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Linear and nonlinear superparamagnetic relaxation at high anisotropy barriers
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The micromagnetic Fokker-Planck equation is solved for a uniaxial particle in the low-temperature limit.
Asymptotic series in the parameter that is the inverse barrier height-to-temperature ratio are derived. With the
aid of these series, the expressions for the superparamagnetic relaxation time and the odd-order dynamic
susceptibilities are presented. The obtained formulas are both quite compact and practically exact in the low
(with respect to FMRfrequency range that is proved by comparison with the numerically exact solution of the
micromagnetic equation. The susceptibility formulas contain angular dependencies that allow to consider
textured as well as randomly oriented particle assemblies. Our results advance the previous two-level model for
nonlinear superparamagnetic relaxation.

DOI: 10.1103/PhysRevB.66.214406 PACS nunfer75.30.Cr, 75.30.Gw, 75.50.Tt

[. INTRODUCTION given and their accuracy is proved by comparison with the
results of numerical calculations. Section V contains the en-
The problem of superparamagnetic relaxation in singleveloping discussion.
domain ferroparticles formulated, explained, and basically
analyzed by Nel' about fifty years ago, has continued to
attract attention. Nowadays this interest is mainly due to the !l SUPERPARAMAGNETIC RELAXATION TIMES
expanding number of nanometer granular magnetic media A. Uniaxially anisotropic particle
used in information storage and related high technologies. i i
When analyzing magnetic dispersions, solid or fluid, a The_cornerstone_ of _the superparamagne_hc relaxation
promising idea is to evaluate the granulometric content, part'€01Y IS the Arrhenius-like law for the relaxation rate of a
ticle material parameters, and relaxation rates by combining’@gnetic moment of a single domain particle predicted by
the data on linear and nonlinear dynamic susceptibilities. ReNee! in 1949. The framework of this classical problem is as
cently, this approactit originates from the spin glass sci- [ollows. Consider an immobilée.g., fixed inside a solid ma-
ence became quite feasible in experimental realization. 'X) Single-domain grain of a volume. This particle pos-
However, to benefit from it, one needs an adequate modef€SSeS a uniaxial volume magnetic anisotrdpybeing its
Surprisingly, the Nel* concept of superparamagnetic behav-€Nergy de_n3|ty and its easy axis direction. Since th_e tem-
ior of fine magnetic particles that had been substantially agP€raturer is assumed to be much lower than the Curie point,
vanced by BrowA* and refined by numerous researchersthe particle magnetizatioh as a specific parameter, is prac-

(see the review article Ref. 5 with about 400 referencestically constant and the magnitude of the particle magnetic
lacks a nonlinear extension. moment may be written g8 =1v. Denoting its direction by

In Ref. 6 we begun to fill up this gap and proposed a2 unit vectore, one cqncludes that th_e magnetic state of such
numerical procedure involving continuous fractions by?@ particle is exhaustively cha_lracte_rlzed by a pair of vectors
means of which the linear and cubic susceptibilities for a#=!veandn. Thence, the orientation-dependent part of the
solid system of uniaxial fine particles could be obtained.Particle energyin the absence of external magnetic figlds
With allowance for the polydispersity of real samples, the
worked out description provided a fairly good agreement U=—Kuo(e n)? 1)
with the dynamic magnetic measurements taken on Co-Cu '
nanocomposite$. Recently, our approach was used
successfully for the linear and cubic susceptibilities of the whereK is assumed to be positive. As E@.) shows, this
samples of randomly orientedy-Fe,O; nanoparticles. energy has two equal minima. They are separated by the
Hereby we carry on the build up of the nonlinear superparapotential barrier of the heigf{v and correspond te|=n
magnetic relaxation theory by working out a set of compactecause for the magnetic momerthe directionsn and—n
and accurate analytical expressions that considerably facilare equivalent. At zero temperature, the magnetic moment
tate calculations as well as experiment interpretation. once located in a particular potential well, is confined there

The paper is arranged in the following way. In Sec. Il weforever. At finite temperature, the probability of an overbar-
discuss the problem of superparamagnetic relaxation ander (interwell) transition becomes nonzero. If the rato
show the way to obtain the asymptotic solution for the mi-=Kuv/KT is high enough, the transition rate is exponential
cromagnetic Fokker-Planck equation in the uniaxial case. Ithus yielding the Nel law r=exp(o) for the reference time
Sec. Il the perturbative expansions for the orientational disof the particle remagnetization.
tribution function are obtained, which are used in Sec. IVto Brown* shaped up those semi-qualitative considerations
construct asymptotic expressions for the nonlinear dynamimto a rigorous Sturm-Liouville eigenvalue problem by de-
susceptibilities. The explicit forms of those expansions areiving the micromagnetic kinetic equation
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whereW(e,t) is the orientational distribution function of the K

magnetic momentj=(ex d/de) is the infinitesimal rotation + 1 b{®)— +2 b{,[=0.
operator with respect te, and the timerp is introduced (2k—1)(2k+3) (2k+1)(2k+3)

below by formula(4). Generally speaking, Eq2) is incom- (8)
plete since a gyromagnetic term is absent there. This means
that the consideration is limited by the frequency rangeNote that Eqs(5)—(8) describe only the longitudindlwith
wTy<1, wherer, is the relaxation time of the Larmor pre- respect to the easy axieelaxation of the magnetic moment.
cession of the particle magnetic moment in the internal an¥e remark that under conditioa<w, i.e., far from the
isotropy field Hy,~2K/I, where K includes the possible ferromagnetic resonance range, the transversal components
shape contribution. Comparing this condition with the otherof m=u(e) are of minor importance.
one w 79p=1 which evidences a low-to-moderate quality
factor of the Larmor precession for real nanodisperse ferrites,
one estimates the allowed frequencyas w, that means, in
fact, a fairly wide rangé*?®

In the statistical description delivered by HE), the ob-
served(macroscopit magnetic moment per particle is given
by the average

B. Interwell mode

Spectral equatiori6) describes the temperature-induced
(fluctuation) motions of the vectoe in the orientational po-
tential with a symmetrical profilél). With respect to the
time dependence, the set of possible eigenmodes splits into
two categories: interwelloverbarrief transitions and in-
trawell wanderings. In the spectral probld6) the interwell
transitions of the magnetic moment are associated with the
single eigenvalue\;. As the rigorous analysis showst
drastically differs from the others: whereas for1 all the
\¢ gradually grow with o, the decremenk; exponentially

m(t)=,u(e)=j eW(et)de. €]

Note that with allowance for Eq.l) the functionW has a
parametric dependency on the vectoso that, in fact, the fg||s downproportionally to expt o).

angular argument ofV is (e-n). In the opposite limitr— 0, all the decrements, including
The magnetodynamic equation underlying the Brown ki-\,  tend to the sequenoe,=¢€(¢+1) and thus become of

netic equation(2) can be either that by Landau and Lifshitz the same order of magnitude. This regime corresponds to a

or that by Gilbert. To be specific, we adopt the former oneyanishing anisotropy so that the difference between the in-

Thence, the reference relaxation time in Eg).is written

o= lv/2ayKT, 4
wherevy is the gyromagnetic ratio for electrons aads the
precession dampin@pin-lattice relaxationphenomenologi-
cal parameter.

