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Linear and nonlinear superparamagnetic relaxation at high anisotropy barriers
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The micromagnetic Fokker-Planck equation is solved for a uniaxial particle in the low-temperature limit.
Asymptotic series in the parameter that is the inverse barrier height-to-temperature ratio are derived. With the
aid of these series, the expressions for the superparamagnetic relaxation time and the odd-order dynamic
susceptibilities are presented. The obtained formulas are both quite compact and practically exact in the low
~with respect to FMR! frequency range that is proved by comparison with the numerically exact solution of the
micromagnetic equation. The susceptibility formulas contain angular dependencies that allow to consider
textured as well as randomly oriented particle assemblies. Our results advance the previous two-level model for
nonlinear superparamagnetic relaxation.
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I. INTRODUCTION

The problem of superparamagnetic relaxation in sing
domain ferroparticles formulated, explained, and basic
analyzed by Ne´el1 about fifty years ago, has continued
attract attention. Nowadays this interest is mainly due to
expanding number of nanometer granular magnetic me
used in information storage and related high technologie

When analyzing magnetic dispersions, solid or fluid
promising idea is to evaluate the granulometric content, p
ticle material parameters, and relaxation rates by combin
the data on linear and nonlinear dynamic susceptibilities.
cently, this approach~it originates from the spin glass sc
ence! became quite feasible in experimental realizatio2

However, to benefit from it, one needs an adequate mo
Surprisingly, the Ne´el1 concept of superparamagnetic beha
ior of fine magnetic particles that had been substantially
vanced by Brown3,4 and refined by numerous researche
~see the review article Ref. 5 with about 400 referenc!
lacks a nonlinear extension.

In Ref. 6 we begun to fill up this gap and proposed
numerical procedure involving continuous fractions
means of which the linear and cubic susceptibilities fo
solid system of uniaxial fine particles could be obtaine
With allowance for the polydispersity of real samples, t
worked out description provided a fairly good agreem
with the dynamic magnetic measurements taken on Co
nanocomposites.2 Recently, our approach was use
successfully7 for the linear and cubic susceptibilities of th
samples of randomly orientedg-Fe2O3 nanoparticles.
Hereby we carry on the build up of the nonlinear superpa
magnetic relaxation theory by working out a set of comp
and accurate analytical expressions that considerably fa
tate calculations as well as experiment interpretation.

The paper is arranged in the following way. In Sec. II w
discuss the problem of superparamagnetic relaxation
show the way to obtain the asymptotic solution for the m
cromagnetic Fokker-Planck equation in the uniaxial case
Sec. III the perturbative expansions for the orientational d
tribution function are obtained, which are used in Sec. IV
construct asymptotic expressions for the nonlinear dyna
susceptibilities. The explicit forms of those expansions
0163-1829/2002/66~21!/214406~17!/$20.00 66 2144
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given and their accuracy is proved by comparison with
results of numerical calculations. Section V contains the
veloping discussion.

II. SUPERPARAMAGNETIC RELAXATION TIMES

A. Uniaxially anisotropic particle

The cornerstone of the superparamagnetic relaxa
theory is the Arrhenius-like law for the relaxation rate of
magnetic moment of a single domain particle predicted
Néel in 1949. The framework of this classical problem is
follows. Consider an immobile~e.g., fixed inside a solid ma
trix! single-domain grain of a volumev. This particle pos-
sesses a uniaxial volume magnetic anisotropy,K being its
energy density andn its easy axis direction. Since the tem
peratureT is assumed to be much lower than the Curie po
the particle magnetizationI, as a specific parameter, is pra
tically constant and the magnitude of the particle magne
moment may be written asm5Iv. Denoting its direction by
a unit vectore, one concludes that the magnetic state of su
a particle is exhaustively characterized by a pair of vect
m5Ive andn. Thence, the orientation-dependent part of t
particle energy~in the absence of external magnetic fields! is

U52Kv~e•n!2, ~1!

whereK is assumed to be positive. As Eq.~1! shows, this
energy has two equal minima. They are separated by
potential barrier of the heightKv and correspond toei6n
because for the magnetic momente the directionsn andÀn
are equivalent. At zero temperature, the magnetic momene,
once located in a particular potential well, is confined the
forever. At finite temperature, the probability of an overba
rier ~interwell! transition becomes nonzero. If the ratios
[Kv/kT is high enough, the transition rate is exponent
thus yielding the Ne´el law t}exp(s) for the reference timet
of the particle remagnetization.

Brown4 shaped up those semi-qualitative consideratio
into a rigorous Sturm-Liouville eigenvalue problem by d
riving the micromagnetic kinetic equation
©2002 The American Physical Society06-1
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2tD]W/]t5 ĴWĴ~U/kT1 ln W!, ~2!

whereW(e,t) is the orientational distribution function of th
magnetic moment,Ĵ5(e3]/]e) is the infinitesimal rotation
operator with respect toe, and the timetD is introduced
below by formula~4!. Generally speaking, Eq.~2! is incom-
plete since a gyromagnetic term is absent there. This me
that the consideration is limited by the frequency ran
vt0!1, wheret0 is the relaxation time of the Larmor pre
cession of the particle magnetic moment in the internal
isotropy field Ha;2K/I , where K includes the possible
shape contribution. Comparing this condition with the oth
one vLt0&1 which evidences a low-to-moderate qual
factor of the Larmor precession for real nanodisperse ferri
one estimates the allowed frequency asv!vL that means, in
fact, a fairly wide range.24,25

In the statistical description delivered by Eq.~2!, the ob-
served~macroscopic! magnetic moment per particle is give
by the average

m~ t !5m^e&5E eW~e,t !de. ~3!

Note that with allowance for Eq.~1! the functionW has a
parametric dependency on the vectorn so that, in fact, the
angular argument ofW is (e•n).

The magnetodynamic equation underlying the Brown
netic equation~2! can be either that by Landau and Lifshi
or that by Gilbert. To be specific, we adopt the former o
Thence, the reference relaxation time in Eq.~2! is written

tD5Iv/2agkT, ~4!

whereg is the gyromagnetic ratio for electrons anda is the
precession damping~spin-lattice relaxation! phenomenologi-
cal parameter.

Assuming uniaxial symmetry of the time-dependent so
tion and separating the variables in Eq.~2! in the form

W~e,t !5
1

2p (
,50

`

A,c,~e•n!exp~2l,t/2tD!, ~5!

where the amplitudesA, depend on the initial perturbation
one arrives at the spectral problem

L̂c,5l,c, , L̂[ Ĵ@2s~e•n!~e3n!2 Ĵ#, ~6!

where the non-negativity of the decrementsl, can be proven
easily. Expanding the eigenmodesc, in the Legendre poly-
nomial series

c,5
1

2 (
k51

`

~2k11!bk
(,)Pk~cosu!, k51,3,5, . . . , ~7!

where u is the angle betweene and n, one arrives at the
homogeneous tridiagonal recurrence relation
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F12
l,

k~k11!Gbk
(,)22sF k21

~2k21!~2k11!
bk22

(,)

1
1

~2k21!~2k13!
bk

(,)2
k12

~2k11!~2k13!
bk12

(,) G50.

~8!

Note that Eqs.~5!–~8! describe only the longitudinal~with
respect to the easy axis! relaxation of the magnetic momen
We remark that under conditionv!vL , i.e., far from the
ferromagnetic resonance range, the transversal compon
of m5m^e& are of minor importance.

B. Interwell mode

Spectral equation~6! describes the temperature-induc
~fluctuation! motions of the vectore in the orientational po-
tential with a symmetrical profile~1!. With respect to the
time dependence, the set of possible eigenmodes splits
two categories: interwell~overbarrier! transitions and in-
trawell wanderings. In the spectral problem~6! the interwell
transitions of the magnetic moment are associated with
single eigenvaluel1. As the rigorous analysis shows,8 it
drastically differs from the others: whereas for,.1 all the
l, graduallygrow with s, the decrementl1 exponentially
falls downproportionally to exp(2s).

