PHYSICAL REVIEW B 66, 214405 (2002

Ordered phase and phase transitions in the three-dimensional generalized six-state clock model

Norikazu Todoroki, Yohtaro Ueno, and Seiji Miyashita
Department of Applied Physics, University of Tokyo, Bunkyo-ku, Hongo, Tokyo 113-8656, Japan
and Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan
(Received 14 June 2001; revised manuscript received 29 July 2002; published 6 December 2002

We study the three-dimensional generalized six-state clock model at values of the energy parameters at
which the system is considered to have the same behavior as the stacked triangular antiferromagnetic Ising
model and the three-state antiferromagnetic Potts model. First, we investigate ordered phases by using the
Monte Carlo twist methodMCTM). We confirmed the existence of an incompletely ordered pH&del) at
intermediate temperature, besides the completely ordered phase at low temperature. In this intermediate phase,
two neighboring states of the six-state model mix, while one of them is selected in the low-temperature phase.
We examine the fluctuation the mixing rate of the two states in IOP1 and clarify that the mixing rate is very
stable around 1:1. The high-temperature phase transition is investigated by using a nonequilibrium relaxation
method. We estimate the critical expones0.341) and v=0.664). These values are consistent with the
3D-XY universality class. The low temperature phase transition is found to be of first-order by using MCTM
and finite-size-scaling analyses.
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I. INTRODUCTION 3D-6GCL model was introduced in order to understand gen-
eral properties of othefs models? In the present paper, we
The systems oZ; symmetry in the three dimensiof@D)  study the 3D-6GCL model with a set of the parameters
have attracted interest because of their peculiar nature @vhich is considered to correspond to the STAFI model and
orderings. In particular, there have been many works on théhe 3D-3AFP model.

nature of intermediate-temperature phases. The Hamiltonian of the 3D-6GCL model is given by
In two dimensions, the six-state clock model shows three

phases. At intermediate temperature, the discreteness of the

six states is irrelevant and the system shows the same prop- 1= > €00nn,t €100 n 11 €200 02T €300 n+3, (1)

erties as that of theXY model, which is the Kosterlitz- D
Thoule;s phase where Iong-range order does not exist but t'@%ere(i ,j) runs over nearest-neighbor pairs, amdis the
correlation length of the order_dlvergé%. spin variable which takes one of 1,2 .,6. We setz,=0

In three dimensions, the six-state clock model has alsg .. > ¢,>¢. as in Fig. 1. Namely, we only study ferromag-
shown characteristics Which_ are similar to the orc_iered phasget cases where all spins occupy the same state in the ground
of the XY model. However, it found that there exists only a state. We expect that this ferromagnetic ordered phase ap-
phase where one of the six states of the model is chosen agars at low temperature. This ordered phase is called a com-
the long-range ordérThe apparent behavior is due to the pletely ordered phas€COP. Since the COP has six degen-
large fluctuation at the higher-temperature region of the orgrate " states, the order parameter space of this model is
dered phase. However, if we generalize the energy structurfystrated by a hexagon as in Fig. 2. The bold solid line
of the model, a new type of intermediate phase appears. represents one of the six COP states. The dotted line repre-

Ueno and Kasono have introduced three-leensmnaI 9€Ments a mixture of neighboring two COP states which is a
eralized six-state clock modé8D-6GCL model.” The 3D-  candidate of an intermediate phase, which we call an incom-
6GCL model can be regarded as prototypes of wide range of

Zg models. That is, it represents various categorieZ of
models according to the values of the energy parameters of
the model. The existence of an intermediate phase has at-
tracted interest for the following models: the three- n=n=x2
dimensional three-state antiferromagnetic Potts m¢8et

