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Phonons in random alloys: The itinerant coherent-potential approximation
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We present the itinerant coherent-potential approximafiGRA), an analytic, translationally invariant, and
tractable form of augmented-space-based multiple-scattering #idnra single-site approximation for har-
monic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expres-
sions for quantities needed for comparison with experimental structure factors such as partial and average
spectral functions and derive the sum rules associated with them. Numerical results are presentgBdgr Ni
and NigPty, alloys which serve as test cases, the former for weak force-constant disorder and the latter for
strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the
single-site coherent potential approximati@@PA) and experiment are made which provide insight into the
physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant
disorder case but fails for strong force-constant disorder where the ICPA succeeds.
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[. INTRODUCTION environmental disorder were proposed over the next several

Many aspects of the lattice-vibrational, magnetic, andyears~**but only in certain very special cases, such as the
electronic excitations in disordered alloys have been intenseparabl2or the additivé®!! limits of off-diagonal and en-
sively studied both theoretically and experimentally over thevironmental disorder, were there successes. The more gen-
past few decades. Of them, the electronic problem has beesral approximation$~* produced Green’s functions which
covered in most detail in recent times with the emergence ogither failed to retain the necessary analytic properties, the
first-principles techniques which have made it possible foitranslational invariance of the averaged system, or were not
the theories to attain a much higher degree of accuracy anfdilly self-consistent. Moreover, all of these extensions failed
reliability. Surprisingly, this is not true for phonons despite to capture the effects of multisite or cluster scatterings which
their being not only conceptually the simplest type of el-give rise to additional structures in quantities such as the
ementary excitation but also the most readily accessible tepectral density functions. Later attempts which met with
detailed experiment. From the early 1960’s till the earlysome success for real alloy systems included the recursion
1980's there were many experimental investigations oimethod®which can handle large clusters and treats all kinds
phonons in random binary allo¥® by neutron-scattering of disorder on an equal footing. However, the recursion
techniques. More recent experiments have been lackingnethod is neither self-consistent nor translationally invariant
probably due to the absence of a reliable theory. The featur@hen used alone. Yussouf and Mooketfagere able to pro-
which makes the theory of phonon excitations difficult is thevide a self-consistent generalization of the CPA to include
inseparability of diagonal and off-diagonal disorder. The reatwo-site scattering using a recursion method in conjunction
son for this is that the force-constant sum rule, i.e., the forcavith the augmented space formalisthSF),}” an effective
constants between a siteand its neighborg obey the rela- method of keeping track of the configurations.
tion ®; = —;.;®;;, must be rigorously satisfied evenifthe  An alternative approach was provided by Kaplan, Leath,
system is disordered. In other words, a single defect at on6ray and Diehf® (KLGD) which is also based on the ASF.
site in the system perturbs even the diagonal Hamiltonian oithis approach generalized the traveling cluster approxima-
its neighbors, thereby imposing environmental disorder onion of Mills and Ratanavararakshdor diagonal disorder to
the force constants. Hence, any theory must include diagdnclude the other kinds of disorder and multisite effects. Us-
nal, off-diagonal, anénvironmentatiisorder as well in order ing the diagram symmetry rule of Mills and Ratnavararaksha
to produce reliable results for phonons. and the translational symmetry of the augmented-space op-

From the late 1960's there were many attempts to providerators, they presented a self-consistent multiple-scattering
an adequate theory of phonons in random alloys. The firstheory which allows one to work with a small number of
successful, self-consistent approximation was the coheresitoms instead of treating large clusters as is done in recur-
potential approximatioiCPA),° a single-site, mean-field ap- sion. It provides analytic, translationally-invariant approxi-
proximation generally capable of dealing only with diagonalmations at all concentrations for diagonal, off-diagonal, and
disorder(mass disorder in the context of phonank the  environmental disorder. It can be applied even to problems
early 1970’s there were several studies using the C®&s.  of charge transfer, lattice relaxation, and short-range order in
7,8) which failed to establish it as a complete answer to thehe context of electronic excitations. However, they illus-
phonon problem in random alloys. The discrepancies withtrated their method only with one-dimensional models and
experiment confirmed this need for a theory which couldpresented it in a very general and complex mathematical lan-
include force-constant changeéa addition to mass disorder. guage.
Several extensions of the CPA to include off-diagonal and In this paper, we present a simple, straightforward formu-
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lation of the KLGD method for single-site scattering of the augmented-space formalism. The extended Hilbert space
phonons in three-dimensional lattices and provide an appliwhich captures the random fluctuations is called the “aug-
cation of it to phonons in random alloys. We term it the mented space.”

itinerant coherent-potential approximatiolfCPA); it main- Here, we work only with a binary allop; B. . We as-

tains translational invariance, unitarity, and analyticity ofsyme that each lattice site is randomly occupied byAan
physical properties while including off-diagonal and environ-atom or by aB atom. We wish to calculate the configuration-
mental disorder. In addition to demonstrating its Superiorityaveraged Va|ues of the experimenta”y measurab|e physica'
over the single-site CPA and its previous extensions, we proguantities, for which we need a configuration-averaged
vide insight into the physics of force-constant disorder. OulGreen's function. In particular, we shall concentrate here on

results reveal the complex interplay of forces between varithe configuration-averaged displacement-displacer(wre-
ous atomic species in a random environment, an importarghonon Green’s functiof’

phenomenon which has never been addressed properly.

