PHYSICAL REVIEW B 66, 214410 (2002

Magnetic structures and reorientation transitions
in noncentrosymmetric uniaxial antiferromagnets
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A phenomenological theory of magnetic states in noncentrosymmetric tetragonal antiferromagnets is devel-
oped, which has to include homogeneous and inhomogeneous feifskitz invarianty derived from
Dzyaloshinskii-Moriya couplings. Magnetic properties of this class of antiferromagnets with low crystal sym-
metry are discussed in relation to the recently detected compound3uBa0O; and K;V;Og. Crystallo-
graphic symmetry and magnetic ordering in these systems allow the simultaneous occurrence of chiral inho-
mogeneous magnetic structures and weak ferromagnetism. Incommensurate magnetic sthicalfeslices
with a rotation of the staggered magnetization accompanied by oscillations of the total magnetization, are
possible. Field-induced reorientation transitions into modulated states have been studied and corresponding
phase diagrams are constructed. Structures of magnetic dédeotsin-walls and vorticesare discussed. In
particular, vortices, i.e., localized nonsingular line defects, are stabilized by inhomogeneous Dzyaloshinskii-
Moriya interactions in uniaxial noncentrosymmetric antiferromagnets.
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[. INTRODUCTION are expressed by inhomogeneous invariants. We will call
these contributions to théree) magnetic energy, involving
In many magnetic crystals the magnetic properties ardirst derivatives of magnetization or staggered magnetization
strongly influenced by the antisymmetric exchangewith respect to spatial coordinatesinhomogeneous
(Dzyaloshinskii-Moriya coupling, which is generally de- Dzyaloshinskii-Moriya interactions. They are linear with re-
scribed by a vector product formed by the magnetic momentspect to the first spatial derivatives of a magnetizatibrof

S of two magnetic ions, type’
WD:Dij'(SXSj): (1) &Mj M,
. .. 12 M i T N, (2)
and the so-called Dzyaloshinskii vectd; .~ Based on an an

phenomenological considerations, interacti@h was intro-
duced by Dzyaloshinskii to explain the observation of awhereM; andM; are components of magnetization vespr
small net magnetization in a number of antiferromagnets, &hat arise in certain combinations in expressi@)sdepend-
phenomenon calledeak ferromagnetistrwhich is due to a  ing on crystal symmetry, ang is a spatial coordinateSuch
slight deviation of the sublattice magnetizations from anti-antisymmetric mathematical forms were studied in the theory
parallel arrangement. Extending Anderson’s theory of superef phase transitions by E. M. Lifshitz, and are known as
exchange Moriya later found a microscopic mechanism dugifshitz invariants® Later, magnetic modulated chiral struc-
to spin—orbit interactions that is responsible for the interactures predicted in Ref. 7 were observed in the cubic noncen-
tions (1). They arise in certain groups of magnetic crystalstrosymmetric crystaléspace grouf2,;3) MnSi(Ref. 9 and
with low symmetry where the effects of couplitig) do not FeGe(Ref. 10. The theory of these modulated states was
cancel During the following decades intensive theoretical further developed in Ref. 11. During the following years
and experimental studies on tBeyaloshinskii-Moriyecou-  modulated magnetic structures of this kind were discovered
pling [Eq. (1)] resulted in a deep insight into its microscopic and investigated in several classes of magnetic crystals lack-
origins and its manifestation in macroscopic properties oing inversion centef?~# Thesechiral helical structures are
magnetic material$® Now it is known that weak ferromag- essentially different from numerous other spatially modu-
netism must essentially be attributed to many types of comlated magnetic states in systems with competing exchange
plex magnetic structures. It influences appreciably the magnteractions(as, e.g., in rare-earth metafé''® The latter are
netic properties of several important classes of magneticharacterized by rather short periddsually including only
materials such as orthoferrites, manganites, some highHew unit cell§ and an arbitrary rotation sense. Conversely,
temperature superconducting cuprates, and offfers. chiral structures due to Egél) or (2) have long period and
Another fundamental macroscopic manifestation of thea fixed sense of rotation. For example, in MnSi the period-
antisymmetric coupling Eqg. (1)] takes place in noncen- icity length of the helix in zero magnetic field was found to
trosymmetric magnetic crystals. Dzyaloshinskii showed thatbe about 170 A39 unit cell3,® and FeGe has an even larger
in this case, the interactiofi) stabilizes long-periodic spa- period (700 A or 149 unit cells®® Interactions of typ&2)
tially modulated structures witfixedsense of rotation of the may also stabilize periodic structures modulated in two-
vectorsS .” Within a continuum approximation for magnetic dimensions(vortex lattice$ and localized axisymmetric in-
properties, the interactions responsible for these modulatiortsomogeneous staté%.
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Up to now both physical effects induced by antisymmetrictetragonal axis of the antiferromagnets. The homogeneous
exchange coupling1l) —weak-ferromagnetisnand chiral  part of the Dzyaloshinskii-Moriya interaction with a constant
modulations—never have been observed simultaneously ind is responsible for weak ferromagnetism with small mag-
the same magnetic system. Moreover, in noncentrosymmetetic moments in the basal plane. Finally the energy contri-
ric magnetic crystals with chiral modulations described up tohutionwy, includes Lifshitz invariants of typ&). The func-
now, the existence of weak ferromagnetism is excluded betjonal form ofwp depends on the crystal symmetry and will
cause of their symmet®?. In this paper, we show that both be specified later.
phenomena can coexist in the recently discovered noncen- The next terms in a systematic expansion of the energy

trosymmetric - tetragonal antiferromagnets ,8aGe0;  for 4 two-sublattice antiferromagnet are much weaker fourth-
(Refs. 17 aod 1Band K;V30,. ™ Due to the crystallograpmc order terms of the magnetocrystalline anisotropy, including
and magnetic structures of these crystals, the Dzyaloshinskil- .

. . 4 4 2 2
Moriya coupling[Eg. (1)] favors noncollinearity along one unl:mal _pa;ts with t(;:mgb]lz’ Imzlz a;d m;z”rzz, and a magd
direction and spatial modulations along the others. Here wg€tic anisotropy in the basal pian QY plang compose

determine possible magnetic phases and study their evolutid X @ndy components of the vectors; . The former are
in applied magnetic fields. It turns out that the unique coex.MPOMant in close vicinity to some reorientation transitions

istence of weak ferromagnetism and chiral modulations enand the latter is responsible for small variations of magnetic
ables the occurrence of incommensurate structures withtructures when the magnetic field is rotated in the basal
weak ferromagnetic moments. In such systems, there malane. These secondary effects are omitted in this contribu-
also exist specific localized structurdexcitation with ~ tion dedicated to the principal magnetic properties of the
weak ferromagnetic moments including so calledgnetic  system. We also neglect the stray field contribution in total
vorticesor skyrmionswhich are generally unstable in other energy(3) because, due to the antiparallel alignment of mag-

classes of magnetic materials. netic moments in antiferromagnets, stray fields are much
weaker than in ferromagnetic crystals. However, they play a
crucial role in stabilizing multidomain structures in the vi-
IIl. MODEL e : : ) ) -
_ cinity of field-induced reorientation transitioAS.
A. Phenomenological energy Functional (3) includes all leading interactions in an

The tetragonal antiferromagnet g2uGeO, (Refs. 17  uniaxial two-sublattice antiferromagnetic crystal. Here we
and 18 (space groupP42,;m) belongs to the crystallo- _briefly list seve_ral special cases_of mode) wh?ch describe
graphic classD,y and KV50g (Ref. 19 (space group important special classe_s of antlforromagnenc systems.
P4bm) to C,,. The magnetiafree) energy within a con- (I) d=0, wp=0. Collinear antiferromagnetsThe vast
tinuum description consistent with the symmetry and thedroup of these antiferromagnetic materials includes such
two-sublattice magnetic structure of these antiferromagnet#ell-studied species as CyCeH,0,”" MnF,,* Cr,05,%
can be derived by the standard approach to phenomenologind GdAIG; (Ref. 24 (for further references and a review of
cal theony? At temperatures sufficiently below the ordering their magnetic properties see Refs. 20 anyl 25
temperature the vectors of sublattice magnetizatibn (i (Il d#0, wp=0. Antiferromagnets with weak ferromag-
=1,2) do not change their modulus. In this practically im-netism In this case energy3) describes antiferromagnetic
portant case defined by neglecting theraprocessthe vec-  crystals with homogeneous Dzyaloshinskii-Moriya interac-
tors M; have only orientational degrees of freedom and canions resulting in weak ferromagnetism or collinear antifer-
be described by the unity vectors;=M;/Ms, whereMgs  romagnets with “hidden” weak ferromagnetism. Among
=[My|=|M,] is the sublattice saturation magnetization. Formany others, this group includes Mng® orthoferrites?®
tetragonal antiferromagnetic crystals, the two-sublatticenanganite$’ and the most popular and well-studied

model described by the unity vectams, andm, yields the  \yeak-ferromagnetic ~ antiferromagnet hematite ~ i.e.,
magnetic energy in the following form: a-Fe,0,,12:28-30

we[ (33, ||+ e+
A

B ,
+§m1- my—h-(m;+mj,)— E(miﬁ' mgz)_ﬂ m; My,

(1) d=0, wp#0. Chiral helimagnetsThis case is real-
ized in the cubic helimagnets discussed above and in other
noncentrosymmetric magnetic systett$.Usually interac-
tions of type(2) stabilize modulated chiral structures in these
materials:?

