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Effects of boundary scattering and optic phonon drag on thermal conductivity
of a slab of rectangular cross-section

A. I. Chervanyov
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
(Received 12 May 2002; revised manuscript received 26 July 2002; published 6 December 2002

The lattice thermal conductivity of a slab of the rectangular cross-section is calculated. The approximate
kinetic equation for acoustic phonons is derived from the exact kinetic equations for the binary phonon gas in
restricted geometry. The approximation covers the effects of boundary phonon scattering and optic phonon
drag. It is shown that a proper account for both these effects gives rise to the violation of the Matthiessen’s
rule. The coefficient of thermal conductivity is calculated in the general form and verified for the particular
cases of the Einstein and Debye models. The material-specified examples of the considered effects are pre-
sented.
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[. INTRODUCTION that the Mathiessen’s decomposition of the collision fre-
quency is valid when considering the processes of normal
The size limitation of the phonon mean free path affectsPhonon scattering. _ _
the transport coefficients of solids significaritiyPhonon Although being of great interest for microelectrontes,
scattering by specimen boundaries proves to be the maiffi€ rigorous theory of size effect on the lattice thermal con-
mechanizm of heat resistivity at sufficienty low ductivity is still not established finally. Some progress was

temperature$-4 This explains why the heat conductivity of a achieved recently bg making use of the equation of phonon

M : . T4 radiative transfet>~1This approach, however, employs es-
slab is strictly dependent on its particular shape. A similaigenyially the relaxation time approximation and does not take
mechanizm of a phonon transport suppression is recovered jRto account the normal scattering processes. This also dis-
GaAs/AlAs, Si/Ge superlattices at high temperatdfésA  regards the effects of spliting the phonon spectrum into
strong decrease in the effective phonon relaxation timeacoustic and optical branches with different dispersion laws.
caused by the diffusive scattering at interfaces, explains th&hese effects are especially important when different phonon
observef® suppression of the perpendicular thermalmodes lie closely on the energetic scale. That can be the case
transporf The comparative by nature effect of reducing thefor some superconductd** and semiconduct6t materials.
effective phonon group velocity in quasiregular heterostrucGiven the vicinity of the phonon branches, one cannot treat

tures have been addressed and exemplified numerically € Optical and acoustical modes separately. The nonequilib-

Ref. 10. These recent works suggest that thermal transporrjtum phonon system should be considered as the binary qua-

can be affected significantly by material modulation even a iparticle gag® This requires an essential modernization of

. X " . . “the mathematical tools for the problem.
finite temperatures owing to the additional internal reflection 1o present paper aims to give theoretical insight into the

effects. This claims that special attention in the simultaneougpgve described problems. The main purpose of this work is
consideration of finite and low-temperature mechanisms ofp take into account the effects of optic phonon drag arising
relaxation which used to be treated separately in the conventue to the normal phonon collisions and boundary scattering
tional approaches? Here we address, first of all, the inter- of the acoustic phonons. To the best of the author’s knowl-
play of the effects of optic phonon drag and interface scatedge these two effects were never treated simultaneously.
tering of the acoustic phonons. This motivates the present investigation in view of the fol-
Some specific slab geometries can cause unconventionwing arguments. The contribution of optic phonons to ther-
features of heat transport which cannot be derived by simplg1al conductivity is usually neglect&tf* referring to their
scaling arguments. This can be exemplified with the logarithSmall group velocity. We will show that this argument does
mic peculiarities of the thermal conductivity coefficient of a N0t apply to the optic phonon drag effect caused by the nor-
narrow plane-parallel sla=3 For this case, the bulk and mal _c_oII|S|0ns. In_thls case, more accurate treatment reveals a
boundary phonon scattering are not additive in their effectSignificant contribution of optic phonons to thermal trans-

The abovementioned peculiarities lead to an effective “mix'pggbrlggiomog?Lecrgggugglclzlsg?lgioor: r%r]e%mo?rseecij?a{mg\gyse a
ing” of both scattering mechanisms which can be expressegnd considerable drag effect at the same time. The neglec-

as a violation of the Matthiessen’s rule. In spite of this, thet nce of this effect causes, in particular, overestimation of the