In the opposite limits→0, all the decrements, includin
l1, tend to the sequencel,5,(,11) and thus become o
the same order of magnitude. This regime corresponds
vanishing anisotropy so that the difference between the
terwell and intrawell motions disappear, and the magne
moment diffuses almost freely over all the 4p radians with
the reference timetD introduced by Eq.~4!.

From Eqs.~3! and~5! one finds that the longitudinal com
ponent of the magnetic moment evolves according to

m~ t !5m (
,51

`

A,e2l,t/2tDE
21

1

xc,dx, ~9!

wherex5cosu5(e•n). For a symmetrical potential like~1!
the equilibrium valuem0 of the particle magnetic moment i
zero.

With the abovementioned structure of the eigenva
spectrum, the term with,51 in Eq. ~9!, being proportional
to exp(2e2st/tD), at s.1 is far more long-living than any
other one. The dominating role of the decrementl1 had been
proven by Brown, and for it he had derived4 the asymptotic
expression

lB5~4/Ap!s3/2e2s~s@1!. ~10!

A short time after, using a continued fraction method, Ah
roni constructed9 for l1 a fairly long power series ins and
also showed numerically that Brown’s expression~10! re-
sembles the exact one with the accuracy of several per
for s*3. In the 1990’s the eigenvaluel1 became a subjec
of extensive studies. Efficient numerical procedures w
developed10 and a number of extrapolation formulas with
good overall accuracy were proposed.11–14
6-2
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C. Asymptotic solution of the Brown equation

The study that we describe below was inspired by
work on fitting the dynamic susceptibility measurements
real assemblies of fine particles. Those data typically
scribe polydisperse systems in the low-frequency bandw
v/2p51 –103 Hz. Ast0;1029 s or smaller, then, using for
mula ~10! for estimations, one concludes that the mention
frequency interval becomes a dispersion range for the in
well ~superparamagnetic! mode at

vt0es*1, that is, s*10.

For temperatures up to 300 K this condition holds for quit
number of nanomagnetic systems.

Application of the best fit procedure to a set of expe
mental data implies numerous recalculations of the lin
and nonlinear susceptibility curvesx (k) of the assembly. Any
such curve, due to a considerable polydispersity of the
ticles, is a superposition of a great number of partial cur
x (k)(s) spread over a wide size~or, in the dimensionless
form, s) range. For successful processing, one needs a
and very accurate algorithm to evaluatex (k)(s) everywhere
including the domains@1. The existing extrapolation for
mulas are no good for that purpose due to their
controllable error accumulation. A plausible way out is
asymptotic ins21 solution of Eq.~6!. In the course of the
fitting procedure, this approximation can be easily match
in the intermediates range with the well-known expansion
for the smalls end.

It is noteworthy that some 20 years ago Brown hims
resumed15,16 studies onl1 and modified the preexponentia
factor in Eq.~10! transforming it into an asymptotic series
s21. On the base of Eq.~6! he had constructed an integr
recurrence procedure, and evaluatedl1 down to terms
}1/s10. What we do below, is, in fact, carrying on this lin
of analysis that had not been touched since then. Our me
advances Brown’s results in two aspects. First, forl1 it is
more simple. Second, it provides not only the eigenvalue
the eigenfunction as well. Only having the latter in poss
sion, one is able to obtain theoretical expressions for
directly measurable quantities that is the susceptibilitiesx (k).

Taking Eq.~6! as the starting point, we remark its equ
librium solution

c05Z0
21exp~sx2!, Z052R~s!, ~11!

R~s!5E
0

1

exp~sx2!dx,

which corresponds to,50 and l050; note also the
asymptotic expansion for the partition integralR(s) found in
Ref. 17:

R~s!5esG/2s,

G~s![11
1

2s
1

3

4s2
1

15

8s3
1•••1

~2n21!!!

2nsn
1••• .

~12!
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The operatorL̂ in Eq. ~6! is not self-conjugated and thu
produces two sets of eigenfunctions, which obey the resp
tive equations

L̂ck5lkck , L̂1w j5l jw j ; ~13!

here1 denotes Hermitian conjugation. The eigenfunctio
of these two families are orthonormalized and related to e
other in a simple way:

ck5c0wk , E
21

1

dxw jck5d jk . ~14!

Qualitatively, from Eq.~14! one may say thatwk are the
same eigenfunctions but ‘‘stripped’’ of the exponential eq
librium solutionc0. Substituting Eq.~14! in Eq. ~6!, one gets
two useful relationships

2 Ĵc0Ĵwk5lkc0wk , E c0~ Ĵw j !~ Ĵwk!dx5lkd jk ,

~15!

where the second one follows from the first after multiplic
tion by w i and integration by parts. Note that in the seco
formula action of each operator reaches no farther than
nearest closing parenthesis.

On rewriting Eq.~15.1! in terms of a single orientationa
variablex5(e•n), the spectral problem takes the form

d

dx Fc0~12x2!
dwk

dx G52lkc0wk . ~16!

In the equilibrium state Eq.~16! reduces to

d

dx Fc0~12x2!
dw0

dx G50, ~17!

whose normalized solution isw051. This solution, being a
true equilibrium one, turns the inner part of the brackets, i
the probability flux in the kinetic equation~2!, into identical
zero.

As remarked in Sec. II B, ats@1 the most long-living
nonstationary solution of Eq.~16! is the eigenfunction with
,51, whose eigenvalue is exponentially small, see Brow
estimation~10!. We use this circumstance for approxima
evaluation ofw1 in the s@1 limit by neglecting the right-
hand side of Eq.~16! for ,51. On doing that, the equatio
obtained for the functionw1 formally coincides with Eq.~17!
for w0. However, the essential difference is that now t
content of the bracket is nonzero:

c0~12x2!
dw1

dx
5

1

2
C, ~18!

where1
2 C is the integration constant. Note also that, contra

to w0, the sought for solutionw1 is odd inx.
Using the explicit form ofc0 from Eq. ~11! and integrat-

ing, one gets forx.0
6-3
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w15CRE
0

x e2sx2

12x2
dx

5CRE
0

x

e2sx2
~11x21x41x61••• !dx. ~19!

The integrals in expansion~19! are akin. Denoting

Fn5E
0

x

x2ne2sx2
dx,

one can easily write for them the recurrence relation a
‘‘initial’’ condition as

Fn52
]

]s
Fn21 , F05

Ap

2As
erf~Asx!, ~20!

respectively. Using the asymptotics of the error integral, w
the exponential accuracy ins one finds

Fn5@~2n21!!!/2nsn#F0 , F0.Ap/2As. ~21!

Comparing this with expression~12! for the functionG, we
get the representation

w1~x.0!.CRF0G. ~22!

Applying to Eq. ~22! the normalizing condition~14!, one
evaluates the constant asC51/RF0G. Therefore, from Eqs.
~20!–~22! the principal relaxational eigenmode determin
with the exp(2s) accuracy emerges as an odd step funct

w1~x!.H 21 for x,0,

1 for x.0.
~23!

In Fig. 1 the limiting contour~23! is shown against the exac
curvesw1(x) obtained by solving numerically Eq.~8! for

FIG. 1. Eigenmodew1(x) determined with the aid of the nu
merical solution of Eq.~8! for the dimensionless barrier heights: 5
~dashed line!, 10, 20, 25~solid lines!; the arrow shows the direction
of s growth. Thick dashes show the stepwise function that is
limiting contour forw1 at s→`.
21440
d

h

n

several values ofs. We remark that in the statistical calcu
lations carried out below, the typical integrals are of tw
kinds. In the first, the integrand consists of the product
w1c0 and some nonexponential function. Asc0}exp (sx2),
the details of behavior ofw1 in the vicinity of x50 are
irrelevant because the approximate integral will differ b
exponentially from the exact result. The integrals of the s
ond type containdw1 /dx in the integrand. For them a step
wise approximation~23! with its derivative equal identica
zero everywhere except forx50 is an inadmissible choice
So, to keep the exponential accuracy in this case, one ha
get back to Eq.~18!.