(IV) d#0, wp#0. Chiral helimagnets with weak ferro-
magnetism This model[Eq. (3)] represents systems where
dv. 3) both, homogeoeous and inhomogeneous, D;yaloshinskii—

Moriya interactions are operational and not forbidden by any

other additional symmetries. As will be shown, this unique
This includes inhomogeneousy( «') and homogeneous coexistence of a mechanism for weak ferromagnetism and
(N\) parts of the exchange coupling and the interaction enehiral coupling leads to specific modulated states with mag-
ergy with the external fieldh. The next two terms describe netization oscillations. The basic magnetic properties of such
the uniaxial second-order magnetocrystalline anisotropy wittsystems are investigated in this paper. Thus, in the following
constants and B', where thez axis is taken along the we will generally consider systents#0 andwp+# 0.

- d( mlmey_ m2xm1y) +wp
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B. Simplified model and basic equations m=—[nX(d+nxh)]/\, 7

It is convenient to use linear combinations of the sublat- _ _
tice magnetizatiomn; , namely, the vector ofotal magneti- ~Wheren=1/|I[ is the unity vector parallel to the staggered
zationm= (m; +m,)/2 and thestaggerednagnetizatiofor ~ Magnetization vector. After subsntuuqn @M into the energy
vector ofantiferromagnetiorded |=(m;—m,)/2 as internal (4 one obtains the energy to leading approximation as a
variables of the system. Because |aof;|=1 these vectors function of the vecton,
satisfy the constraints-1=0, m?+1%>=1.

In most antiferromagnetic crystals the exchange coupling -~ an;
is much stronger than other internal interactions. Strong :f .EJ IX:
magnetic fields of ordek destroy antiferromagnetic order .
and orientate the sublattice magnetizations parallel to ) 5
each othefa so-calledspin-fliptransition into the “paramag- —(h-n)7]=Bn;+wp(n) dVv, ®)
netic” phase withjm|=1, 1=0). For most investigated an-

tiferromagnetic systems these “exchange” fields are SXyvherewp(n) is determined bys) or (6). Energy(8) and(7)
tremely large. Practically attainable values of magnetic field§yere derived from Eq(3) by ignoring the paraprocess and
usually only slightly distort the antiparallel arrangement in'assuming weak total magnetizatiojm|<1, implying |
ducing states with the total magnetization much smaller than_ 1 - goth assumptions are fulfilled in most realistic cases of
unity. The hierarchy for the strength of interactions, jyierest. Thus energy8) describing the orientation of the

>d,B,p’, and the relations for the internal parameters, giaqgered magnetization can be considered as general phe-
<1 andl~1, permit one to considerably simplify ener)  omenological description for realistic uniaxial two-

by excluding gradients ah and taking into account only the g pjatiice antiferromagnets. Functior@) is related to so-
following terms(for details, see e.g., Ref. 29 called nonlinears models which are basic subjects in the
theory of solitons and which are intensively studied in math-
ematical and theoretical physits.

Energy contributiong5) and(6) can result in states with
modulations in the basal tetragonal plane, i.e., with a propa-
gation vector in theXxOY plane. Its actual direction is se-
lected by some small in-plane anisotropy contributions that
are neglected her¢see the discussion of expansid@8)
where A=a—«a’' and B=B— B'. Functional forms ofwp abovd. On the other hand, there are no interactions in our
for all noncentrosymmetric crystallographic classes havesystems violating homogeneity along the tetraganakis.
been derived in Ref. 31. In particular, for the antiferromag-Hence we infer that, within mod€B), the most general so-
nets under consideration the Lifshitz invariants quadratic idutions are inhomogeneous only in the basal plane but homo-
the components df have the following forms: geneous along theaxis. It is convenient to write the vector

n(x,y) and the magnetic fieltd in spherical coordinates:

? 1 2 2
~ [(herdn)?+ (hy—dny)

al'\2 )
—] +\m —=2m-h
&Xi

e[y

+2d(mxly—mylx)—BI§+WD]dV, (4)

lass Do ol dly | alz+ aly | alz) 5

€1ass Paq- - Wo=B 1250 —Ix Gy Tz T Iv k) © n=(sin @ cosy, sind siny, cosh),
I [ I I ©
. _ Ix dl, aly 9, h=(hsin{ cosn, hsin{sinn, hcos?).
classC,,: WD—D( I, I Iy P +1, ay v ay)' (6)
In these variables the total energy is given b

The homogeneous part of the Dzyaloshinskii-Moriya inter- wisg y
action in(4) includes in-plane components of andl. They ) 5 5
originate from thez-component of a vector produgt). Writ- ~ 0_9 . ﬂ ~
ing the Dzyaloshinskii vector in Eq1) as a sum of two parts w=L, A.; IX; + i X +wptwidxdy,

proportional toD andd, this contribution to Eq(4) can be (10

derived from the vector directed along the tetragonal dxis

=(0,0,d). On the other hand, Lifshitz invarian{S) and(6)  where the integration with respect zovas performed for a

can be derived by an expansion for the in-plane componentsystem with linear sizé,, x;=X, X,=y. The Lifshitz in-

of the vector producfEq. (1)] considering the contribution variants are given by

due to the vectob=(D,D,0). Theterminology in this field

is not yet fixedly formulated. Here, following Ref. 32, we

will call energy contributions given by Lifshitz invariants wp=D

Dzyaloshinskiior chiral interactions to distinguish them

from the homogeneous part of the Dzyaloshinskii-Moriya

interaction. +siné cosé
Independent minimization of energ@#) with respect tan

leads to the result (11

. a6 a6
sin 1,05 + COSI#@

for Doy,

coswj—f —sin 1//(;—15)
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EY: 96 of the (Dzyaloshinskil constantD that stabilizes modulated
COSwa—X+Sin zﬁa— states at zero fiel@see below. In these reduced unif€q.
y (14)], energy(10) includes as independent parameters the
rescaled constants, involving d, andD as well as the two
for Cp,, components of the applied fielth{, h,). Thus these param-
eters span a four-dimensional phase space for the solutions.
(12 Before giving the detailed analysis, let us point out some
~ ) ~general features of the possible magnetic configurations in
and the energy ternwv does not depend on spatial deriva- this system. The equilibrium magnetic structures are gov-

WD:D

—sin@ coso

- Iy
sin zp& - COS(ﬂ@)

tives: erned by two opposing tendencies. The rotation of the stag-
- — ) 5 gered vectorl with propagation vectors in the basal plane
AW= —(AB—d?—h?cos{)cos §— (h®siP{+d?) and an appropriate sense of rotation leads to negative values

of invariants(11) and (12). An unlimited reduction of the
pitch for this winding of the staggered magnetizations would

+h?sir?Z cog(y— 7)sirfé

—2dhsing sin @ sin(y— 1) lead to infinitely negative values of this Dzyaloshinskii en-
ergy. This is counter-acted by the inhomogeneous part of the
+h?sin{ cos? sin 26 cog — 7). (13 exchange energy in EQLO) providing the “stiffness” of the

magnetic structure. In isotropic systems, iw=0 for ex-
_pression(13), the ratio of these competing energy contribu-
I%ions yields the optimal period for the spiral, which is of the
order of A/D.” Such chiral modulations with uniform rota-