Assuming uniaxial symmetry of the time-dependent solu-

tion and separating the variables in E&) in the form

L=
W(et)=— Zo Agbe(e-njexp — N\ t/2m),  (5)

where the amplituded, depend on the initial perturbation,
one arrives at the spectral problem

Le=Netbe, L=J[20(e-n)(exn)—7], (6)
where the non-negativity of the decremeniscan be proven
easily. Expanding the eigenmodegs in the Legendre poly-

nomial series

1 e
=5 > (2k+1)b{P(cosh), k=1,3,5,..., (7)
k=1

where 6 is the angle betweer and n, one arrives at the
homogeneous tridiagonal recurrence relation

terwell and intrawell motions disappear, and the magnetic
moment diffuses almost freely over all ther4adians with
the reference timep introduced by Eq(4).

From Eqgs.(3) and(5) one finds that the longitudinal com-
ponent of the magnetic moment evolves according to

1

(€)

m(t)=p >, Aee_MUZTDJ XipedX,
= 1

wherex=cosé=(e-n). For a symmetrical potential likel)
the equilibrium valuem, of the particle magnetic moment is
zero.

With the abovementioned structure of the eigenvalue
spectrum, the term witli=1 in Eq. (9), being proportional
to exp(—e “t/7p), ate>1 is far more long-living than any
other one. The dominating role of the decremephad been
proven by Brown, and for it he had derivethe asymptotic
expression

Ag=(4m)d¥%e 7 (a>1). (10)

A short time after, using a continued fraction method, Aha-
roni constructedfor \; a fairly long power series i and

also showed numerically that Brown'’s expressid) re-
sembles the exact one with the accuracy of several percent
for o= 3. In the 1990’s the eigenvalule, became a subject

of extensive studies. Efficient numerical procedures were
developed® and a number of extrapolation formulas with a
good overall accuracy were proposed-*
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C. Asymptotic solution of the Brown equation The operatoi in Eq. (6) is not self-conjugated and thus

The study that we describe below was inspired by ouproduces two sets of eigenfunctions, which obey the respec-
work on fitting the dynamic susceptibility measurements fortive equations
real assemblies of fine particles. Those data typically de-
scribe polydisperse systems in the low-frequency bandwidth t‘ﬂk:)\k(ﬂka [+¢j:)\j¢j : (13
wl2m=1-1C Hz. As 75~ 10 °s or smaller, then, using for-
mula (10) for estimations, one concludes that the mentionedhere + denotes Hermitian conjugation. The eigenfunctions
frequency interval becomes a dispersion range for the inteof these two families are orthonormalized and related to each
well (superparamagnejicode at other in a simple way:

wTee’=1, thatis, o0=10. 1
= ok, dXxe; = Sk - (14)
For temperatures up to 300 K this condition holds for quite a -1

humber of nanomagnetic systems. Qualitatively, from Eq.(14) one may say thatp, are the

Application of the best fit procedure to a set of EXPET ame eigenfunctions but “stripped” of the exponential equi-

mental data implies numerous recalculations of the Iinea|'. . : Lo .
. . K ibrium solution,. Substituting Eq(14) in Eqg. (6), one gets
and nonlinear susceptibility curva$¥ of the assembly. Any two useful relationships

such curve, due to a considerable polydispersity of the par-
ticles, is a superposition of a great number of partial curves
x® (o) spread over a wide sizéor, in the dimensionless —Joden=Nboex, f ‘/’O(j(Pj)(jQDk)dX:)\k‘Sjk:
form, o) range. For successful processing, one needs a fast
and very accurate algorithm to evaluaté) (o) everywhere (15

including the domainr>1. The existing extrapolation for- \yhere the second one follows from the first after multiplica-
mulas are no good for that purpose due to their ill-4n 1y o and integration by parts. Note that in the second
controllaple'erri)lr accumulation. A plausible way out IS angomjja action of each operator reaches no farther than the
asymptotic ino ™~ solution of Eq.(6). In the course of the L oarest closing parenthesis.

fitting procedure, this approximation can be easily matched o, rewriting Eq.(15.1) in terms of a single orientational

in the intermediater range with the well-known expansions variablex=(e-n), the spectral problem takes the form

for the smallo end.

It is noteworthy that some 20 years ago Brown himself
resumed’® studies on\; and modified the preexponential
factor in Eq.(10) transforming it into an asymptotic series in
o~ 1. On the base of Eq6) he had constructed an integral
recurrence procedure, and evaluateg down to terms
«1/o'°%. What we do below, is, in fact, carrying on this line
of analysis that had not been touched since then. Our method _
advances Brown’s results in two aspects. First, Xorit is dx
more simple. Second, it provides not only the eigenvalue but ) o ) ) ]
the eigenfunction as well. Only having the latter in posseshose normalized solution igo=1. This solution, being a
sion, one is able to obtain theoretical expressions for th&rue equilibrium one, turns the inner part of the brackets, i.e.,

directly measurable quantities that is the susceptibilji&s the probability flux in the kinetic equatiof®), into identical

Taking Eq.(6) as the starting point, we remark its equi- Z€0- _ o
librium solution As remarked in Sec. Il B, ar>1 the most long-living

nonstationary solution of Eq16) is the eigenfunction with
Yo=25 ‘exp(ox?), Zo=2R(0), (11 £=1, whose eigenvalue is exponentially small, see Brown's
estimation(10). We use this circumstance for approximate

dx

doy
wo<1—x2>a} =~ Nho®i- (16
In the equilibrium state Eq16) reduces to

deg

wo(l—xz)a =0, (17

1 evaluation ofe; in the o>1 limit by neglecting the right-
R(U):J expox?)dx, hand side of Eq(16) for £=1. On doing that, the equation
0 obtained for the functio,; formally coincides with Eq(17)
for ¢o. However, the essential difference is that now the

which corresponds tof=0 and \y=0; note also the content of the bracket is nonzero:

asymptotic expansion for the partition integR{lo) found in

Ref. 17:
W (1—x2)%=lc (18)
R(0)=e"G/20, 0 dx 27
15 (2n—1)N where3 C is the integration constant. Note also that, contrary
G(o)=1+ 25" PJF gJF et W+ S to ¢, the sought for solutiorp, is odd inx.

Using the explicit form ofy, from Eq.(11) and integrat-
(12 ing, one gets fox>0
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FIG. 1. Eigenmodep,(x) determined with the aid of the nu-
merical solution of Eq(8) for the dimensionless barrier height 5 FIG. 2. Asymptotic expressiof25) for the eigenvalue; with
(dashed ling 10, 20, 25(solid lines: the arrow shows the direction allowance for terms up to-~° (solid line) compared to the exact
of o growth. Thick dashes show the stepwise function that is thehumeric value(dashed ling
limiting contour for ¢, at c— .
several values ofr. We remark that in the statistical calcu-

o2 ations carried out below, the ical integrals are of two

‘e lat d out bel the typical integral f twi

(PlZCRf dx kinds. In the first, the integrand consists of the product of
0 1-x? ©11o and some nonexponential function. Agxexp X,

the details of behavior ofp; in the vicinity of x=0 are
X . . . . .
:CRJ e ™ (1+x2+x*+x8+...)dx. (19) Irrelevant because the approximate integral will differ but
0 exponentially from the exact result. The integrals of the sec-
. . . . . ond type contairde, /dx in the integrand. For them a step-
The integrals in expansiof19) are akin. Denoting wise approximation(23) with its derivative equal identical
X , zero everywhere except for=0 is an inadmissible choice.
Fnzf x2"e” X dx, So, to keep the exponential accuracy in this case, one has to
0 get back to Eq(18).
one can easily write for them the recurrence relation and The eigenvalue, corresponding to the approximate
“initial” condition as eigenfunctionp, from Eq.(23) is evaluated via formulél5)
that can be rewritten as