The eigenvaluel1 corresponding to the approximat
eigenfunctionw1 from Eq.~23! is evaluated via formula~15!
that can be rewritten as

l15E
21

1

c0~ Ĵw1!2dx5
1

RE0

1

esx2
~12x2!S dw1

dx D 2

dx.

~24!

Substituting the derivative from Eq.~18!, one finds

l15C5~2/Ap!s1/2/RG,

and using expression~12! for R finally arrives at

l15~4/Ap!s3/2e2s/G25lB /G2. ~25!

With G expanded in powers ofs21, see Eq.~12!, this for-
mula reproduces the asymptotic expression derived
Brown in Ref. 15. AtG51 it reduces to his initial result,4

corresponding to the above-given Eq.~10!. Functionl1(s)
from Eq. ~25! is shown in Fig. 2 in comparison with th
exact result obtained by a numerical solution. Indeed, as
*3 the results virtually coincide.

According to expansion~5!, each decrementl, defines
the reference relaxation time

t,52tD /l, . ~26!

e

FIG. 2. Asymptotic expression~25! for the eigenvaluel1 with
allowance for terms up tos29 ~solid line! compared to the exac
numeric value~dashed line!.
6-4
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Thence from Eq.~25! we get

t152tD /l15tBG2, tB[2tD /lB , ~27!

wheretB denotes the asymptotic relaxation time obtained
Brown in Ref. 4. Substituting in Eq.~27! the explicit
asymptotic series~12! for G, one gets

t15tD

Apes

2s3/2 S 11
1

s
1

7

4s2
1

9

2s3
1••• D . ~28!

D. Asymptotic integral time

The decrementsl, or, equivalently, relaxation timest, ,
being the characteristics of the eigenfunctions of the dis
bution function, are not observable if taken as separate q
tities. However, in combination they are involved in a use
directly measurable quantity, the so-called integral relaxa
time. In terms of correlation functions this characteristics
defined as

t int5E
0

` ^m~ t !m~0!&0

^m2~0!&0

dt5E
0

` ^x~ t !x~0!&0

^x2~0!&0

dt, ~29!

where the angular brackets stand for the statistical ensem
averaging over the equilibrium distribution~12!. As follows
from Eq. ~29!, the integral relaxation time equals the ar
under the normalized decay of magnetization.

The Green function of Eq.~2!, i.e., the probability density
of a state (x,t), provided the initial state is (x0,0), writes

W~x,t;x0,0!5 (
,50

`

c,~x!w,~x0!e2l,t. ~30!

Similarly to Eq. ~7!, we expand the eigenfunctions in Leg
endre polynomials as

c,5
1

2 (
k51

`

~2k11!bk
(,)Pk~x!, w,5 (

k51

`

ak
(,)Pk~x!

~31!

and introduce special notations for the first two functions

c05
1

2 (
k50

`

~2k11!SkPk~x!,

c15
1

2 (
k50

`

~2k11!QkPk~x!. ~32!

The procedures to evaluate the coefficientsSk and Qk and
the explicit asymptotic forms forQ1 and S2 are given in
Appendix A; note representation~11! for the equilibrium
function c0.

Due to Eq.~14!, the coefficients in formulas~31! are re-
lated to each other bybk

(,)5^PkPk8&0ak8
(,) . In those terms

one gets for the correlator in Eq.~14!
21440
y
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^^x~ t !x~0!&&05E E xx0c0W~x,t;x0,0!dxdx0

5 (
,51

@b1
(,)#2e2l,t/2tD, ~33!

where averaging over the current coordinatex is performed
with the functionW from Eq. ~30! whereas that over the
initial conditions—with the equilibrium functionc0. Substi-
tuting expression~33! in Eq. ~29! one gets the integral time
in the form

t int5 (
,51

`

t,@b1
(,)#2/ (

,51

`

@b1
(,)#25 (

,51

`

t,@b1
(,)#2/^x2&0 .

~34!

Unlike t1, which in principle cannot be evaluate
analytically18 at arbitrarys, for t int an exact solution is pos
sible for arbitrary values of the anisotropy parameter. R
cently two ways were proposed to obtain quadrature form
las for t int . One method19 implies a direct integration of the
Fokker-Planck equation. Another method20 involves solving
three-term recurrence relations for the statistical moment
W. The emerging solution fort int can be expressed in a finit
form in terms of hypergeometric~Kummer’s! functions.
Equivalence of both approaches was proven in Ref. 21.

In the present study, as mentioned, we are dealing in
high-barrier approximation. In this limiting casel1 is expo-
nentially small, so that the term with,51 in the numerator
in Eq. ~34! is far greater than the others. With allowance f
Eq. ~32! it can be written as

t int5t1@b1
(1)#2/^x2&05t1Q1

2/^x2&0 . ~35!

The equilibrium moment calculated by definition is writte
as

^x2&05~1/2s!~es21!51/G21/2s, ~36!

and fors@1, using formula~A5! of Appendix A we get

Q1.1/G. ~37!

Substitution of Eqs.~36! and~37! in ~35! with allowance for
relationships~12!, ~25!, and~27! gives the asymptotic repre
sentation in the form

t int5tB

2sG

~2s2G!
5tD

Apes

2s3/2 S 11
1

s
1

3

2s2
1

13

4s3
1••• D .

~38!

As it is seen from formulas~28! and ~38! written with the
accuracy up tos23, the asymptotic expressions for the in
terwell and integral times deviate beginning with the te
}s22. This contradicts the only known to us asympto
expansion oft int given in Eq.~60! of Ref. 20 and repeated in
Eq. ~7.4.3.22! of Ref. 22. The latter expression written wit
the accuracy}s22, instead of turning into Eq.~38! coin-
cides with the Brown’s expression~28! for t1. Meanwhile,
as it follows from formula~35!, such a coincidence is impos
sible and therefore Eqs.~60! of Ref. 20 and Eq.
6-5
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~7.4.3.22! of Ref. 22 are misleading. The necessity to rect
this issue made us to begin the demonstration of our
proach with the case of the integral relaxation time. Furt
on we consistently apply our procedure to description of
nonlinear~third- and fifth-order! dynamic susceptibilities o
a solid superparamagnetic dispersion.

III. PERTURBATIVE EXPANSIONS FOR THE
DISTRIBUTION FUNCTION

A. Static probing field

To find the nonlinear susceptibilities, one has to take i
account the changes that the probing field induces in
basic state of the system. In the limits@1, which we deal
in, the relaxation timet1 of the interwell modec1 is far
greater than all the other relaxation timestk . This means
that with respect to the intrawell modes the distribution fun
tion is in equilibrium. So it suffices to determine the effect
the probing fieldH5Hh just on c0 and c1. Assuming the
energy function in the form

U1UH52Kv~e•n!22IvH~e•h! ~39!

@compare with Eq.~1!#, and separating variables in Eq.~2!,
one arrives at the eigenfunction problem

L̂ f b5jV̂f b , ~40!

wherej5IvH/kT and notationf b refers to the distribution
function modes that stem fromc0 or c1 at HÞ0, i.e., b

50 or 1. In Eq.~40! operatorL̂ is defined by Eq.~6! while
V̂52j Ĵ(e3h) is the operator caused by the energy termUH
in @Eq. ~39!#. As in the above, for the non-self-conjugate
spectral problem~40! we introduce the family of conjugate
functionsgb and setf b5gbc0.

Following our approach, in the low-temperature limit (s
@1) weset to zerothe eigenvalues corresponding to bothf 0
and f 1; compare with Eqs.~17! and ~18! for c0 and c1.
Assuming the temperature-scaled magnetic fieldj to be
small, we treatUH as a perturbation Hamiltonian and expa
the principal eigenfunctions as

f 05 (
n50

jnf 0
(n) , f 15 (

n50
jnf 1

(n) . ~41!