Functional(10) with Eq. (13) provides the basic expression
for the total energy of uniaxial two-sublattice antiferromag
nets belonging to crystallographic classes without inversio

symmetry. By inserting the appropriate Lifshitz invariant ;.= o "0 o low-anisotropy Systems as cubic

i Eqs.(ll) or (19) for wp, the functional describe.s the helimagnet® or in hexagonal chiral magnets with in-plane
magnetic energy of the two tetragonal crystals of interesotation of the magnetization vectofsThe uniform rotation

here. of | in spirals is disturbed by anisotropic interactions and/or

by application of a magnetic field, i.e., the energy terms in-

ll. PHASE DIAGRAM OF EQUILIBRIUM SOLUTIONS cluded in Eq(13). These interaction terms result in preferred
directions for the staggered vectbrcorresponding to the
minima of the energy densif\Eq. (13)]. Hence, they distort

; ) %he chiral modulations and may even suppress them by forc-
(10). Depending on the values of the phenomenological conyg the staggered magnetization to point fixedly into “easy”

stants in energy10) and the components of magnetic fields gjrections. Thus, chiral modulations may occur only beyond
different spatially homogeneous and modulated phases ca{) certain threshold: interactior(§) or (6) must be strong

be realized in the system. Due to isotropy of the model in theenough to overcome the anisotropic energy contributions
basal plane only the component of magnetic field along thguppressing modulated states. Below this threshold the sys-
tetragonal axislf,) and the value of its projection onto the tem takes on the homogeneous states which are determined
basal pland1, are of importance. A reduction of the number by minimization of energy10) with D=A=0. In the fol-

of control parameters is obtained by rescaling the spatidbwing subsections we will demonstrate this competition be-
variables and the energy. We use the following units for thédween homogeneous and inhomogeneous states for our
lengths, magnetic field, and strengih of the inhomoge- model in detail.

neous Dzyaloshinskii-Moriya interaction: Another important property of the system is related to the
role played by the homogeneous Dzyaloshinskii-Moriya in-
Xo=VAN/|K|, ho=V|K], teraction: in-plane components of the staggered vector in-

(14) duce corresponding nonzero components of the total magne-
) tization vectorm (weak-ferromagnetic momentaccording
Do=— AIK|/N,  K=\B-d?, to Eq.(7). Thus collinear antiferromagnetic states=0 exist
only when the staggered vectois parallel to the tetragonal
introducing an effective anisotropy constatiacting on the  axis. All magnetic structures with a vectbdeviating from
staggered magnetization that is comparable to a constant giis direction perforce have a locally nonzero magnetization
uniaxial anisotropy in ferromagnets. In centrosymmetric anm. In a zero field, these magnetic moments are in the basal
tiferromagnets D=0) and zero external field, the collinear plane. Helix states of are accompanied by magnetization
state with staggered magnetizaticaong the tetragonal axis components oscillating in sign and with the same period as
andm=0 is the ground state fa{>0 (easy-axissystem; the antiferromagnetic modulations. This peculiar mechanism
for K<0 the vectord and a nonzeran lie in the in the basal leading to modulated antiferromagnetism and a related mag-
plane(weak ferromagnetic statesThe characteristic length netizationm may become operational and important, even if
X is of the order of the effective size of an isolated domainthe ground-state is not modulated, for the more general case
wall between the homogeneous states at zero field. Ih+0 (see below
uniaxial ferromagnetic materials the corresponding expres- In the general case the four-dimensional phase diagram
sion for an intrinsic length is known axchangeor Bloch  (d,D,h,,h,) includes regions with different modulated and
length3* The characteristic fieltl, is the so-calledspin-flop homogeneous states separated by “hypersurfaces” corre-
field. Finally, the parameted is equal to the lowest value sponding to different phase transitions. As remarked upon
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above, there are numerous experimental and theoretical re/— » = 7/2 energy density13) can be simplified and re-
sults on magnetic properties of centrosymmetric antiferroduced to the following form using the scaled quantifiegs.
magnets [model (10) with wp=0] describing weak (14)]

ferromagnetisni®?2?°The phase space of the control param-

eters in this cased(h,,h,) was found to have a very com- ~ K|

plex topology and, depending on the orientations and the W= Tq)(e)

relative strengths of the vectohsandd, a number of non- .

trivial transitions occur in these systeffsThis phase dia- with

gram can be considered as a “cross section” given by the h2

three-dimensional “hyperplaneD=0 through the general cb(a):sgnK(l— —coszg)(sin 6—v)2,
(d,D,h,,h,) space investigated here. On the other side in K

chiral antiferromagnets described by the case0 for our . (16)
model, both the spin arrangements in a spiral and the corre- _ dhsin{

sponding propagation directions are found to be very sensi- Ve K—h2cod¢’

tive to the orientation and strength of the applied fi€ldh 5

the general case of nonzero values of the consthatsdD, (Here we drop constant termswn i.e., those independent of
there is an even wider variety of homogeneous and inhomod.) In the following subsections, we investigate spatially ho-
geneous solutions characterized by complex noncollineamogeneous phases, helical phases, and their respective sta-
magnetic structures and variable directions of propagatiobility limits with approximation(16).

vectors. Clearly, the full set of homogeneous and inhomoge-

neous states corresponding to ene(t) together with Egs. A. Homogeneous states

(11)—(13) are of general interest and well-worth of further . .
investigations. Here we restrict ourselves to the approxima- 1€ homogeneous states are described by the behavior of

tion valid for antiferromagnetic systems with small magneticenergy funct|ona(16_). Depending on th_e sign of energy
anisotropy and their specific hierarchy of the interactions.(16) describes two different types of antiferromagnetic order-
The physically expected relatiai®>B turned out to be valid
in all known systems with weak ferromagnetism, and is
based on the common relativistic origin of both magnetic
energy contributions in thegéow-anisotropy systems. It is At zero field and in a magnetic field along the tetragonal
specifically valid for systems in which magnetism is duelto axis for h<h, the antiferromagnetic phaswith || z direc-
electrons. In these systems, the Dzyaloshinskii-Moriya intertion andm=0 has the lowest energy. This magnetic structure
actions generally overcome the magnetocrystalline anisois sketched in Fig. (). At the field h,= K the vectorl
ropy. This is expected to apply also in noncentrosymmetri¢flops” down onto the basal plane. This is a so—calkgain-
antiferromagnets wittd-electron magnetism for which the flop transition In the resulting spin-flop phasewith 6
values ford are still unknown. This allows to narrow consid- = 7/2, the total magnetization under influence of the homo-
erably the range of physically meaningful control parametergieneous Dzyaloshinskii-Moriya interaction is slightly in-
in our model. clined from the tetragonal axigFig. 1(b)]. In the region
As already discussed above, the veaadnduces a total where|m|<1 the components afh, m,=h/\, |m,|=d/\,
magnetization in the basal plane which tends to orientatare obtained from Eq7). In the regionhy<<h<X\ the total
itself parallel to the in-plane components of an applied fieldmagnetization increases linearly with increasing field and fi-
h, . Correspondingly, the staggered magnetization is rotatedally at the “exchange” fielth,,=\ the spin-flop phase con-
into the plane perpendicular to the direction. The stronger tinuously transforms into the saturated “paramagnetic”
the values ofd, h, and of the in-plane components lothe  phase withm|=1, |=0 by aspin-fliptransition. Note, in the
stronger is this effect. We may assume that the deviation opin-flop phase the magnetic state has an infinite degeneracy
the staggered magnetization=|y— »—=/2|, from this  with respect to rotation of the vectbaround the tetragonal
plane perpendicular to the_direction is small. By optimiz-  axis. The in-plane anisotropy reduces the degeneracy to cer-
ing energy(13) with respect tce, one obtains tain preferable directions related by symmetry in the basal
plane. That is, in the case of fourth-order tetragonal anisot-
ropy there are two mutually perpendicular directions of
, (15) “easy” magnetization. In an increasing magnetic field devi-
ating from the tetragonal axis the staggered magnetization
rotates to the basal plane in the plane perpendicular to the
providing the consistency criterion for our assumption projection ofh onto the basal plane. The angldetween the
<1. This approximation is always valid fai>h, and gen- vector| and thez axis is sind=v for v<1 (16). We name
erally in a broad range of the orientations for the vectors this state with a finite angle between staggered magnetization
andl. This includes almost all physically interesting cases. Inand z-axis canted phasgFig. 1(c)]. Finally, at the critical
the following analysis, we assume as central approximatiofine h.(h, ,h,) (Fig. 2) wherev from expressior{16) attains
that the staggered magnetization is always restricted tthe critical valuev=1, a phase transition occurs into a phase
the plane perpendicular th, , i.e., e=0. By substituting with the staggered vector lying in the basal plane,fsiri,