In Sec. Il we describe the theory, introducing the 1
augmented-space representation and its use in constructing <(Gﬁ,ﬁ(t)>>=m((uﬁ(t);uﬁ(O))}. D
the self-consistent scattering theory and the single-site itin-
erant coherent-potential approximation. In Sec. Il we deriveor, after Fourier transformation to the frequency domain
expressions for important physical quantities such as densi-
ties of states, spectral functions, inelastic scattering cross (G(0?)))={([mw?-®]1)). (2

sections, and their sum rules in terms of the configuration- , .
averaged Green’s function of the system. In Secs. IV and 1 Egs.(2) and(2) (- ’>.> stands for both configuration and
thermodynamic averaging. In E@l), m,n specify lattice

we present our results on N§Pd;s and NPt alloys as test ™ . NI .
cases and compare them with experiment. Concluding reteS andx,8 the Cartesian directionsiy(t) is the displace-
ment operator of an atom at the lattice siten the direction

marks are presented in Sec. VI. ) _
a at the timet. In Eq. (2) a bold symbol represents a matrix
for which all indices are to be understood. The semicolon
[l. FORMALISM denotes Bose time orderingn is the mass operato® is the

. . . . . force-constant operator, ana is the frequency which con-
In this section, we brlefly sketch the rat_lonale bem”d_a“g'tains a vanishingly small negative imaginary part. The
mented space, introduce its representations, and define the

) asses are random
notation to be used throughout the paper. We present our

discussions here only in the context of phonons. The formu- MB=m & .5 3)
lation of the ICPA for other kinds of excitations is closely ! HTaB T
analogous. with m; randomly taking on the valuen' if speciesT

=A,B is on sitei. The force constants take on the values
(o) if species is on sitei and specied is on sitej.

Itis ((G)) which carries all the dynamical informations of

The description of disordered systems conventionally prointerest, and the essential difficulty of the theory of phonons
ceeds as follows: the dynamical behavior of a system is dein random systems arises from taking the configuration av-
scribed by a Hamiltonian, whereas the statistical behavior Oérage of the inverse of the matmw?— ®. The augmented-
the disorder is imposed from outside. The Hamiltonian itse|fspace techniq&éZl greatly facilitates this averaging. The
does not describe the full behavior of the random system, buwlisplacementsi, massesn, force constants, and Greens
has to be augmented with the distribution of the set of ranfunction G are defined in the dynamical Hilbert spadein
dom potentials which are associated with the various conwhich the Hamiltonian of the system operates. For a binary
figurations of the system. The physical properties are thegjloy, ¥ is augmented by the spa€e of all possible atomic

obtained by ensemble averages over configurations. The CRAynfigurations of the system. The resulting augmented space
and its extensions employ this procedure. Qis

An alternative procedure is that instead of looking at the
excitations of the system as moving in a random array of O=7x06.
disordered potentials, the excitations are considered to be .
moving in periodic potentials in the presence of a ‘field’ IN {2 or © operators are represented by symbols with super-
which specifies the disorder. The Hamiltonian, expanded t®0sed carets. In the configuration representation wiéhjn
include the disorder field, then by itself completely describedhe state of sité is specified by the single-site std) if A
the disordered system. Since the information on random coriS 0ni and by|B;) if B is on i. With respect to these states,
figurations is already incorporated into the Hamiltonian, thethe occupation operatorg'", I'=A,B,
configuration averaging is not a further process as in the

A. Augmented space and its representations

mean-field approaches, but simply an evaluation of matrix 7' MAD=|A), 7 AB))=0,
elements. The idea of introducing a ‘disorder field’ to de-
scribe the random fluctuations in the system by extending the 7'BB)=|B;), 7 B|A)=0 (4)

Hilbert space to include the disorder field and by represent-
ing the Hamiltonian in this new space constitutes the core ofre represented by the matrices
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1 0
0 0/

~A
U =1;— 7, (5 by translationally invariant operators in the configuration
space®. The 7' operators constitute the disorder field re-

The configuration of the entire system is specified by theferred to above.

