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Effects of boundary scattering and optic phonon drag on thermal conductivity
of a slab of rectangular cross-section

A. I. Chervanyov
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The lattice thermal conductivity of a slab of the rectangular cross-section is calculated. The approximate
kinetic equation for acoustic phonons is derived from the exact kinetic equations for the binary phonon gas in
restricted geometry. The approximation covers the effects of boundary phonon scattering and optic phonon
drag. It is shown that a proper account for both these effects gives rise to the violation of the Matthiessen’s
rule. The coefficient of thermal conductivity is calculated in the general form and verified for the particular
cases of the Einstein and Debye models. The material-specified examples of the considered effects are pre-
sented.
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I. INTRODUCTION

The size limitation of the phonon mean free path affe
the transport coefficients of solids significantly.1 Phonon
scattering by specimen boundaries proves to be the m
mechanizm of heat resistivity at sufficiently lo
temperatures.2–4 This explains why the heat conductivity of
slab is strictly dependent on its particular shape. A sim
mechanizm of a phonon transport suppression is recovere
GaAs/AlAs, Si/Ge superlattices at high temperatures.5–7 A
strong decrease in the effective phonon relaxation tim
caused by the diffusive scattering at interfaces, explains
observed8,9 suppression of the perpendicular therm
transport.5 The comparative by nature effect of reducing t
effective phonon group velocity in quasiregular heterostr
tures have been addressed and exemplified numerical
Ref. 10. These recent works suggest that thermal trans
can be affected significantly by material modulation even
finite temperatures owing to the additional internal reflect
effects. This claims that special attention in the simultane
consideration of finite and low-temperature mechanisms
relaxation which used to be treated separately in the con
tional approaches.1,4 Here we address, first of all, the inte
play of the effects of optic phonon drag and interface sc
tering of the acoustic phonons.

Some specific slab geometries can cause unconvent
features of heat transport which cannot be derived by sim
scaling arguments. This can be exemplified with the logar
mic peculiarities of the thermal conductivity coefficient of
narrow plane-parallel slab.11–13 For this case, the bulk an
boundary phonon scattering are not additive in their effe
The abovementioned peculiarities lead to an effective ‘‘m
ing’’ of both scattering mechanisms which can be expres
as a violation of the Matthiessen’s rule. In spite of this, t
Matthiessen’s formula represents the most commonly u
tool for the analysis of measurements of thermal conduc
ity in crystals of the rectangular cross-section.14 However,
this approach disregards the effect of specimen shape c
pletely. In addition, it is not quite clear how the semiemp
ical Mathiessen’s formula agrees with the exact analysis
the size effect near the Casimir limit. It can also be argu
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that the Mathiessen’s decomposition of the collision f
quency is valid when considering the processes of nor
phonon scattering.

Although being of great interest for microelectronics15

the rigorous theory of size effect on the lattice thermal co
ductivity is still not established finally. Some progress w
achieved recently by making use of the equation of phon
radiative transfer.16–19 This approach, however, employs e
sentially the relaxation time approximation and does not t
into account the normal scattering processes. This also
regards the effects of splitting the phonon spectrum i
acoustic and optical branches with different dispersion la
These effects are especially important when different pho
modes lie closely on the energetic scale. That can be the
for some superconductor20,21 and semiconductor22 materials.
Given the vicinity of the phonon branches, one cannot tr
the optical and acoustical modes separately. The nonequ
rium phonon system should be considered as the binary
siparticle gas.23 This requires an essential modernization
the mathematical tools for the problem.