9 Vm
Fo=——Fn 1, Fo=—— erf(y\/ox), 20 o 11 des)?

n Jo n-1 0 2\/; (\/— ) ( ) Alzf_lwo(J¢l)2dX:§fo eu’xz(l_XZ)(d_Xl) dx.
respectively. Using the asymptotics of the error integral, with (24)
the exponential accuracy im one finds Substituting the derivative from E¢18), one finds

Fo=[(2n=1)1112"0"Fo, Fo=Vml2\o. (21) \1=C= (217 o IRG,

Comparing this with expressiodi2) for the functionG, we  and using expressiofi2) for R finally arrives at
get the representation

N =(47) 032%™ 1G2=\g/G2. (25)

With G expanded in powers aof !, see Eq.(12), this for-

Applying to Eq. (22) the normalizing condition14), one  mula reproduces the asymptotic expression derived by
evaluates the constant 8= 1/RF,G. Therefore, from Egs. Brown in Ref. 15. AtG=1 it reduces to his initial resuft,
(200—(22) the principal relaxational eigenmode determinedcorresponding to the above-given E@0). Function\ (o)
with the exp{o) accuracy emerges as an odd step functiorfrom Eg. (25) is shown in Fig. 2 in comparison with the
exact result obtained by a numerical solution. Indeedy at
=3 the results virtually coincide.

According to expansiornt5), each decrement, defines

, o ) , the reference relaxation time
In Fig. 1 the limiting contouf23) is shown against the exact

curves ¢,(x) obtained by solving numerically Ed8) for Te=21p/N\y. (26)

@1(x>0)=CRF,G. (22)

—1 for x<O0,

1 for x>0. 23

@1(X)=
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Thence from Eq(25) we get
lezTD/)\]_: ’TBGZ,

(27)

TBEZTD/)\B,

whererg denotes the asymptotic relaxation time obtained by

Brown in Ref. 4. Substituting in Eq(27) the explicit
asymptotic serie¢l2) for G, one gets

Ve’

20.3/2

1 7 9
1+ —+—+—+---

28
o 4% 20° 8

T1= Tp

D. Asymptotic integral time

The decrements, or, equivalently, relaxation times,,
being the characteristics of the eigenfunctions of the distri

bution function, are not observable if taken as separate quan- Unlike 7,

tities. However, in combination they are involved in a useful

PHYSICAL REVIEW B66, 214406 (2002

(xx(©)o= | | oot 0dxd

— 2 [bghf)]Ze*)\(t/ZTD’
(=1

where averaging over the current coordinatis performed
with the functionW from Eq. (30) whereas that over the
initial conditions—with the equilibrium functior,. Substi-
tuting expressiori33) in Eq. (29) one gets the integral time
in the form

(33

oo

ﬂmZZES

=1

oo

Z Te[b(lé)]2/<xz>o-

m[b{"1% 2, [b{7)7=
=1 t=1
(34

which in principle cannot be evaluated
analytically'® at arbitraryo, for 7, an exact solution is pos-

directly measurable quantity, the so-called integral relaxatiorgime for arbitrary values of the anisotropy parameter. Re-

time. In terms of correlation functions this characteristics is

defined as

_ [ mOm©) [ KOO0

Tin = 2
‘ (M(0))g (x3(0))q (

9

0 0

cently two ways were proposed to obtain quadrature formu-
las for 7,,;. One methotf implies a direct integration of the
Fokker-Planck equation. Another metBBihvolves solving
three-term recurrence relations for the statistical moments of
W. The emerging solution for;,; can be expressed in a finite
form in terms of hypergeometricKummer’s functions.

where the angular brackets stand for the statistical ensemblequivalence of both approaches was proven in Ref. 21.

averaging over the equilibrium distributidd?). As follows

In the present study, as mentioned, we are dealing in the

from Eq. (29), the integral relaxation time equals the areahigh-barrier approximation. In this limiting casg is expo-

under the normalized decay of magnetization.
The Green function of Eq2), i.e., the probability density
of a state X,t), provided the initial state isxg,0), writes

o

W<x,t;x0,0>=;o Pe(X) (X e M. (30)

Similarly to Eq.(7), we expand the eigenfunctions in Leg-
endre polynomials as

o0

> alPy(x)

1 oo
pe=5 2 (2k+DBOP(X),  ¢(=
k=1 k=1
(3D

and introduce special notations for the first two functions

N| =

o= go (2k+1)SP(X),

1 oo
=5 2 (2k+1)QePy(X). (32)
k=0

The procedures to evaluate the coefficietsand Q, and
the explicit asymptotic forms foQ; and S, are given in
Appendix A; note representatiofll) for the equilibrium
function .

Due to Eq.(14), the coefficients in formula&3l) are re-
lated to each other bp{”=(P,P,)oa!?. In those terms
one gets for the correlator in E¢L4)

nentially small, so that the term with=1 in the numerator
in Eq. (34) is far greater than the others. With allowance for
Eqg. (32 it can be written as

Tine= Tl DV T2(X2) 0= 71QF/(X2),. (35)

The equilibrium moment calculated by definition is written
as

(x*)o=(1/20)(e7—1)=1/G—1/20, (36)
and foro>1, using formula(A5) of Appendix A we get

Substitution of Eqs(36) and(37) in (35) with allowance for
relationshipg12), (25), and(27) gives the asymptotic repre-
sentation in the form

20G
Tint— 7B (20__ G) =

elT
\m 1

20_3/2

™D
(38)

As it is seen from formula$28) and (38) written with the
accuracy up tar~ 3, the asymptotic expressions for the in-
terwell and integral times deviate beginning with the term
«¢ 2, This contradicts the only known to us asymptotic
expansion ofr,; given in Eq.(60) of Ref. 20 and repeated in
Eq. (7.4.3.22 of Ref. 22. The latter expression written with
the accuracyxo 2, instead of turning into Eq(38) coin-
cides with the Brown’s expressiai28) for ;. Meanwhile,
as it follows from formula(35), such a coincidence is impos-
sible and therefore Eqgs(60) of Ref. 20 and Eg.
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(7.4.3.22 of Ref. 22 are misleading. The necessity to rectify 3edg™ =Iyeg" V(e h)
this issue made us to begin the demonstration of our ap- 0 0 '
proach with the case of the integral relaxation time. Further jl/lojg(ln):jwog(lnfl)j(e, h), (43)

on we consistently apply our procedure to description of the ] . ) ©)
nonlinear(third- and fifth-order dynamic susceptibilities of ~respectively. Set43) solves easily forgy since gy’'= o
a solid superparamagnetic dispersion. =1. Starting withn=0, one gets sequentially

M=(e.nh
gO (e )!
Ill. PERTURBATIVE EXPANSIONS FOR THE
DISTRIBUTION FUNCTION 1

gt =5L(en)*~((e-h)?)q],
A. Static probing field

To find the nonlinear susceptibilities, one has to take into 1 1

’ 3)_— 3_ " 2

account the changes that the probing field induces in the 9 —geh =3(e h){(e-h)%)o,
basic state of the system. In the linait>1, which we deal
in, the relaxation timer, of the interwell modey, is far @ _ 1 4 4
greater than all the other relaxation times. This means o =5l (&- ) =((e-h)%)o]
that with respect to the intrawell modes the distribution func- L
tion is in equilibrium. So it suffices to determine the effect of a2/ e 2y /(e 2\ 2
the probing fieldH=Hh just on ¢y and ¢,. Assuming the 4[(e m¥(e-m%o=((e-mal.
energy function in the form