Thence for the field-free (H50) case one hasf 0
(0)5c0 and

f 1
(0)5c1. The same kind of expansion is assumed forgb

with g0
(0)51 andg1

(0)5w1. Note also that in order to retai
the normalizing condition we require thatf b

(n) have zero av-
erages.

Substituting expansion~41! in Eq. ~40! and collecting the
terms of the same order inj, we arrive at the recurrenc
relation

L̂ f b
(n)5V̂f b

(n21) , ~42!

that for the particular casesb50 and 1 with the aid of the
identity e3h5 Ĵ(e•h) takes the forms
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Ĵc0Ĵg0
(n)5 Ĵc0g0

(n21)Ĵ~e•h!,

Ĵc0Ĵg1
(n)5 Ĵc0g1

(n21)Ĵ~e•h!, ~43!

respectively. Set~43! solves easily forg0 since g0
(0)5w0

51. Starting withn50, one gets sequentially

g0
(1)5~e•h!,

g0
(2)5

1

2
@~eh!22^~e•h!2&0#,

g0
(3)5

1

6
~e•h!32

1

2
~e•h!^~e•h!2&0 ,

g0
(4)5

1

24
@~e•h!42^~e•h!4&0#

2
1

4
@~e•h!2^~e•h!2&02^~e•h!2&0

2#,

g0
(5)5

1

120
~e•h!52

1

12
~e•h!3^~e•h!2&0

2
1

24
~e•h!@^~e•h!4&026^~e•h!2&0

2#. ~44!

All the obtained functions are constructed in such a way t
the correspondingf b

(n) satisfy the abovementioned zero ave
age requirement. We remark also that there is no problem
continue the calculational procedure to any order.

Evaluation ofg1 is done in two steps. At the first one, w
set g1

(0) equal to the antisymmetric stepwise function~23!
and its derivative equal zero. After that from the second
Eqs.~43! we can expressg1

(k) in closed form. Taken up to the
fourth order these ‘‘zero-derivative’’ solutions are written

g1
(1)5w1~e•h!2^w1~e•h!&0 ,

g1
(2)5

1

2
w1~e•h!22~e•h!^w1~e•h!&0 ,

g1
(3)5

1

6
@w1~e•h!32^w1~e•h!3&0#

2
1

2
^w1~e•h!&0@~e•h!22^~e•h!2&0#,

g1
(4)5

1

24
w1~e•h!42

1

6
^w1~e•h!&0@~e•h!3

23~e•h!^~e•h!2&0#2
1

6
~e•h!^w1~e•h!3&0 . ~45!

Note the alternating parity ine with the term order growth in
both Eqs.~44! and ~45!.

It is instructive to compare the approximate expressio
~45! with the numerical results obtained without simplific
tion of g1

(0) . To be specific, we consider the case when pr
ing field is applied along the particle easy axisn. Then Eqs.
~43! become one dimensional and the second of them is w
ten
6-6
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dg1
(n)

dx
5g1

(n21) . ~46!

Its ‘‘zero derivative’’ solutions up to the second order follo
from the first two lines of Eqs.~45!:

g1
(1)5w1x2^w1x&0 , g1

(2)5
1

2
w1x22x^w1x&0 . ~47!

In Figs. 3 and 4 these functions are compared to the num
cal solutions of Eq.~46!. For our calculation, the most im
portant is the behavior of those functions nearx561 since
these regions yield the main contribution when integra
with the weight functionc0. As one can see from the figure
the ‘‘zero-derivative’’ solutiong1

(1) agrees well with the exac
one, whileg1

(2) deviates significantly. This discrepancy is d
to the change of the barrier height that occurs in the sec
order with respect to the probing field amplitude, and ma
fests itself in all the even orders of the perturbation exp
sion. Correction of solution~47! makes the second step o

FIG. 3. Functiong1
(1) found numerically~solid! and evaluated in

the ‘‘zero-derivative’’ approximation~dashed!.

FIG. 4. Functiong1
(2) found numerically~solid! and evaluated in

the ‘‘zero-derivative’’ approximation~dashed!. Asterisks show a
corrected calculation with allowance for the coefficientD2, see Eq.
~49!.
21440
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our procedure. For that we integrate Eq.~46! two times by
parts and substitute there the ‘‘zero-derivative’’ form ofg1

(1)

from Eq. ~47!:

g1
(2)5

1

2
x2w12x^xw1&01

1

2E x2
dw1

dx
dx. ~48!

Thus one finds that the correctedg1
(2) differs from this of Eq.

~47! by adding a stepwise@alike that of Eq.~23!# term

g1
(2)5

1

2
x2w12x^xw1&01D2w1 , ~49!

with the amplitude

D25
1

2E0

1

x2
dw1

dx
dx. ~50!

We remark that the results of evaluation of the integralsI 2k

5*0
1x2k(dw1 /dx)dx can be arranged in the table

k 0 1 2

I 2k 1 12G21 12(111/2s)G21 ~51!

so that Eq.~50! gives

D25
1

2
I 2k5

G21

2G
5

1

4s
1

1

4s2
1

5

8s3
1

37

16s4
1•••.

~52!

Functiong1
(2) corrected in such a way is shown in Fig. 4 b

asterisks. It is seen that the corrected dependence wi
fairly good accuracy follows the numerically obtained curv

In a similar way one can prove that the corrected funct
g1

(4) has the form

g1
(4)5

1

24
w1x42

1

6
@^w1x&0x323x^x2&0#

2
1

6
x^w1x3&01D2g1

(2)1D4w1 , ~53!

where the corrected functiong1
(2) given by Eq.~49! is used

and

D45
1

24
I 42D2

252
10sG2222sG1G112s

48sG2

52
1

32s2
2

1

16s3
2

5

32s4
2

29

64s5
1•••. ~54!

In the general case, when the direction of the probing fi
does not coincide with the particle anisotropy axis, the c
rected functionsg1

(n) still can be written as

g1
(2)5

1

2
w1~e•h!22~e•h!^w1~e•h!&01D2w1 ,
6-7
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g1
(3)5

1

6
@w1~e•h!32^w1~e•h!3&0#

2
1

2
^w1~e•h!&0@~e•h!22^~e•h!2&0#1D2g1

(1) ,

g1
(4)5

1

24
w1~e•h!4

2
1

6
^w1~e•h!&0@~e•h!323~e•h!^~e•h!2&0#

2
1

6
~e•h!^w1~e•h!3&01D2g1

(2)1D4w1 . ~55!

But since Eqs.~43! cannot be reduced to a form like Eq
~46!, the correcting coefficientsD2 and D4 cannot be pre-
sented in a closed form. In this case the corrected solut
taking into account the behavior of functionw1 around zero
are built up as power series nearx50; such a procedure fo
the coefficientsD2 andD4 is described in Appendix B.

B. Dynamic probing field

To obtain the dynamic susceptibilities, one has to find
distribution function W in the oscillating probing field
j exp(ivt). For this situation the kinetic equation~2! takes
the form

S 2tD

]

]t
1L̂ DW~ t !5jV̂eivtW~ t !, ~56!

where the operatorsL̂ andV̂ have been introduced in abov
Assuming that the exciting field amplitude is not too hig
we expand the steady-state oscillatory solution of Eq.~56! in
a power series with respect toj:

W~ t !5 (
n50

jnW(n)einvt. ~57!

Note that, mathematically, representation~57! is not com-
plete. Indeed, in a general case the exact amplitude of thenv
mode must contain, along with the contribution;jn, an in-
finite set of terms;jn12, jn14, etc. However, in a weak
field limit j,1 the terms with higher powers are of min
importance so that the main contribution to the magnet
tion response signal filtered at the frequencynv is propor-
tional to jn.
21440
ns
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Substituting Eq.~57! in ~56! we arrive at the recurrenc
set

~2invtD1L̂ !W(n)5V̂W(n21), ~58!

that we solve sequentially starting fromn51. At the first
step the function in the right-hand side corresponds to
equilibrium case (j50). Therefore,W(0)5c0, where the
latter function is defined by Eq.~11! and is frequency-
independent. Combining Eq.~42! written down forb50 and
n51 and Eq.~58!, we eliminate the operatorV̂ and get

~2ivtD1L̂ !W(1)5L̂ f 0
(1) . ~59!

