eqs.~25!, ~26!, and~27!. ~The direction of
increasingDc is indicated by dotted arrows.!
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Lifshitz invariants with gradients along the ‘‘hard axis.’’ I
our model, however, the Lifshitz invariants include only gr
dients in the basal plane@Eqs. ~11! and ~12!#. Correspond-
ingly, the chiral modulations in these systems have propa
tion directions only in the basal plane.12,16

For easy-axis systems (K.0) the critical surface
Dc(h' ,hz) has a more involved shape. In this case the lo
est value ofDc equals zero. This is reached at the spin-fl
field (0,6h0) @Figs. 7~b! and 8~b!#. Thus near the spin-flop
transition the modulated states arise at arbitrarily small v
ues ofD. This unusual situation is due to the particular ev
lution of the potential profile@Eq. ~16!# in a magnetic field
directed along the tetragonal axis@Fig. 3~b!#. In this case the
uniaxial anisotropy and the applied magnetic field have co
peting influence on the magnetic structure. While the ea
axis anisotropy orientates the staggered magnetization a
the tetragonal axis, the applied field orientates it perpend
lar to this axis. An increasing magnetic field in the regi
h,h0 gradually decreases the potential barrier between
states of the antiferromagnetic phase with antiparallel s
gered magnetization@Fig. 3~b!#. When the spin-flop is
reached the applied field completely cancels the influenc
uniaxial anisotropy, and potential~16! is equal to zero for
any orientation of the staggered magnetization. This infin
degeneracy of magnetic states is artificial because of the
glect of higher order anisotropy contributions. A fourth-ord
uniaxial anisotropyK2 sin4u removes this degeneracy. W
may generally state that in noncentrosymmetric easy-axis
tiferromagnets near the spin-flop field the potential barr
between minima~and, therefore, the critical values ofD) is
determined by the much weaker fourth-order anisotropy c
stantK2. We add two remarks here:~i! For centrosymmetric
easy-axis antiferromagnets@models~I! and~II ! of Sec. II A#,
the situation near spin-flop transitions is physically comp
rable and has been studied in detail.20,29 There, the relation
between interactions and homogeneous magnetic state
well understood.~ii ! In cubic helimagnets,13 where magneto-
crystalline anisotropy is represented only by fourth-ord
terms, no suppression of the modulated states has been
served, rather chiral modulations exist in the complete reg
of existence of magnetically ordered states. Estimates ba
on the physical origin of these magnetic energy contributio
0-10
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MAGNETIC STRUCTURES AND REORIENTATION . . . PHYSICAL REVIEW B66, 214410 ~2002!
yield such weak threshold values that modulated chiral st
near the spin-flop field should be expected generall31

Therefore, this competition between antisymmetric excha
and anisotropies makes the easy-axis noncentrosymm
antiferromagnets particularly interesting systems for a sea
for and investigation of modulated chiral states.

IV. LOCALIZED CHIRAL STRUCTURES

In this section we consider the influence of t
Dzyaloshinskii-Moriya interactions on localized magne
defects within homogeneous magnetic configurations.
there is a wide variety of possible defect structures in
different phases, we will present only a few examples
demonstrate the general principles which rule defect st
tures for the noncentrosymmetric antiferromagnets under
influence of chiral couplings. A formal mathematical descr
tion of isolated, planar one-dimensional defect structu
i.e., domain walls, was already developed above in S
III C. In the next subsection, we discuss physical importa
and properties of such domain walls for antiferromagne
systems described by our model. Section IV B is devoted
linear two-dimensional defect structures, i.e., vortices.