s [0 0\ . _a invariant; the randomness in configuration is thus captured
77lo 1

direct product of all single-site staték|I';), I'=A,B. The Any operatorA in this augmented space can be repre-
mass operator for sitieis given by sented in block form
A 'B _ ,
m/ =m? 77 +mB 77 (6) A A 12
rt ~
Similarly the force-constants for sitéandj are given by A A

where the bold notatio implies a matrix in the site and

- g~ A'B A~ BUA ~'B'B T .
D = ﬁAn 7, +¢” 7,7, +¢” 7,7, +¢”Bn 7, Cartesian indices. The four elements of the block matrix are
(7) given by
with the Cartesian indices understood. A=P-A.P,
Consider now a rotated representation for sibe which
the basis vectors for its configuration space are given by A'=P.A(1-P),
0;)=+calA)+ Vcg|Bi), A
| |> \/_A| |> \/—B| |> A,T:(l_P)A'P,
|1))=1ealA) —VealB)). ®)

i A=(1-P)A(1-P), (13)
Constructing the configuration average of any operatan
® can be carried out simply by taking the expectation value” yhere P, the projection operator onto the virtual-crystal
of A with the state state, is given by=|f)(f|. Thus, we see tha is the con-
figuration average of the quantiyy while A’,A’T generate

the coupling between the average and the fluctuation states

|f>_H ). ©) andA is that part ofA entirely within the space of fluctua-
tion states.
Thus |0;) is the site-average statr the virtual-crystal In the present paper we shall make the approximation of
statg, |1;) describes a fluctuation away from the averagetreating explicitly only single fluctuation staté§) in the
state on site, and fluctuation space® —|f){f|, although multiple-fluctuation
states are treated implicitly via a self-consistency condition.
1ty =[1)]1 10;). (100 States in) can then be specified dj/f) or |_if|> wherei is
j#i the site index of the dynamical variable ¥, position or

momentum, with the Cartesian index understood. For the site
8ndices of the corresponding matrix elements we shall often
use the compact notation

is the state in which there is a fluctuation or a defect in th

average statéf) only on sitei. In this fluctuation represen-
"A 'B

tation the occupation operator,s andn are transformed to

(if|Aljf)=Ay
~ CA \/C C ~ ~ '
mA=( § B), (ify[Aljf, ) =AD",
VCaCp Cp
A (N
AB_( Cpg _\/CACB) (11) <If|A|]f|>:AIJ )
7 —VCaACg Ca ' ,

A )
In transforming from the configuration representation to the <If||A|]f>:Aij ' (14)

fluctuation representatiom’ goes tom and®’ to @, as  wherel andl’ denote the locations of the concentration fluc-
given by Egs.(6) and (7), respectively, with they’" of Eq.  tuation or defect. The parentheses arouimtlicate that it is

(5) replaced by they" of Eq. (11). Thus the dynamical op- Neither a site nor a Cartesian direction index, but indicates
eratorsh and® are not diagonal with respect to the numberNStéad the position of a fluctuation in the lattice.

of fluctuations or defects in the fluctuation representation and

can create them, destroy them, or, in the casepf cause B. Multiple-scattering picture

them to travel or “itinerate.” We refer to the movement of A phonon propagating in a random alloy undergoes irre-
defects induced by the off-diagonal elements ofﬁﬁeas the  ducible multiple scatterirf§ both repeatedly off a single
itineration of fluctuations to distinguish it from the propaga- fluctuation and successively off fluctuations on the different
tion of phonons. However, these operators are translationallgites it encounters in the process. The CPA takes into account

214206-3



SUBHRADIP GHOSH, P. L. LEATH, AND MORREL H. COHEN PHYSICAL REVIEW B6, 214206 (2002

Multiple Scattering Picture (a) CPA
CPA(mass disorder only): . + . + ‘ L,

[ A A e iAo A AT A
)

Pl% % “@Lﬁ; J\Jﬁz J\_/\_ST b) ICPA
%Mmuuwgwjﬂg

)

ICPA(Mass and force constant disorder):

FIG. 2. The self-energy diagrams in the CR&p) and a typical

example in the ICPAbottom). The details are given in the text.
Phonon

>

cates the region of influence of the perturbation. None of the
springs are affected by the presence of this defect since the
force constants are the same everywhere. One does an aver-
aging over all the possible occupations of the single site. The
phonon diagrams of the self-energy which describe this mul-
tiple scattering process completely are shown in Fig).2
There, the filled circles represent the fluctuation sites, the
dotted lines represent successive scatterings from the fluctua-
tion site, and the double solid line represents the self-
consistent propagator.