Matthiessen's formula represents the most commonly usegy,non MEP which in turn can result in overestimation of

tool for the analysis of measurements of thermal conductiVie role of the interface scattering. This latter, however, used
ity in crystals of the rectangular cross-sectirdowever, 4 he considered as a dominant mechanizm of relaxation in
this approach _d_|srega_rds the e_ffect of specimen shape COMuantum wires at temperatures up to that of room
pletely. In addition, it is not quite clear how the semiempir- temperaturé® The optic phonon drag effect is also signifi-
ical Mathiessen’s formula agrees with the exact analysis ofant at these temperatures and the neglectance of this can
the size effect near the Casimir limit. It can also be arguedause inadequate evaluation of the transport coefficients. The
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proper understanding of the relation between the differensions. It is important to note that the separation of the colli-

phonon-phonon and phonon-interface relaxation rates is alssion operator into two distinct contributions according to Eq.

important for some quantum wéliand heterostructuré8. (1) is of rather conditional character. This can also be inter-

These structures exemplify a variety of systems where botpreted as the separation of all types of collisions into elastic

the acoustic and optical phonon branches are activated arahd nonelastic ones, independently on their specific charac-

the phonon MFP is of the order of the characteristic size of der. For instance, the Umklapp processes in phonon collisions

structure at the same time. For these systems, all three typase covered by the operattr while the normal processes

of phonon scatteringboundary, normal, and nonelagtic belong to the operatoiS;;, S;».

must be considered simultaneously. Further we consider that the acoustic phonons make the
The effects of both normal and boundary phonon colli-main contribution to thermal conductivity what is usually the

sions cannot be directly treated in the framework of the recase for sufficiently low temperatures. For the sake of sim-

laxation time approximation. We base our speculations omlicity we restrict ourselves to the consideration of elastic

the rigorous analysis of the kinetic boundary value problenscattering of optic phonons on acoustic ones. We also neglect

in a slab of the rectangular cross-section. The need to simuthe interaction of optic phonons with a wall. Under these

taneously consider of the acoustic and optic phonons bringassumptions, the linearized collision operators and the vec-

another question into focus. To get a reliable picture of latticaors |g)=|g1,9,), |V)=|V4,V,) in Eq. (1) are defined by

heat transport one should account for the effect of mutual

phonon drag. The drag effect caused by the nonelastic cross ‘Sll 0 “S(llz) g(lzz)

collisions of phonons can be properly taken into consider- sll:( 12—( )

ation by introducing the corresponding collision frequeftcy.

As is shown here, this approximation is not sufficient for the

account of normal phonon scattering processes. A proper dey

0 5,/

€
consideration of the effects due to the normal collisions re- = Vr ?l+91
quires a more accurate analysis of the kernels of collision L= —v(e) O V)= P1
operatorg®~28 This analysis is performed here in the most 0 0/’ dey [ e ’
general form without a reference to any specific model for [?52 VF( ?)

the collision integrals. The calculated drag effect proves to
give a significant contribution to the heat conductivity coef-
ficient. It is shown that this contribution cannot be described & _f g gy () -1
0= | Wi(pi,p |pi ,pi )1+ f .
by the Matthiessen’s formula. Sigi 1Py [P i L1+ Fo (P
The paper is organized as follows. Section Il presents the

exact formulation of the kinetic boundary value problem. ><[1+fS)(piz)]fS)(pil)[1+fg)(pia)][gi(piz)
The kinetic equation derived here makes it possible to take - - -
into account the effects of boundary scattering and optic pho- +0i(pi,) —gi(pi) —gi(pi )1dT d dI . (2)

non drag on the acoustic phonon system. This equation is

solved rigorously in Sec. lll. The coefficient of thermal con- o RN ,
ductivity is calculated and analyzed in Sec. IV. The validity Si(jl)gizf Wi ’pj|pilvpjl)[1+f8)(pi)]_l
of the Matthiessen'’s rule is also verified in this section. Con- . . A
clusions are given in Sec. V. ><[1+fg)(pil)]fg)(pj)[1+fg”(pjl)]