The present paper aims to give theoretical insight into
above described problems. The main purpose of this wor
to take into account the effects of optic phonon drag aris
due to the normal phonon collisions and boundary scatte
of the acoustic phonons. To the best of the author’s kno
edge these two effects were never treated simultaneo
This motivates the present investigation in view of the f
lowing arguments. The contribution of optic phonons to th
mal conductivity is usually neglected18,24 referring to their
small group velocity. We will show that this argument do
not apply to the optic phonon drag effect caused by the n
mal collisions. In this case, more accurate treatment revea
significant contribution of optic phonons to thermal tran
port. The normal cross collisions of phonons can caus
suppression of the acoustic phonon mean free path~MFP!
and considerable drag effect at the same time. The neg
tance of this effect causes, in particular, overestimation of
phonon MFP which in turn can result in overestimation
the role of the interface scattering. This latter, however, u
to be considered as a dominant mechanizm of relaxatio
quantum wires at temperatures up to that of roo
temperature.13 The optic phonon drag effect is also signifi
cant at these temperatures and the neglectance of this
cause inadequate evaluation of the transport coefficients.
©2002 The American Physical Society02-1
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proper understanding of the relation between the differ
phonon-phonon and phonon-interface relaxation rates is
important for some quantum well7 and heterostructures.10

These structures exemplify a variety of systems where b
the acoustic and optical phonon branches are activated
the phonon MFP is of the order of the characteristic size o
structure at the same time. For these systems, all three t
of phonon scattering~boundary, normal, and nonelasti!
must be considered simultaneously.

The effects of both normal and boundary phonon co
sions cannot be directly treated in the framework of the
laxation time approximation. We base our speculations
the rigorous analysis of the kinetic boundary value probl
in a slab of the rectangular cross-section. The need to sim
taneously consider of the acoustic and optic phonons br
another question into focus. To get a reliable picture of latt
heat transport one should account for the effect of mu
phonon drag. The drag effect caused by the nonelastic c
collisions of phonons can be properly taken into consid
ation by introducing the corresponding collision frequency25

As is shown here, this approximation is not sufficient for t
account of normal phonon scattering processes. A pro
consideration of the effects due to the normal collisions
quires a more accurate analysis of the kernels of collis
operators.26–28 This analysis is performed here in the mo
general form without a reference to any specific model
the collision integrals. The calculated drag effect proves
give a significant contribution to the heat conductivity co
ficient. It is shown that this contribution cannot be describ
by the Matthiessen’s formula.

The paper is organized as follows. Section II presents
exact formulation of the kinetic boundary value proble
The kinetic equation derived here makes it possible to t
into account the effects of boundary scattering and optic p
non drag on the acoustic phonon system. This equatio
solved rigorously in Sec. III. The coefficient of thermal co
ductivity is calculated and analyzed in Sec. IV. The valid
of the Matthiessen’s rule is also verified in this section. Co
clusions are given in Sec. V.

II. EXACT KINETIC EQUATIONS, KERNELS OF THE
COLLISION OPERATORS AND THE BOUNDARY VALUE

PROBLEM

We start with the exact formulation of the kinetic pro
lem. A set of kinetic equations describing a nonequilibriu
phonon system can be written in the operator form27

S11ug&1S12ug&1Lug&5uV&. ~1!

Here S11 is the operator of mutual collisions of phonons
the same type,S12 the operator of cross collisions of acous
and optic phonons, andL is the operator describing the sca
tering of phonons by point defects, dislocations, electro
etc. We consider that the operatorsS11, S12 preserve the
phonon numbers, momenta, and energy in collisions. C
trastingly, we treat the operatorL in the Lorentz approxima-
tion considering that the phonon momenta are not prese
in the collisions with the above described scatterers. Ho
ever, the phonon energy remains unchanged in these c
21430
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sions. It is important to note that the separation of the co
sion operator into two distinct contributions according to E
~1! is of rather conditional character. This can also be int
preted as the separation of all types of collisions into ela
and nonelastic ones, independently on their specific cha
ter. For instance, the Umklapp processes in phonon collis
are covered by the operatorL while the normal processe
belong to the operatorsS11, S12.