0= 15ge )" e (e h?)
U+Upu=—Kov(e-n)2—lvH(e-h) (39 0 120 12 0
[compare with Eq(1)], and separating variables in E@), 1 4 o2
one arrives at the eigenfunction problem — o4& MI{(e-h)%)o—6((e-n)7p]l. (44

All the obtained functions are constructed in such a way that
the corresponding(ﬂ”) satisfy the abovementioned zero aver-

_ . P age requirement. We remark also that there is no problem to
whereé=1vH/KT and notationf 5 refers to the distribution continue the calculational procedure to any order.

function modes that stem fr9nz&0 or.zpl atH#0, |.e.,.,8 Evaluation ofg, is done in two steps. At the first one, we
=0 or 1. In Eq.(40) operatorL is defined by Eq(6) while setg(lo) equal to the antisymmetric stepwise functi(2s)
V=—&J(exh) is the operator caused by the energy téfm  and its derivative equal zero. After that from the second of
in [Eq. (39)]. As in the above, for the non-self-conjugated Egs.(43) we can expresg{¥ in closed form. Taken up to the
spectral problent40) we introduce the family of conjugated fourth order these “zero-derivative” solutions are written
functionsg, and setf 5= g .

Lf,=¢Vig, (40)

(1)— _
Following our approach, in the low-temperature limit ( 91 '=¢1(e-h)—(ei(e-h))o,
>1) weset to zerahe eigenvalues corresponding to bégh 1
and f1; compare with Egs(17) and (18) for ¢, and ;. g(lZ)zngl(e. h)2—(e-h){¢p4(e-h))g,

Assuming the temperature-scaled magnetic fi€ldo be
small, we treat), as a perturbation Hamiltonian and expand

1
the principal eigenfunctions as g(13)=6[<p1(e- h)3—(@1(e-h)%),]
_ ng(n) _ ng(n) 1

fo= 2 &MY, fi=2 &M, (1) ~ 5 (ea(e- Mol (e-n)>~((e- )],
Thence for the field-freeH{=0) case one hal 0) = ¥y and @) 1 s 1 3
f{9=y,. The same kind of expansion is assumed dgr 917 =5¢1(&h)"= =(pi(e-h))ol(e-h)
with g{¥=1 andg{”)=¢,. Note also that in order to retain .
the normalizing condition we require thtig“) have zero av- _ala. M2 1 A )3
erages. 3(e-h)((e-h)%)ol— g (e-h)(es(e-h)%)o. (45

Substituting expansio1) in Eq. (40) and collecting the  \ote the alternating parity ia with the term order growth in
terms of the same order i&, we arrive at the recurrence oih Eqs.(44) and (45).
relation It is instructive to compare the approximate expressions
A . (45) with the numerical results obtained without simplifica-
LEQP=VilD, (42 tion of g{?). To be specific, we consider the case when prob-
) ing field is applied along the particle easy arisThen Egs.
that for the particular casg8=0 and 1 with the aid of the  (43) become one dimensional and the second of them is writ-
identity ex h=J(e-h) takes the forms ten
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0.5 gl(l) our procedure. For that we integrate E46) two times by
parts and substitute there the “zero-derivative” formgit’
i from Eq. (47):

1 1 de;
g(12)=§X2¢’1_X<X901>0+ Ef XZWdX' “8)

Thus one finds that the correctgff’ differs from this of Eq.
(47) by adding a stepwispalike that of Eq.(23)] term

(2) 1 2
917 =5X ©1—=X(X¢1)ot+ Doy, (49)

with the amplitude

Y

3

11 ,dey

FIG. 3. Functiorg{ found numerically(solid) and evaluated in D2=—J’ x? ax dx. (50)
“ H H ” . . 0 X

the “zero-derivative” approximatioridashegl

We remark that the results of evaluation of the integtajs

dg(ln) (n-1) If%)ka(dgol/dX)dX can be arranged in the table
dX ::gl . (469
k 0 1 2
Its “zero derivative” solutions up to the second order follow 1 —, (5]
from the first two lines of Eqs45): lae 1 1-G 1-(1+1/20)G
(D e @ Lt 2 hat Eq.(50) qi
01’ = X—(@1X)o, Of =5 P1X X(@1X)o. (47)  so that Eq(50) gives

In Figs. 3 and 4 these functions are compared to the numeri- D,=—1,, G-1 i i i 37 R
cal solutions of Eq(46). For our calculation, the most im- 2 2G40 40% 8o* 160"

portant is the behavior of those functions ngar+1 since (52

these regions yield the main contribution when integrate

) ; . \ %unctiong® corrected in such a way is shown in Fig. 4 b
with the weight function)y. As one can see from the figures 91 y 9 y

he * derivative” solutiora(®) Il with th ' asterisks. It is seen that the corrected dependence with a
the “zero-derivative” solutiorgy™ agrees well with the exact ¢4y go0d accuracy follows the numerically obtained curve.

one, Whileg(lz) deviates significantly. This discrepancy is due | 3 similar way one can prove that the corrected function
to the change of the barrier height that occurs in the secong(l4) has the form

order with respect to the probing field amplitude, and mani-

fests itself in all the even orders of the perturbation expan- 1 1
sion. Correction of solutiorf47) makes the second step of 9(14)22—4(,01X4— 6[<¢1x)0x3—3x(x2>0]
(2) 1
- 0.4 - $i - 6X<<P1X3>o+ D,g{”+Dye;, (53
\\\\ .
YN ' where the corrected functiogi® given by Eq.(49) is used
2 and
O\,
\
A X bt o 100G*~220G+G+120
T T T T v T T T 1 4=l U=~
24 2
1 0.5 { 0.5 1 480G
\
-0.2 N 1 1 5 29
=— - - — +-.n. (59
N 3202 160° 320 640°
\\\
0.4 7 S In the general case, when the direction of the probing field

- does not coincide with the particle anisotropy axis, the cor-

FIG. 4. Functiorg{?) found numerically(solid) and evaluated in rected functiongy™ still can be written as
the “zero-derivative” approximation(dashegl Asterisks show a

. X - 1
E:A(f);)rected calculation with allowance for the coefficien, see Eq. 9(12)25%(6' h)2— (e h)<¢1(e. h))0+ Dy,
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o 1 . . Substituting Eq.(57) in (56) we arrive at the recurrence
o =5lex(e )’ (ga(e-h)*)o] set

1 (2inwrp+ L)WM =YW=, (59
—5{ealeh))ol (e h)2—((e-h)?)e]+Dogt”, _ _ _
that we solve sequentially starting from=1. At the first

step the function in the right-hand side corresponds to the
equilibrium case £=0). Therefore, W)=y, where the
latter function is defined by Eq(ll) and is frequency-
independent. Combining E¢42) written down for8=0 and

1 ~
— g((pl(e' h))o[ (e-h)3—3(e-h){(e-h)?),] n=1 and Eq.(58), we eliminate the operatdf and get