IIl. EXACT KINETIC EQUATIONS, KERNELS OF THE x[gi(pi,) —gi(p))]dl; dTydTy )
COLLISION OPERATORS AND THE BOUNDARY VALUE
PROBLEM
Sg. = 5 p:lp: D ((py1-1
We start with the exact formulation of the kinetic prob- S fwﬂ(p' ,pJ|p,l,p]1)[1+f0 (pi)]
lem. A set of kinetic equations describing a nonequilibrium (i) ) M
phonon system can be written in the operator fdrm X[1+1o (pil)]fo (PpL1+To (pjl)]

S11/9) +S1Adg) +LIg)=|V). D X[91(511)_gj(ﬁj)JdFildFidFil‘ )

Here S;; is the operator of mutual collisiong of phonons pf Hereafter, the indek=1 (i=2) corresponds to acoustiop-
the same typeS;, the operator of cross colhsm_n; of acoustic tic) phononsT is the temperatureﬁi andsi(lﬁil) the phonon
and optic phonons, andis the operator describing the scat- ;

. : . . momentum and energy, respectively;; the volume element
tering of phonons by point defects, dislocations, electrons L

. of the momentum phase spade the true distribution func-

etc. We consider that the operatdss,, S;, preserve the (0 ) 0 i
phonon numbers, momenta, and energy in collisions. Contions, i=[fo" (&i/T)]"*(fi—f") the small corrections to
trastingly, we treat the operatarin the Lorentz approxima- the equilibrium distribution functions{’, and v is the fre-
tion considering that the phonon momenta are not preserveguiency describing the nonelastic collisions of acoustic
in the collisions with the above described scatterers. Howphonons with the abovementioned external scatterers. The
ever, the phonon energy remains unchanged in these collgradients are directed along thzeaxis, the prime denotes
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differentiation with respect to the argument, the Boltzmannwhere the inner product is introduced by the definition
and Planck constants are set equal to 1.

We aim to derive the Callaway-like formula for thermal > SR BTE 1A I3 S I N
conductivity with the correct inclusion of the contributions {h(p1).9(p1))= f fo | 7/ (PUa(py)dly. (9
due to both boundary effects and optic phonons. For thi . .
purpose we consider that the operatoplays a dominant ?t shquldhbe stressed that E() 'r‘?‘ exact andhlt d(;]es not
role in the collision integral. The artless way to treat this cas¢©Ntain the operators,;, Sy,. This proves that the true
is to completely neglect the operat@®g, S;, in the leading Moment(p,|vg,) differs from that expected in the leading
approximation when constructing the perturbation expanorder of the perturbation series obtained wign, S,, are
sion. This would lead to the splitting E¢L) into the inde-  neglected either. The exact expressighfor the above mo-
pendent equations for the acoustic and optic component§ent takes into account the effect of optic phonon drag and
However, this approach is not appropriate to the case fodescribes the limiting case=0 correctly?®
both physical and mathematical reasons. First of all, it does In order to proceed with Ed7) it is instructive to intro-
not make it possible to take into account the relaxation produce the orthonormal basfée;)}_ in the Hilbert space of
cess due to the normal cross collisions of acoustic and optig,nctions of momentumﬁl with the first vecto® le))

phonons. This process is responsible for the mutual influencg|plz>/ (P1P1.). Then Egs.(6) and(7) can be rewritten

of the components of the binary phonon gas and should bg, o™ hrojections onto the orthogonal subspaces associated
t_reated more acgurqtely. Let us note that even a COMPargiith the vectorde;). Formally we define the function
tively small contribution of the elastic phonon scattering can :

affect the phonon system significantly. The normal collisions . de; [ €
produce the “dissipationless” mutual drag of acoustic and G(x,y,pp)=vg:+ —=Vr TT9 (10)
optic components. Therefore, these two components cannot IP1

be treated separately, even in the considered linid) and neglect the operatoE( P,)(S;;+S;0) (E—P,) in Eq.