The lower three panels in Fig. 1 illustrate scattering sites
in the ICPA. The difference from the CPA is that the region
of influence is not only the site of fluctuation but also its
neighboring environment around the fluctuation site. The fig-
ure shows an exampl@otted contour where the environ-
ment includes nearest neighbors onf{fhe calculations
could be extended to further neighbors as waNhen the
phonon interacts with the fluctuation site in the top panel of
the three, it scatters also from all of its neighbors since their
spring constants also undergo chan@Enoted by the thick
spring lines in contrast to the thin ones for the average me-
dium). The whole cluster of atoms undergoes fluctuations in
force constants as the location of the fluctuation site changes.
One has to keep in mind that the force constant between the
fluctuation site and its neighbor on the right, say, depends on
the occupation of both sites, as is true for the next neighbor-
ing site on its right as well. So, one is led to include the

FIG. 1. Multiple scattering picture in the CRfop) and with the jreducible scatterings by the fluctuation on all neighboring
ICPA (bottom). The filled circle is the site of the fluctuation and the sites, which then requires inclusion of scattering by the fluc-
contours around it indicate its area of influence. The arrows with thefuations on its neighbors, etc., until the irreducible scatter-
ICPA indi_cate the’?inere_\tion of the fluctuation to neighboring sites. ings extend throughout the entire sample. A simple example
The details are given in the text. of this process is indicated in the middle and bottom panels.

Indeed, Mills and Ratanavararaksfihave shown that once
the former but not the latter. To illustrate how the treatmenthere are non-diagonal terms in the scattering, the self-energy
of this process of multiple scattering by fluctuations differsmustinclude these migrationétinerations of the scatterer
between the CPA and our formalism we employ diagramthroughout the sample in order to attain unitarity and thereby
(Fig. 1. The top panel, a two-dimensional cross section, il-guarantee that the average Green'’s function will be properly
lustrates the multiple-scattering process included in the CPAanalytic or Herglotz. The self-consistent scattering and the
There, the filled circle is a single “fluctuation site” immersed resulting coherent potential about a single defect thus itiner-
in an average medium denoted by open circles. The arrow oates from defect to defect throughout the sample, making it
the left is the direction of phonon propagation. When thean itinerant coherent potential. The scattering could have
phonon meets the fluctuation site, it undergoes irreduciblstarted from any site in the sample so that the result is also
multiple scattering at that site. In the CRdiagonal disor- fully translationally invariant, and the self-energygislepen-
den, the irreducible scattering by the defect site is confineddent but diagonal in thg space of the Brillouin zone of the
to the defect site. The circle around the fluctuation site indi-underlying periodic lattice structure. FiguréodRillustrates a
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typical self-energy diagram in the ICPA. The solid and dotted
overlapping ellipses denote the multiple scattering by a
single-site and its neighbors, i.e., by a cluster of atoms, and
the subsequent itineration of this process. The thin dottedhe sumations are over the repeated indices and the fluctua-
lines and the thick double lines are as in Figa)2 tion itineratorF is given by a Dyson equation

In the multiple scattering framework, we calculate the

"t(n)

$iP=2 K&T)skF%T?iF)Ky,,m : (23)

self-energy3(w?), defined by

((G(w)) =[Gyea@?) —X(w?H)] 7, (15
whereG, ., is the unperturbed Green'’s function,
Gyca=(Mw?— @), (16)

andm and® are the configuration-averaged mass and force-

constant operators respectively.

Our major task is to calculate the self-ene@fw?). Let
us considerk =(mw?—®)=G 1. Using the 2<2 block
representation of augmented-space operators of Ex.we
get

G G

G'" &

7

K K\t
K't K '

Using the relation for the inverse of an operator ix 2
block form?2® namely,

(K_Ar .z\flArT)fl
_(K,A/Tflz\_Ar)—l

—(Z\-A’l'K_A’T)l)

(A-A'T.AL AN
(18

we get

G=[(M- w?~ ®)— K’ (- 02— &) K1 =[G LK’

vca

(G [(M: 02— ®)— (M- ?=B)]} K’ 1]
=[G, K'-F-K'™%, (19)
Therefore, the self-energy is given by
T=K'-FKT, 20
where
F=K'={G,&T-V} %, (21)
and where
V=(mT-m)w?— (41— ®). 22

The quantityV denotes all perturbations to the average me-
dium andF contains the itineration of the fluctuation in the

average medium.

FOW =G, ol 86y + > VOO FOO | (24)
|

where only the site index of the fluctuation is shown. The

quantities in Eq(23) are translationally invariant as follows:
— 0
Ki(lin)_ Ki(f)m,kfm’

FPO= R0 ™. 9
The single fluctuation in Eq(23) can be considered to
have been “created” by’ (" at siten, itinerated to siten by
F(W(M and “destroyed” byK '™ ™ at sitem. The K, K'T,
andF matrices have elements which are nonzero only for site
indices within the environment of the appropriate defects,
i.e., the indices andk (I andj) must be within the neigh-
borhood perturbed by the defect mi(n). The terms with
more than one fluctuatiofdefec} present at a time corre-
spond to coherent pair and “defect cluster” scattering and
are neglected in the single-site scattering considered here. All
of these operators act in the augmented space. The Egs.
(200—(24) define an itinerant single-site multiple scattering
theory.