1
TN

1 (Qiwrp+LYWD =L, (59

—5(ehei(e-h)®)o+Dyg{?+Dygs. (55 _ , o
Now we expand the functions subjected to operatarith

But since Eqs(43) cannot be reduced to a form like Eq. respect to the sefty} of its eigenfunctions, see E):

(46), the correcting coefficient®, and D, cannot be pre-

sented in a closed form. In this case the corrected solutions 1)_ (1) (1) _ @y, .

taking into account the behavior of functign around zero WO=2 @)y 17=2 (olf67)w;: (60

are built up as power series near 0; such a procedure for

o ) . . ) here (@|f) denotes functional scalar multiplication, i.e., the
the coefficientd, andD, is described in Appendix B. @l P

integral of the productpf over all the orientations oé.
_ o Substitution of Eq(60) in Eq. (59), multiplication of it from
B. Dynamic probing field the left by ¢,, and integration render the expansion coeffi-
To obtain the dynamic susceptibilities, one has to find thecient as
distribution function W in the oscillating probing field ) ) ] .
£exp(ot). For this situation the kinetic equatio®®) takes e (@) =(elfg N 1+iond (61)

the form where the reference relaxation times are defined by(Z).

In the low-frequency limit onlyw 7, is set to be nonzero
W(t)=&Vel'w(t), (56)  while all the higher modes are taken at equilibrium{
=0). Thence, when constructing™ via Eq. (60), by add-
where the operators and¥ have been introduced in above. iNg and subtracting a term witt§")(0), one carpresent the
Assuming that the exciting field amplitude is not too high, first-order solution in the form
we expand the steady-state oscillatory solution of (B6) in
a power series with respect £ W(l):fgl)_

2 i +L
TDE

iwT,
1+iw7’1

(1] t§) 41, (62

W(t)= 2 gwimenet, (57 wheref{", as seen from Ed59), is the equilibrium solution
n=0 for the same value of the field amplitude We remind the

Note that, mathematically, representati(Bv) is not com-  reader that the functions without upper index belong to the
plete. Indeed, in a general case the exact amplitude af¢he fundamental set defined by Eq®) whereas those with an
mode must contain, along with the contributier¢”, an in-  upper index are evaluated in the framework of the perturba-
finite set of terms~¢&""2, £"*4, etc. However, in a weak tion scheme described in Sec. Ill A.
field limit £<1 the terms with higher powers are of minor  In the next order ir¢ the functionW) is substituted in
importance so that the main contribution to the magnetizathe right-hand side of Eq58) and through a procedure alike
tion response signal filtered at the frequemey is propor-  to that leading to Eqg59)—(61), the functionW® is found.
tional to &". We carry on this cycle up tk=5. The results write

iwT

W= — (e DY, (63

1 3
W=+ [(@al 167) (@l 1)~ (al fIFY — (@al fE7) 117+ gy ol (@al (69117 = 5 (@l ) (ol 1) 1Y

1
— [C) i (1) ) [£(0)
+1+3inl (@alf5)) + 2(€01|fo ) (@l F17) 117, (64)
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3
WE= 6+ [(@1] 1) (@2l F) = (@al fF)IF = (a6 £+ {(gollfél’)f‘f"— S (eal f) (@ F) 1Y

l+i(1)7'1

o
1+3iwm

1
(@1l ) + zuollfé”)(mlf&z’)}f<11>, (65

WO =5 — (1| TN T+ (@ I (@ F N FO = F T+ [ (1| FE) (02| 1) = (@ FEN TP = (o] 1) 1]

3 15 5
+ 1+iml<<p1|fé”){f<f"— S (@l fPNF+] = (ol )2 Z(wllf(f))}f(lo)]

1 5
T GRS §<<p1|fél>><<p1|f&”)Hf&”— §<<p1|f&2>>f&°>}

N 1
1+5i0m

1 3 3
(@1l f6)+ Z (@1l ) (@al 1)+ 5 (@1l 67 (0a 1122+ §<<p1|f53’><<p1|f&2>)}f§°>- (66)

We remark an important feature of Eq§3)—(66): they do  through the perturbation functio®™ found in the preced-
not contain dispersion factors of even orders. This ensureisig section. Therefore, evaluation gf” becomes, although
that the frequency dependence of the full distribution functedious, but simple procedure. Remarkably, the final expres-
tion W incorporates only dispersion factors with odd mul- sions come out rather compact.
tiples of the basic frequency. Qualitatively, this is the result
of absence of the interwell mode for the statistical moments
of even orders. Technically, it is due to vanishing of the A. Linear susceptibility
products (4| (") entering Eqs(62)—(66) if the sumk+ ¢ is The resulting expression can be presented in the form
even. This rule follows immediately from combination of the
oddity of ¢4, see Sec. Il, with the parity properties of the
functionsf{") introduced in Sec. Il A. .
For actual calculations one needs the values of the scalar B(l ) cl??
: _ _ W—, O g0 4 W= "
products entering Eq$62)—(66). In Appendix C we obtain Xo =X0\ B0 T 10 )0 X0 T 3kT
their representations in terms of the momeQtsand S, of
the functionsy, and i, respectively. The procedures of
asymptotic expansion @k andsk are given in Appendix A. which follows from Substituting EC(GZ) in (68) Each of the
two frequency-independent coefficief®s”, being the result
IV. DYNAMIC SUSCEPTIBILITIES of statispical averaging_ over the.orientational variablesee _
Appendix C, expands into a series of Legendre polynomials
The set of magnetic susceptibilities of an assembly ofwith respect toB, the angle between the directitnof the
noninteracting particles with the number dengitis defined  probing field and the particle easy axisThis can be written
by the relation as

(69

M=X(1)H +X(3)H3+X(5)H5+. .. (67)
that describes the magnetization of the system in the direc- Bgl):bg%))+b812)P2(C°S'8)’
tion of the probing fieldH=Hh. Therefore, of all the com-
ponents of the corresponding susceptibility tensors, we retain
the combinations that determine the response in the direction B{M=b{y+b{YP,(cosp),
of the probing field. With representatiqb7) for the distri-
bution function, this magnetization component takes the

form (béﬁ) bélz))_(l—Qi zsz—ZQi) (70)
b{e by Q2 2Q?

n+1 . n+1

|v|=c|v<(e-h)>=c21 H———

T e‘”“’tf (e-h)W(Mde,

68) Definitions of functionsQ; and S, and their explicit

asymptotic representations are given in Appendix A. The
and the susceptibilities can be found by a direct comparisoasymptotic series for the coeﬁiciemgg derived on the base
with Eq. (67). In other words, the set of("™ is expressed of expansion(12) and Eq.(37) are
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1 1 13 165 that is the asymptotic representation of the full expression

b{Y=— =+ ——+—+ given by formula(39) of Ref. 6.
o 40° 80" 160°

B. Cubic susceptibility

As follows from definitions(67) and(68), the third-order
susceptibility is defined through the response at the triple
frequency that at weal scales a$i1. Performing calcula-