>S,7g). Formally, we refer to that the operatoBs;, S1 (7). Then Eqs(6),(7) are equivalent to
have the nontrivial kernels constituted by the collision in-
(P22 V2)

variants. These kernels should be taken into account by cor- "
rect perturbation approach. (elG)= 5i\/:
The above effect of mutual drag can be taken into account (P12lP1z)
by the proper inclusion of the collision invariants into the whered! is the Kronecker delta.
perturbation expansion. Further we focus on the momentum Equations(11) can be interpreted as the definitions of the
conservation law in the cross collisions of acoustic and opti¢omponents of the functios in the basis{|e;)} ;. This
phonons. This law can be expressed in the following equivamakes it possible to obtain the equation égrin the closed
lent forms: form. The formal derivation is rather trivial. From E¢lL1)
we have

(i=1,...), (12)

PiS1,=51,Pi=0, (E—Pj)SE-Pj)=S;,. (5

Here we introduced the unity operatérand the projectoP; G= E le)(e|G)=e,) (P22 V2) ' (12)
to the subspace associated with tlemponents of the vec- = V(P12 P12)

tor |p1,p,) SO thatP;|py;,p,)=0 andP;P;=P;. The pro- , I , ,

jections of Eq.(1) onto the subspaces associated vA{rand Using the definition(10) we rewrite Eq.(12) in the form

the subspace orthogonal to them can be written as deq deq R .
Sp.. Gt o = dygrt vg;=A(p1), (13
PiLlg)=Pi|V), ® Pax P1y
where
(E__ Pi>(511+312) E— Pi) l9) der €
1=X,Y,Z 1=X,Y,Z < pZZ _“ _>
de, € aps, T a,T

A(py)= (14)

S | 2
ap1, T i (P12lP12) T

7) Equalities(13), (14) present the partial differential equa-
tion for the nonequilibrium correctiog; to the equilibrium
correspondingly. Please note that the first operator in the leffistribution function of acoustic phonons. The second term
hand side of Eq(7) has the trivial kernel. Thus this equation in Eq. (14) stands for the contribution of the optic phonon
is subject to the ordinary perturbation expansion proceduredrag due to the elastic phonon collisions. Note that the effect

+ E- X P
i=x,y,

z =Xy,

o)== 3 P v,

Also note thatP, ,|V)=0. of the momentum dissipation in the system of acoustic
The nontrivialz component of Eq(6) for the correction phonons due to the inelastic scattering is described by the
g1 can be rewritten in the explicit form as follows: collision frequencyw. Dissipation of the momentum of the
~ acoustic component on specimen boundaries should be taken
(P12 ¥91) + (P12 V1) + (P2, Vo) =0, (8) into account separately, by employing an appropriate bound-
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ary condition. Here we restrict ourselves to the consideration '
of the diffuse boundary condition taken in its simplest form
0.9 1

> (961_>
gl reB,—n=0|=0, (15

apl 0.8 1

whereB are the points of a slab surface ands a positive
normal toB. Kinetic equation$13), (14) completed with the
boundary conditior(15) will be solved in the next section.

K /kpylk

0.7 1

,' e =0 (plane-parallel slab)

06 1 H -—-—- =02
Ill. SOLUTION OF THE KINETIC EQUATION ! === h=05

! === h=1 (SQuare cross-section)

The general solution of Eq13) can be written in the 05 L& . . .
form®! 0 5 10 15 20
REDUCED WIDTH OF A SLAB, bl

g1=(1—-e N IA. (16)
FIG. 1. Size effect on thermal conductivity for different values
Function(} should be specified for the particular geometry of aspect ratioh=b/a of a slab cross-section. The ratio of the
of a slab. For a slab of the rectangular cross-section with thghermal conductivity of a slab to the bulk thermal conductivity is
lengths of sides @ and 2b this function is found to be given plotted against the reduced width of a slab. The solid line presents
by thermal conductivity of the plane-parallel slab.