A. Domain walls or kinks

Planar defects~domain walls orkinks! are commonly ob-
served magnetic localized states in many classes of ant
romagnetic materials.40 They separate homogeneous sta
with different degenerate directions of the staggered mag
tization. An example is provided by 180° domain walls b
tween regions with antiparallel staggered magnetization,
different antiferromagnetic phases, in easy-axis antife
magnets. In the antiferromagnets under discussion, the
tion of the vectorn within a domain wall is accompanied b
oscillation of the total magnetization. The spin arrangem
in such domain walls is similar to that in the correspond
spirals~Fig. 4!. Rotation ofn as in a Bloch wall with longi-
tudinal modulation of the vectorm @Fig. 4~a!# should occur
in noncentrosymmetric antiferromagnets belonging to cr
tallographic classD2d . Néel-wall-like structures with trans
versal oscillation of the magnetization correspond to the n
centrosymmetric antiferromagnets from classC4v @Fig.
4~b!#. The inhomogeneous chiral Dzyaloshinskii-Moriya i
teractions do not influence the structure of the domain w
@see the remarks following Eq.~20!#. However, the domain
wall energies do depend on the rotation sense accordin
Eq. ~24!. As discussed above, the modulated structures h
a fixed sense of rotation that corresponds to a decreas
total energy compared to the homogeneous states. Sp
with the opposite sense of rotation are unstable~even with
respect to the homogeneous states! and never arise in rea
systems. Contrary to this, domain walls with disadvan
geous sense of rotation, although increasing the ene
should be found within these antiferromagnets with sim
probability because domain walls in antiferromagnets hav
mostly ‘‘kinetic’’ origin in contrast to domain structures i
ferromagnets, i.e., antiferromagnetic domain structures
formed during the transition to the ordered states or a
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result of reorientation transitions. These processes are lar
independent of domain wall energies.

The structure of such domain walls can be derived
integration in Eq.~22!. Here, we restrict ourselves to on
example of a practical calculation. We obtain the struct
and characteristic parameters of the domain walls in
canted phase~see Figs. 1 and 2!. Within all regions of their
existence (n<1) the equilibrium states are separated by t
types of barriers in the potential profileF(u) @Fig. 3~a!#.
Correspondingly there exist two types of domain walls in t
canted phase. The first low energy domain wall~DW I! sepa-
rates homogeneous states withu5arcsinn and u5p
2arcsinn; and DW II corresponding to the higher potenti
barrier, separates states withu5arcsinn and u52p
2arcsinn @Fig. 3~a!#. Evaluating integral~22! with F from
Eq. ~16! yields the following result:

sinu5
n cosh~jA12n2!61

cosh~jA12n2!6n
. ~28!

Wall structures for both domain wall types in the cant
phase with varyingn are displayed in Fig. 9. The effectiv
thickness of domain wallsL is usually determined as a dis
tance between points where the tangent at the inflection p
intersects the linesu5u1 andu5u2.34 For our example this
definition yields the following expression:

L5uu12u2uS du

dj D
j50

21

5
p72 arcsinn

17n
. ~29!

@In Eqs.~28! and~29! the upper and lower signs correspon
to DW I and DW II.# The dependence of the wall thickne
L on n for both types of walls is shown in Fig. 10. Fo
increasingn the difference between magnetic configuratio
in the adjacent domains separated by DW I (Du5p
22 arcsinn) and the potential barrier@DF5F(p/2)
2F(u1);(12n)2# gradually decreases while the thickne

FIG. 9. Structure of domain walls in the canted phase given
the turn angleDu as a function of distance from the wall-centerj
50 for different values of the parametern. The 180° domain walls
of the AF phase (n50) are deformed in the canted phases eith
into walls with a decreased value ofDu(j→`) ~DW I, profiles
with continuous lines! or an increasedDu(j→`) ~DWII, profiles
with dotted lines!. DW II are transformed into 360° walls in the
limit n51.
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of the wall increases. At the critical point of the transitio
into the weak ferromagnetic phase,n51, the difference be-
tween magnetic states in the domains disappears and the
spreads out without bounds. For DW II the potential barr
DF;(11n)2 and Du5p12 arcsinn increases with in-
creasingn. At the critical point,n51, these walls transform
into 360° domain walls~Figs. 9 and 10!.

Structures and parameters for 180° domain walls in
antiferromagnetic and spin-flop phases can be derived
similar way. All these domain walls may play the role
nucleation centers during the transition from the homo
neous to modulated states. On the other hand, as dem
strated in the previous section, at a transition into the hom
geneous state the spiral states break down into a syste
isolated plane walls.

B. Vortices or skyrmions

Linear magnetic defects are another type of topolog
excitations that can exist in noncentrosymmetric magn
crystals due to the stabilizing effect of the inhomogene
Dzyaloshinskii interactions.16 At zero magnetic field and in
fields applied along the tetragonal axis, model~3! is invariant
to rotation about thez axis. Solutions for the vectorn(r )
axially symmetric in the basal plane and uniform along
tetragonal axis, i.e.,vortices, obey this symmetry. As an ex
ample of such localized states we consider an isolated vo
in the antiferromagnetic phase (K.0, h is parallel to the
tetragonal axis and smaller than the spin-flop fieldh,h0).
We assume that the staggered magnetization is oriented
allel to the z-axis on the vortex axis and rotates into t
antiparallel orientation with increasing radial distance fro
the vortex core. It is convenient to introduce cylindrical c
ordinates for the spatial variables,r5x0(r cosw, r sinw, z),
in the expression for the energy@Eq. ~10!#. ~As earlier in the
case of the spirals, we use length unitsx05AAl/uKu.! The
analysis of the energy functional~10! shows that the problem
has solutionsu(r) with

c5w for class Cnv , c5p/22w for class D2d .
~30!