3AFP model (Ref. 5, and the stacked triangular antiferro-

magnetic Ising mode{STAFI mode).® Although the exis- £, &,
tence of various types of intermediate phases for these mod-
els has been proposed, there is no general understanding of
the nature of the intermediate phé&se =2 If we consider i1y
only one universality class for models willy symmetry, we €,
conclude that the intermediate phase is an apparent phase as n;=n
we found in the regular six-state model. However, it has been

clarified that the situation is not so simple and an interesting FIG. 1. Energy level of a neighboring spin pair of the 6GCL
new type of phase exists in the generalized case. In fact, th@odel.

n,=n,x3 .
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phase looks like the ordered phase of the ¥ model
where the correlation length is infinite although long-range
order exists. In order to distinguish the difference between
the XY phase and IOP1 we have to be careful in the exami-
nation of properties of the phase.
In this paper, we study a 3D-6GCL model by using a
(2,3) Monte Carlo simulation and clarify properties of the phase at
intermediate temperature and the nature of the phase transi-
tions. In this study, we choose the energy parameters of the
3D-6GCL model ag (=0, £,=0.1, ande,=¢&3=1.0 which
are the same as those in Ref. 4.
In order to examine the possibility of many ordered
phases by the MCTM, one needs a full set of appropriate
4 boundary conditions which cause different types of domain

FIG. 2. Order parameter space in the 3D-6GCL model. theWvalls and calculate the size dependence of the excess free

solid line connecting a vertex and the center is one of six low-ENergy: In the present study, we deny the existence of the

temperature states and the dotted line between the neighboring solliQ|32 as an intermediate phase from the.(jependen(_:e of the
lines is one of six IOP1 states. excess free energy on the boundary conditions. The interme-

diate phase shows the apparent property of Xhe phase
whereZg discreteness is irrelevant. However, we also deny

spin state in the incompletely ordered phase, there have be ¥ existence of th&y p_hase _in the thermodynamic Iimi'g.
proposed the two kinds depicted in Fig. 3. The IOP1 dis- his apparent property is attnbuted.to the Iong correlatllon
cussed above corresponds to Figa)3The type of Fig. &) length at the high-temperature region of the intermediate

was called IOP2 which was one of the possible mixed stateghase' _Fmally, we conclude that only 10P1 exists as the in-
Iaermed|ate temperature. The appearance of the Pake

For £,=0, the COP does not appear because the groun the critical point has b 5o found in the si
state is macroscopically degenerate. This degenerate statep||§ase near the critical point has been aiso found in the Six-
tate clock model, where tli; discreteness is very weak in

IOP1 and corresponds to the ground state of the 3AFP dered ph h itical poi
model. Taking the approach of physical percolation to phas 'e ordered phase near the critical point. However, 2ge
discreteness is always relevant in the ordered phase.

transitions, Ueno rigorously proved that fef=0, at least . . .
Moreover, we examine the properties of the phase transi-

one kind of IOP can exist &<e&,=¢4.2% Fore;>0, Ueno . . ; i
and Kasono proposed that this model has two incompleteltons' We consider that 'Fhe h|g.h-temperature phase tran5|t|on
elongs to the 3DXY universality class. In order to confirm

ordered phasedOP1, IOP2 besides the COP by using the . " . .
Monte Carlo twist methodMCTM). In this paper, we reex- whether this transition belongs to the 3D¥ universality
; ’ class, we study this transition by using the nonequilibrium

amine the nature of the intermediate pHase detail. X X »
For the 3D-3AFP model, so far various types of phases gielaxation methpg{NERM) and estimate the critical tem-
. iolgrature and critical exponents. Ueno and Kasono pointed
ut that the low-temperature transition between the IOP1 and
OP is of first order because the two phases have no sym-
dJpetry relation of group and subgrofipiVe investigate this

phase transition by using the MCTM and the usual finite-size

pletely ordered phasdOP1). As to the distribution of the

studies, such as the permutationally symmetric sublattic
phase(PSS phasewhich corresponds the IORRefs. 7 and

8) or the gapless phase which is similar to the ordered pha
of the three-dimensionaXY model which we call theXY ; : . S :
phas€ Recent theoretical and numerical studies of the 3D_scallng analysis, and confirm that it is of first order.

