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Ordered phase and phase transitions in the three-dimensional generalized six-state clock mode
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We study the three-dimensional generalized six-state clock model at values of the energy parameters at
which the system is considered to have the same behavior as the stacked triangular antiferromagnetic Ising
model and the three-state antiferromagnetic Potts model. First, we investigate ordered phases by using the
Monte Carlo twist method~MCTM!. We confirmed the existence of an incompletely ordered phase~IOP1! at
intermediate temperature, besides the completely ordered phase at low temperature. In this intermediate phase,
two neighboring states of the six-state model mix, while one of them is selected in the low-temperature phase.
We examine the fluctuation the mixing rate of the two states in IOP1 and clarify that the mixing rate is very
stable around 1:1. The high-temperature phase transition is investigated by using a nonequilibrium relaxation
method. We estimate the critical exponentsb50.34~1! and n50.66~4!. These values are consistent with the
3D-XY universality class. The low temperature phase transition is found to be of first-order by using MCTM
and finite-size-scaling analyses.

DOI: 10.1103/PhysRevB.66.214405 PACS number~s!: 75.10.Hk, 75.40.Cx, 75.40.Mg, 75.50.Gg
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I. INTRODUCTION

The systems ofZ6 symmetry in the three dimensions~3D!
have attracted interest because of their peculiar natur
orderings. In particular, there have been many works on
nature of intermediate-temperature phases.

In two dimensions, the six-state clock model shows th
phases. At intermediate temperature, the discreteness o
six states is irrelevant and the system shows the same p
erties as that of theXY model, which is the Kosterlitz-
Thouless phase where long-range order does not exist bu
correlation length of the order diverges.1,2

In three dimensions, the six-state clock model has a
shown characteristics which are similar to the ordered ph
of the XY model. However, it found that there exists only
phase where one of the six states of the model is chose
the long-range order.3 The apparent behavior is due to th
large fluctuation at the higher-temperature region of the
dered phase. However, if we generalize the energy struc
of the model, a new type of intermediate phase appears

Ueno and Kasono have introduced three-dimensional g
eralized six-state clock model~3D-6GCL model!.4 The 3D-
6GCL model can be regarded as prototypes of wide rang
Z6 models. That is, it represents various categories ofZ6
models according to the values of the energy parameter
the model. The existence of an intermediate phase ha
tracted interest for the following models: the thre
dimensional three-state antiferromagnetic Potts model~3D-
3AFP model! ~Ref. 5!, and the stacked triangular antiferro
magnetic Ising model~STAFI model!.6 Although the exis-
tence of various types of intermediate phases for these m
els has been proposed, there is no general understandi
the nature of the intermediate phase~s!.3–12 If we consider
only one universality class for models withZ6 symmetry, we
conclude that the intermediate phase is an apparent pha
we found in the regular six-state model. However, it has b
clarified that the situation is not so simple and an interes
new type of phase exists in the generalized case. In fact
0163-1829/2002/66~21!/214405~8!/$20.00 66 2144
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3D-6GCL model was introduced in order to understand g
eral properties of otherZ6 models.4 In the present paper, we
study the 3D-6GCL model with a set of the paramet
which is considered to correspond to the STAFI model a
the 3D-3AFP model.

The Hamiltonian of the 3D-6GCL model is given by

H5(
^ i , j &

«0dninj
1«1dninj 611«2dninj 621«3dninj 63 , ~1!

where ^ i , j & runs over nearest-neighbor pairs, andni is the
spin variable which takes one of 1,2, . . . ,6. We set«050
>«1>«2>«3 as in Fig. 1. Namely, we only study ferromag
net cases where all spins occupy the same state in the gr
state. We expect that this ferromagnetic ordered phase
pears at low temperature. This ordered phase is called a c
pletely ordered phase~COP!. Since the COP has six degen
erate states, the order parameter space of this mode
illustrated by a hexagon as in Fig. 2. The bold solid li
represents one of the six COP states. The dotted line re
sents a mixture of neighboring two COP states which i
candidate of an intermediate phase, which we call an inco