[ X a y b
Q=min| =+ 77—, =+~
S« Isd’sy syl

17 - . a . .3 ..
H(a,b)=E(F(a)—F(C))JrgQ(a,b),

wheres= v~ 1(de,/dp,). For the sake of definiteness we set

b=a.
To be used in the calculation of thermal conductivity of a 3 3 5
slab, expressior(16) should be averaged over the cross- F(X):_Tr+_ Se(X)——>, (22)
section area. After some straightforward algebra one finds 16x - x? 15
1 ~[ S¢Sy
%Lgr/\g 22’ 2p)’ (18 o i i
Q(a,b)=75{1+4[Es(a) —Es(a)]}
where
L L X +m€126 . 168()) 1(=y*~1
Nii___ —o\_ _(1_aw _ ~3 ——>s(C _E’“ 5
9522 =1 0(1+e ) w(l e )(1 U), 32c T ca y
(19 . b
. X (1—e ¥)arccog——=—=dy, 23
o=max(2/]s,20/[s)), w=min(2alls,2blls). ( ) ay2—1 Y (23

We facilitate further derivation by calculating the average
over the angle coordinates of the spherical system with the
polar axis taken in the direction of the temperature gradientE,(x)= 7y "e”dy is the exponential integralS,(x)

defined as follows: =[7\y’—1y "e dy is the special function introduced in
_ o Refs. 12, 13, and= \a?+ b2 The valueg plays an impor-
S(a.b)— 3 27d¢fw~ sinfcos¢ sindsing tant role in further speculations. Although it is expressed in
gla, Aa Jo 0 9 a ' b terms of special functions, the numerical evaluation of this

value can be more convenient for the practical use. The re-
X cos f'sin6d, (200 sults of such an evaluation are presented in Fig. 1. We post-
. A pone the detailed discussion of these results to the next sec-
where we introduced the reduced lengths-2a/|s|, b  tion.
=2b/|§|. Note thatg=1 for g=1. Equality (21) presents the solution of E¢13) averaged
The direct calculation gives over the slab cross-section area and the azimuthal and polar
angles of the phonon momentum vector. This solution can be
- 2 . . used for calculations of transport coefficients of a binary
g=1- ;[H(a,b)+ H(b,a)], (21) " phonon gas in a slab of the rectangular cross-section. In par-
ticular, Eqg.(21) makes it possible to express the coefficient
where of thermal conductivity in a slab via its value in the bulk.
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IV. COEFFICIENT OF THERMAL CONDUCTIVITY AND 4
THE MATTHIESSEN'S RULE — t=0.89 (GaAs)
— e e =0.80 (Si and Ge) P g
First we focus on the investigation of the optic phonon === =067 (MgB) ”

drag effect on the coefficient of thermal conductivity,, in

the bulk. This coefficient can be derived from Eg@1) for

any given energy-momentum relation of acoustic phonons.

In case of the simplest phonon dispersion law of the form= 2

€1=v|p1|, Kkpuk is found to be written as

T3 (6piT y4ey ~ 1
Kouk=L1+ n(T) f v (yT)dy,
bul=[1+ 7 ]vaz o (@107 ylh)ay

(24)
04
wheren=S,/S, and 0.0
€ OJ€;
S={ Piz _|T2 Py (25 FIG. 2. Effect of optic phonon drag on thermal conductivity for

several selected materials. Coefficientefined by Eq(26) is plot-

. . ) ted against the reduced temperature.
is the entropy of théth component of the phonon gas,is

the sound velocity. In the gray mediaonstant relaxation phonon and Einstein(optic phonoi temperatures. Thus, ac-
time) approximation the coefficient of thermal conductivity cording to the previous arguments one should expect a con-
can be expressed as siderable drag effect. As can be seen, the contribution to
~_q o thermal conductivity due' to the optic phonon drag is several
kour=[1+ (T)]V Cy times larger than the main term describing the drift of acous-
bulk g 3 tic phonons. This causes 75% correction to the thermal con-
ductivity of GaAs at room temperature. The situation here is

o ; ) of resemblance to the acoustic phonon drag effect on the
The coefficienty describes the above effect of optic pho- gjectron conductivity and thermopower in metals. As is well

non drag on the thermal conductivity caused by acoustignqyn! this effect produces an increase of several orders of
phonons. This value can be easily evaluated in the framer'nagnitude in transport coefficients.