Further we consider that the acoustic phonons make
main contribution to thermal conductivity what is usually th
case for sufficiently low temperatures. For the sake of s
plicity we restrict ourselves to the consideration of elas
scattering of optic phonons on acoustic ones. We also neg
the interaction of optic phonons with a wall. Under the
assumptions, the linearized collision operators and the v
tors ug&5ug1 ,g2&, uV&5uV1 ,V2& in Eq. ~1! are defined by

S115S Ŝ11 0

0 Ŝ22
D , S125S Ŝ12

(1) Ŝ12
(2)

Ŝ21
(1) Ŝ21

(2)D ,

L5S 2 n̂~e1! 0

0 0
D , uV&5U ]e1

]pW 1

¹rWS e1

T
1g1D

]e2

]pW 2

¹rWS e2

T D L ,

Ŝii gi5E Wii ~pW i ,pW i 1
upW i 2

,pW i 3
!@11 f 0

( i )~pi !#
21

3@11 f 0
( i )~pi 2

!# f 0
( i )~pi 1

!@11 f 0
( i )~pi 3

!#@gi~pW i 2
!

1gi~pW i 3
!2gi~pW i !2gi~pW i 1

!#dG i 1
dG i 2

dG i 3
, ~2!

Ŝi j
( i )gi5E W12~pW i ,pW j upW i 1

,pW j 1
!@11 f 0

( i )~pi !#
21

3@11 f 0
( i )~pi 1

!# f 0
( j )~pj !@11 f 0

( j )~pj 1
!#

3@gi~pW i 1
!2gi~pW i !#dG i 1

dG jdG j 1
, ~3!

Ŝi j
( j )gj5E W12~pW i ,pW j upW i 1

,pW j 1
!@11 f 0

( i )~pi !#
21

3@11 f 0
( i )~pi 1

!# f 0
( j )~pj !@11 f 0

( j )~pj 1
!#

3@gj~pW j 1
!2gj~pW j !#dG i 1

dG jdG j 1
. ~4!

Hereafter, the indexi 51 (i 52) corresponds to acoustic~op-
tic! phonons,T is the temperature,pW i and« i(upW i u) the phonon
momentum and energy, respectively,dG i the volume element
of the momentum phase space,f i the true distribution func-

tions, gi5@ f 0
( i )8(« i /T)#21( f i2 f 0

( i )) the small corrections to

the equilibrium distribution functionsf 0
( i ) , and n̂ is the fre-

quency describing the nonelastic collisions of acous
phonons with the abovementioned external scatterers.
gradients are directed along thez axis, the prime denotes
2-2



n

al
s

th

s

an

n
f

oe
ro
p
n
b

a
a
n
nd
nn

in
co

u
e

tu
pt
iva

-

le
n
ur

t

g

and

iated

he

-

rm
n

fect
tic
the

e
aken
nd-

EFFECTS OF BOUNDARY SCATTERING AND OPTIC . . . PHYSICAL REVIEW B 66, 214302 ~2002!
differentiation with respect to the argument, the Boltzma
and Planck constants are set equal to 1.

We aim to derive the Callaway-like formula for therm
conductivity with the correct inclusion of the contribution
due to both boundary effects and optic phonons. For
purpose we consider that the operatorL plays a dominant
role in the collision integral. The artless way to treat this ca
is to completely neglect the operatorsS11, S12 in the leading
approximation when constructing the perturbation exp
sion. This would lead to the splitting Eq.~1! into the inde-
pendent equations for the acoustic and optic compone
However, this approach is not appropriate to the case
both physical and mathematical reasons. First of all, it d
not make it possible to take into account the relaxation p
cess due to the normal cross collisions of acoustic and o
phonons. This process is responsible for the mutual influe
of the components of the binary phonon gas and should
treated more accurately. Let us note that even a comp
tively small contribution of the elastic phonon scattering c
affect the phonon system significantly. The normal collisio
produce the ‘‘dissipationless’’ mutual drag of acoustic a
optic components. Therefore, these two components ca
be treated separately, even in the considered limitLug&
@S12ug&. Formally, we refer to that the operatorsS11, S12
have the nontrivial kernels constituted by the collision
variants. These kernels should be taken into account by
rect perturbation approach.

The above effect of mutual drag can be taken into acco
by the proper inclusion of the collision invariants into th
perturbation expansion. Further we focus on the momen
conservation law in the cross collisions of acoustic and o
phonons. This law can be expressed in the following equ
lent forms:

PiS125S12Pi50, ~E2Pi !S12~E2Pi !5S12. ~5!