FIG. 10. The domain wall widthsL as functions of the param
etern for the two wall types in the canted phase,~a! DW I and ~b!
DW II, according to Eq.~29!.
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For Cnv symmetry solution~30! describes a cycloid-like ro-
tation of the staggered magnetization vectorl @Figs. 11~a!
and 11~c!#. In the case ofD2d symmetry the vortex has a
more sophisticated structure@Figs. 11~b! and 11~d!#. The ro-
tation of the staggered magnetization in the vortices is
companied by in-plane oscillations of the total magnetizat
@Figs. 11~e! and 11~f!# as described by Eq.~7!.

The equilibrium distributionu(r) is determined from the
differential equation common for both classes,

d2u

dr2
1

1

r

du

dr
2

sinu cosu

r2
1

4D

pD0

sin2u

r

2S 12
h2

h0
2D sinu cosu50, ~31!

with boundary conditionsu(0)50 andu(`)5p for local-
izedvortices in the antiferromagnetic phase (h,h0, Fig. 11!,
or u(`)5p/2 for delocalizedvortices in the spin-flop phas
(h.h0, Fig. 12!. These different boundary conditions resu
in an important physical difference between these two ca
of antiferromagnetic vortices: For the localized vortices t
homogeneous equilibrium state is established everywhere
r→` and the inhomogeneity is localized in the vortex co
In the case of the spin-flop phase, the vortex structure ar
→` is inhomogeneous withu5p/2, but the anglec rotates
through a full circle from 0 to 2p. Therefore, these vortice

FIG. 11. Vortex structure for antiferromagnets withCnv symme-
try @~a!, ~c!, and~e!# andD2d symmetry@~b!, ~d!, and~f!#. ~a! and
~b! Distributions of staggered vectorl. ~c!–~f! Projections ofl and
oscillating total magnetizationm in the basal plane, respectively.
0-12
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are calleddelocalized. Equation~31! has solutions only when
D is smaller than the critical values for the transition to t
modulated phaseDc(h) given by Eq.~26!. Typical solutions
for u(r) are plotted in Fig. 13. AsD approaches the critica
valueDc the vortex expands without bounds. Equation~31!
functionally coincides with equations for isolated vortices
other models with Lifshitz invariants, i.e., models for no
centrosymmetric ferromagnets,16,41 for other classes o
antiferromagnets,31 as well as for chiral liquid crystals.42 For
a detailed analysis of Eq.~31! and a discussion of the relate
questions, see these papers.

The vortices orskyrmionsconsidered here~Figs. 11, 12,
and 13! are nonsingular linear defect structures. They belo
to topological defects studied in many fields of the mod
physics. Similar topological objects arise in superflu
helium,43 in two-dimensional electronic systems~Hall
skyrmions!,44 or in nanomagnetic materials.45 It is important
to mention that there is a fundamental correspondence
tween these theoretical models.46 In the isotropic case@wD

5w̃50 in Eq. ~10!# the equation for the vortex has analy
cal solutions which are well-known as Belavin-Polyakov s
lutions for nonlinears models.47 These solutions turned ou
to be unstable in centrosymmetric magnetic crystals and
lapse spontaneously under the influence of anisotropic in
nal interactions or applied magnetic fields. Thus the Lifsh
invariants are crucial for stabilizing these vortex structures
noncentrosymmetric magnetic crystals.41 Hence such low-
symmetry magnetic crystals are interesting and impor
systems for investigations of general properties of vortice

FIG. 12. Delocalized vortex structure in the spin-flop phase
crystals withCnv symmetry. The staggered vectorl is shown.