work of the Einstein approximatié for optic phononse, In view of the above, the use of the classical kinetic for-

= 0g . This reads mula k= Cyl ,v/3 when evaluating the phonon MHAP can
also be argued. This point is illustrated in Fig. 3 for GaAs.
tr yteY -1 According to this figure, overestimation of the acoustic pho-
) f ﬁdy) , non MFP (Ref. 7) caused by the neglectance of the optic
o (e/=1) phonon drag effect reaches 75% at room temperature. This

whereC,, is the specific heat.

n(r,t)z(wﬁ(L—ln(l—ef)
e™—1

(26) can also bring significant corrections to the understanding of
where =60 /T, t=60p/6g, and y is the Debye tempera- 100
ture. € = as obtained neglecting the optic
As should be expected, the above drag effect increaseg 10° - —— g:%g?:u;‘;:g'g“‘;‘;ﬂigffﬁ;“toR:;-c [07[]2“
with the temperature. To better estimate this effect at highE the optic phonoﬁ draggeffect

temperatures we fitted the coefficieptt ~*,t) with the func- 104 1

tion 7a(t~1t)=—0.58+3.9a within the accuracy|

— 7/ <0.03 in the interval 0.28t<0.95. The good agree-
ment of » with the fit function of a linear shape allows one to
conclude that the contribution of optic phonon drag is di-
rectly proportional to the rati@y /6. Therefore, the closer 10" 1 -

the acoustical and optical phonon brunches lie on the enerz “~‘,___
getic scale, the larger contribution comes from the mutualx 1% 1 -
drag of different species of the phonon gas. At sufficiently &
high temperatures and large valued difiis contribution can
even exceed the main term in E@7) describing the thermal
conductivity of the pure system of acoustic phonons.

In order to illustrate the above evaluations we presented FIG. 3. Estimation of the phonon mean free path by taking into
the coefficients for several selected material&aAs, Si,  account the effect of optic phonon drag. The solid line is reproduced
Ge, and MgB) in Fig. 2 . All these materials are character- from Ref. 7. The dashed line demonstrates the result of the pre-
ized by the relatively close values of the Debfaeoustic  sented theory.

103 4

102 4

ONON MEAN FREE PA

10

[¢] 1(')0 2(‘]0 3(;0 4(’]0 5(‘)0 6(’)0 700
TEMPERATURE (K)
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mutual role of the bulk and interface scattering in thermalBy introducing the collision frequency
conductivity of superlattices and quantum wells.
We now turn to the investigation of the size effect on 3v atb 32

thermal conductivity. Given thgs| does not depend on the ™74 ab
phonon momentum, the ratio of the thermal conductivity co-gne can rewrite Eq€27),(24) in the form
efficient k to its value in the bulk can be found particularly

simply. This is the case for the above simplest energy- T3 [oo/m yteY
momentum relation for the acoustic phonons of the fesm k=[1+ ﬂ(T)]GU szo @1

=v|py|. We merely havds|=1»""v. Therefore, the coeffi-
cient of thermal conductivity caused by the acoustic phonongvhere the effective frequenay is defined by the Matthies-

veit (yT)dy, (33

reads sen’s rulevgy= v+ vy, . According to Eqs(27), and(24) the
o above introduced valueH should be taken equal to
k=g(a,b) kpyi- (27)  4[abl/(a+b)]. As is expected, this value does not depend on
the size of a slab in the direction of applied gradient.
First, we verify result(27) in the simple limiting cases. Figure 1 demonstrates the contribution of phonon-

For the plane-parallel slata(=), Eq.(27) goes over into boundary scattering to the thermal conductivity coefficient

the result derived independently by Kaganov, Podd’yakbva (g) against reduced width of a slab)(for several values of

for thermal conductivity of Hell in capillaries and by Hyld- the cross-section aspect ratio. In agreement with the above

gaard, Mahalf for semiconductor heterostructures. This calculation, the square shape of a cross-sectéal() pro-

reads duces the maximal effect of suppression of thermal transport
in a slab. It is also clearly indicated that the value of the size

N 3 3 N N effect decreases exponentially as the reduced width in-
g=1- % + %[Es(b)_ Es(b)]. (28) creases.