3AFP model have revealed that the existence of these phasesThe putline of Fhis baper is as follows. In Sec. II, we study
is fake owing to the finite-size effel=® There is only a  Properties of the intermediate phase. In Sec. I, we study the

low-temperature phase that corresponds to the IOP1. high-temperature transition, and in Sec. IV we investigate the

We will show that the correlation length of the fluctuation low-temperature phase transition. Section V is a summary

of the order parameter in IOP1 is finite. However, the corre-and discussion.

lation length just below the critical point is so long that the

II. INTERMEDIATE PHASE

The properties of the phases of the 3D-6GCL model have
been studied by the MCTKIwhich is a simulation method
under special boundary conditions to detect the domain-wall

[ 1 excess free energy. We prepare systems with fixed bound-
1 2 3 4 5 6 1 2 3 4 5 6 aries in one direction and impose a periodic boundary con-
() (b) dition in the other directions. As a reference system, we set
the same state at the boundarie&x-a) in which we expect
FIG. 3. Schematic of the one-spin distribution functions for two that the ordered phase appears. We also prepare a system
kinds of IOP’s:(a) IOP1 and(b) IOP2. where we set the statesand 8 at the boundariesa-g) in
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which we expect an interface. The interfacial free energy is
defined as the excess free energy between the two systems:; F'G- 5. Temperature dependence of fhender the three bound-
ary conditions.
AF*A(T,L)=F*A(T,L)—F**(T,L), 2
AF(T,L)~A(a,B)LYasM, 3
wherel is a linear size of the system. Here we consider an
LXLXL system. The size dependence ®F*(T,L) is  where a5(T) is called the stiffness exponent. The ordered
given by the following asymptotic behavior for large phase is classified by the value of stiffness exponent as

D—1 for a domain-wall-type interfac€ é<o),
Yop(T)= D—2 for a gapless interfacéspin-wave typeé=»), (4)
noninteger for a new type of interface.

When the interface does not appear, the stiffness exponenext 25000Q, 2500Q, and 50 000Q steps for the three sets
becomes negative becaus&(T,L)—0 for L— oo, of boundary conditions, respectively.

In the present work, we use three sets of boundary condi- In Fig. 5, we show the temperature dependencg wfder
tions which are shown in Fig. 4. There are two kinds ofthe boundary conditions. From this figure, we may conclude
boundary conditions; irp; we fix the boundaries to be two the existence of the disorder phase, ¥ phase, the IOP1,
of the low-temperature phases. The relative angwist and the COP, as the temperature decreases. The high-
angle between the two phases can#@, 27/3, andr. Here ~ temperature transition point is estimated to b
we take the cases/3 and w which are shown in Figs.(4) ~ ~1.35), and thelow-temperature transition point is to be
and 4b), respectively. Ing, we fix the boundaries to be two TF~0.305). We see ahange around =0.7 which can be
of the IOP1’s in Fig. 4c) (twist angle 7/3). As shown in @ Phase transition between tH& phase and I1OP1. .
Table 1, we distinguish the five phases from the signs and !N order to confirm the region of phases, we investigate

values of the stiffness exponent. We perform MC simulationgh€ Size dependence of the stiffness exponentspigrr/3)
for the lattices with linear size =8, 10, and 12 with bound- for larger sizes. The region of theY phase decreases bs

ary conditionse, (), ¢1(/3), andé,(m/3). At each tem- becomes IargeéFig_. 6). The size depe_ndence st_rongly sug-
perature, after discarding first 50005000, and 10 00Q gests that the region of theY phase disappears in the limit

steps, we calculate the quantities of interest using data of the—= and only the IOP1 exists in the intermediate-
temperature region.