1. K>0 Easy-axis system

h cos{ cosé
d+hsinZsinég

—
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tetragonal axis

(a) ﬂ T tetragonal axis
@ Ihl<hy 7 antiferromagnetic spin-flop phase
|<y‘ I phase 1 P i
-
X m =0

tetragonal axis
canted phase

tetragonal axis

weak
ferromagnetic

basal plane basal plang =

FIG. 1. Basic spin configurations described by the staggered magnetizatidrthe total magnetization (for clarity, |[m|<|l|=1 is not
obeyed in the picturgsn homogeneous states of easy-axis systelis Q). (a) and (b) external fieldh along the tetragonal axiga)
Collinear orantiferromagnetic(AF) phase withl | z axis and zero magnetization exists in the applied field along the tetragonal axis 0
<hs<h,. (b) Spin-flopphase with in the basal plane is an important particular case ofabek ferromagneti¢WF) phase foth>h, along
the tetragonal axis(c) and (d) magnetic field with oblique direction. The low symmetranted phase(c) exists for v<1 (16) and
continuously transforms into the WF pha&h at the critical linev=1. In the canted phase the staggered magnetization is in the plane
perpendicular to the the in-plane component of the applied field and all components of thenvédetee generally nonzero valugs. Eq.

(17)]. (d) General case of the WF phase. The staggered magnetitéigsrin the basal plane, the component of the total magnetization along

the tetragonal axisnf,) is induced by the corresponding component of the applied field, the in-plane components are due to the homoge-
neous Dzyaloshinskii-Moriya interaction and in-plane components of magnetic field. In easy-plane syste@)sanly the WF phase is

stable for all values of the applied field.

and perpendicular to the applied fidldig. 1(d)]. This is a my=(hsinZ+dsing)/\,

weak ferromagneti€WF) phase. The phase-diagram for this

transition between canted and WF phase is depicted in Fig. 2. m,=—h cos{ sin 6 cosd/\, (17)
The total magnetization is deduced by substituting the equi-

librium values ofn=I/|l| into Eqg. (7). Assuming that the m,=h cos¢ sir0/x,

applied field is in theXOZ plane, then the staggered magne-
tization rotates in th& OZ plane. From Eq(7) the following  where #=arcsinv for the canted phase an@= 7/2 in the
expressions for the magnetization components result: weak-ferromagnetic phase.

The relative orientation of the vectoksindm is fixed by
. . . the sign of the constartt This handedness of the magnetic
weak ferromagnetic phase | structures reflects the chiral character of interactibnand
leads to the nonequivalence of energies for the states with
antiparallel directions of in oblique magnetic fields. One
can understand this considering the shapes of the potdntial
[Eq. (16)] with applied fields(Fig. 3). In the general case
[Fig. 3@] of an oblique field, i.e., an applied field deviating
from the tetragonal axis, the antiferromagnetic phase with
6= 1rn transforms into the WF phasé@¥h.) via the canted
phase. From the potential profile for this canted pHé&se.
3(a), 0<h<h.] one immediately sees for a given state that
I, ho the corresponding state with antiparallel orientatioh lvdis a

heth, )

canted phase

- different energy and generally is not an equilibrium state.
FIG. 2. (h, ,h,) phase diagram for the homogeneous states inl NUS, the symmetry between states with antiparalfgcu-
easy-axis system&(0). The low symmetry canted phase trans- liar to ordinary antiferromagnetic phases is violated. The
forms into the WF phase by a second-order phase transition at tHgfable states in this canted phase are separated by two types
critical line he(h, ,h,) determined by the conditiom=1 in Eq.  Of potential barriers. At the transition into the WF phase the
(16). Scales are given blyo=K*? andh?=K/d. lower potential barrier disappears and the higher separates
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(a) h>h, O~ AN @ A
}Z?r%%agnetic >k,
spin-floj
_ phase . pﬁase P
L = 2r =
o =]
O<h<hy h=h,
| \e~e/ | g it
@ o e |°
h=0 h=0
antiferromagnetic antiferromagnetic
phase phase
2r -3nf2 - w2 0 err/2 n - —n/2 0 0 /2 n

FIG. 3. Schematic evolution of the potential profil®gd) under the influence of an applied field for easy-axis systefis @) in an
oblique field(a) and in a field in direction of the tetragonal axis). In (a) for the canted phase two different barriers occur between
equivalent equilibrium states. Different domain walls correspond to these barriers: DW | betweer{13tare$(2), and DW |l between
states(1) and(3).

states withd= 7/2+2ns. In a magnetic field along the te- ergy must be negative. In both cases, the spirals are
tragonal axi§Fig. 3(b)] the potential barriers i (16) dis- accompanied by oscillations of the magnetizatiomperpen-
appear as the field approaches the spin-flop field from botdicular to the plane of rotation according to E@) (Fig. 4).
sides, i.e., in the antiferromagnetib<hy) and in the spin-  In zero field,m=d sin é/\.
flop phasest{>hy). This means that at the transition field  Under the influence of an applied magnetic field the spi-
h=h, the potential barriers between coexisting antiferro-rals orientate in such a way that the rotationt otcurs in the
magnetic and spin-flop states are anomalously low and anglane perpendicular to the projection bfonto the basal
determined by the values of the fourth-order anisotropy.  plane. As above for the homogeneous structures, we assume
that the magnetic field lies in th¢OZ plane and the vector
2. K<O0 Easy-plane system n in the YOZ plane. Forhelicoids (D,y4 symmetry the

In the ground state for easy-plane systéis0 the stag- propagation direction is along .th>e axis and_ forcyclo_ids
gered magnetization lies in the basal plane with a spontandCn, Symmetry along they axis. The spatial coordinate
ous magnetizatiorjm|=d/\, perpendicular to the vector. along the propagation direction is measured in reduced units
Therefore, this is aveak-ferromagnetic phas&he behavior ~ Of Xo according to Eq(14), £=x; /x,. In these reduced units
of the system under the influence of a magnetic field is simi€nergy functional10) for one-dimensional modulations as-
lar to that in the easy-axis systei@ec. Il A 1) for h, larger ~ Sumes the form
than the spin-flop field, namely, the veclois oriented per-

dicular toh, d the total tizati dually in-
pendicular toh, and the total magnetization gradually in AIK] 4D {de

creases in increasing field = de)?
9 e W= TJ (d_f +O(0)+ - az d¢,
0

B. Helical structures (18)

The equations minimizing function&l0) also permit so-
lutions with chiral modulations propagating in the basa|Where the multiplicative constants due to the integrations in
plane. First we consider structures modulated along a certaiirections ofz and perpendicular tg are absorbed i
fixed direction in the basal plane and homogeneous perpen-
dicular to this direction. This yields one-dimensional spirally
modulated states comprisirftglicoids and cycloids In the
absence of in-plane anisotropy all propagation directions are
equivalent. The structure of these modulated states depends
on the crystal symmetry which manifests itself in different
functional forms of the Lifshitz invariantssee Eqgs(5) and
(6)]. For antiferromagnets belonging to the crystallographic
classD,q the staggered vectdrrotates in the plane perpen-
dicular to the propagation direction, i.es= /2. These
states ardnelicoids[Fig. 4@)]. This rotation ofl reminds the (b) class C,,, I-,—\

behavior of the magnetization vector for Bloch walls in fer- - -
romagnets(see Ref. 34 In the case ofC,, symmetry,l e am N Lo\ /7
rotates in the plane formed by the tetragonal axis and the " =57

propagation direction ¢=0) forming cycloids[Fig. 4(b)]. "

This is akin to Nel domain walls in ferromagnets. The ro-  FIG. 4. Basic modulated structuré helicoid for systems with
tation in the spirals has a fixed sense determined by the com,y symmetry, andb) cycloid for antiferromagnets witkt,,, sym-
dition that the inhomogeneous Dzyaloshinskii-Moriya en-metry.