2273 34577 581133
+ + +
320% 6407 12858

pD—q_—-__° £ > =2° tions along the same scheme as ft), one arrives at the
10 o 40% o° 4ot 40° sum of relaxators representation
3629 1564 785931 1 B{® B
B 6 7 s T (72) X(?_4X(S) BE + 1+i +1 i '
160 o 640 oty +3iwr
The other components, namehfy) andb{}), may be con- cl4p?
structed straightforwardly using their relations with the given ng)_ 5 (73
ones, see Eqg.70). For a random system, that is for an (kT)
assembly of noninteracting particles with a chaotic distribuyhere the coefficients expand as
tion of the anisotropy axes, the average of any Legendre
polynomial is zero, so thaB@,=b(}), and the linear dy- B®=b®+bZP,(cosp) +b{PP,(cosp),
namic susceptibility reduces to
k=0,1,3, (74
i (1)
D=, 1+'“_’le00 (72 up to the fourth Legendre polynomial in c8s
© 20 1tien The explicit expansions for the amplitude$) are
|
3 1 47 49 815 7837 355391
b= + - + + + e (75
300° 2400* 400° 960° 12007 6400°
3) 2 4 1385 11231 19083
2=, 3" it 6 " 7t g T
420> 210" To> 3360° 3360 640
2 8 41 50 1756 63749
b3 = _ = .
04 ’

- - —t
3502 350* 350° 74° 3507 16008

b(3)_1 1 23 61 1357 235447 11962691 694849241 15133953221

= - +-
15 60 24002 1920° 960s° 30720° 245760° 19660807  524288@-°

13 65 25 863 3931 698911 35309123 2061480665 45071465669

b{3=— — — +.
84 1680 1p8s2 13440° 13440° 4300&° 344064° 27525127  7340032°
o3 1 1 2 1 73 17033 1007549 64390439 4493994411
35 1do 3502 11203 5600 17920:° 143360:° 114688@ 9175040
) 2 3 1 337 499 85309 2563751 245269747 47628510799

=— + + + + + + +
%0 15 100 1602 960s° 3200% 1024Qr° 49152° 65536Qr 15728640°

b(3)— 29 43 11 1279 1881 320765 48133699 920146163 178560431695

+ + +
84" 560 ' 5602 134453 44&74 1433675 3440655  91750r7 2202009:2:8

11 47 2 559 2419 409499 4080395 1166954357 75334335763

b{¥=——— + - + + - - + + +
105 2100 2142 168° 168s* 5376(r° 86016° 344064%7 275251208
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For a random system, the averages of Legendre polyno- 1 B(®) B®)
i BP—pd Wi i O = P BO+ ot
mials drop out andB;™’=by . With respect to formalism X50 = 16X0 |\ PO T 107 1+ 3iemr
constructed in Ref. 6, the above expressions yield the )
asymptotic representations for formul@?) and (43) there. By (5):C|606 76
15 5iwr) X0 (kT)5’

with the coefficients

C. Fifth-order susceptibilit
PRI B®)=b(3)+bSP,(cosB)+bGP.(cosp)

The susceptibility of the fifth order writes in an expect- +bigPe(cosB), k=0,1,35. (77
able way as a sum of three relaxators: The explicit asymptotic series are
|
1 367 123 41233
b(5)_

+ + + +
800° 224% 7007 2248

1 19 1 65 79 85913 72636131 4543038053 14938598691+
T96 4200 12002 1792° 3360% 573445 6881280° 550502407 209715203 ’

b(5)— 47+ 11 29 437 5473 1046209 169435283 684614895 230861266333

+ +
560 350 280172 1920s° 448074 143369;5 344064(;»6 1835008’ 7340032@8

b(s)— 311 B 137 13 5911 2141 1874309 299470403 17964831133 400677748549

_|._ J— —
3360 4200  105,2 2688%° 1920° 286720° 688128@° 55050240 1468006408

1 3 507 5377
+ + + +
1120° 2845° 4487 44858

5)_
o3 -

b= 13 13 19 23 737 2959 99733 50499149 350973527 72765921299+
504 1680 67202 80643 53760% 28672° 2064384° 18350087 44040192°

149 193 5245 18677 1785635+ 289305193 5846947361 39444876261§r

by =—— - + + + + +
21 1680 67202 80640° 53760% 86016r° 2064384° 55050247 440401928

(5)_139 27 109 1343 3 9203 431321 9839105 196654913 30690812563

- — — +
27504 280 33607 2016° 2688° 21504° 73728° 1966087  3670016°

b5 3 1563 7767 _ 613353

1400° 616Q° 3080’ 2464058
L) 15 183 713 433 409 319665 8222083 5744848239 403943151013
1472464 61600 2464002 19712° 4928* 630784° 229376@° 2018508807 1614807046°
o5~ 29 203 47 7081 74647 7137203 385804437 4682760003 1580817298041

+ - + + + + + +oee
280 7700 38502 2464Qr° 49280r* 78848%° 630784@° 100925447  403701760°
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5)_ 1713 2929 2551 34863 92061 34432191 23756287 15647080587 7317549380671
54 =

—_ J’_ —_ i i — —
12320 6160r 24640r2 9856(r° 4928Qr* 315392@° 32768%° 288358407  1614807046°

+ .,
1 3 1467
bg%)Z _ — — +.e,
6160° 7707 246458
s 1 1 7 337 53 51433 2188103 471762913 4428495037
b{®)=— + + - - - + + + doe
1584 1848 105602 88704° 1848&* 315392° 2064384° 605552647 69206016°
1 10 17 103 2489 236615 38344237 776232845 52467158027
b =——+ - + + + + + + +o.
36 2 3 4 5 6 7 8 !
84 2310 92452 3168° 14784* 2365447° 5677056:° 1513881¢7 121110528
5 1207 661 17 5525 1169 9116467 131486063 1918435847 639291980689

= — + — — — — — —
% 55440 9240y 1232002 88704° 35200% 473088%° 10321926° 201850887 807403520°

+... (78)

and for a random system, as for the lower ordersorder having replaced a superparamagnetic assembly by a
E@: b(k%)_ two-level macrospin system. The interrelation between the
present work and Ref. 23 closely resembles the situation
with the evaluation of the rate of a superparamagnetic pro-
cess. First in 1949 N&' and then, ten years later, Brotvn
The above derived formulas despite their hefty look areevaluated the superparamagnetic time in the framework of a
very practical. Indeed, they present the nonlinear initial sustwo-level model. In such a framework, one allows for the
ceptibilities of a superparamagnetic particulate medium aghagnetic moment flips but totally neglects its possible diffu-
analytical expressions of arbitrary accuracy. With respect tsion over energetically less-favorable directions. In 1963
the frequency dependence they give the exact full structurBrown® succeeded to overcome this artificial assumption and
of the susceptibility and prove that it is very simple thustook into account the possibility for the magnetic moment to
putting former intuitive considerations on a solid ground.wander over all 4r radians.
This makes our formulas a handy tool for asymptotic analy- In the present case, the obtaine dependencies of the
sis. Yet more convenient they are for numerical work be-nonlinear susceptibilities and those from Ref. 23 are qualita-
cause with their use the difficult and time-consuming procetively the same. Their most typical feature is the double-peak
dure of solving the differential equations is replaced by ashape. Quantitatively, however, the corresponding lines dif-
plain summation of certain power series. For example, if tofer and do not reduce to one another in any case. Indeed, as
employ Egs.(72—(78), a computer code that fits simulta- long as the temperature is finitehatever low, the configu-
neously experimental data on linear and a set of nonlineafational space for the unit vectef the magnetic moment is
susceptibilities taking into account the particle polydispersitythe full (4s-radian solid angle; its reduction to just two
of any kind(easy axes directions, activation volume, anisot-directions along a bidirectional axis could not be done oth-
ropy constanfsbecomes a very fast procedure. erwise than “by hand.” This is exactly what the two-level
Graphic examples justifying our claims are presented irising-like model does: it forcibly imparts a quantum property
Figs. 5 and 6, where the components of two nonlinear com¢discrete spin projectionso a macrospin assembly. From the
plex susceptibilities are plotted as the functions of the paramealculational viewpoint, another essential demerit of the
etero. For a given sampley in a natural way serves as a result$® is that the coefficients in the susceptibility formulas
dimensionless inverse temperature. In those figures, the solate not given in an analytic form. The authors propose to
lines correspond to the above-proposed asymptotic formulasvaluate them by solving an infinite set of recurrence equa-
where we keep the terms up to 3. The circles show the tions. Hence, the proceddfaloes not provide any gain with
results of numerically exact solutions obtained by therespect to former ones neither in analytical considerations
method described in Ref. 6. Note that everrat5 the ac- nor in constructing fitting codes.
curacy is still rather high. In the presented framework the results by Klik and Yao
The model that may be called the predecessor of théincluding the analytical formulas for them missing in Ref.
afore-derived results was proposed in Ref. 23. There, th23) can be obtained immediately if to take the functipnin
authors calculated the initial susceptibilities up to the seventla stepwise form(23) and not to allow for the corrections