FIG. 1. Energy level of a neighboring spin pair of the 6GC
model.
©2002 The American Physical Society05-1
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NORIKAZU TODOROKI, YOHTARO UENO, AND SEIJI MIYASHITA PHYSICAL REVIEW B66, 214405 ~2002!
pletely ordered phase~IOP1!. As to the distribution of the
spin state in the incompletely ordered phase, there have
proposed the two kinds depicted in Fig. 3. The IOP1 d
cussed above corresponds to Fig. 3~a!. The type of Fig. 3~b!
was called IOP2 which was one of the possible mixed sta
For «150, the COP does not appear because the gro
state is macroscopically degenerate. This degenerate sta
IOP1 and corresponds to the ground state of the 3A
model. Taking the approach of physical percolation to ph
transitions, Ueno rigorously proved that for«150, at least
one kind of IOP can exist atT,«25«3.13 For «1.0, Ueno
and Kasono proposed that this model has two incomple
ordered phases~IOP1, IOP2! besides the COP by using th
Monte Carlo twist method~MCTM!.4 In this paper, we reex-
amine the nature of the intermediate phase~s! in detail.

For the 3D-3AFP model, so far various types of phase
intermediate temperatures have been proposed in prev
studies, such as the permutationally symmetric sublat
phase~PSS phase! which corresponds the IOP2~Refs. 7 and
8! or the gapless phase which is similar to the ordered ph
of the three-dimensionalXY model which we call theXY
phase.9 Recent theoretical and numerical studies of the 3
3AFP model have revealed that the existence of these ph
is fake owing to the finite-size effect.14–16 There is only a
low-temperature phase that corresponds to the IOP1.

We will show that the correlation length of the fluctuatio
of the order parameter in IOP1 is finite. However, the cor
lation length just below the critical point is so long that t

FIG. 2. Order parameter space in the 3D-6GCL model. T
solid line connecting a vertex and the center is one of six lo
temperature states and the dotted line between the neighboring
lines is one of six IOP1 states.

FIG. 3. Schematic of the one-spin distribution functions for tw
kinds of IOP’s:~a! IOP1 and~b! IOP2.
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phase looks like the ordered phase of the 3DXY model
where the correlation length is infinite although long-ran
order exists. In order to distinguish the difference betwe
the XY phase and IOP1 we have to be careful in the exa
nation of properties of the phase.

In this paper, we study a 3D-6GCL model by using
Monte Carlo simulation and clarify properties of the phase
intermediate temperature and the nature of the phase tra
tions. In this study, we choose the energy parameters of
3D-6GCL model as«050, «150.1, and«25«351.0 which
are the same as those in Ref. 4.

In order to examine the possibility of many ordere
phases by the MCTM, one needs a full set of appropri
boundary conditions which cause different types of dom
walls and calculate the size dependence of the excess
energy. In the present study, we deny the existence of
IOP2 as an intermediate phase from the dependence o
excess free energy on the boundary conditions. The inter
diate phase shows the apparent property of theXY phase
whereZ6 discreteness is irrelevant. However, we also de
the existence of theXY phase in the thermodynamic limit
This apparent property is attributed to the long correlat
length at the high-temperature region of the intermedi
phase. Finally, we conclude that only IOP1 exists as the
termediate temperature. The appearance of the fakeXY
phase near the critical point has been also found in the
state clock model, where theZ6 discreteness is very weak i
the ordered phase near the critical point. However, theZ6
discreteness is always relevant in the ordered phase.3

Moreover, we examine the properties of the phase tra
tions. We consider that the high-temperature phase trans
belongs to the 3D-XY universality class. In order to confirm
whether this transition belongs to the 3D-XY universality
class, we study this transition by using the nonequilibriu
relaxation method~NERM! and estimate the critical tem
perature and critical exponents. Ueno and Kasono poin
out that the low-temperature transition between the IOP1
COP is of first order because the two phases have no s
metry relation of group and subgroup.4 We investigate this
phase transition by using the MCTM and the usual finite-s
scaling analysis, and confirm that it is of first order.