Here we introduced the unity operatorE and the projectorPi
to the subspace associated with thei components of the vec
tor upW 1 ,pW 2& so thatPi up1i ,p2i&50 andPi Pi5Pi . The pro-
jections of Eq.~1! onto the subspaces associated withPi and
the subspace orthogonal to them can be written as

PiLug&5Pi uV&, ~6!

S E2 (
i 5x,y,z

Pi D ~S111S12!S E2 (
i 5x,y,z

Pi D ug&

1S E2 (
i 5x,y,z

Pi DLug&5S E2 (
i 5x,y,z

Pi D uV&,

~7!

correspondingly. Please note that the first operator in the
hand side of Eq.~7! has the trivial kernel. Thus this equatio
is subject to the ordinary perturbation expansion proced
Also note thatPx,yuV&50.

The nontrivialz component of Eq.~6! for the correction
g1 can be rewritten in the explicit form as follows:

^p1zun̂g1&1^p1zuV1&1^p2zuV2&50, ~8!
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where the inner product is introduced by the definition

^h~pW 1!,g~pW 1!&52E f 0
(1)8S «1

T Dh* ~pW 1!g~pW 1!dG1 . ~9!

It should be stressed that Eq.~8! is exact and it does no
contain the operatorsS11, S12. This proves that the true
moment^p1zun̂g1& differs from that expected in the leadin
order of the perturbation series obtained whenS11, S12 are
neglected either. The exact expression~8! for the above mo-
ment takes into account the effect of optic phonon drag
describes the limiting casen̂50 correctly.29

In order to proceed with Eq.~7! it is instructive to intro-
duce the orthonormal basis$uei&% i 51

` in the Hilbert space of

functions of momentumpW 1 with the first vector30 ue1&
5up1z&/A^p1zup1z&. Then Eqs.~6! and ~7! can be rewritten
in the projections onto the orthogonal subspaces assoc
with the vectorsuei&. Formally we define the function

G~x,y,pW 1!5 n̂g11
]e1

]pW 1

¹rWS e1

T
1g1D ~10!

and neglect the operator (E2Pz)(S111S12)(E2Pz) in Eq.
~7!. Then Eqs.~6!,~7! are equivalent to

^ei uG&5d i
1 ^p2zuV2&

A^p1zup1z&
~ i 51, . . . !, ~11!

whered i
l is the Kronecker delta.

Equations~11! can be interpreted as the definitions of t
components of the functionG in the basis$uei&% i 51

` . This
makes it possible to obtain the equation forg1 in the closed
form. The formal derivation is rather trivial. From Eq.~11!
we have

G5(
i 51

`

uei&^ei uG&5ue1&
^p2zuV2&

A^p1zup1z&
. ~12!

Using the definition~10! we rewrite Eq.~12! in the form

]e1

]p1x
]xg11

]e1

]p1y
]yg11 n̂g15L~pW 1!, ~13!

where

L~pW 1!5S ]e1

]p1z

e1

T
1p1z

K p2zU ]e2

]p2z

e2

T L
^p1zup1z&

D ]zT

T
. ~14!

Equalities~13!, ~14! present the partial differential equa
tion for the nonequilibrium correctiong1 to the equilibrium
distribution function of acoustic phonons. The second te
in Eq. ~14! stands for the contribution of the optic phono
drag due to the elastic phonon collisions. Note that the ef
of the momentum dissipation in the system of acous
phonons due to the inelastic scattering is described by
collision frequencyn̂. Dissipation of the momentum of th
acoustic component on specimen boundaries should be t
into account separately, by employing an appropriate bou
2-3
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ALEXANDER CHERVANYOV PHYSICAL REVIEW B 66, 214302 ~2002!
ary condition. Here we restrict ourselves to the considera
of the diffuse boundary condition taken in its simplest for

gS rWPB,
]e1

]pW 1

nW >0D 50, ~15!

whereB are the points of a slab surface andnW is a positive
normal toB. Kinetic equations~13!, ~14! completed with the
boundary condition~15! will be solved in the next section.