C. Self-consistency

The restriction in Eq(23) to states of® —|f)(f| contain-
ing only a single fluctuation is a very severe approximation.
Multiple-fluctuation states are of course presentFirand
contribute toX. In the spirit of the CPA, these are included
approximately by introducing self-consistency. As in the
CPA (Refs. 18,20 we obtain self-consistency by replacing
G,ca in F in Eq. (24) by a conditional propagat@!”, iden-
tical to G=((G)) except that all irreducible scatterings be-
ginning or ending on siteare omitted, so th& would then
be given by

FOO =GO 5y, + S VOO FO]| 26)
T

In parallel with Eq.(15), G() contains a conditional self-

energyX(" which is similar to Eq.(23), except that it in-

cludes only those scatterings that neither start nor end on

GU=[(G,ca) ' -20]7H, (27)

sO= S KO FOm .t
I,m#i

(28)

Up to this point, the scattering formalism is exact. We Referring to Fig. 2a), the double line in the multiple-
now introduce the ICPA by restricting the states within theScattering graphs is the propaga®t when the solid dot

configuration space® —|f){f| to the single-fluctuation
states, the notation for which is given by Ed4). Making
the site and Cartesian indices explicit, we obtain¥an Eq.
(20), under this restriction,

refers to sitd. We obtain thatinerant CPA by allowingK’,

K'T, andV to include force-constant disorder as well and
therefore defect itineration in Eq&6)—(28). This closed set
of equations defines our single-site, self-consistent, multiple-

214206-5



SUBHRADIP GHOSH, P. L. LEATH, AND MORREL H. COHEN PHYSICAL REVIEW B6, 214206 (2002

scattering theory which, when solved, yielBls InsertingF These matrices, for example, for an fcc lattice, are of dimen-
into Eq.(20) for 3 and the result into Eq15) then yieldsG.  sion 39<39.

It is already known that Eqs(15),(20),(26)—(28) have a In order to evaluat&(®) we rewrite Eq.(27) as

unique solution which yields a Herglotz average Green’s -

function!® A major difference between this and previous GO=[(Gyea) T -ZO] 1=[((G)) T+ZX@] L, (35)
generalizations of the CPA is that for scattering from single-

SO0)= (3 _3(0) iti 2 > (0)
site fluctuations with off-diagonal and/or environmental dis'\c,:v(?ri:;nzsonl Er?osezsc)a.ttgrri]ﬁ SCSVT]?(I:tll]OQi?fl]esresliaer?(e)II”gﬁ d with
order, as is considered here, the matrix representation of thé Y 9

~ i N a perturbation caused by a fluctuation at site 0. Thus, to
operatorV has elements which transfer or itinerate the fluc-o,,5juate the self-consistent propaga®®, we need to

tuation from site to site. This feature causes the self-energy,, .., ((G)). But ((G)) is obtained from Eq(15), which
to have nonzero off-diagonal elements in real-space exteng, ' ’

. . ; ecomes

ing across the sample and thus contributes importantly to

such quantities as the two-particle vertex corrections in a SVV — N-1lovay]-1

way the CPA canndt {(G(@))=[Gyeald) "=2(aD] 7,

It now remains to solve these equations, making use of . L

the translational symmetry of the augmented-space opera- (G =N"1X ((G(q)))e 'R, (36)

tors. We accomplish this by Fourier transforms on the a

fluctuation-site labels After reaching self-consistency by the procedure described
below, we use these expressions to calculate densities of

A(a)mn: NflE AI(Q(rL'I),+ne7id-F3”r (29) states and s_p_ectral functions.~ _

N ' The conditional self-energ®(®) can be broken up into
two contributions:(i) Scattering that starts from a defect at
site 0 and ends at sifeand (ii) scattering that starts atut

, e ends at 0.
A =N A@Q) R (30) This decomposition results in
q

and

where R, is the lattice vector connecting the fluctuation (=2 [K'©@.FO0). K/ T0) 4K’ 1). FDO). K TO)]

sitesl andl’, mandn are neighbors ofandl’, respectively, y

and theq sum is over the Brillouin zone. — KO, FO)©). g 10, (37)
We can also effect Fourier transforms on the site indice

themselves. That of the self-energy is SI'he last term is subtracted to avoid overcounting whei.

In a block notation similar to that of E¢12), we have

3(g)=N"1> 3,6 %R, (31) <o [ ¥
i 3= Ej;, 0/ (38
From Egs.(20), (25), and(29), it follows that
G(lo) GO
> - ,T(O) P G(O): (0 30 [} (39)
S@)= 3 KRF(@mK e (32 GlO G
,m,n,p
In this notation, Eq(26) becomes (G~ G1 Gz “0)
Gl G,/
e _ 0 OR7(~ = ~
F(q)mn_GEnr)l—i_;p: GV (A)rpF (@) pn- (33 where, for a general operatdr, A, begins and ends with

scattering about site @, neither begins nor ends with scat-

_The Cartesian_ indices here are implicit so that each quantityering about site 0 anAS(Ag) begins(ends with scattering
is a 3X 3 matrix. at the site 0 and end®eging with scattering about a site