L V. CONCLUSIONS
In the Casimir limita,b<<1 one finds

c+b| .
f)erln
a

The size effect on thermal conductivity of a slab of the
rectangular cross-section was investigated. The kinetic
1 .5 a5 ng boundary value problem describing the binary phonon gas in
+ —=(a°>+b°—c”). . . .
2ab restricted geometry is considered. We focused on the case
(299  where the effect of normal phonon scattering is much smaller
than that due to nonelastic phonon collisions. In this limit,
the rigorous analysis of the true collision operators made it
MacDonald and Sargins&his recovered from Eq29) possibl_e to construct the correct perturbati_on expansion. The
approximate kinetic equatiofi3) for acoustic phonons was
R derived in the leading order of this expansion. The accurate
. .. 3a [2+1) . treatment of the kernels of the operators describing the mu-
gc(a,a):TIn(E +a(1-12). (30 tual and cross phonon collisions allowed one to take into
account the effect of optic phonon drag. This drag effect
proves to give rise to a significant contribution to the thermal
Now we will discuss the possibility to describe the bound-conductivity caused by the acoustic phonons.
ary phonon scattering by means of the properly defined col- Exact solution(16) of kinetic equation(13) completed
lision frequency. This trick is commonly used in a variety of with diffuse boundary conditioril5) was found. This solu-
evaluations of the size effect in the framework of the Mat-tion made it possible to calculate the coefficient of thermal
thiessen’s approximation. The typically used phonon-wallconductivity (27) of a slab of the rectangular cross-section.
collision rate isv,,=v/H whereH is the characteristic size Both effects of the optic phonon drag and the boundary scat-
of a slab. This crude scale estimation is to be compared witkering of acoustic phonons were taken into account. The re-
the results of the exact approach developed here. The presults indicate an agreement with the well known limiting
ence of the logarithmic terms in the rigorous res(8), and  cases. Material-specified examples of the optic phonon drag
(30) put under question the possibility of correct introduction effect on thermal transport are presented. It is found that in
of the above collision frequency. Evidently, such a frequencysome cases this effect can cause an increase of several orders
cannot be used in the Casimir lintit<v/v for the above of magnitude in thermal conductivity.
reason. In the opposite limki>v/v the effective pnonon- ~_ The validity of the Mathiessen’s rule was reexamined for
wall collision rate can be defined properly. Asymptotic ex-different ratf|os of ﬂ;he ?ﬁraqtelnts_tlc S'fZ?hOf l\a/l S{ab to the ph?'
. Lo LA non mean free path. The violation of the Mathiessen’s rule
pression for the functiog in the limit a,b<<1 reads was indicated near the Casimir limiin a “narrow” slab).
The exact value of the collision frequen€$2) describing
) (31  the boundary phonon scattering is calculated in the opposite
limit to be used in the refined Mathiessen’s formula. The

c+a

“ _3
QC—Z

aln

For a slab of the square cross-secti@=0) the result of

ao1 3
=173

1 1
~+ =
a

214302-6



EFFECTS OF BOUNDARY SCATTERING AND OPT. .. PHYSICAL REVIEW B 66, 214302 (2002

introduced frequency does not depend on the slab size in the ACKNOWLEDGMENTS

direction of an applied temperature gradient. Its value found

to be strictly dependent on the aspect ratio of the cross sec- | would like to acknowledge the valuable discussions with
tion of a slab normal to the direction of the gradient. TheDr. S.-L. Drechsler and Dr. A.A. Kordyuk. Many thanks to
effect of boundary scattering on the thermal conductivity isDr. G. Buxton for reading the final version of the manuscript
evaluated numerically for several selected materials. and some useful remarks.

1J. M. Ziman,Electrons and Phononxford, Clarendon Press, ’G. Chen, J. Heat Transfdi9 220(1997).