III. SOLUTION OF THE KINETIC EQUATION

The general solution of Eq.~13! can be written in the
form31

g15~12e2V!n̂21L. ~16!

FunctionV should be specified for the particular geome
of a slab. For a slab of the rectangular cross-section with
lengths of sides 2a and 2b this function is found to be given
by

V5minS x

sx
1

a

usxu
,
y

sy
1

b

usyu
D ~17!

wheresW5 n̂21(]e1 /]pW 1). For the sake of definiteness we s
b<a.

To be used in the calculation of thermal conductivity o
slab, expression~16! should be averaged over the cros
section area. After some straightforward algebra one find

1

abES
g15Lg̃S sx

2a
,

sy

2bD , ~18!

where

g̃S sx

2a
,

sy

2bD512
1

s
~11e2v!2

1

v
~12e2v!S 12

2

s D ,

~19!

s5max(2a/usxu,2b/usyu), v5min(2a/usxu,2b/usyu).
We facilitate further derivation by calculating the avera

over the angle coordinates of the spherical system with
polar axis taken in the direction of the temperature gradie
defined as follows:

ĝ~ â,b̂!5
3

4pE0

2p

dfE
0

p

g̃S sinu cosf

â
,
sinu sinf

b̂
D

3cos2u sinudu, ~20!

where we introduced the reduced lengthsâ52a/usWu, b̂

52b/usWu. Note thatĝ51 for g̃51.
The direct calculation gives

ĝ512
2

p
@H~ â,b̂!1H~ b̂,â!#, ~21!

where
21430
n
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H~ â,b̂!5
â

b̂
~F~ â!2F~ ĉ!!1

3

â
Q~ â,b̂!,

F~x!5
3p

16x
1

3

x2 S S6~x!2
2

15D , ~22!

Q~ â,b̂!5
p

16
$114@E5~ â!2E3~ â!#%

1
pâ2b̂

32ĉ3 S 12
16

p
S5~ ĉ! D2

1

2Eĉ/â

` y221

y5

3~12e2ây!arccos
b̂

âAy221
dy, ~23!

En(x)5*1
`y2ne2xydy is the exponential integral,Sn(x)

5*1
`Ay221y2ne2xydy is the special function introduced i

Refs. 12, 13, andĉ5Aâ21b̂2. The valueĝ plays an impor-
tant role in further speculations. Although it is expressed
terms of special functions, the numerical evaluation of t
value can be more convenient for the practical use. The
sults of such an evaluation are presented in Fig. 1. We p
pone the detailed discussion of these results to the next
tion.

Equality ~21! presents the solution of Eq.~13! averaged
over the slab cross-section area and the azimuthal and p
angles of the phonon momentum vector. This solution can
used for calculations of transport coefficients of a bina
phonon gas in a slab of the rectangular cross-section. In
ticular, Eq.~21! makes it possible to express the coefficie
of thermal conductivity in a slab via its value in the bulk.

FIG. 1. Size effect on thermal conductivity for different valu
of aspect ratioh5b/a of a slab cross-section. The ratio of th
thermal conductivity of a slab to the bulk thermal conductivity
plotted against the reduced width of a slab. The solid line pres
thermal conductivity of the plane-parallel slab.
2-4
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IV. COEFFICIENT OF THERMAL CONDUCTIVITY AND
THE MATTHIESSEN’S RULE

First we focus on the investigation of the optic phon
drag effect on the coefficient of thermal conductivitykbulk in
the bulk. This coefficient can be derived from Eq.~21! for
any given energy-momentum relation of acoustic phono
In case of the simplest phonon dispersion law of the fo
e15vupW 1u, kbulk is found to be written as

kbulk5@11h~T!#
T3

2vp2E0

uD /T y4ey

~ey21!2
n̂21~yT!dy,

~24!

whereh5S2 /S1 and

Si5K pizU e i

T2

]e i

]piz
L ~25!