Since the range of interaction in real-space is finite, thedifferent from 0. The ternE,, is 0 sinceS (© must begin or
perturbationsk’() and V(q) are finite matrices, nonzero end at the site 0. From E35), we have
only over a finite set of real sites. For example, if we con-
sider nearest-neighbor perturbation only in a single-site ap- GO=(GY)(1+3OG))) 1, (41)
proximation, the\7(ﬁ) andK’ are 3¢+1)x3(Z+1) ma- which leads to
trices whereZ is the number of nearest neighbors. This is the

minimum matrix size necessary to exhibit all the impurity GO=X[1+(3=3..G, - 3HX+3..GITL (42

modes or states about each fluctuation site. ! [1H(217 25 Gp- 2) 3Gl (42
In full matrix notation, we obtain where

F(q)=[GO1-¥(q)] % (34) X=(1+G3-2))'Gy, 43
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after a lengthy algebraic analysis which was previously (5) If the results of step$l)—(4) are acceptably close to

given in Ref. 18.

In order to evaluate these expressiéhsie need to cal-

culate four termsG;,3;, G331, and2;G,31. The first

those of the previous cycle, stop. If not, use as input to step
1 and iterate.
The iterations are done till self-consistency is achieved for

term X, is just a finite sum of finite matrices and can be eachq point in the Brillouin zone. In the process of achiev-
evaluated directly, but the other two terms involve sumsing self-consistency, one calculat§$s)) in both real space

which range over all sites in the solid and must be evaluated,q inﬁ space; each is needed to obtain densities of states

by Fourier transforms. This is done in the following way:

"(m) "1(0)
(GaZ3w=2 2 ((G(@™)))me K FoTniK,

m+r,m+n t

=2 (G2

which becomes

1 s T e -
(GaS = = 2 (G(@))T M (d) = (G1Z1)v
q r
(44

and, similarly,

1 - - -
(3363t =15 2 M(@u(G(e)))ed ' M(q), v

q,rr’
— (216131431632 + 33613 ) v
(45)

where

"1(0)

- "0 _ .
M(d), =2 K F(@nK (46)
nl t

and spectral densities, respectively. In the next section, we
describe how these are used to calculate physical quantities
of interest and discuss their significance.

IIl. IMPORTANT QUANTITIES; SUM RULES

In this section we derive results for important physical
guantities such as the densities of stdjeartial and total
spectral densitiegpartial and totgl and inelastic scattering
cross sectiongcoherent and incoherenivhich enable us to
make direct comparisons with experimental measurements.

A. Densities of states

The total density of states for a three-dimensional system
is defined as

1
V(@)= g Im{TH{(m- G(?))}, @7

wherem is the mass matrix and is the number of sites. In
augmented space we have

((mG)y; =(if|m-Glif),
=(if|m|if)(if|Glif)+(if|m|if)(if;|G|if),

=mGgo+ m'(if | Gif). (48)

In these equations, 0 is the index of the single fluctuation-sitdo evaluate the second term, we use the notation of E).

in considerationr,r’,t,t’,1,n are the neighboring sites of 0; for the operator$s andK =G 1. Then, using Eq(18), we
andm,m’ are general sites in the sample. So, it is clear thabbtain

one needs to work only on matrices of sizez3(1)x3 (Z

+1) and use the Fourier transform of operators to handle the

(if)|Glify=G"T=—K1.K'".G=-F-K'"-G. (49

itineration of the fluctuation throughout the entire sample. An

interesting point to note is that the quantiti&g,Eg and

23622;1; represent the scattering and itineration of the dis-
turbance including the effect of the off-diagonal and environ-
mental disorder. In case of diagonal-disorder only, they van-
ish giving G{¥=G,(1+3;)~%, which is the CPA self-

We can, therefore, write

161N =-3 3 FPOK (G},

j,n

Fourier transforming over the fluctuation site according to

consistent propagator, and the self-consistent set of equatioiEs). (29) gives

reduces to the CPA equations.
The inputs to the self-consistency cycle &8),,=G,ca

(or some better guesK’, K'T, and\~/(ci). The procedures
for evaluating the latter three quantities are given in the Ap

pendix. The cycle consists of the following steps.

(1) Calculation ofF(ﬁ) using Eqgs.(33) and(34).

(2) Calculation ofS(q) using Eq.(32).

(3) Calculation of ((G(q))) and ((G(w?))) using
Eqg. (36).

(4) Calculation of G{¥) using Egs. (42), (43), (44),
and(45).