V. DISCUSSION
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5x102- Re Xsw(3)/Xo(3) o102 Im X3m(3)/Xo(3)

! 103

2.5x10 [ 0 [
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i a -2x1078

22.5%1073 -_ -3x1073

i -4x1073

[ o I
510 1 -0}y
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FIG. 5. Real(a) and imaginaryb) components of the cubic susceptibility of a superparamagnetic assembly with coherently aligned easy
axes; the direction of the probing field is tilted with respect to the alignment axis a8=00%; the dimensionless frequency dsry
=105, Solid lines show the proposed asymptotic formulas taken with the accuratycircles present the result of numerically exact
evaluation, dashed lines correspond to the “zero-derivative” approxim&ibn The discrepancy of the curves is commented in the text
after Eq.(B12).

caused by the finiteness of its derivative xat 0. In our 1 (2+ 125§+4$)
: o woara darativa? (5)__— . (5)
terms this means to stop at gdb), i.e., “zero-derivative XS X0
; . ) 16 945
solution, and not to go further. The emerging error is how-
ever, uncontrollable and not at all small. As an illustration, in 21 3 )5
Fig. 5 we show the result obtained with this modahshed 1- glenT 70T

lines) for the cubic susceptibility$) in a textured system X ——— . .
where the particle common axisiss tilted under the angle (I+iwr)(1+3ior)(1+5 07)
B= /3 to the probing field. One can see that deviations arghat, following the example of the already tested Ezp),
substantial. has high chances to be a good approximationxig:r}j in the

In Ref. 6 we have proposed, although without rigorouswhole temperature interval. As we have already ascertained
justification, a formula for the cubic susceptibility of a ran- in Ref. 6, the best interpolation expression for the relaxation
dom assembly time in the susceptibility formulas is

o o -1
—\ﬁ+2“"1} ,
1+o0 V7

&roposed in Refs. 13,14.

(80)

1 (1+2S5)(1—iwmn) e’—1
@)= _ = (3 =
X30= 74X g1t ior)(1+3iwr)’ D) LT

that proved to be well adjusted for approximating the result
of numerical calculations in all the temperature interval and

also appeared to be good for fitting experimental dataw VI. CONCLUSIONS

we see that this very expression follows from EG®)—(75) A consistent procedure yielding the integral relaxation
if to expand the coefficientss up to the zeroth order with time and initial nonlinear susceptibilities for an assembly of
respect too ™ *. This justifies Eq(79) as a formula yielding noninteracting superparamagnetic particles is constructed in
a correct frequency dispersion of the cubic susceptibility of &he low-to-moderate temperature range. Starting from the
random assembly at low temperatures. The cause of its apnicromagnetic kinetic equation that describes intrinsic rotary
plicability at high temperatures is the exponential dependiffusion of the particle magnetic moment, we obtain the
dence of7; on o. Indeed, in the frequencies ranger,  results in an analytical form. They are presented as
<1, where we work, the conditiom=1 meansr;— 7, and  asymptotic series with respect to the dimensionless param-
all the dispersion factors in Eq79) drop out. This trans- eter ¢ that is the uniaxial anisotropy barrier height scaled
forms expressioii79) in a correct static susceptibility that is with temperature. High-order expansion terms are easily ac-
also a true result. To avoid any confusion we remark that Edeessible that allows to achieve any desirable extent of accu-
(79) differs from formula for x$3) given in Ref. 6 by the racy. This is proven by comparison of the proposed approxi-
coefficient (—1/45) due to the difference in definitions: in mation with the numerically exact results. The

Ref. 6 it was included in¢{®. susceptibilities contain angular dependencies that allow one
Applying the similar procedure to Eq6/6)—(78) we get  to consider the particle assemblies with any extent of orien-
the expression for the fifth-order susceptibility tational texture—from perfectly aligned to random. The new
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Re XS(D(S)/XO(S) APPENDIX A: EVALUATION OF THE EXPANSION

10'3'_ COEFFICIENTS FOR EIGENFUNCTIONS #, AND #;

Both functions ¢, and ¢, are uniaxially symmetrical
] about the anisotropy axis and can be expanded in the Leg-
5.10~ endre polynomial series, see E§2):

1
o=5 > (2k+1)SPu(x), k=024 ...,

k=0

1
=5 kgl (2k+1)QyPy(x), k=1,35..., (A1)

1 (o] where in accordance with the parity properties of the eigen-
SQ0t T functions nonzero terms are

10 15 20 Sy=1, Sk:(Pk(x)hpo), k=24,...,

wn

7510 7 1M Xsu®/% _ _
] Qu=(P(X)|#1), k=135.... (A2)
] Taking into account thai), = ¢yeq1, Where ¢y in a finite
5.10 form is given by Eq(11), one arrives at the general formula
1 2
1 b ]—“k=(1/R)J P (x)e™ dx, (A3)
2.5:10™ ] 0
1 whereF is S, for even and i€, for odd values of the index,
0 ] and the functiorR(o) is defined by Eq(11). In particular
] L i 1
Q1=(1/R)f xe”dx==(e’—1)/oR. (A4)
] o 0 2
'2.5'10_4 T LN L L R R R L B BN B R | . . )
5 10 15 20 Using asymptotic expansiail2) for R, one gets
FIG. 6. Real(a) and imaginaryb) components of the fifth-order 1 1 5 37 353 4881

susceptibility of a random superparamagnetic assembly; the dimen- Q1 =1/G=1-5—— — — ——— — — ——— ——
sionless frequency i@ 7,=10"5. Solid lines show the proposed 20 20 40° 8o 160° 320
asymptotic formulas with the accuraey 3, circles present the re-

sult of a numerical evaluation. 55205 854197

- +
640’ 12808

formulas stand closer to reality than those for a t\No-IeveIKnO\,\,ing| Q. one can derive all the other mome@g with
system and are to facilitate considerably both analytical anghe aid of the three-term recurrence relation obtained from
numerical calculations in the theory of superparamagneti¢q. (8) by setting therds, = Q, and\ =0. The same relation
relaxation in single-domain particles. can be used to find the equilibrium order parameSgrsThis
is a head-to-tail procedure, whey=1 and S, is deter-
mined by the integral