(a) class Doy
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analytically as certain cumbersome combinations of elliptic
functions’ (see, e.g., Refs. 7, 31, and)3&lere, for simplic-
ity, we have derived representative solutions by direct nu-
merical integration of Eq(19). Using Eq.(19) the energy

densityW averaged over a peridd of a modulated state can
be written as functions of the parameter

fzw [E+2d>(0)]d9 27D
BEIG) Jo(o)+E E(E)’

(20

2m de
FIG. 5. Typical phase portrait of the solutions for Ef9) in the =(B)= 0 \/W
canted phase. The separatrix curves between dpentinuous
lines) and closed(dashed linesorbits are highlighted by a thick Note that Eq.(19) does not involve contributions from the
line. inhomogeneous chiral Dzyaloshinskii interactions and, thus,
its solutions(Fig. 6) do not depend on these chiral interac-
®(0) is given by Eq.(16) and Dy by Eq. (14). The first  tions. Therefore, these solutioffEig. 6) have the same func-
integral of the Euler equation for functionél8) is readily  tional form as those for the corresponding model with
derived, =0 (centrosymmetric systetnsHowever, the energw [Eq.
> (20)] of the system depends on the contribution from the
(% —®()=E, (19) Lifshitz invariants. This energy has differen_t values for dif-
d¢ ferent integral curve®(¢,E). The equatiordw/(dE)=0 to
whereE is an |ntegrat|0n constant. In pass|ng, we remarkderlve the Optlmal ValUEE can be reduced to the fOIlOWIng
that the Euler equation with the potenti( §) from Eq.(16)  form:
is related to thelouble sine-Gordorquation®
Typical phase trajegtories of EQLY) in the (¢;, 6) -lphlase fzwdgm: 4D/D,. (21)
plane are plotted in Fig. Ehere we use the abbreviatidh 0
=do/dé). The separatrices obtained f&=0 cross each . . .
other in the points corresponding to the minima of the func- Hence the spiral structure described by the integral curve
tion ®(6). They divide the phase plane into regions with 6(¢,E) obeying Eq.(21) corresponds to the equilibrium
C|Osed(E< O) and open (E>O) trajector|es(|:|g 5) The magnetlc structure realized in a noncentrosymmetnc system,
closed trajectories correspond to alternating rotation of th&vhere inhomogeneous Dzyaloshinskii interactioms are
staggered vector and obviously are not of interest for oupperational. From the solutions of Egd9) and (21) the
model, as they describe inhomogeneous states with alternsther equilibrium parameters of the spiral structures are
ing senses of rotation that do not minimize the energy relategeadily calculated. In particular, ERO) yields the period of
to the inhomogeneous Dzyaloshinskii-Moriya interactions the structureZ, and the oscillating components of the vector
The modulated states with fixed rotation sense are describad are expressed Vi&/) as functions ofg(&,E). Depending
by opentrajectories. The integration of E¢L9) with ®(0) on the ratioD/D,, for the relative strength of the chiral in-
from Eq.(16) yields the set of solutiong(¢,E) parametrized teractions the modulated structures display the following
by the constanE (Fig. 6). These solutions can be expressedcharacteristic evolution: For strong chiral interactidD ,
>1 the influence of the enerd$g. (16)] is negligible and in

4r y y y y ] the equilibrium states the staggered vector rotates with an
0 essentially fixed “velocity” 6, corresponding to the phase
3n . trajectories withg,=2D/(7D,). Perturbations of the uni-

form rotation for the spirals are related to the shape of the
potential profilegcf. Fig. 3 and the open trajectories in Fig.

2 5). Thus the functional dependenciesaifg,ﬁ) contain im-
portant information on internal interactions of a system.
T = ] When values of the parameter are smal2D,=1 the in-
/ /// fluence of the potentiab(6), which determines preferable
00 ' : 1 T 20 25 orientations in the crystal, violates uniform rotation of the
¢ staggered magnetizationn a spiral. A further weakening of
the chiral interactions leads to “pinning” df along certain
FIG. 6. Series of solutions of E4L9) 6(£,E) corresponding to  (“easy”) directions and squeezes the regions with “disad-
the open orbits in Fig. 5. Solutions shown by thinner lines corre-vantageous” orientations of the vectbr This tendency re-

spond to open orbits witE>0 close to the separatrix curve of Fig. sSults in the formation of structures consisting of large do-
5 (not shown there mains with homogeneous states separated by narrow
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transition regions in which the vectbrotates from one easy The function[®(6)—®..] is the deviation of energy density
direction to another similar to domain walls. Finally, for a (13) from the minimal valuev.., corresponding to the homo-
certain critical value ofD the modulated phase is trans- geneous states in adjacent domains. The first term iriZ3y.
formed into the homogeneous state. This transition is sigis positive and represents increased energy contributions
nalled by an unlimited growth of the period for the modu- compared to those of the homogeneous sta@tesind 6,.
lated state. In the phase space, states at this transition into tif@is increase is due to inhomogeneous exchange interactions
homogeneous state correspond to the separdfiig. 5  and interactions included into the function®l [Eq. (16)].
which describes a set of isolated domain walls, i.e., wallsThese defect energies are typical for the energy of magnetic
with infinite separation between them. The finite stiffness ofdomain walls** The second term is specific fatoncen-
the exchange interaction prevents a complete annihilation afosymmetricsystems. Its sign is determined by the rotation
the domain walls and they may exist with finite thicknesssense of the staggered vectoin the domain wall. Clearly,
within homogeneous states as metastable topologically stabfer any sign of the constai there exists a rotation sense of
objects acting as nucleation centers during a reverse transhe staggered magnetization leadingriegativevalues for
tion from the homogeneous into the modulated state. this energy contribution and, consequently, to a decrease of
Finally, it should be stressed that Eq%9) and (21) pro-  the domain wall energy. For sufficiently strong inhomoge-
vide general and rigorous solutions for one-dimensionaheous chiral Dzyaloshinskii-Moriya interactions the total en-
modulated structures in magnets with Lifshitz invariants ofergy of the domain wall may be negative compared to the
type (2) with arbitrary functional form for the potentidd(6)  energy of homogeneous states. This manifests an instability
in functional (18). The above described evolution of the of the homogeneous state with respect to chiral modulations.
modulated states is not restricted to any particular form ofAs already discussed above, such a transition takes place for
®(0); the qualitative picture of this evolution rather has uni- coefficientsD larger than a certain threshold value necessary
versal character for physically reasonable choicestf¢f).  to overcome the positive energy contribution for inhomoge-
Particular cases for such chiral spirals have been investigatatkous states due to the conventional magnetic interactions.
starting from the papérfor several groups of helical ferro- The wall energy Eq. (23)] can be expressed via the height
magnets and antiferromagnéts®3%38 of the potential barrieA ® = ma{®(6)]—P.., that separates
the equilibrium state®; and 6,. This can be written in the

C. Stability limits of the modulated states form

At the transition into homogeneous states the chiral spi- o=[yDoVA® =D]|6,— 6,|, (24)
rals disintegrate into a system of noninteracting planar do-
main walls. Such a transition can be found by comparing thavhere v is a numerical factor determined by the average
energy of the chiral spiral to the energy of domain wallsvalue of the integrand in Eq23). These results have clear
separating regions with different homogeneous states of thghysical meaning. The higher the energy bardeb the
system:®>! Below in Sec. IV, we will discuss domain walls stronger the chiral interaction necessary to overcome it and
as topological defects in the magnetic system which requir¢o stabilize modulated states. As was shown above, the po-
an excitation energy. Here we are concerned with the comtential profile ®(6) [Eq. (16)] strongly depends on the
petition between homogeneous and modulated equilibriurstrength and direction of the applied fielBig. 3). Corre-
states. Then a gain of energy through proliferation of domairspondingly, the critical value®. of the Dzyaloshinskii-
walls indicates the instability of homogeneous states comMoriya constantD for transitions between homogeneous
pared to a modulated state. (D<D.) and modulated chiral stateB D) vary strongly

Let us consider a planar isolated domain wall betweerwith an applied magnetic field. The critical surfaces for these
two infinitely extended regions with different spatially ho- transitions in parameter space are given by the equation

mogeneous magnetic structures that are described by fune-0 using functional(16). For easy-plane system&0)
tional (16), i.e., equilibrium states in Fig. 3. The equilibrium the critical surface is
structure of this isolated wall is determined by solving Eq.