The outline of this paper is as follows. In Sec. II, we stu
properties of the intermediate phase. In Sec. III, we study
high-temperature transition, and in Sec. IV we investigate
low-temperature phase transition. Section V is a summ
and discussion.

II. INTERMEDIATE PHASE

The properties of the phases of the 3D-6GCL model h
been studied by the MCTM,4 which is a simulation method
under special boundary conditions to detect the domain-w
excess free energy. We prepare systems with fixed bou
aries in one direction and impose a periodic boundary c
dition in the other directions. As a reference system, we
the same statea at the boundaries~a-a! in which we expect
that the ordered phasea appears. We also prepare a syste
where we set the statesa and b at the boundaries~a-b! in

e
-
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which we expect an interface. The interfacial free energy
defined as the excess free energy between the two syst

DFab~T,L !5Fab~T,L !2Faa~T,L !, ~2!

whereL is a linear size of the system. Here we consider
L3L3L system. The size dependence ofDFab(T,L) is
given by the following asymptotic behavior for largeL:

FIG. 4. Three boundary conditions for investigation of the
termediate phase by using the MCTM.~a! f1(p), ~b! f1~p/3!, and
~c! f2~p/3!.
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DF~T,L !;A~a,b!Lcab(T), ~3!

wherecab(T) is called the stiffness exponent. The order
phase is classified by the value of stiffness exponent as

FIG. 5. Temperature dependence of thec under the three bound
ary conditions.
cab~T!5H D21 for a domain-wall-type interface~j,`!,

D22 for a gapless interface~spin-wave typej5`!,

noninteger for a new type of interface.
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When the interface does not appear, the stiffness expo
becomes negative becauseDF(T,L)→0 for L→`.

In the present work, we use three sets of boundary co
tions which are shown in Fig. 4. There are two kinds
boundary conditions; inf1 we fix the boundaries to be tw
of the low-temperature phases. The relative angle~twist
angle! between the two phases can bep/3, 2p/3, andp. Here
we take the casesp/3 andp which are shown in Figs. 4~a!
and 4~b!, respectively. Inf2 we fix the boundaries to be tw
of the IOP1’s in Fig. 4~c! ~twist anglep/3!. As shown in
Table I, we distinguish the five phases from the signs a
values of the stiffness exponent. We perform MC simulatio
for the lattices with linear sizeL58, 10, and 12 with bound
ary conditionsf1(p), f1(p/3), andf2(p/3). At each tem-
perature, after discarding first 5000L, 5000L, and 10 000L
steps, we calculate the quantities of interest using data o

TABLE I. Values and signs of stiffness exponents for ea
phase.

Disorder IOP1 IOP2 XY COP

f1(p) 2 1 1 1 2
f1(p/3) 2 2 1 1 2
f2(p/3) 2 1 2 1 2
nt

i-
f

d
s

he

next 25 000L, 25 000L, and 50 000L steps for the three set
of boundary conditions, respectively.

In Fig. 5, we show the temperature dependence ofc under
the boundary conditions. From this figure, we may conclu
the existence of the disorder phase, theXY phase, the IOP1
and the COP, as the temperature decreases. The h
temperature transition point is estimated to beTC
;1.35(5), and thelow-temperature transition point is to b
TF;0.30(5). We see achange aroundT.0.7 which can be
a phase transition between theXY phase and IOP1.

In order to confirm the region of phases, we investig
the size dependence of the stiffness exponents forf1(p/3)
for larger sizes. The region of theXY phase decreases asL
becomes large~Fig. 6!. The size dependence strongly su
gests that the region of theXY phase disappears in the lim
L→` and only the IOP1 exists in the intermediat
temperature region.