N 1 - A
<ifi|G|if>:_N|§j: > F(q)oyl-,|e'q'Ri'Kj_|n_l((G>>m.
)N q '

The Fourier transform of(G)) on the real-site index now
gives

<ifi|é|if>=—$”2n 2
qq

+

XF(@)oj- €K | (G(G))e .
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Finally we obtain - 1 )
((S(0,®)))cor= 2 deds —IM((G* (,0))), (56)

~ - o= -
(iti[Glif)= _mEp > F(domK & Re((G(a))), whered, is the coherent scattering length for the spesies
a The conditional Green’s functions are defined as
wherem=j—1, p=n—1, the neighboring sites perturbed by 1
the fluctuation. All the terms on the right hand side have <<Gss’(a’w2)>>:_ E ((GSS'(wz)))--e*‘i"iii,
been calculated already in the process of achieving self- N .
consistency. The evaluation of the average density of states is

thus straightforward. (G ()i =((mG(w?) 7))
The partial density of states for atoms of typés given L AsA g e e AL
by =(if[Gw |jT)=(if[7]if)(if[GC]jf)
m (it 1)+ ([l Glit)
V(w)5=ﬁIm{Tl‘((G(wZ)Ss»ii}, (50) e g Al
Xy [36) + (it [ag]if)(iE[Glif )
where Rl I RSlie N ie | AL
X(jfila [if)+ (i [ ]if)(i65|Glif )
G9)ii=((G*9) o= (0f| 75 G|Of 51 o ng
((G®9)ii ={(G*9)oo=¢( |770 | ) (51 X(ij|77};|lf>- (57)
because of translation invariance. We thus have In Eq. (57) the indexx is to be understood. These four terms
R R include all the possible scattering processes when two differ-
((G®))o=((G>%)no=(0f| 75| 0f )(Of |G| Of) ent sites are occupied by two species. The four different
R R terms involve calculations of the Green’s function under
+(if | 15| 0f 0){Of o| G| OF ), (520  various circumstances of coupling between the average and
) the fluctuation states weighted by the appropriate concentra-
and, from Eq.(11), it follows that tions.
We obtain from Eq(57)
Ma - ~ R
v()a=— 5 IM[cA{(Of[G[OF)} + Veaca{(0fo| G|OF)}], ((G¥'))y; = coCer(if| Bl

+cerVeg(1—cg)(— 1)AmXif | Gljf)]
+[CevCe (1 Co)(— 1) )if |G jf )]

Sins'y, - A
The elements o6 in Eq. (53) were already evaluated while ey (1) )<'fi|G|]fJ>' (58)
calculating the average density of states above. The integern?® is equal to 1 ifs=A and is equal to 0 i
The partial Green’s function§ G%)), are used in calcu- =B.
lating the incoherent scattering structure factor which is di- These terms can be easily calculated using Fourier trans-
rectly measured in the experiments forms as has been previously demonstrated for the density of
states. The final forms of the conditional Green'’s functions in

<<Sncoh((§aw)>>:§s: b23-IMm((G%(w)))o-O, (54) 9 spaceare
((GM(@,0%))) =ci((G(d,0%)))

W(@)g=— 52 IM[Caf(0F|G|0f)}— Veaca{(0fl 60N} .
(53

wherebyg is the incoherent scattering length for atoms of type

sandQ is the phonon wave number. +CaVCACR(T1+ T2) +CaCT3,
B. Spectral densities <<GBB(6'“’2)>>=Cé«G(a’wz)»
The average spectral function is defined as —CgVCACR(T1+ T2) +CaCsT3,
, 1 " ((G"®(0,0%))) =cacs((G(g,0)))
({(An(g,0%)) = —Im(G\(,0?))), (55)

+CaCr(CT1—CaT2) —CaACT3,
where \ is a normal-mode branch index. More interesting BA, = 2 -
quantities to calculate are the conditional or partial Green's  ((G~"(4,0%)))=caCs((G(d,®%)))

functions ((G% (q,0?))) in q space because these enable — JCrCa(CaT1— CTa) —CaCsTs,
one to calculate the coherent-scattering structure factors

which are measured directly in the neutron-scattering experi- (59)
ments and are given by where
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I - frequencies. Thus, the weighting of t88% by the scattering
Tl:% Fon(Q)K €4 n((G(g,w))), lengths will not shift the peak positions significantly even
when the scattering lengths differ appreciably though the in-
. - . tensities and the line shapes 8f,, and ImG may differ
T,=2, ((G(d,0?)))e "9 RK/ Fro(a), significantly. In summary, the structure factor fairly accu-
nm rately reflects the phonon dynamics containedimvith re-
't gard to the dispersion curves, an important fact illustrated
Te= Foo(ﬁ)+ 2 2 FOn(ﬁ)K below in the next two sections where we present our calcu-
nm “Tp nm lations on NisPdis and NigPts alloys.