Now we expand the functions subjected to operatorL̂ with
respect to the set$ck% of its eigenfunctions, see Eq.~6!:

W(1)5( cj
(1)~v!c j f 0

(1)5( ~w j u f 0
(1)!c j ; ~60!

here (wu f ) denotes functional scalar multiplication, i.e., th
integral of the productw f over all the orientations ofe.
Substitution of Eq.~60! in Eq. ~59!, multiplication of it from
the left by wk , and integration render the expansion coe
cient as

ck
(1)~v!5~wku f 0

(1)!@11 ivtk#
21, ~61!

where the reference relaxation times are defined by Eq.~26!.
In the low-frequency limit onlyvt1 is set to be nonzero

while all the higher modes are taken at equilibrium (vtk
50). Thence, when constructingW(1) via Eq. ~60!, by add-
ing and subtracting a term withc1

(1)(0), one canpresent the
first-order solution in the form

W(1)5 f 0
(1)2

ivt1

11 ivt1
~w1u f 0

(1)!c1 , ~62!

wheref 0
(1) , as seen from Eq.~59!, is the equilibrium solution

for the same value of the field amplitudej. We remind the
reader that the functions without upper index belong to
fundamental set defined by Eqs.~6! whereas those with an
upper index are evaluated in the framework of the pertur
tion scheme described in Sec. III A.

In the next order inj the functionW(1) is substituted in
the right-hand side of Eq.~58! and through a procedure alik
to that leading to Eqs.~59!–~61!, the functionW(2) is found.
We carry on this cycle up tok55. The results write
W(2)5 f 0
(2)2

ivt1

11 ivt1
~w1u f 0

(1)! f 1
(1) , ~63!

W(3)5 f 0
(3)1@~w1u f 0

(1)!~w1u f 1
(2)!2~w1u f 0

(3)!# f 1
(0)2~w1u f 0

(1)! f 1
(2)1

1

11 ivt1
F ~w1u f 0

(1)! f 1
(2)2

3

2
~w1u f 0

(1)!~w1u f 1
(2)! f 1

(0)G
1

1

113ivt1
F ~w1u f 0

(3)!1
1

2
~w1u f 0

(1)!~w1u f 1
(2)!G f 1

(0) , ~64!
6-8
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W(4)5 f 0
(4)1@~w1u f 0

(1)!~w1u f 1
(2)!2~w1u f 0

(3)!# f 1
(1)2~w1u f 0

(1)! f 1
(3)1

1

11 ivt1
F ~w1u f 0

(1)! f 1
(3)2

3

2
~w1u f 0

(1)!~w1u f 1
(2)! f 1

(1)G
1

1

113ivt1
F ~w1u f 0

(3)!1
1

2
~w1u f 0

(1)!~w1u f 1
(2)!G f 1

(1) , ~65!

W(5)5 f 0
(5)2~w1u f 0

(5)! f 1
(0)1~w1u f 0

(1)!@~w1u f 1
(4)! f 1

(0)2 f 1
(4)#1@~w1u f 0

(1)!~w1u f 1
(2)!2~w1u f 0

(3)!#@ f 1
(2)2~w1u f 1

(2)! f 1
(0)#

1
1

11 ivt1
~w1u f 0

(1)!H f 1
(4)2

3

2
~w1u f 1

(2)! f 1
(2)1F15

8
~w1u f 1

(2)!22
5

4
~w1u f 1

(4)!G f 1
(0)J

1
1

113ivt1
F ~w1u f 0

(3)!1
1

2
~w1u f 0

(1)!~w1u f 1
(2)!GF f 1

(2)2
5

2
~w1u f 1

(2)! f 1
(0)G

1
1

115ivt1
F ~w1u f 0

(5)!1
1

4
~w1u f 0

(1)!~w1u f 1
(4)!1

3

8
~w1u f 0

(1)!~w1u f 1
(2)!21

3

2
~w1u f 0

(3)!~w1u f 1
(2)!G f 1

(0) . ~66!
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We remark an important feature of Eqs.~63!–~66!: they do
not contain dispersion factors of even orders. This ensu
that the frequency dependence of the full distribution fu
tion W incorporates only dispersion factors with odd mu
tiples of the basic frequency. Qualitatively, this is the res
of absence of the interwell mode for the statistical mome
of even orders. Technically, it is due to vanishing of t
products (w1u f k

(,)) entering Eqs.~62!–~66! if the sumk1, is
even. This rule follows immediately from combination of th
oddity of w1, see Sec. II, with the parity properties of th
functions f k

(,) introduced in Sec. III A.
For actual calculations one needs the values of the sc

products entering Eqs.~62!–~66!. In Appendix C we obtain
their representations in terms of the momentsQk andSk of
the functionsc0 and c1, respectively. The procedures o
asymptotic expansion ofQk andSk are given in Appendix A.

IV. DYNAMIC SUSCEPTIBILITIES

The set of magnetic susceptibilities of an assembly
noninteracting particles with the number densityc is defined
by the relation

M5x (1)H1x (3)H31x (5)H51••• ~67!

that describes the magnetization of the system in the di
tion of the probing fieldH5Hh. Therefore, of all the com-
ponents of the corresponding susceptibility tensors, we re
the combinations that determine the response in the direc
of the probing field. With representation~57! for the distri-
bution function, this magnetization component takes
form

M5cIv^~e•h!&5c(
n51

Hn
I n11vn11

~kT!n
einvtE ~e•h!W(n)de,

~68!

and the susceptibilities can be found by a direct compari
with Eq. ~67!. In other words, the set ofx (n) is expressed
21440
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through the perturbation functionsW(n) found in the preced-
ing section. Therefore, evaluation ofx (n) becomes, although
tedious, but simple procedure. Remarkably, the final exp
sions come out rather compact.

A. Linear susceptibility

The resulting expression can be presented in the form

xv
(1)5x0

(1)S B0
(1)1

B1
(1)

11 ivt1
D , x0

(1)5
cI2v2

3kT
, ~69!

which follows from substituting Eq.~62! in ~68!. Each of the
two frequency-independent coefficientsB(1), being the result
of statistical averaging over the orientational variablee, see
Appendix C, expands into a series of Legendre polynom
with respect tob, the angle between the directionh of the
probing field and the particle easy axisn. This can be written
as

B0
(1)5b00

(1)1b02
(1)P2~cosb!,

B1
(1)5b10

(1)1b12
(1)P2~cosb!,

S b00
(1) b02

(1)

b10
(1) b12

(1)D 5S 12Q1
2 2S222Q1

2

Q1
2 2Q1

2 D . ~70!

Definitions of functions Q1 and S2 and their explicit
asymptotic representations are given in Appendix A. T
asymptotic series for the coefficientsbab

(1) derived on the base
of expansion~12! and Eq.~37! are
6-9
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b02
(1)52

1

s
1

1

4s3
1

13

8s4
1

165

16s5

1
2273

32s6
1

34577

64s7
1

581133

128s8
1•••,

b10
(1)512

1

s
2

3

4s2
2

2

s3
2

31

4s4
2

153

4s5

2
3629

16s6
2

1564

s7
2

785931

64s8
1•••. ~71!

The other components, namely,b00
(1) and b12

(1) , may be con-
structed straightforwardly using their relations with the giv
ones, see Eqs.~70!. For a random system, that is for a
assembly of noninteracting particles with a chaotic distrib
tion of the anisotropy axes, the average of any Legen
polynomial is zero, so thatB(1)

k5bk0
(1) , and the linear dy-

namic susceptibility reduces to

x v
(1)5x0

(1)
11 ivt1b00

~1!

11 ivt1
, ~72!
21440
-
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that is the asymptotic representation of the full express
given by formula~39! of Ref. 6.