FIG. 13. Vortex profilesu(r): solutions of Eq.~31! for different
values ofD/D0 in a zero applied field.
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In the spin-flop phase the vortex states have delocali
character~Fig. 12!. They are similar to vortex states in liqui
helium or some textures in liquid crystals.48 Such vortices for
noncentrosymmetric antiferromagnets withd50 were inves-
tigated in Ref. 31. They readily form localized vortex pa
similar to those responsible for Berezinskii-Kosterlit
Thouless transitions.49 An applied magnetic field deviating
from the tetragonal axis violates the axial symmetry of t
system. Then, the two-dimensional localized states are
pected to have various elongated shapes similar to those
served in chiral liquid crystals.50 The Lifshitz invariants can
also stabilize three-dimensional localized states~as free
spherulites or drops!.41 Up to now no experimental observa
tions or theoretical investigations of such structures h
been reported.

Concluding this section we draw attention to an importa
difference between the localized states in our model
those in other magnetic systems. In noncentrosymmetric
tiferromagnets with weak ferromagnetism due to the oscil
ing weak magnetization in the basal plane the domain w
and the vortices are susceptible to the influence of app
magnetic fields. For this reason, noncentrosymmetric anti
romagnets are convenient for the study of phase transfor
tions and the dynamics of such nonlinear localized exc
tions.

V. RELATION TO EXPERIMENTAL OBSERVATIONS

The known noncentrosymmetric antiferromagnets w
weak ferromagnetism include two tetragonal crystals. F
Ba2CuGe2O7 belonging to the crystallographic class 42̄m
(D2d), chiral modulations were discovered five year ago17

For the crystallographic class 4mm (C4v) only the antiferro-
magnet K2V3O8 has apparently been investigated and
modulated states have been found yet.19,51 Here we briefly
review experimental data for these two antiferromagne
compounds within the framework of our theory. In Sec. V
we comment on related experiments on noncentrosymme
antiferromagnetic crystals.

A. Ba2CuGe2O7

A chiral spiral with a propagation vector in the basal pla
and a period length of about 37 unit cells was found to be
magnetic ground state for Ba2CuGe2O7 ~space group
P4̄21m).17 It was also found that a rather strong magne
field applied along the tetragonal axis induces a transit
into a homogeneous state.18 The field dependencies of th
period and the magnetization reported are in quantita
agreement with theoretical results of Ref. 7. It appears
there is no local minimum of the period length in depe
dence on the strength of a magnetic field applied along
tetragonal axis. This implies that the uniaxial anisotropy
this crystal is of easy-plane type (K,0) ~cf. Fig. 7!. To
analyze their experimental data the authors explored
model withd50. In their experiments there is no indicatio
of effects related to weak ferromagnetism.

Further detailed investigations in magnetic fields appl
along other directions are required to determine the chara

n
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of the uniaxial anisotropy and the values of the other ch
acteristic parameters of the magnetic system within the g
eral phenomenological expression@Eq. ~3!# for the energy.

B. K2V3O8

For this compound, at a temperature of 2 K~the Néel
temperature is about 4 K! the magnetization curves in a ma
netic field along the tetragonal axis and in the basal pl
indicate reorientation transitions.19 These transitions are
similar to those earlier observed in centrosymmetric anti
romagnets with weak ferromagnetism, e.g., hematite.25,28

The authors conclude from neutron diffraction experim
that there are no indications of chiral modulations.19,51 Ac-
cording to the results of our theory such a situation may t
place for easy-axis systems (K.0) with weak chiral inter-
actions (D,D0). As discussed above, in the vicinity of th
spin-flop field the criterion for the stabilization of the mod
lated states is considerably weakened. Thus the searc
modulated states in this system should be started fro
thorough investigation near the spin-flop field. We add t
there are two other similar noncentrosymmetric vanadi
oxides Rb2V3O8 and (NH4)2V3O8 which are supposed to
possess antiferromagnetic order below 10 K.52 They could be
investigated to search for effects of chiral interactions.

C. Other noncentrosymmetric antiferromagnets

The copper metaborate CuB2O4 @space groupI 4̄2d
(D2d

12)] belongs to the same noncentrosymmetric class
Ba2CuGe2O7. However, according to Refs. 53–55 it has
more sophisticated four-sublattice antiferromagnetic str
ture with in-plane anisotropy. A long-periodic modulate
state has been observed in this crystal for a certain temp
ture range.54,55 Finally here we mention two other nonce
trosymmetric antiferromagnets: a modulated chiral state
been observed in the noncentrosymmetric antiferromag
BiFeO3 ~space groupR3c).56 For CuFeS2 @space group
I 4̄2d (D2d