(A5)
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On comparison with Eq(A4), we find

3 3
EuroMath Network and Services for the New Independent SZ=§Q1— Z(S—Zcr)/a,
States - Phase NEmNet/NIS/I) project funded by INTAS
under Grant No. IA-003. that upon substituting asymptotic seri{@®), transforms into
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-1 3 3 15 111 1059 12243
20 4¢2 8¢° 160* 320° 640°
165615 2562591
_ — + ... (A7)

128"  2560°

APPENDIX B: EVALUATION OF THE CORRECTING
COEFFICIENTS D, IN A GENERAL CASE

Let us present the solution of EG12) in the form

1= g+ u, @1
where the functiong{" are rendered by formulag5) and
are not corrected with respect to the derivativg /dXx. Sub-
stituting Eq.(B1) in (42) and taking into account Eq$45),

PHYSICAL REVIEW B66, 214406 (2002

In the left part we make use of the fact thaf is the left

eigenfunction of the operatdr, in the right part the integrals
are taken by parts and yield

1 d(Pl d
_ 2y (- 2P F
AMDy, Zfo(l X9)u [ dx}dx(e h)dx
1de; (e-h)"
L oﬁ n!

(B7)

Replacing the derivativele,/dx in the first term of the
right-hand side with the aid of EqB3), we arrive at the
representation of the coefficiebt, as

b d lde; (e-h)"
D.,= s &(e-h)dx—foa Y

dx. (B8)

we get a recurrence sequence of equations for the correctioSince = exp(x?), the first integral in Eq(B8) can be pre-

um:;

h)".
\]qDl .

. . . (e
Lu<”>:Vu(”—1)+J¢0( ~ (B2)
With allowance for the fact that function{®) depends only
onx, Eq. (B2) rewrites as

- - d (e-h)"do,
(nN=—yyh-14 — 2 v
Lu Vu +dx o(1—x%) o dx |
Finally, making use of the relation
d N
i A (B3)
dxX  2¢(1-x7)
that follows from Eq.(18), we get
. - A d[(e-h)"
M=—yyh-1y = _—
LuM=vu 5 axl T (B4)
In particular, an=1 Eq. (B4) takes the form
d
Cu®=21 (e
u > dX(e h). (B5)

Equations(B4) are solved sequentially beginning from Eq.
(B5) by expanding in a power series with respecixtdrhe
right-hand sides of Eq$B4) and(B5) are proportional to an
exponentially small parametey. Just due to that we did not
take into account the corrections of the ordéP when de-
riving Egs. (45). However, the quantities

Dnp=(¢i/u™), n=24,..,

have finite values. To show that, let us multiply EG4) by
¢, and integrate. This yields

d
dx

P1

(e-h)" )

X . Ay
(n)y— (n—1) =
(e1|Lu™)=(¢4|Vu )+ > ni

(B6)

sented as an asymptotic series if the power expansion of the
function u™™ 1) in the vicinity of x=0 is known. A closed
form for the second integral can be found with the aid of the
table given in Eq(51), see Sec. Il A.

As an example, we calculate the coefficidhj. Since
from the addition theorem

(e-h)=cos# cosB+sindsinB cose,

we seek the solution of E¢B5) the sum

uM=cosBY, CO% +sinBe'*(1—x?)¥2>, Cxk.
k k
(B9)

Here the upper index of the coefficients corresponds to the
azimuthal numbem of the spherical harmonie™¢. Opera-

tor L now includes the azimuthal coordinate and takes the
form

L=(1 2) ¢ 20%X(1—x%)+2 d
—L=( —X)&—[ oX(1=x%) +2x]

2

+|20(3x2—1)—

1-x2|

Substitution of expansio(B9) in Eq. (B5) leads to the set of
equations

20(k+m+1)C™,—[k(k+1+2m+20) +m(m+1)

+201CM+ (k+1)(k+2)C{M, =N (B10)

wherem=0,1 and the numbers in the right-hand side are

-1
0

for k odd,
for k even.

for 1,

Oy

k=0, )

(0)—
Ni k#0, "k

for
In reality, one retains in expansi@B9) only a finite number

of terms so that EqSB10) could be easily solved analyti-
cally by any computer algebra solver. In terms of expansion
(B9), expressior(B8) atn=2 is written
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(2k—1)!! 1
Dz—cos?ﬁE c<°>k—kG X6=15271[165P6(COSB) +725,P4(cosp)
LS o (BKTDY +1108,P,(cosp) + 3], €1
2P Caca 2k kG and
1 2G-3 1
"6 ec AC0sh) (BID v,=QicosB, Ys=Z[2QsPs(cosh)+3Q;c0sh],
Since the coefficient€ found from Eq.(B10) are functions
of o, one has to perform in EgB11) asymptotic expansion. 1
This gives finally Y5= 531 8QsPs(cosp) +28Q3P5(cosp) +27Q,c0sA],
D—1+1+5+37+ “
2740 402 80 160% where cog3=(n-h) and the parameterS, and Q, are the
expansion coefficients introduced by formul&g).
1 1 7 19 Now using the expressions for functiof$’ and f{" de-
_5'”2:3 2780 1602 T 6a0° eagt rived in Sec. IIl A one sees that the relevant integrals of Egs.

(63)—(68) are expressed in terms ¥ andY, as
(B12)

As it should be, a3=0 this formula reduces to E¢52) that
was obtained for a one-dimensional case. We remark, how-
ever, that in a tilted situationgd#0) the coefficientD, ac-
quires a contribution independent @fthat assumes the lead- 1 1 1
ing role. This effect is clearly due to admixing of transverse (e-h)|fP)= == Too%e~ gXaXet ZX3; (C3
modes to the set of eigenfunctions of the system, and it is

just it that causes so a significant discrepancy between the

“zero-derivative” approximation and the correct asymptotic (1 _ Gh_ 1 1

expansion fory(®) curves in Fig. 5. Evaluation of the coef- (palf6)=Y1, (ealfe”)= 5Y3_ EXZYl’
ficientD, is done according to the same scheme and requires
taking into account a number of the perturbation terms that

1 1
(en[fE)=X,, (eh)|ff)=5Xe= 55,

. 1 1 1 1
makes it rather cumbersome. (5)y =
(palfs)= 120 12Y3X2+ —X3Y;,— 24X4Yla
APPENDIX C: EVALUATION OF INTEGRALS (C4)
Before proceeding to the integralscalar producisin ) 1 )
Egs.(62)—(66) and(68), let us consider the “primitive” ones (@] fP)= 5X2_Y1+ D,,
=((e-M"g), Yo=((eh)"[¢g).

. - , . 1
The functionsyy and ¢, are originally defined in terms of (e h)[fP)==Y3— Y X,+D,Yq,
the angled=arccosé-n). Thus, before performing integra- 2

tion one needs to transform both integrands to the same set
of angles. Doing this with the aid of the addition theorem for

1
Legendre polynomials, one finds (@ f{)= 24 5X2Yi+ D+ Dy g|f),

1
Xa= 5 YaY1t 5

3

1
Xo=3[2S;P2(cosp) +1],

) 1 1 1.,
. ((e-h)[f} )=52Ys~ g YaXa™ gXaYat 5X5Ys
X4:§:)[8S4P4(COSB)+2%2P2(COSIB)+7], +D4Y1+ Dz((E' h)|f§2)) (CS)
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