B. Cubic susceptibility

As follows from definitions~67! and~68!, the third-order
susceptibility is defined through the response at the tr
frequency that at weakH scales asH3. Performing calcula-
tions along the same scheme as forx (1), one arrives at the
sum of relaxators representation

x3v
(3)5

1

4
x0

(3)S B0
(3)1

B1
(3)

11 ivt1
1

B3
(3)

113ivt1
D ,

x0
(3)5

cI4v4

~kT!3
, ~73!

where the coefficients expand as

Bk
(3)5bk0

(3)1bk2
(3)P2~cosb!1bk4

(3)P4~cosb!,

k50,1,3, ~74!

up to the fourth Legendre polynomial in cosb.
The explicit expansions for the amplitudesbab

(3) are
b00
(3)5

1

30s3
1

47

240s4
1

49

40s5
1

815

96s6
1

7837

120s7
1

355391

640s8
1•••, ~75!

b02
(3)5

1

42s3
1

2

21s4
1

4

7s5
1

1385

336s6
1

11231

336s7
1

19083

64s8
1•••,

b04
(3)52

2

35s3
2

8

35s4
2

41

35s5
2

50

7s6
2

1756

35s7
2

63749

160s8
1•••,

b10
(3)5

1

15
2

1

6s
2

23

240s2
2

61

192s3
2

1357

960s4
2

235447

30720s5
2

11962691

245760s6
2

694849241

1966080s7
2

15133953221

5242880s8
1•••,

b12
(3)5

13

84
2

65

168s
2

25

168s2
2

863

1344s3
2

3931

1344s4
2

698911

43008s5
2

35309123

344064s6
2

2061480665

2752512s7
2

45071465669

7340032s8
1•••,

b14
(3)5

1

35
2

1

14s
1

2

35s2
2

1

112s3
2

73

560s4
2

17033

17920s5
2

1007549

143360s6
2

64390439

1146880s7
2

4493994417

9175040s8
1•••,

b30
(3)52

2

15
1

3

10s
1

1

16s2
1

337

960s3
1

499

320s4
1

85309

10240s5
1

2563751

49152s6
1

245269747

655360s7
1

47628510799

15728640s8
1•••,

b32
(3)52

29

84
1

43

56s
1

11

56s2
1

1279

1344s3
1

1881

448s4
1

320765

14336s5
1

48133699

34406s6
1

920146163

91750s7
1

178560431695

22020096s8
1•••,

b34
(3)52

11

105
1

47

210s
1

2

21s2
1

559

1680s3
1

2419

1680s4
1

409499

53760s5
1

4080395

86016s6
1

1166954357

3440640s7
1

75334335763

27525120s8
1•••.
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For a random system, the averages of Legendre poly

mials drop out andBk
(3)5bk0

(3) . With respect to formalism
constructed in Ref. 6, the above expressions yield
asymptotic representations for formulas~42! and ~43! there.

C. Fifth-order susceptibility

The susceptibility of the fifth order writes in an expec
able way as a sum of three relaxators:
21440
o-

e

x5v
(5)5

1

16
x0

(5)S B0
(5)1

B1
(5)

11 ivt
1

B3
(5)

113ivt

1
B5

(5)

115ivt D , x0
(5)5

cI6v6

~kT!5
, ~76!

with the coefficients

Bk
(5)5bk0

(5)1bk2
(5)P2~cosb!1bk4

(5)P4~cosb!

1bk6
(5)P6~cosb!, k50,1,3,5. ~77!

The explicit asymptotic series are
b00
(5)5

1

80s5
1

367

2240s6
1

123

70s7
1

41233

2240s8
1•••,

b10
(5)5

1

96
2

19

420s
1

1

120s2
2

65

1792s3
2

79

336s4
2

85913

57344s5
2

72636131

6881280s6
2

4543038053

55050240s7
2

14938598691

20971520s8
1•••,

b30
(5)52

47

560
1

11

35s
2

29

280s2
1

437

1920s3
1

5473

4480s4
1

1046209

143360s5
1

169435283

3440640s6
1

684614895

1835008s7
1

230861266333

73400320s8
1•••,

b50
(5)5

311

3360
2

137

420s
1

13

105s2
2

5911

26880s3
2

2141

1920s4
2

1874309

286720s5
2

299470403

6881280s6
2

17964831133

55050240s7
2

400677748549

146800640s8
1•••,

b02
(5)5

1

112s5
1

3

28s6
1

507

448s7
1

5377

448s8
1•••,

b12
(5)5

13

504
2

19

168s
1

23

672s2
2

737

8064s3
2

2959

5376s4
2

99733

28672s5
2

50499149

2064384s6
2

350973527

1835008s7
2

72765921299

44040192s8
1•••,

b32
(5)52

5

21
1

149

168s
2

193

672s2
1

5245

8064s3
1

18677

5376s4
1

1785635

86016s5
1

289305193

2064384s6
1

5846947361

5505024s7
1

394448762615

44040192s8
1•••,

b52
(5)5

139

504
2

27

28s
1

109

336s2
2

1343

2016s3
2

9203

2688s4
2

431321

21504s5
2

9839105

73728s6
2

196654913

196608s7
2

30690812563

3670016s8
1•••,

b04
(5)52

3

140s5
2

1563

6160s6
2

7767

3080s7
2

613353

24640s8
1•••,

b14
(5)5

15

2464
2

183

6160s
1

713

24640s2
2

433

19712s3
2

409

4928s4
2

319665

630784s5
2

8222083

2293760s6
2

5744848239

201850880s7
2

403943151013

1614807040s8
1•••,

b34
(5)52

29

280
1

293

770s
2

47

385s2
1

7081

24640s3
1

74647

49280s4
1

7137293

788480s5
1

385804437

6307840s6
1

4682760003

10092544s7
1

1580817298041

403701760s8
1•••,
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b54
(5)5

1713

12320
2

2929

6160s
1

2551

24640s2
2

34863

98560s3
2

92061

49280s4
2

34432191

3153920s5
2

23756287

327680s6
2

15647080587

28835840s7
2

7317549380671

1614807040s8

1•••,

b06
(5)52

1

616s6
2

3

77s7
2

1467

2464s8
1•••,

b16
(5)52

1

1584
1

1

1848s
1

7

1056s2
1

337

88704s3
1

53

1848s4
1

51433

315392s5
1

2188103

2064384s6
1

471762913

60555264s7
1

4428495037

69206016s8
1•••,

b36
(5)52

1

84
1

10

231s
2

17

924s2
1

103

3168s3
1

2489

14784s4
1

236615

236544s5
1

38344237

5677056s6
1

776232845

15138816s7
1

52467158027

121110528s8
1•••,

b56
(5)5

1207

55440
2

661

9240s
1

17

12320s2
2

5525

88704s3
2

1169

3520s4
2

9116467

4730880s5
2

131486063

10321920s6
2

1918435847

20185088s7
2

639291980689

807403520s8

1•••, ~78!
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and for a random system, as for the lower orde
Bk

(5)5bk0
(5) .

V. DISCUSSION

The above derived formulas despite their hefty look
very practical. Indeed, they present the nonlinear initial s
ceptibilities of a superparamagnetic particulate medium
analytical expressions of arbitrary accuracy. With respec
the frequency dependence they give the exact full struc
of the susceptibility and prove that it is very simple th
putting former intuitive considerations on a solid groun
This makes our formulas a handy tool for asymptotic ana
sis. Yet more convenient they are for numerical work b
cause with their use the difficult and time-consuming pro
dure of solving the differential equations is replaced by
plain summation of certain power series. For example, if
employ Eqs.~72!–~78!, a computer code that fits simulta
neously experimental data on linear and a set of nonlin
susceptibilities taking into account the particle polydispers
of any kind~easy axes directions, activation volume, anis
ropy constants! becomes a very fast procedure.

Graphic examples justifying our claims are presented
Figs. 5 and 6, where the components of two nonlinear co
plex susceptibilities are plotted as the functions of the par
eter s. For a given sample,s in a natural way serves as
dimensionless inverse temperature. In those figures, the
lines correspond to the above-proposed asymptotic form
where we keep the terms up tos23. The circles show the
results of numerically exact solutions obtained by t
method described in Ref. 6. Note that even ats;5 the ac-
curacy is still rather high.