(199 with the boundary conditions 6|;_...= 6, D h2 v l—p+1
(d6/d§) .~ ...=0, where 6, , are homogeneous configura- <= %—1‘ Ji— —Eln(—
tions determined by®..=min[®(6)]=D(6;)=D(6,) for vi-v—1

fungnonal (16). The direct integration 0(19) yields the fol- This equation also describes the boundaries of the modulated
lowing results for the dependence @(¢) in the wall and for . . e
the domain wall energy (see Refs. 20 and 39 states for easy-axis systents0) in magnetic fields larger
9y ' than the spin-flop fieldi{,>h). For lower fields H,<hg)
the equation

(25

0 de’
E-E(0)= | ———, (22) h?
Jal\/ D(o)-D..] %: 1—h—;[\/1—vz+varcsinv] (26)
0 0

[
o= IDOJ 2 [®(6)—D,.]do+xD|6,—6,]. (23)  gives the transition into the canted phases(1). Finally, the
2 01 equation
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K<0 K>0
h, h, |}
weak ferromagnetic phase spin-flop phase
ho$ modulated structures
modulated structures [
antiferromagnetic
phase
() D (b) D

FIG. 7. Magnetic phases in the magnetic field along the tetragonal axis in dependence on the Btrehdtie inhomogeneous
Dzyaloshinskii interactionga) K<0 and(b) K>0. Note that for easy-axis antiferromagnéts in the vicinity of a spin-flop field the

modulated phases exists at arbitrarily small valueb .of
D, /1 h2
Do hcz) dients in the basal pland=gs. (11) and (12)]. Correspond-
ingly, the chiral modulations in these systems have propaga-

describes the transition into the weak-ferromagnetic phasg,’ girections only in the basal plaf&®®

(v>1). In particule}r, at zero fjeld the critical value, For easy-axis systemsK(&0) the critical surface
equalsDg. Thus, this constant is the lowest value for '[heDc(hl 'h,) has a more involved shape. In this case the low-

Dzyaloshinskii  constantD to induce modulate_d 9F°””‘?' est value ofD. equals zero. This is reached at the spin-flop
states. TheR,h,) phase dlagrams for an gppl_led field in field (0,=hg) [Figs. 1b) and 8b)]. Thus near the spin-flop
gllvrscct:)n ;fi%e tetragonal axis are shown in Fig. 7 for thetransition the modulated states arise at arbitrarily small val-
SexR=0. . ues ofD. This unusual situation is due to the particular evo-
For easy-plane_ s_ystem_sK(<O) _the (_:”t'cal surface lution of the potential profildEq. (16)] in a magnetic field
De(h, .hy) ha_s a minimum in the ongin W'.t"DC(O’O):DO .. directed along the tetragonal axsig. 3(b)]. In this case the
and monpton!cally'mcreases with increasing m.agn'enc fiel niaxial anisotropy and the applied magnetic field have com-
for any direction[Fig. 8@)]. WhenD <Dy the (_:hlral Inter- eting influence on the magnetic structure. While the easy-
ac'qor?s are t00 weak _to overcome the pinning dL_’e t(_) th is anisotropy orientates the staggered magnetization along
uniaxial easy-plane anisotropy. Then the system exists in thg, ¢ tetragonal axis, the applied field orientates it perpendicu-
homogeneous state with the staggered magnetization in tnﬁr to this axis. An increasing magnetic field in the region

bﬁsal pllan% arlgd ah W\?\;"‘II:( shpontabneous magnetlbzléwﬁulﬁ q h<h, gradually decreases the potential barrier between the
phase. For D>D, the WF phase becomes unstable. Undergi,aq of the antiferromagnetic phase with antiparallel stag-
the influence of the inhomogeneous chiral interactions th

) vt h Lol hiral helix i Yered magnetizatiorFig. 3b)]. When the spin-flop is
vectorn *escapes” from the basal plane a_nd_a chiral NeIIXIS reached the applied field completely cancels the influence of
formed. We add a remark about the peculiarity of this type o

: . : uniaxial anisotropy, and potenti@l6) is equal to zero for
helix. In known easy-plane systems with helical structure by P a6 g

h o h d ation in th Sany orientation of the staggered magnetization. This infinite
the magnetizatiokor the staggered magnetization in the cas€yegeneracy of magnetic states is artificial because of the ne-
of antiferromagnefsrotates in the “easy plane” and the

: . dicul his ol n th lect of higher order anisotropy contributions. A fourth-order
propagation vector is perpendicular to this plane. In thesgpiqyiq) anisotropyK, sin*@ removes this degeneracy. We

noncentrosymmetric magnets such spirals are stabilized br¥1ay generally state that in noncentrosymmetric easy-axis an-
tiferromagnets near the spin-flop field the potential barrier
between minimgand, therefore, the critical values Bf) is
determined by the much weaker fourth-order anisotropy con-
stantK,. We add two remarks her€@) For centrosymmetric
easy-axis antiferromagndinodels(l) and(ll) of Sec. Il A],
the situation near spin-flop transitions is physically compa-
rable and has been studied in defit® There, the relation
between interactions and homogeneous magnetic states is
well understood(ii) In cubic helimagnet® where magneto-
crystalline anisotropy is represented only by fourth-order
FIG. 8. Contour line®(h, ,h,) =const of the critical surfaces terms, no suppression of the modulated states has been ob-
for modulated statesa) K<O0 surface given by Eq(25). (b) K served, rather chiral modulations exist in the complete region
>0 surface according to Eq&5), (26), and(27). (The direction of ~ Of existence of magnetically ordered states. Estimates based
increasingD is indicated by dotted arrows. on the physical origin of these magnetic energy contributions

1 Lifshitz invariants with gradients along the “hard axis.” In
Jv—1+varcsin \/:} (270 our model, however, the Lifshitz invariants include only gra-
14

(a) (b)

h,lhy
hz/hO

-0.5 0 05 -05 0
LN h/hy
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yield such weak threshold values that modulated chiral states R
near the spin-flop field should be expected genefally.
Therefore, this competition between antisymmetric exchange

and anisotropies makes the easy-axis noncentrosymmetric = o
antiferromagnets particularly interesting systems for a search <
for and investigation of modulated chiral states. w2l

IV. LOCALIZED CHIRAL STRUCTURES

In this section we consider the influence of the
Dzyaloshinskii-Moriya interactions on localized magnetic 7
defects within homogeneous magnetic configurations. As 00
there is a wide variety of possible defect structures in the &

different phases, we will present only a few examples 10 g 9. structure of domain walls in the canted phase given by
demonstrate the general principles which rule defect sirucne tumn angleA 6 as a function of distance from the wall-center
tures for the noncentrosymmetric antiferromagnets under the g for different values of the parameter The 180° domain walls
influence of chiral COUplingS. A formal mathematical descrip'of the AF phase ¥=0) are deformed in the canted phases either
tion of isolated, planar one-dimensional defect structuresinto walls with a decreased value &ff(é—=) (DW I, profiles
i.e., domain walls, was already developed above in Seawith continuous linesor an increasea 6(é— ) (DWII, profiles
[II C. In the next subsection, we discuss physical importancevith dotted lineg. DW Il are transformed into 360° walls in the
and properties of such domain walls for antiferromagnetidimit v=1.
systems described by our model. Section IV B is devoted to
linear two-dimensional defect structures, i.e., vortices. result of reorientation transitions. These processes are largely
independent of domain wall energies.
The structure of such domain walls can be derived by
integration in Eq.(22). Here, we restrict ourselves to one
Planar defect¢domain walls okinks are commonly ob- example of a practical calculation. We obtain the structure
served magnetic localized states in many classes of antifeend characteristic parameters of the domain walls in the
romagnetic materia¥ They separate homogeneous statescanted phasésee Figs. 1 and)2Within all regions of their
with different degenerate directions of the staggered magneexistence ¢=<1) the equilibrium states are separated by two
tization. An example is provided by 180° domain walls be-types of barriers in the potential profi(6) [Fig. 3a)].
tween regions with antiparallel staggered magnetization, i.eCorrespondingly there exist two types of domain walls in the
different antiferromagnetic phases, in easy-axis antiferrocanted phase. The first low energy domain wialV 1) sepa-
magnets. In the antiferromagnets under discussion, the rotsates homogeneous states wit=arcsinv and 6=
tion of the vectom within a domain wall is accompanied by —arcsiny; and DW |l corresponding to the higher potential
oscillation of the total magnetization. The spin arrangemenbarrier, separates states with=arcsinv and 6=—
in such domain walls is similar to that in the corresponding—arcsinv [Fig. 3@]. Evaluating integral22) with ® from
spirals(Fig. 4). Rotation ofn as in a Bloch wall with longi- Eg. (16) yields the following result:
tudinal modulation of the vectan [Fig. 4(a)] should occur