is the entropy of thei th component of the phonon gas,v is
the sound velocity. In the gray media~constant relaxation
time! approximation the coefficient of thermal conductivi
can be expressed as

kbulk5@11h~T!#
n̂21v2CV

3
,

whereCV is the specific heat.
The coefficienth describes the above effect of optic ph

non drag on the thermal conductivity caused by acou
phonons. This value can be easily evaluated in the fra
work of the Einstein approximation25 for optic phononse2
5uE . This reads

h~t,t !5~ tt!3S t

et21
2 ln~12e2t!D S E

0

tt y4ey

~ey21!2
dyD 21

,

~26!

wheret5uE /T, t5uD /uE , anduD is the Debye tempera
ture.

As should be expected, the above drag effect increa
with the temperature. To better estimate this effect at h
temperatures we fitted the coefficienth(t21,t) with the func-
tion hfit(t

21,t)520.5813.99t within the accuracy uh
2hfitu,0.03 in the interval 0.25,t,0.95. The good agree
ment ofh with the fit function of a linear shape allows one
conclude that the contribution of optic phonon drag is
rectly proportional to the ratiouD /uE . Therefore, the close
the acoustical and optical phonon brunches lie on the e
getic scale, the larger contribution comes from the mut
drag of different species of the phonon gas. At sufficien
high temperatures and large values oft this contribution can
even exceed the main term in Eq.~27! describing the therma
conductivity of the pure system of acoustic phonons.

In order to illustrate the above evaluations we presen
the coefficienth for several selected materials~GaAs, Si,
Ge, and MgB2) in Fig. 2 . All these materials are characte
ized by the relatively close values of the Debye~acoustic
21430
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phonon! and Einstein~optic phonon! temperatures. Thus, ac
cording to the previous arguments one should expect a c
siderable drag effect. As can be seen, the contribution
thermal conductivity due to the optic phonon drag is seve
times larger than the main term describing the drift of aco
tic phonons. This causes 75% correction to the thermal c
ductivity of GaAs at room temperature. The situation here
of resemblance to the acoustic phonon drag effect on
electron conductivity and thermopower in metals. As is w
known,1 this effect produces an increase of several orders
magnitude in transport coefficients.

In view of the above, the use of the classical kinetic fo
mula k5CVl pv/3 when evaluating the phonon MFPl p can
also be argued. This point is illustrated in Fig. 3 for GaA
According to this figure, overestimation of the acoustic ph
non MFP ~Ref. 7! caused by the neglectance of the op
phonon drag effect reaches 75% at room temperature.
can also bring significant corrections to the understanding

FIG. 2. Effect of optic phonon drag on thermal conductivity f
several selected materials. Coefficienth defined by Eq.~26! is plot-
ted against the reduced temperature.

FIG. 3. Estimation of the phonon mean free path by taking i
account the effect of optic phonon drag. The solid line is reprodu
from Ref. 7. The dashed line demonstrates the result of the
sented theory.
2-5
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mutual role of the bulk and interface scattering in therm
conductivity of superlattices and quantum wells.

We now turn to the investigation of the size effect
thermal conductivity. Given thatusWu does not depend on th
phonon momentum, the ratio of the thermal conductivity c
efficient k to its value in the bulk can be found particular
simply. This is the case for the above simplest ener
momentum relation for the acoustic phonons of the forme1

5vupW 1u. We merely haveusWu5 n̂21v. Therefore, the coeffi-
cient of thermal conductivity caused by the acoustic phon
reads

k5ĝ~ â,b̂!kbulk . ~27!

First, we verify result~27! in the simple limiting cases
For the plane-parallel slab (a→`), Eq. ~27! goes over into
the result derived independently by Kaganov, Podd’yakov11

for thermal conductivity of HeII in capillaries and by Hyld
gaard, Mahan12 for semiconductor heterostructures. Th
reads

ĝ512
3

8b̂
1

3

2b̂
@E3~ b̂!2E5~ b̂!#. ~28!

In the Casimir limitâ,b̂!1 one finds

ĝC5
3

4 F â lnS ĉ1b̂

â
D 1b̂ lnS ĉ1â

b̂
D G1

1

2âb̂
~ â31b̂32 ĉ3!.