) ) If we consider the domain wall between the ordered states
TABLE |. Values and signs of stiffness exponents for eachof the type of IOP1, there is no domain wall @ (7/3). On

phase. the other hand, one domain wall appears in the case of
. ¢,(7/3), and two domain walls appear ity (7). Therefore,
Disorder 1oP1 loP2 XY cop the stiffness exponent for casés () and ¢,(/3) should

¢1(m) - + + 1 2 be the same. However, we notice that the difference of the
d1(713) - - + 1 2 values of the stiffness exponents ¢f(7) and ¢,(7/3) is

do(ml3) - + - 1 - significant at the |IOP1 as we see in Fig. 5. The reason for

this difference is that the effect of twisting in the system by
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FIG. 6. Temperature and size dependence of the stiffness expo-

nent under the boundary conditiahy (/3). FIG. 8. Scaling plots of-(cos &) for various system sizes and

with v|yg|=3.2 andc=0.065. We us€l.=1.384, which is esti-

.() is stronger than one of the twisting ki (/3). Ac- mated by using the NERM,, is the modified Bessel function.

tually, when we examing () and,(/3) in much larger
lattice sizes, we confirm that the values of the stiffness ex;
ponentsys, () and ¢,(w/3) approach the same value=2
which indicates domain-wall-type order. In Fig. 7, we show a

culate the quantities of interest for next 40 Q0ieps at each
temperature. In Fig. 8, we show the scaling plots in the form
of the scaling function given by Oshikawa:

snhapshot of the domain wall of the boundarygs(/3) of (cos 69) ~ f(CL2(Te—T)"e). (5)
L=160 atT=0.4, where we find a localized domain wall
clearly. Here, we put the value of the critical temperatufe

Next, following an idea of Oshikawa for the 3D-3AFP  =1.384 which was obtained by using the NERM which will
model, we make finite-size scaling plots efcos &) by the  be explained later. We obtain a good scaling plot when we
ordinary Monte Carlo method on latticks=12, 18, 24, and usev|yg|=3.2. It is important to notice here that behavior of
30. Here,§ is the angle of magnetization from one of the the order in the region of the IOP1 is expressed by a scaling
COP states. After discarding the first 10 Q0$teps, we cal- function using the high-temperature critical poifi¢. This

FIG. 7. (Color Snapshot of
one of layers under the boundary
condition ¢,(7/3) atT=0.4. The
colors represent the states. The
green cells are the state 1, the red
cells are the state 2, and the blue
cells are the state 3. There are
some cells of different states by
fluctuations.
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fact indicates that other phases do not exist between the I

IOP1 and the disordered phase. However, it is very difficult FIG. 11. Relaxation of (t).
to estimate an accurate value of this exponent because the

strong finite-size effect appears in the intermediate phasg, Fig. 10, we show the temperature dependence af T
even in the largest system which we can calculate. After all_q 4 Thé value oy approaches the constantlascreases.
we conclude that the 3D-6GCL model witho=0, &1  Thys we consider that the value af decreases and ap-
=0.1, andey;=#3=1.0 has two phases, i.e., IOP1 as they gaches 0 ak— o, and we conclude that the fluctuation in
intermediate phase and COP as the low-temperature phasgopq is the type of the domain wall and the correlation

In order to investigate the nature of IOP1, we examine th§engh of the fluctuation of the order parameter is finite.
following quantity:

1 2 5 Ill. HIGH-TEMPERATURE PHASE TRANSITION
x= = [{(P1=Pp2)%) —((P1—=P2))°], (6) . -
L The high-temperature phase transitionZig models be-

. . 4 .
wherep; denotes the number of spin variables which take thdongs t0 the 3DXY universality class: Indeed, the transi-
tions in the 3D-3AFP mod# and the six-state clock model

value of theith state. We adopt the boundary conditions : -
are found to belong to the 3B universality class. We

0). Theasymptotical form ofy is written y~AL*. The
Z);p()o%enb( degengs on the typeXof order. V\%en the fluctua-consider that the high-temperature phase transition in the

tion is of theXY phase, we expeot=2. On the other hand, 3D-6GCL model also belongs to the 3RY universality
when the fluctuation has a finite correlation lengtk;0. class. _ _ y 9