A. Domain walls or kinks

in noncentrosymmetric antiferromagnets belonging to crys- ino vcosh évl— Vz)il 29
; p ; i sing= .
tallographic clas®,q. Neel-wall-like structures with trans- cosiEV1— 1)+ v

versal oscillation of the magnetization correspond to the non-

centrosymmetric antiferromagnets from cla€s,, [Fig.  Wall structures for both domain wall types in the canted
4(b)]. The inhomogeneous chiral Dzyaloshinskii-Moriya in- phase with varying are displayed in Fig. 9. The effective
teractions do not influence the structure of the domain wallshickness of domain walld is usually determined as a dis-
[see the remarks following Eq420)]. However, the domain tance between points where the tangent at the inflection point
wall energies do depend on the rotation sense according iatersects the lineg= ¢, and = 6,.3* For our example this
Eq. (24). As discussed above, the modulated structures haveefinition yields the following expression:

a fixed sense of rotation that corresponds to a decrease of
total energy compared to the homogeneous states. Spirals

with the opposite sense of rotation are unstaleleen with A=6,- 02|(d_§
respect to the homogeneous statesd never arise in real

systems. Contrary to this, domain walls with disadvanta{ln Egs.(28) and(29) the upper and lower signs correspond
geous sense of rotation, although increasing the energip DW | and DW Il.] The dependence of the wall thickness
should be found within these antiferromagnets with similarA on v for both types of walls is shown in Fig. 10. For
probability because domain walls in antiferromagnets have increasingr the difference between magnetic configurations
mostly “kinetic” origin in contrast to domain structures in in the adjacent domains separated by DW A6E
ferromagnets, i.e., antiferromagnetic domain structures are 2 arcsinv) and the potential barrie[ Ad=d(7/2)
formed during the transition to the ordered states or as a ®(6;)~(1—»)?] gradually decreases while the thickness

(29

de\ 1 _ m¥2arcsin
1¥v

£=0
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FIG. 10. The domain wall widtha as functions of the param-
eterv for the two wall types in the canted phasa), DW | and (b)
DW I, according to Eq(29).

of the wall increases. At the critical point of the transition
into the weak ferromagnetic phases 1, the difference be-
tween magnetic states in the domains disappears and the wall \
spreads out without bounds. For DW Il the potential barrier { ) : =3 F=---
A®~(1+v)? and A#==+2 arcsinv increases with in-
creasingv. At the critical point,y=1, these walls transform
into 360° domain wallgFigs. 9 and 1D

Structures and parameters for 180° domain walls in the
antiferromagnetic and spin-flop phases can be derived in a
similar way. All these domain walls may play the role of

nucleation centers during the transition from the homoge FIG. 11. Vortex structure for antiferromagnets wai, symme-
t d dD try[(b), (d d)]. d
neous to modulated states. On the other hand, as dem fy [(@, (0), and(@)] andDyy symmetryl(b), (d), and(f)]. (@ an

OH)’) Distributions of staggered vectdr (c)—(f) Projections ofl and

strated in the previous section, at a transition into the homoc')?cillating total magnetizatiom in the basal plane, respectively.

geneous state the spiral states break down into a system o
isolated plane walls.

class C class D,

For C,,, symmetry solution30) describes a cycloid-like ro-
tation of the staggered magnetization vectdiFigs. 11a)
B. Vortices or skyrmions and 110)]. _In. the case oiqu symmetry the vortex has a
. . ~more sophisticated structufEigs. 11b) and 11d)]. The ro-
Linear magnetic defects are another type of topologicaiation of the staggered magnetization in the vortices is ac-
excitations that can exist in noncentrosymmetric magnetigompanied by in-plane oscillations of the total magnetization
crystals due to the stabilizing effect of the mhomogeneousﬂ:igs_ 11e) and 11f)] as described by Eq7).
Dzyaloshinskii interaction® At zero magnetic field and in The equilibrium distributiond(p) is determined from the

fields applied along the tetragonal axis, mo@lis invariant gitferential equation common for both classes,
to rotation about the axis. Solutions for the vecton(r)

axially symmetric in the basal plane and uniform along the d20 1de sinfcosd 4D sirfe
tetragonal axis, i.eyortices obey this symmetry. As an ex- —+= 9 5 D

ample of such localized states we consider an isolated vortex dp= P dp P ™o P

in the antiferromagnetic phas& {0, h is parallel to the h2

tetragonal axis and smaller than the spin-flop fietdhy). - ( 1— _) sin® cosh=0, (32)
We assume that the staggered magnetization is oriented par- hg

allel to the z-axis on the vortex axis and rotates into the -

antiparallel orientation with increasing radial distance fromWith boundary condition®)(0)=0 and 6(c) = for local-

the vortex core. It is convenient to introduce cylindrical co-izedvortices in the antiferromagnetic phage<(h,, Fig. 11),
ordinates for the spatial variables= xq(p cose, psing,z),  OF 0(0c)=_77/2 for delocah;ed\/ornces in the spln—_fl_op phase

in the expression for the ener§iq. (10)]. (As earlier in the _(h> h(_), Fig. 12. The_se dn‘ferent boundary conditions result
case of the spirals, we use length units= VAN/[K[.) The N an important physical difference between these two cases

analysis of the energy functionél0) shows that the problem of antiferromagnetic vortices: For the localized vortices the
has solutiongd(p) with homogeneous equilibrium state is established everywhere for

p—o0 and the inhomogeneity is localized in the vortex core.
In the case of the spin-flop phase, the vortex structure at
y=¢ forclass C,,, ¢=m/2—¢ forclass Dyq. — is inhomogeneous witlh= /2, but the angle) rotates
(30 through a full circle from 0 to . Therefore, these vortices
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zZ In the spin-flop phase the vortex states have delocalized
characte(Fig. 12). They are similar to vortex states in liquid
helium or some textures in liquid cryst&fsSuch vortices for
noncentrosymmetric antiferromagnets witl O were inves-
tigated in Ref. 31. They readily form localized vortex pairs
similar to those responsible for Berezinskii-Kosterlitz-
Thouless transition® An applied magnetic field deviating
from the tetragonal axis violates the axial symmetry of the
system. Then, the two-dimensional localized states are ex-
pected to have various elongated shapes similar to those ob-
served in chiral liquid crystaf® The Lifshitz invariants can
also stabilize three-dimensional localized states free
FIG. 12. Delocalized vortex structure in the spin-flop phase inspherulites or dropéu Up to now no experimental observa-
crystals withC,,, symmetry. The staggered vectois shown. tions or theoretical investigations of such structures have

) ) ] been reported.
are calleddelocalized Equation(31) has solutions only when Concluding this section we draw attention to an important

D is smaller than the critical values for the transition to thejiference between the localized states in our model and
modulated phasB.(h) given by Eq.(26). Typical solutions  those in other magnetic systems. In noncentrosymmetric an-
for 6(p) are plotted in Fig. 13. A® approaches the critical tiferromagnets with weak ferromagnetism due to the oscillat-

valueD the vortex expands without bounds. Equati8d)  jng weak magnetization in the basal plane the domain walls
functionally coincides with equations for isolated vortices ingd the vortices are susceptible to the influence of applied
other models with Lifshitz Invariants, 1.e., models for non- magnetic fields. For this reason, noncentrosymmetric antifer-
centrosymmetric ferromagne$!* for other classes of romagnets are convenient for the study of phase transforma-

antiferromagnetd; as well as for chiral liquid crysta.For  tions and the dynamics of such nonlinear localized excita-
a detailed analysis of E¢31) and a discussion of the related tjons.

guestions, see these papers.
The vortices orskyrmionsconsidered heréFigs. 11, 12,
and 13 are nonsingular linear defect structures. They belong V. RELATION TO EXPERIMENTAL OBSERVATIONS

to topological defects studied in many fields of the modern  The known noncentrosymmetric antiferromagnets with
physics. Similar topological objects arise in superfluidyeak ferromagnetism include two tetragonal crystals. For

. 43 . ~ . . .
he"“”?’ '?4 tW.O d|menS|onaI_ electro_nlc s_ys_temé—|al| Ba,CuGe0O; belonging to the crystallographic clasm
skyrmiong,** or in nanomagnetic materiaf3 It is important . ; / .
D,g), chiral modulations were discovered five year &fo.

to mention that there is a fundamental correspondence be-

. : ; or the crystallographic class@m (C,,) only the antiferro-
tween these theoretical modéfsin the isotropic caséwp magnet gvsog %as? apparently E)eérz inv)éstigated and no