The model that may be called the predecessor of
afore-derived results was proposed in Ref. 23. There,
authors calculated the initial susceptibilities up to the seve
21440
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order having replaced a superparamagnetic assembly
two-level macrospin system. The interrelation between
present work and Ref. 23 closely resembles the situa
with the evaluation of the rate of a superparamagnetic p
cess. First in 1949 Ne´el1 and then, ten years later, Brown3

evaluated the superparamagnetic time in the framework
two-level model. In such a framework, one allows for t
magnetic moment flips but totally neglects its possible dif
sion over energetically less-favorable directions. In 19
Brown4 succeeded to overcome this artificial assumption a
took into account the possibility for the magnetic moment
wander over all 4p radians.

In the present case, the obtainedv/T dependencies of the
nonlinear susceptibilities and those from Ref. 23 are qual
tively the same. Their most typical feature is the double-pe
shape. Quantitatively, however, the corresponding lines
fer and do not reduce to one another in any case. Indeed
long as the temperature is finite~whatever low!, the configu-
rational space for the unit vectore of the magnetic moment is
the full (4p-radian! solid angle; its reduction to just two
directions along a bidirectional axis could not be done o
erwise than ‘‘by hand.’’ This is exactly what the two-leve
Ising-like model does: it forcibly imparts a quantum prope
~discrete spin projections! to a macrospin assembly. From th
calculational viewpoint, another essential demerit of t
results23 is that the coefficients in the susceptibility formula
are not given in an analytic form. The authors propose
evaluate them by solving an infinite set of recurrence eq
tions. Hence, the procedure23 does not provide any gain with
respect to former ones neither in analytical considerati
nor in constructing fitting codes.

In the presented framework the results by Klik and Y
~including the analytical formulas for them missing in Re
23! can be obtained immediately if to take the functionw1 in
a stepwise form~23! and not to allow for the correction
6-12
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FIG. 5. Real~a! and imaginary~b! components of the cubic susceptibility of a superparamagnetic assembly with coherently aligne
axes; the direction of the probing field is tilted with respect to the alignment axis at cosb50.5; the dimensionless frequency isvt0

51026. Solid lines show the proposed asymptotic formulas taken with the accuracys23, circles present the result of numerically exa
evaluation, dashed lines correspond to the ‘‘zero-derivative’’ approximation~45!. The discrepancy of the curves is commented in the t
after Eq.~B12!.
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caused by the finiteness of its derivative atx50. In our
terms this means to stop at set~45!, i.e., ‘‘zero-derivative’’
solution, and not to go further. The emerging error is ho
ever, uncontrollable and not at all small. As an illustration,
Fig. 5 we show the result obtained with this model~dashed
lines! for the cubic susceptibilityx3v

(3) in a textured system
where the particle common axisn is tilted under the angle
b5p/3 to the probing field. One can see that deviations
substantial.

In Ref. 6 we have proposed, although without rigoro
justification, a formula for the cubic susceptibility of a ra
dom assembly

x3v
(3)52

1

4
x0

(3)
~112S2

2!~12 ivt1!

45~11 ivt1!~113ivt1!
, ~79!

that proved to be well adjusted for approximating the res
of numerical calculations in all the temperature interval a
also appeared to be good for fitting experimental data.7 Now
we see that this very expression follows from Eqs.~73!–~75!
if to expand the coefficientsbi0

(3) up to the zeroth order with
respect tos21. This justifies Eq.~79! as a formula yielding
a correct frequency dispersion of the cubic susceptibility o
random assembly at low temperatures. The cause of its
plicability at high temperatures is the exponential dep
dence oft1 on s. Indeed, in the frequencies rangevt0
!1, where we work, the conditions&1 meanst1→t0, and
all the dispersion factors in Eq.~79! drop out. This trans-
forms expression~79! in a correct static susceptibility that i
also a true result. To avoid any confusion we remark that
~79! differs from formula forx3v

(3) given in Ref. 6 by the
coefficient (21/45) due to the difference in definitions: i
Ref. 6 it was included inx0

(3) .
Applying the similar procedure to Eqs.~76!–~78! we get

the expression for the fifth-order susceptibility
21440
-

e

s

s
d

a
p-
-

q.

x5v
(5)5

1

16
x0

(5)
~2112S2

214S2
3!

945

3

12
21

8
ivt12

3

4
v2t1

2

~11 ivt1!~113ivt1!~115ivt1!
~80!

that, following the example of the already tested Eq.~79!,
has high chances to be a good approximation forx5v

(5) in the
whole temperature interval. As we have already ascertai
in Ref. 6, the best interpolation expression for the relaxat
time in the susceptibility formulas is

t15tD

es21

2s F s

11s
As

p
122s21G21

,

proposed in Refs. 13,14.

VI. CONCLUSIONS

A consistent procedure yielding the integral relaxati
time and initial nonlinear susceptibilities for an assembly
noninteracting superparamagnetic particles is constructe
the low-to-moderate temperature range. Starting from
micromagnetic kinetic equation that describes intrinsic rot
diffusion of the particle magnetic moment, we obtain t
results in an analytical form. They are presented
asymptotic series with respect to the dimensionless par
eter s that is the uniaxial anisotropy barrier height scal
with temperature. High-order expansion terms are easily
cessible that allows to achieve any desirable extent of ac
racy. This is proven by comparison of the proposed appro
mation with the numerically exact results. Th
susceptibilities contain angular dependencies that allow
to consider the particle assemblies with any extent of ori
tational texture—from perfectly aligned to random. The ne
6-13



ve
an
et

ia
m

–
n
io
V

sti
he
en

g-

en-

la

,

om

r
e

d
-
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formulas stand closer to reality than those for a two-le
system and are to facilitate considerably both analytical
numerical calculations in the theory of superparamagn
relaxation in single-domain particles.
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FIG. 6. Real~a! and imaginary~b! components of the fifth-orde
susceptibility of a random superparamagnetic assembly; the dim
sionless frequency isvt051026. Solid lines show the propose
asymptotic formulas with the accuracys23, circles present the re
sult of a numerical evaluation.
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APPENDIX A: EVALUATION OF THE EXPANSION
COEFFICIENTS FOR EIGENFUNCTIONS c0 AND c1

Both functions c0 and c1 are uniaxially symmetrical
about the anisotropy axisn and can be expanded in the Le
endre polynomial series, see Eq.~32!:

c05
1

2 (
k50

~2k11!SkPk~x!, k50,2,4, . . . ,

c15
1

2 (
k51

~2k11!QkPk~x!, k51,3,5, . . . , ~A1!

where in accordance with the parity properties of the eig
functions nonzero terms are

S051, Sk5~Pk~x!uc0!, k52,4, . . . ,

Qk5~Pk~x!uc1!, k51,3,5, . . . . ~A2!

Taking into account thatc15c0w1, where c0 in a finite
form is given by Eq.~11!, one arrives at the general formu

Fk5~1/R!E
0

1

Pk~x!esx2
dx, ~A3!

whereF is Sk for even and isQk for odd values of the index
and the functionR(s) is defined by Eq.~11!. In particular

Q15~1/R!E
0

1

xesx2
dx5

1

2
~es21!/sR. ~A4!

Using asymptotic expansion~12! for R, one gets

Q151/G512
1

2s
2

1

2s2
2

5

4s3
2

37

8s4
2

353

16s5
2

4881

32s6

2
55205

64s7
2

854197

128s8
1•••. ~A5!

Knowing Q1, one can derive all the other momentsQk with
the aid of the three-term recurrence relation obtained fr
Eq. ~8! by setting therebk5Qk andl50. The same relation
can be used to find the equilibrium order parametersSk . This
is a head-to-tail procedure, whereS051 and S2 is deter-
mined by the integral

S25~1/2R!E
0

1

~3x221!esx2
dx. ~A6!