We perform MC simulations for lattices with linear sizes _ Ve investigate this phase transition by the NERM.
L=8,10 . ..,24. Foreach temperature, after discarding the The NERM is an efficient numerical technique to estimate
first ’10 Oocn_’steps we calculate usin;gj data of the next the critical point and critical exponents from a dynamical
50000 steps. In F,ig 9, we show the size and temperatur rocess toward the equilibrium state from an ordered state.
dependence of. We find that the exponemntdecreases in the he decay of the order paramete(t) shows a power law

IOP1 region. Moreover, we perform MC simulations for the only at.the. critical poin.t.. Detecting such a point, a precise
lattice up to linear sizé =80 atT=0.4 (in the IOP1 region determination of the critical temperature can be done. The

asymptotical form ofn(t) at the critical temperature is writ-

16 . : : I : : : ten as
I ) m(t)~t *m, 7
il o © 0 © o © 0 ¢ (1) )
i © ] To examine asymptotic behavior ai(t) clearly, we intro-
L duce a local exponent,(t):
<~ 8F © i
i i TABLE II. Details of the simulations of NERM for the 3D-
L @ - 6GCL model.
4 -
[ ] Lattice size Temperature Monte Carlo step Number of samples
0 [ ) i , A . i . 1 60 1.383 200 20000
0 20 40 60 80 1.384 200 60000
L 1.385 200 60000
1.386 200 20000

FIG. 10. Size dependence gfat T=0.4.
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FIG. 12. Relaxation of the(t) at To=1.384. FIG. 14. Scaling plots ofm for various system sizes with
B=0.34, and we us&.=1.384 ands/v=0.515, which is estimated
dlog;om(t) by using the NERM.
Am(t)=— tS)

dlogot (8 and(9). In Figs. 12 and 13, we show(t) and /v (t),

This exponenh ,(t) corresponds t@/zv. Further, we con- respectively. From the extrapolated values zit) and

sider the following function and local exponent: Blv(t), to 1k=0, we estimatez=2.05(5) and B/v
=0.51510).
(m?) d10g;o fmm(t) Moreover, assuming c=1.384(1) andg/v=0.51510),
Frm(t)= (m>2 —1h A= dlogot ©) we estimate3 from the scaling plots of data of the magneti-

zation which are obtained from the ordinary equilibrium MC
where\,(t) corresponds tal/z. Therefore, we obtain the simulation. Seeking the value @ by which the date col-
exponentss/v andz independently from these quantities. We lapse into a scaling function, we estimg@e-0.341) for the
simulate the relaxation process, starting from an initial statéest fit(Fig. 14). Since the valueg=0.341) and »v=0.664)
which is set to be the IOP1 state, and measure the magnetise close to the 3D<Y universality class(8=0.345,
zationm(t). In Fig. 11, we show\ (t) for the temperatures »=0.669, we conclude that this phase transition belongs to
near theT . Here, MC simulations are performed in a lattice the 3D-XY universality class.
L=60. We show the MC step8VCS) and the number of
samples in Table Il. The curve far=1.385 turns up while
the curve forT=1.383 turns down. Therefore we locate the
transition temperature in 1.383T-<1.385, denotingT¢ While many researchers have studied the high-
=1.3841). temperature transition in th&g model, few studies have
At this accurate value of ¢, we calculate the relaxation been done for the low-temperature one. Ueno and Kasono
of quantities. We perform about 160 000 independent runs upointed out that the low-temperature transition between the
to 200 MCS and average the process to obftait). We  IOP1 and COP is of first order because they have no sym-
obtain the critical exponeni&/v andz by making use of Egs.