=w=0 in Eq.(10] the equation for the vortex has analyti- moqylated states have been found Y&t Here we briefly
cal solutions which are WeII—kAr;own as Belavin-Polyakov so-yeyiew experimental data for these two antiferromagnetic
lutions for nonlinears models:’ These solutions turned out compounds within the framework of our theory. In Sec. V. C

to be unstable in centrosymmetric magnetic crystals and colye comment on related experiments on noncentrosymmetric
lapse spontaneously under the influence of anisotropic intetyniferromagnetic crystals.

nal interactions or applied magnetic fields. Thus the Lifshitz

invariants are crucial for stabilizing these vortex structures in

noncentrosymmetric magnetic crystalstHence such low- A. Ba,CuGe,0;

symmetry magnetic crystals are interesting and important A chiral spiral with a propagation vector in the basal plane
systems for investigations of general properties of vortices.and a period length of about 37 unit cells was found to be the
magnetic ground state for BauGeO,; (space group

P42,m).Y" It was also found that a rather strong magnetic
field applied along the tetragonal axis induces a transition
into a homogeneous staféThe field dependencies of the

period and the magnetization reported are in quantitative
agreement with theoretical results of Ref. 7. It appears that
there is no local minimum of the period length in depen-

dence on the strength of a magnetic field applied along the

i

3n/4f

D w/2H

w4 tetragonal axis. This implies that the uniaxial anisotropy of
this crystal is of easy-plane typeK&0) (cf. Fig. 7). To
o0 analyze their experimental data the authors explored the

model withd=0. In their experiments there is no indication
of effects related to weak ferromagnetism.

FIG. 13. Vortex profiles9(p): solutions of Eq(31) for different Further detailed investigations in magnetic fields applied
values ofD/Dy in a zero applied field. along other directions are required to determine the character
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of the uniaxial anisotropy and the values of the other charphenomenological constants in EQLO) the problem has
acteristic parameters of the magnetic system within the gerbeen reduced to the case that the rotation of the staggered
eral phenomenological expressitig. (3)] for the energy. magnetization is restricted to a certain fixed plane. This sim-
plification yields a representative and realistic approximate
B. K,V30q model replacing the general modé&g. (8)]. It is amenable
to a complete analysis of the possible solutions for magnetic
. T . structures. The boundaries of their existence in parameter
temperature is about 4)Khe magnetization curves in a mag- . . .
netic field along the tetragonal axis and in the basal plang_pace could be calcu_lated in all dEt.a'I and a clear physu_:al
picture of the formation and evolution of these magnetic

indicate reorientation transitiod$. These transitions are states is achieved. Due to the unigque combination of those
similar to those earlier observed in centrosymmetric antifers ’ d

romagnets with weak ferromagnetism, e.g., hem&tie. interactions inducing weak ferromagnetism and those stabi-

The authors conclude from neutron diffraction experimentIIZIng modulated chiral states, a rich varl'ety_ of modulated
that there are no indications of chiral modulatidhél oc.  and localized structures was found to exist in this class of

cording to the results of our theory such a situation may take. agnetic crystals. In these mhom_oge_neous states chiral rota-
X : o ion of the staggered magnetization is always accompanied
place for easy-axis system&$0) with weak chiral inter-

actions D<Dy). As discussed above, in the vicinity of the by oscillations of a weak magnetization component in the

spin-flop field the criterion for the stabilization of the modu- basal pland(Fig. 4. The modulated states in these systems

lated states is considerably weakened. Thus the search foe" be realized as structures with the propagation vector

. . a[ong certain in-plane directior{spiralg. We remark that in
tmhgggdlatﬁ ?niéitﬁsa;%;hése;ytsgzrg ?:gll:)ld f?eel dst\r;\\;;eg dgotrr?a nother type of solution, a two-dimensional modulated
9 9 I P P - .~ phase, so-called vortex lattices may also exist. In noncen-
there are two other similar noncentrosymmetric vanadiu rosymmtricferromagnetghey are thermodynamically stable
oxides RBV304 and (NH,),V30g which are supposed to y 9 Y y Y

: . under applied fields in certain region of the phase spate.
POSSESS antiferromagnetic order below_l@zl_Ihey cc_JuId be Ref. 31 vortex lattices in antiferromagnets lacking inversion
investigated to search for effects of chiral interactions.

symmetry, withd=0, were studied theoretically. Nucleation
of such vortex lattices during the transition from the spin-
C. Other noncentrosymmetric antiferromagnets flop phase was discussed in Ref. 38. However, it is still un-

— known whether these vortex lattices can be thermodynami-
The copper metaborate Cy8, [space groupl42d cally stable in antiferromagnetic materials.

12 ;

(D2g)] belongs to the same noncentro?ymmetrlc.clﬁss a5 |n contrast, two-dimensional structures with finite sizes
Ba,CuGgO;. However, according to Refs. 5355 it has a5 axjsymmetric vortices in the antiferromagnetic phase
more sophisticated four-sublattice antiferromagnetic struCyascribed in Sec. IV B. are localizewnlinear excitations

ture with in-plane anisotropy. A long-periodic modulated \yie show that these structures are possible topological de-

state has been observed in this crystal for a certain tempergsc in these systems. They are stabilized only due to chiral
ture range”"*° Finally here we mention two other noncen- jyieractions.  Furthermore, we have described one-

trosymmetric antiferromagnets: a modulated chiral state hagimensjonal localized structureglomain walls or kinks
been observed in the noncentrosymmetric antiferromagnglenarating domains of homogeneous states. These defect
BiFeO; (space groupR3c).” For CuFe$ [space group  gpyctures differ from similar objects found in many other
142d (D33)] antiferromagnetic order was reported to exist, classes of magnetic materials by oscillations of the local net
however, no details about the magnetic structures argagnetization and the dependence of their energy on the
given>’ sense of rotation for the staggered magnetization within the
wall. These peculiarities of their properties should be acces-
sible to experimental verification.
VI- CONCLUSIONS In this paper we have deliberately avoided a detailed in-
In this paper we show that the antiferromagnetic crystalsestigation of the full mod€elEq. (8)]. Instead, by introduc-

Ba,CuGeO0;, (Ref. 17 and K,V;04 (Ref. 19 in spite of the  ing a simplified model, we have described the general fea-
reported difference in their magnetic properties belong to dures of the magnetic properties in noncentrosymmetric
special class of magnetic crystafgoncentrosymmetric anti- tetragonal antiferromagnets. We expect that this phenomeno-
ferromagnets with weak ferromagnetisithe phenomeno- logical description will provide a guide for a further detailed
logical expression for the magnetic energy of such systemexperimental investigation of the known noncentrosymmet-
including all interactions allowed by symmeffigg. (3)] can ric tetragonal antiferromagnets and for a search of new crys-
be reduced to functiondB) which describes the orientation tals belonging to this group.
of the staggered magnetization, and can be considered as Here we also briefly indicate possible further directions
general model for two-sublattice antiferromagnets. It in-for theoretical investigations. Fourth-order anisotropies are
cludes, as specific cases, all main classes of antiferromageeded to describe orientational processes in the basal plane
netic crystals(collinear antiferromagnets, antiferromagnetsand the peculiarities of magnetic properties near the spin-flop
with weak ferromagnetism, noncentrosymmetric antiferro-field. Future theoretical investigations also should include
magnets without and with weak ferromagnetisfurther, by  the stray field effects responsible for multidomain states near
using realistic assumptions about the relative strengths of thie first-order phase transitions. Similar investigations within

For this compound, at a temperature of 2(tke Neel
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the general moddIEq. (8)] pose a much more complex and superconductivity® liquid crystals®® and other condensed
challenging task. This functional can be considered as a gemaatter systems and even in modern cosmological médels.
eralized version of the nonlinear model, one of the basic
models in the theory of nonlinear physics and solitons. It is
related to many other models in condensed matter
physics?3~4659The further development of the theory should
involve the investigation of vortices and vortex lattices as We thank M.D. Lumsden and J.R. Thompson for expla-
done for other noncentrosymmetric mod&ts! Similar mul-  nations and for the communication of unpublished results.
tidimensional localized solutions of nonlinear field equationsA.N.B. thanks H. Eschrig for support and kind hospitality
are intensely studied in many other fields of modernduring his stay at IFW Dresden. He acknowledges further
physics**45%° Nucleation and evolution of such one- support by DFG through Sonderforschungsbereich 422.
dimensional and two dimensional modulated patterns have).K.R. gratefully acknowledges support by DFG through
deep physical relations to similar patterns in Grant No. MU 1015/7-1.
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