1996. 18G. Chen, Phys. Rev. B7, 14 958(1998.
°H. B. G. Casimir, PhysicéAmsterdam 5, 495(1938. 19X Lu, W. Z. Shen, and J. H. Chu, J. Appl. Phgd, 1542(2002.
3R. Berman, F. E. Simon, and J. M. Ziman, Proc. R. Soc. London?°F. W. Dewette and A. D. Kulkarni, Phys. Rev. &5, 14 922
Ser. A220, 171(1953 (1992.

“Boundary scattering of the low frequency phonons at high tem?!D. D. Yan, Z. J. Wang, T. F. Xu, and W. Z. Li, Physica2T9, 255
peratures can also be important in relatively large crystals. See, (1994.
for example, H. J. Goldsmid and A. W. Penn, Phys. L2TA, 22p A, Alekseev, A. S. Ivanov, V. N. Lazukov, I. P. Sadikov, and A.

523(1968. Severing, Physica B80, 281 (1992.
5P. Hyldgaard and G. D. Mahan, Phys. Rev5& 10 754(1997.  23See, for example, Y. G. Gurevich and O. L. Mashkevich, Phys.
8G. Chen, inMicro-Electro-Mechanical System@ASME, New Rep.181, 327(1989.
York, 1996, \Vol. 59, pp. 13—24. 24p_ Carruthers, Rev. Mod. Phy33, 92 (1961).
’G. Chen and C. L. Tien, J. Thermophys. Heat Tran3feB11 25N. W. Ashcroft and N. D. MerminSolid State PhysicgHolt-
(1993. Saunders, New York, 1981
8G. Chen, C. L. Tien, X. Wu, and J. S. Smith, J. Heat Transt&  2®A. I. Chervanyov, Phys. Rev. B4, 031204(2001).
325(1994. 27A. 1. Chervanyov, Phys. Rev. 5, 020201(2002.

®W. S. Capinski and H. J. Maris, PhysicaZR9-220, 699(1996.  28A. I. Chervanyov, J. Low Temp. Phy§26, 115 (2002.
10R. Curbelo-Blanco, F. de Leon-Perez, R. Perez-Alvarez, and V. R°The equations appropriate to this limiting case can be obtained

Velasco, Phys. Rev. B5, 172201(2002. directly by applying the projectaP, to the left- and right-hand
M. I. Kaganov and E. V. Podd'yakova, Zhk&p. Teor. Fiz91, sides of Eq.(1) providedL=0. This eliminates the collision
868 (1986 [Sov. Phys. JETB4, 512(1986)]. operatorsS;;, S;, constituting the left-hand side of E¢L) im-
12p Hyldgaard and G. D. Maham;hermal Conductivity(Tech- mediately. This procedure is by analogy with the derivation of
nomic, Lancaster, PA, 1996Vol. 23, pp. 172—-182. the hydrodynamic equations from the kinetic one. For details see
185, G. Walkauskas, D. A. Broido, K. Kempa, and T. L. Reinecke, J.  C. CercignaniTheory and Application of the Boltzmann Equa-
Appl. Phys.85, 2579(1999. tion (Plenum, New York, 1976
14see, for example, A. V. Sologubenko, J. Jun, S. M. Kazakov, J3°The explicit form of the vectorge;), (i>1) can be obtained by
Karpinski, and H. R. Ott, Phys. Rev. @b, 18050%R) (2002; K. making use of the Gramm-Schmidt procedure. For details see G.
Gianno, A. V. Sologubenko, M. A. Chernikov, H. R. Ott, |. R. Arfken, Mathematical Methods for Physicistdcademic Press,
Fisher, and P. C. Canfielibid. 62, 292 (2000. New York, 1970.
BR. C. Liu, C. S. Pai, and E. Martinez, Solid-State Electréd.  3!A. I. Chervanyov, Phys. Lett. 286, 65 (2001).
1003(1999. 32K, Sarginson and D. K. C. MacDonald, Proc. R. Soc. London,
18, Majumdar, J. Heat Transfers, 7 (1993. Ser. A203 223(1950.

214302-7