Taking the latter by parts one gets

S25
3

4
@es2R#/sR.

On comparison with Eq.~A4!, we find

S25
3

2
Q12

3

4
~322s!/s,

that upon substituting asymptotic series~A5!, transforms into

n-
6-14
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S2512
3

2s
2

3

4s2
2

15

8s3
2

111

16s4
2

1059

32s5
2

12243

64s6

2
165615

128s7
2

2562591

256s8
1•••. ~A7!

APPENDIX B: EVALUATION OF THE CORRECTING
COEFFICIENTS Dn IN A GENERAL CASE

Let us present the solution of Eq.~42! in the form

f 1
(n)5c0g1

(n)1u(n), ~B1!

where the functionsg1
(n) are rendered by formulas~45! and

are not corrected with respect to the derivativedw1 /dx. Sub-
stituting Eq.~B1! in ~42! and taking into account Eqs.~45!,
we get a recurrence sequence of equations for the correc
u(n):

L̂u(n)5V̂u(n21)1 Ĵc0

~e•h!n

n!
Ĵw1 . ~B2!

With allowance for the fact that functionw1
(0) depends only

on x, Eq. ~B2! rewrites as

L̂u(n)5V̂u(n21)1
d

dx Fc0~12x2!
~e•h!n

n!

dw1

dx G .
Finally, making use of the relation

dw1

dx
5

l1

2c0~12x2!
, ~B3!

that follows from Eq.~18!, we get

L̂u(n)5V̂u(n21)1
l1

2

d

dx F ~e•h!n

n! G . ~B4!

In particular, atn51 Eq. ~B4! takes the form

L̂u(1)5
l1

2

d

dx
~e•h!. ~B5!

Equations~B4! are solved sequentially beginning from E
~B5! by expanding in a power series with respect tox. The
right-hand sides of Eqs.~B4! and~B5! are proportional to an
exponentially small parameterl1. Just due to that we did no
take into account the corrections of the orderu(n) when de-
riving Eqs.~45!. However, the quantities

Dn5~w1uu(n)!, n52,4,..,

have finite values. To show that, let us multiply Eq.~B4! by
w1 and integrate. This yields

~w1uL̂u(n)!5~w1uV̂u(n21)!1
l1

2 S w1U d

dx F ~e•h!n

n! G D .

~B6!
21440
ns

In the left part we make use of the fact thatw1 is the left
eigenfunction of the operatorL̂, in the right part the integrals
are taken by parts and yield

l1Dn52E
0

1

~12x2!u(n21)Fdw1

dx G d

dx
~e•h!dx

2l1E
0

1dw1

dx

~e•h!n

n!
dx. ~B7!

Replacing the derivativedw1 /dx in the first term of the
right-hand side with the aid of Eq.~B3!, we arrive at the
representation of the coefficientDn as

Dn5E
0

1u(n21)

c0

d

dx
~e•h!dx2E

0

1dw1

dx

~e•h!n

n!
dx. ~B8!

Sincec0}exp(sx2), the first integral in Eq.~B8! can be pre-
sented as an asymptotic series if the power expansion o
function u(n21) in the vicinity of x50 is known. A closed
form for the second integral can be found with the aid of t
table given in Eq.~51!, see Sec. III A.

As an example, we calculate the coefficientD2. Since
from the addition theorem

~e•h!5cosu cosb1sinu sinb cosw,

we seek the solution of Eq.~B5! the sum

u(1)5cosb(
k

Ck
(0)xk1sinbeiw~12x2!1/2(

k
Ck

(1)xk.

~B9!

Here the upper index of theC coefficients corresponds to th
azimuthal numberm of the spherical harmoniceimw. Opera-
tor L̂ now includes the azimuthal coordinate and takes
form

2L̂5~12x2!
d

dx2
2@2sx~12x2!12x#

d

dx

1F2s~3x221!2
m2

12x2G .

Substitution of expansion~B9! in Eq. ~B5! leads to the set of
equations

2s~k1m11!Ck22
(m) 2@k~k1112m12s!1m~m11!

12s#Ck
(m)1~k11!~k12!Ck12

(m) 5Nk
(m) , ~B10!

wherem50,1 and the numbers in the right-hand side are

Nk
(0)5H 21 for k50,

0 for kÞ0,
Nk

(1)5H 1, for k odd,

0, for k even.

In reality, one retains in expansion~B9! only a finite number
of terms so that Eqs.~B10! could be easily solved analyti
cally by any computer algebra solver. In terms of expans
~B9!, expression~B8! at n52 is written
6-15
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D25cos2b(
k50

C2k
(0) ~2k21!!!

2kskG

2
1

2
sin2b(

k51
C2k21

(1) ~2k21!!!

2kskG

2
1

6
2

2G23

6G
P2~cosb!. ~B11!

Since the coefficientsC found from Eq.~B10! are functions
of s, one has to perform in Eq.~B11! asymptotic expansion
This gives finally

D25
1

4s
1

1

4s2
1

5

8s3
1

37

16s4
1•••

2sin2bS 1

4
1

1

8s
1

1

16s2
1

7

64s3
1

19

64s4
1••• D .

~B12!

As it should be, atb50 this formula reduces to Eq.~52! that
was obtained for a one-dimensional case. We remark, h
ever, that in a tilted situation (bÞ0) the coefficientD2 ac-
quires a contribution independent ofs that assumes the lead
ing role. This effect is clearly due to admixing of transver
modes to the set of eigenfunctions of the system, and
just it that causes so a significant discrepancy between
‘‘zero-derivative’’ approximation and the correct asympto
expansion forx (3) curves in Fig. 5. Evaluation of the coe
ficient D4 is done according to the same scheme and requ
taking into account a number of the perturbation terms t
makes it rather cumbersome.

APPENDIX C: EVALUATION OF INTEGRALS

Before proceeding to the integrals~scalar products! in
Eqs.~62!–~66! and~68!, let us consider the ‘‘primitive’’ ones

Xn5„~e•h!nuc0…, Yn5„~e•h!nuc1….

The functionsc0 and c1 are originally defined in terms o
the angleu5arccos(e•n). Thus, before performing integra
tion one needs to transform both integrands to the same
of angles. Doing this with the aid of the addition theorem
Legendre polynomials, one finds

X25
1

3
@2S2P2~cosb!11#,

X45
1

35
@8S4P4~cosb!120S2P2~cosb!17#,
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X65
1

231
@16S6P6~cosb!172S4P4~cosb!

1110S2P2~cosb!133#, ~C1!

and

Y15Q1cosb, Y35
1

5
@2Q3P3~cosb!13Q1cosb#,

Y55
1

63
@8Q5P5~cosb!128Q3P3~cosb!127Q1cosb#,

~C2!

where cosb5(n•h) and the parametersSk and Qk are the
expansion coefficients introduced by formulas~32!.

Now using the expressions for functionsf 0
(n) and f 1

(n) de-
rived in Sec. III A one sees that the relevant integrals of E
~63!–~68! are expressed in terms ofXk andYk as

„~e•h!u f 0
(1)
…5X2 , „~e•h!u f 0

(3)
…5

1

6
X42

1

2
X2

2 ,

„~e•h!u f 0
(5)
…5

1

120
X62

1

8
X4X21

1

4
X2

3 ; ~C3!

~w1u f 0
(1)!5Y1 , ~w1u f 0

(3)!5
1

6
Y32

1

2
X2Y1 ,

~w1u f 0
(5)!5

1

120
Y52

1

12
Y3X21

1

4
X2

2Y12
1

24
X4Y1 ;

~C4!

~w1u f 1
(2)!5

1

2
X22Y1

21D2 ,

„~e•h!u f 1
(2)
…5

1

2
Y32Y1X21D2Y1 ,

~w1u f 1
(4)!5

1

24
X42

1

3
Y3Y11

1

2
X2Y1

21D41D2~w1u f 1
(2)!,

„~e•h!u f 1
(4)
…5

1

24
Y52

1

6
Y3X22

1

6
X4Y11

1

2
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2Y1
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