If we consider the domain wall between the ordered sta
of the type of IOP1, there is no domain wall inf1(p/3). On
the other hand, one domain wall appears in the case
f2(p/3), and two domain walls appear inf1(p). Therefore,
the stiffness exponent for casesf1(p) andf2(p/3) should
be the same. However, we notice that the difference of
values of the stiffness exponents off1(p) and f2(p/3) is
significant at the IOP1 as we see in Fig. 5. The reason
this difference is that the effect of twisting in the system
5-3
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f1(p) is stronger than one of the twisting byf2(p/3). Ac-
tually, when we examinec1(p) andc2(p/3) in much larger
lattice sizes, we confirm that the values of the stiffness
ponentsc1(p) andc2(p/3) approach the same valuec52
which indicates domain-wall-type order. In Fig. 7, we show
snapshot of the domain wall of the boundary inf2(p/3) of
L5160 atT50.4, where we find a localized domain wa
clearly.

Next, following an idea of Oshikawa14 for the 3D-3AFP
model, we make finite-size scaling plots of2^cos 6u& by the
ordinary Monte Carlo method on latticesL512, 18, 24, and
30. Here,u is the angle of magnetization from one of th
COP states. After discarding the first 10 000L steps, we cal-

FIG. 6. Temperature and size dependence of the stiffness e
nent under the boundary conditionf1(p/3).
21440
-
culate the quantities of interest for next 40 000L steps at each
temperature. In Fig. 8, we show the scaling plots in the fo
of the scaling function given by Oshikawa:

^cos 6u&; f „cL2~TC2T!ny6
…. ~5!

Here, we put the value of the critical temperatureTC
51.384 which was obtained by using the NERM which w
be explained later. We obtain a good scaling plot when
usenuy6u53.2. It is important to notice here that behavior
the order in the region of the IOP1 is expressed by a sca
function using the high-temperature critical pointTC. This

o-
FIG. 8. Scaling plots of2^cos 6u& for various system sizes an

with nuy6u53.2 andc50.065. We useTC51.384, which is esti-
mated by using the NERM.I n is the modified Bessel function.
y

e
d
e
e
y

FIG. 7. ~Color! Snapshot of
one of layers under the boundar
conditionf2(p/3) atT50.4. The
colors represent the states. Th
green cells are the state 1, the re
cells are the state 2, and the blu
cells are the state 3. There ar
some cells of different states b
fluctuations.
5-4
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ORDERED PHASE AND PHASE TRANSITIONS IN THE . . . PHYSICAL REVIEW B 66, 214405 ~2002!
fact indicates that other phases do not exist between
IOP1 and the disordered phase. However, it is very diffic
to estimate an accurate value of this exponent because
strong finite-size effect appears in the intermediate ph
even in the largest system which we can calculate. After
we conclude that the 3D-6GCL model with«050, «1
50.1, and«25«351.0 has two phases, i.e., IOP1 as t
intermediate phase and COP as the low-temperature ph

In order to investigate the nature of IOP1, we examine
following quantity:

x5
1

L3
@^~p12p2!2&2^~p12p2!&2#, ~6!

wherepi denotes the number of spin variables which take
value of the i th state. We adopt the boundary conditio
f2(0). Theasymptotical form ofx is written x;ALx. The
exponentx depends on the type of order. When the fluctu
tion is of theXY phase, we expectx52. On the other hand
when the fluctuation has a finite correlation length,x50.

We perform MC simulations for lattices with linear size
L58,10, . . . ,24. Foreach temperature, after discarding t
first 10 000L steps, we calculatex using data of the nex
50 000L steps. In Fig. 9, we show the size and temperat
dependence ofx. We find that the exponentx decreases in the
IOP1 region. Moreover, we perform MC simulations for t
lattice up to linear sizeL580 atT50.4 ~in the IOP1 region!.