IV. LOW-TEMPERATURE PHASE TRANSITION

ez a0z oo T T T T T
[N
0.6 ——— 77— X, ——
- T r O i-18 |1
055K - Qo A =04
Q_X‘Y 1 05 ° A [=30 |4
0.5 - RBsaw o . %
L Q i i
0.45 . 4
< O F ° - 20 .
= | | Q
g 04 [ | \t/) Q i
035 i
i T 0.5k ° .
03 § %
025 ] i R T . - S N \
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FIG. 15. Scaling plots ofcos &) around the low-temperature
FIG. 13. Relaxation of th@g/v(t) at Tc=1.384. phase transition witfd = 0.295.
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3 T T T V. SUMMARY AND DISCUSSION

We study successive phase transitions in the 3D-6GCL
model and found an intermediate phase and two phase tran-
sitions. First, it has been revealed that the intermediate phase
is single phase of the IOP1. In the high-temperature region of
the intermediate phase, the correlation length is very large
and the system shows an appar&i behavior. In this re-
gion the stiffness constant is very sensitive to the boundary

*

251
52 6 o
: 8 . o

mMEpO @

H>OO©

1 ) @ [={8,10,12,14}
VaDlsing 2 fzj{g}g{g}g condition. Therefore, the wrong results were obtained in pre-
15k : fj{g}g%%% vious numerical studiesThe present results agree with the
a| W 1={18202224} phase diagram of the 3D-3AFP model obtained by Kishi and
: L - Ueno and our results of the STAFI mod@IThus, we have
0.25 0.3 0.35

obtained the same intermediate phase in the threeZgD
models: i.e., the 3D-6GCL model, 3D-3AFP model, and
FIG. 16. Temperature and size dependence of the stifiness exd TAFI model. Moreover, we found that the mixing rate of
ponent ofAE. the two states in the intermediate phase is steady and does
not show anomaly fluctuation at the rate proposed
metry relation between the group and subgroup which is usupreviously? This IOP1 with a steady mixing of two COP
ally seen in the second-order transition. states can be regarded as a partially disordered phase pro-
In this paper we study this problem by a finite-size scalingposed by Mekat® in the original work on triangular antifer-
analysis of(cos &). If the transition is of first order, the romagnets. Here we understand that the entropy effect due to
order parameter is scaled lfgos €)~f(eL?) wheree=(T  the frustration allows different types of intermediate phases
—Tc)/Tc, dis the dimension of the system, afigk) is @  in two- and three-dimensional models.
finite-size Scaling function. We obtain a gOOd Scaling plot at Second, we examine the properties of the h|gh_
Tr=0.295(5) depicted Fig. 15. Thus we confirm this phaseemperature phase transition, and the transition temperature
transition is of first order. _ , is estimated to beTc=1.384(1) with critical exponents
We alsoz%ozrllflrm this result by an analys_,ls of extens_lon 0f,8=0.34(1), »=0.664), andz=2.055). These values of the
the MCTM™**Now, we study the interfacial energyE is  eynonents are close to those of the XD-universality class.
defined in the same way for the excess energy due 10 th@se conclude that the universality class of this transition be-
boundary condition causing _the interface, E2). In a com- longs to the 3DXY universality class.
pletely ordered phasctia_, lthe size dependence of the excess en-Thirq e investigate the low-temperature phase transition
ergy becltljmeSAE~Il_ . At the critical point, it becomes i, the 3D-6GCL model by using the finite-size scaling analy-
AE~AL™. We define the stiffness exponent of the energysjs and the MCTM. All of the results support that this tran-
e as AE~ALYE. For the 3D Ising model at the critical gjtion is of first order. This first-order phase transition is a

point ¢z=1.59 which is considered to be a large valuegnsition at which thecos &) changes from a-1 to a 1
among 3D models exhibiting a second-order phase transjjiscontinuity.

tion. We studyy¢ for the present phase transition. We use

the boundary conditiorp,(7/3). In Fig. 16, we show the

temperature and size dependencespf We confirm that/g ACKNOWLEDGMENTS
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