12)] antiferromagnetic order was reported to exi
however, no details about the magnetic structures
given.57

VI. CONCLUSIONS

In this paper we show that the antiferromagnetic crys
Ba2CuGe2O7, ~Ref. 17! and K2V3O8 ~Ref. 19! in spite of the
reported difference in their magnetic properties belong t
special class of magnetic crystals:noncentrosymmetric anti
ferromagnets with weak ferromagnetism. The phenomeno-
logical expression for the magnetic energy of such syste
including all interactions allowed by symmetry@Eq. ~3!# can
be reduced to functional~8! which describes the orientatio
of the staggered magnetization, and can be considere
general model for two-sublattice antiferromagnets. It
cludes, as specific cases, all main classes of antiferrom
netic crystals~collinear antiferromagnets, antiferromagne
with weak ferromagnetism, noncentrosymmetric antifer
magnets without and with weak ferromagnetism!. Further, by
using realistic assumptions about the relative strengths o
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phenomenological constants in Eq.~10! the problem has
been reduced to the case that the rotation of the stagg
magnetization is restricted to a certain fixed plane. This s
plification yields a representative and realistic approxim
model replacing the general model@Eq. ~8!#. It is amenable
to a complete analysis of the possible solutions for magn
structures. The boundaries of their existence in param
space could be calculated in all detail and a clear phys
picture of the formation and evolution of these magne
states is achieved. Due to the unique combination of th
interactions inducing weak ferromagnetism and those st
lizing modulated chiral states, a rich variety of modulat
and localized structures was found to exist in this class
magnetic crystals. In these inhomogeneous states chiral
tion of the staggered magnetization is always accompan
by oscillations of a weak magnetization component in
basal plane~Fig. 4!. The modulated states in these syste
can be realized as structures with the propagation ve
along certain in-plane directions~spirals!. We remark that in
another type of solution, a two-dimensional modulat
phase, so-called vortex lattices may also exist. In nonc
trosymmtricferromagnetsthey are thermodynamically stabl
under applied fields in certain region of the phase space.16 In
Ref. 31 vortex lattices in antiferromagnets lacking inversi
symmetry, withd50, were studied theoretically. Nucleatio
of such vortex lattices during the transition from the sp
flop phase was discussed in Ref. 38. However, it is still u
known whether these vortex lattices can be thermodyna
cally stable in antiferromagnetic materials.

In contrast, two-dimensional structures with finite siz
~as axisymmetric vortices in the antiferromagnetic phas!,
described in Sec. IV B, are localizednonlinear excitations.
We show that these structures are possible topological
fects in these systems. They are stabilized only due to ch
interactions. Furthermore, we have described o
dimensional localized structures~domain walls or kinks!
separating domains of homogeneous states. These d
structures differ from similar objects found in many oth
classes of magnetic materials by oscillations of the local
magnetization and the dependence of their energy on
sense of rotation for the staggered magnetization within
wall. These peculiarities of their properties should be acc
sible to experimental verification.

In this paper we have deliberately avoided a detailed
vestigation of the full model@Eq. ~8!#. Instead, by introduc-
ing a simplified model, we have described the general f
tures of the magnetic properties in noncentrosymme
tetragonal antiferromagnets. We expect that this phenome
logical description will provide a guide for a further detaile
experimental investigation of the known noncentrosymm
ric tetragonal antiferromagnets and for a search of new c
tals belonging to this group.

Here we also briefly indicate possible further directio
for theoretical investigations. Fourth-order anisotropies
needed to describe orientational processes in the basal p
and the peculiarities of magnetic properties near the spin-
field. Future theoretical investigations also should inclu
the stray field effects responsible for multidomain states n
the first-order phase transitions. Similar investigations wit
0-14
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MAGNETIC STRUCTURES AND REORIENTATION . . . PHYSICAL REVIEW B66, 214410 ~2002!
the general model@Eq. ~8!# pose a much more complex an
challenging task. This functional can be considered as a g
eralized version of the nonlinears model, one of the basic
models in the theory of nonlinear physics and solitons. I
related to many other models in condensed ma
physics.43–46,50The further development of the theory shou
involve the investigation of vortices and vortex lattices
done for other noncentrosymmetric models.16,31Similar mul-
tidimensional localized solutions of nonlinear field equatio
are intensely studied in many other fields of mode
physics.43,45,50 Nucleation and evolution of such one
dimensional and two dimensional modulated patterns h
deep physical relations to similar patterns
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