FIG. 9. Temperature and size dependence ofx.

FIG. 10. Size dependence ofx at T50.4.
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In Fig. 10, we show the temperature dependence ofx at T
50.4. The value ofx approaches the constant asL increases.
Thus we consider that the value ofx decreases and ap
proaches 0 asL→`, and we conclude that the fluctuation
IOP1 is the type of the domain wall and the correlati
length of the fluctuation of the order parameter is finite.

III. HIGH-TEMPERATURE PHASE TRANSITION

The high-temperature phase transition inZ6 models be-
longs to the 3D-XY universality class.14 Indeed, the transi-
tions in the 3D-3AFP model15 and the six-state clock model3

are found to belong to the 3D-XY universality class. We
consider that the high-temperature phase transition in
3D-6GCL model also belongs to the 3D-XY universality
class.

We investigate this phase transition by the NERM.17–19

The NERM is an efficient numerical technique to estima
the critical point and critical exponents from a dynamic
process toward the equilibrium state from an ordered st
The decay of the order parameterm(t) shows a power law
only at the critical point. Detecting such a point, a prec
determination of the critical temperature can be done. T
asymptotical form ofm(t) at the critical temperature is writ
ten as

m~ t !;t2lm. ~7!

To examine asymptotic behavior ofm(t) clearly, we intro-
duce a local exponentlm(t):

TABLE II. Details of the simulations of NERM for the 3D-
6GCL model.

Lattice size Temperature Monte Carlo step Number of samp

60 1.383 200 20000
1.384 200 60000
1.385 200 60000
1.386 200 20000

FIG. 11. Relaxation oflm(t).
5-5
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NORIKAZU TODOROKI, YOHTARO UENO, AND SEIJI MIYASHITA PHYSICAL REVIEW B66, 214405 ~2002!
lm~ t ![2
d log10 m~ t !

d log10 t
. ~8!

This exponentlm(t) corresponds tob/zn. Further, we con-
sider the following function and local exponent:

f mm~ t ![F ^m2&

^m&2
21G , lmm[

d log10 f mm~ t !

d log10 t
, ~9!

wherelmm(t) corresponds tod/z. Therefore, we obtain the
exponentsb/n andz independently from these quantities. W
simulate the relaxation process, starting from an initial st
which is set to be the IOP1 state, and measure the mag
zationm(t). In Fig. 11, we showlm(t) for the temperatures
near theTC. Here, MC simulations are performed in a latti
L560. We show the MC steps~MCS! and the number of
samples in Table II. The curve forT51.385 turns up while
the curve forT51.383 turns down. Therefore we locate t
transition temperature in 1.383,TC,1.385, denotingTC
51.384(1).

At this accurate value ofTC, we calculate the relaxation
of quantities. We perform about 160 000 independent runs
to 200 MCS and average the process to obtainm(t). We
obtain the critical exponentsb/n andz by making use of Eqs

FIG. 12. Relaxation of thez(t) at TC51.384.

FIG. 13. Relaxation of theb/n(t) at TC51.384.
21440
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~8! and ~9!. In Figs. 12 and 13, we showz(t) and b/n(t),
respectively. From the extrapolated values ofz(t) and
b/n(t), to 1/t50, we estimate z52.05(5) and b/n
50.515~10!.

Moreover, assumingTC51.384(1) andb/n50.515~10!,
we estimateb from the scaling plots of data of the magne
zation which are obtained from the ordinary equilibrium M
simulation. Seeking the value ofb by which the date col-
lapse into a scaling function, we estimateb50.34~1! for the
best fit~Fig. 14!. Since the valuesb50.34~1! andn50.66~4!
are close to the 3D-XY universality class ~b50.345,
n50.669!, we conclude that this phase transition belongs
the 3D-XY universality class.