~29!

For a slab of the square cross-section (â5b̂) the result of
MacDonald and Sarginson32 is recovered from Eq.~29!

ĝC~ â,â!5
3â

4
lnS A211

A221
D 1â~12A2!. ~30!

Now we will discuss the possibility to describe the boun
ary phonon scattering by means of the properly defined
lision frequency. This trick is commonly used in a variety
evaluations of the size effect in the framework of the M
thiessen’s approximation. The typically used phonon-w
collision rate isnw5v/H whereH is the characteristic size
of a slab. This crude scale estimation is to be compared w
the results of the exact approach developed here. The p
ence of the logarithmic terms in the rigorous results~29!, and
~30! put under question the possibility of correct introducti
of the above collision frequency. Evidently, such a frequen
cannot be used in the Casimir limitH!v/ n̂ for the above
reason. In the opposite limitH@v/ n̂ the effective phonon-
wall collision rate can be defined properly. Asymptotic e
pression for the functionĝ in the limit â,b̂!1 reads

ĝ512
3

8 S 1

â
1

1

b̂
D . ~31!
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By introducing the collision frequency

nw5
3v
4

a1b

ab
, ~32!

one can rewrite Eqs.~27!,~24! in the form

k5@11h~T!#
T3

6vp2E0

uD /T y4ey

~ey21!2
neff

21~yT!dy, ~33!

where the effective frequencyneff is defined by the Matthies
sen’s ruleneff5 n̂1nw . According to Eqs.~27!, and~24! the
above introduced valueH should be taken equal to
4
3 @ab/(a1b)#. As is expected, this value does not depend
the size of a slab in the direction of applied gradient.

Figure 1 demonstrates the contribution of phono
boundary scattering to the thermal conductivity coefficie
(ĝ) against reduced width of a slab (b̂) for several values of
the cross-section aspect ratio. In agreement with the ab
calculation, the square shape of a cross-section (a5b) pro-
duces the maximal effect of suppression of thermal trans
in a slab. It is also clearly indicated that the value of the s
effect decreases exponentially as the reduced width
creases.

V. CONCLUSIONS

The size effect on thermal conductivity of a slab of t
rectangular cross-section was investigated. The kin
boundary value problem describing the binary phonon ga
restricted geometry is considered. We focused on the c
where the effect of normal phonon scattering is much sma
than that due to nonelastic phonon collisions. In this lim
the rigorous analysis of the true collision operators mad
possible to construct the correct perturbation expansion.
approximate kinetic equation~13! for acoustic phonons wa
derived in the leading order of this expansion. The accur
treatment of the kernels of the operators describing the
tual and cross phonon collisions allowed one to take i
account the effect of optic phonon drag. This drag eff
proves to give rise to a significant contribution to the therm
conductivity caused by the acoustic phonons.

Exact solution~16! of kinetic equation~13! completed
with diffuse boundary condition~15! was found. This solu-
tion made it possible to calculate the coefficient of therm
conductivity ~27! of a slab of the rectangular cross-sectio
Both effects of the optic phonon drag and the boundary s
tering of acoustic phonons were taken into account. The
sults indicate an agreement with the well known limitin
cases. Material-specified examples of the optic phonon d
effect on thermal transport are presented. It is found tha
some cases this effect can cause an increase of several o
of magnitude in thermal conductivity.

The validity of the Mathiessen’s rule was reexamined
different ratios of the characteristic size of a slab to the p
non mean free path. The violation of the Mathiessen’s r
was indicated near the Casimir limit~in a ‘‘narrow’’ slab!.
The exact value of the collision frequency~32! describing
the boundary phonon scattering is calculated in the oppo
limit to be used in the refined Mathiessen’s formula. T
2-6
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introduced frequency does not depend on the slab size in
direction of an applied temperature gradient. Its value fou
to be strictly dependent on the aspect ratio of the cross
tion of a slab normal to the direction of the gradient. T
effect of boundary scattering on the thermal conductivity
evaluated numerically for several selected materials.
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