IV. LOW-TEMPERATURE PHASE TRANSITION

While many researchers have studied the hig
temperature transition in theZ6 model, few studies have
been done for the low-temperature one. Ueno and Kas
pointed out that the low-temperature transition between
IOP1 and COP is of first order because they have no s

FIG. 14. Scaling plots ofm for various system sizes with
b50.34, and we useTC51.384 andb/n50.515, which is estimated
by using the NERM.

FIG. 15. Scaling plots of̂ cos 6u& around the low-temperature
phase transition withTF50.295.
5-6
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ORDERED PHASE AND PHASE TRANSITIONS IN THE . . . PHYSICAL REVIEW B 66, 214405 ~2002!
metry relation between the group and subgroup which is u
ally seen in the second-order transition.

In this paper we study this problem by a finite-size scal
analysis of^cos 6u&. If the transition is of first order, the
order parameter is scaled by^cos 6u&;f(eLd) wheree5(T
2TC)/TC, d is the dimension of the system, andf (x) is a
finite-size scaling function. We obtain a good scaling plot
TF50.295(5) depicted Fig. 15. Thus we confirm this pha
transition is of first order.

We also confirm this result by an analysis of extension
the MCTM.20,21 Now, we study the interfacial energyDE is
defined in the same way for the excess energy due to
boundary condition causing the interface, Eq.~2!. In a com-
pletely ordered phase, the size dependence of the exces
ergy becomesDE;Ld21. At the critical point, it becomes
DE;AL1/n. We define the stiffness exponent of the ene
cE as DE;ALcE. For the 3D Ising model at the critica
point cE51.59 which is considered to be a large val
among 3D models exhibiting a second-order phase tra
tion. We studycE for the present phase transition. We u
the boundary conditionf1(p/3). In Fig. 16, we show the
temperature and size dependence ofcE. We confirm thatcE
approaches 3 which is much larger than the values ofcE of
the second-order phase transition in 3D models. For the fi
order phase transition, it is known thatcE5D from the ar-
gument of wetting.21 This result also suggests that th
present phase transition is of first order.

FIG. 16. Temperature and size dependence of the stiffness
ponent ofDE.
,
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V. SUMMARY AND DISCUSSION

We study successive phase transitions in the 3D-6G
model and found an intermediate phase and two phase
sitions. First, it has been revealed that the intermediate ph
is single phase of the IOP1. In the high-temperature regio
the intermediate phase, the correlation length is very la
and the system shows an apparentXY behavior. In this re-
gion the stiffness constant is very sensitive to the bound
condition. Therefore, the wrong results were obtained in p
vious numerical studies.4 The present results agree with th
phase diagram of the 3D-3AFP model obtained by Kishi a
Ueno and our results of the STAFI model.22 Thus, we have
obtained the same intermediate phase in the three 3DZ6

models: i.e., the 3D-6GCL model, 3D-3AFP model, a
STAFI model. Moreover, we found that the mixing rate
the two states in the intermediate phase is steady and
not show anomaly fluctuation at the rate propos
previously.4 This IOP1 with a steady mixing of two COP
states can be regarded as a partially disordered phase
posed by Mekata23 in the original work on triangular antifer
romagnets. Here we understand that the entropy effect du
the frustration allows different types of intermediate pha
in two- and three-dimensional models.

Second, we examine the properties of the hig
temperature phase transition, and the transition tempera
is estimated to beTC51.384(1) with critical exponents
b50.34~1!, n50.66~4!, andz52.05(5). These values of the
exponents are close to those of the 3D-XY universality class.
We conclude that the universality class of this transition
longs to the 3D-XY universality class.

Third, we investigate the low-temperature phase transit
in the 3D-6GCL model by using the finite-size scaling ana
sis and the MCTM. All of the results support that this tra
sition is of first order. This first-order phase transition is
transition at which thêcos 6u& changes from a21 to a 1
discontinuity.
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