><eiq.Rm<<G(a,w2)>>e*iq~RlKl'pro(ci), (60) IV. APPLICATION TO Ni sPds:

and wheren, m, |, and p are the neighboring sites of the WEAK FORCE-CONSTANT DISORDER
fluctuation site O influenced by the perturbation. For the lat-
tices with each site having inversion symmefry=T, holds

becausel'; and T, are the contributions from two processes
which are conjugate to one another. In that case

In NiggPdys5 alloy, the mass disorder is much larger than
the force-constant disorder. The mass ratyQ/my; is 1.812,
whereas the Pd force constants are only about 15% larger
J A S B than those of N#22%In NisPts alloy, both the mass disorder
(G0, 0%)))=((G*(q,»%))) whency=Cg. _ and the force-constant disorder are large, providing an inter-
The sum rules for the conditional Green’s functions aregsting contrast between the two materials. For both the cases
derived the following way: IntegrateG(w?), Eq.(2), along  we have done our calculations on 2@0points and have
the real axis, closing the contour above at infinity, obtainingused a small imaginary frequency part f0.01 in the

Green’s function. For the Brillouin-zone integration 356
f# do 0G(w?)=m1mi points in the irreducible 1/48th of the zone produced well
converged results. The simplest linear-mixing scheme was
or used to accelerate the convergence. For both cases the num-
ber of iterations ranged from 3 to 13 depending on the fre-
quencyw.

For NissPds5, we compare the results of virtual crystal
(VCA), CPA, and ICPA computations, using the ICPA force
Similarly, using Eq(57), taking the Fourier transform of Eq. constants to construct the averages used in the VCA and CPA
(58), carrying out the contour integral, and inserting EB)  and compare the results with experiment. We make a distinc-

f dw2w ImG(w?)=m~ 1. (61)
0

yields the sum rule for the partial spectral functions tion between that use of the VCA and of “mean crystal”
c models in which the average mass is employed and a set of
f dw2e Im((GSS'(ﬁ,wZ)» — Seq - (62) mear)-crystal force constants are fitted as parameters to the
0 mg experimental data.

Kamitakahara and Brockhousivestigated NjsPd,s by
inelastic neutron scattering and reported a strange observa-
e © tion. A theoretical calulation based on a mean crystal model
_A+_B). (63  having the average mass and fitted force constants between
My Mg those of Ni and Pd agreed closely with the experimental

] ) ) . dispersion curves. This was quite a puzzle because it sug-
The experimental dispersion curves are obtained from thgested that the large mass disorder had little effect. There

wave-vector dependence of the peak frequencies of the strugzere theoretical studies on this system using recuféiand

ture factors as measured, after a deconvolution of the experjne average-matrix approximatiorf> but no theoretical re-
men.tal resolution functi_on. The gue;tion is whether the disy|ts for the frequencies were available. In an attempt to
persion curves so obtained, which incorporate the effect o§gve this puzzle, we have carried out calculations with the
the coherent scattering lengths, differ significantly fromcpa the ICPA, and the VCA, as well as with the mean-
those obtained from the peak frequencies of the Green’grysta| model used in Ref. 3.

function itself which gives, in principle_, a proper de_scription For the ICPA calculation, we assumed that the explicit
of the dynamics but does not contain the scattering lengtcattering caused by the force-constant disorder was confined
weighting. To answer that question one needs to recognizg the nearest neighbors. This assumption is justified because
that the peak positions in I@ are very closely related to the the nearest-neighbor force constants are an order of magni-
zeroes of R&™* at a given wave vector. If we diagonalize tde larger than those of the further neighbors so that the
the Hermitian R& ™" both with respect to mode and species nearest neighbors feel the effect of disorder most strongly.
index, each of the two species components ofaRé will  For the virtual crystal or the average medium into which the
have a zero. Correspondingly, each of the two components @fcattering was embedded, we kept terms in the Hamiltonian
Im G will have a peak, if In® does not wipe it out. So, in yp to the fourth neighbor, which turned out to be sufficient.
the species representation, the different matrix elementshe problem with force constant disorder-scattering calcula-
ImGS® will thus all have these peaks at nearly the sameions is the general absence of prior information about

For the total Green’s function we obtain

fowdew IM((G(q,w?)))= 1
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@) lengths for Ni and Pd. We could thus make a direct compari-
son with the experimental results because the neutron data
L %% observed in the experiments inherently incorporates the ef-
VR fect of the scattering lengths of the species.
~LR o Excellent agreement of the ICPA with experiment was
£ o % J ] obtained for all three symmetry directions and for each
branch by varying only one parameter in the force-constant
/0 SN} }ﬁ/ T matrix. This suggests that the force-constant disorder is weak
' and the system is dominated by the mass disorder, as one
9 1T, would expect from the numerical values of the parameters. It
90 527 is confirmed by the results of the CPA calculations shown in
B ;}%;q_go L s the bottom panel of Fig.(8), using the same force constants.
As in the top panel, the solid lines are the CPA results, the
9/ o R 9 g circles are the experimental points, and the dashed lines are
3P 1] T, ‘b\\Q‘\\ //04,65 ° the VCA results. The agreement with the experiment again
v

v(THZ)

T suggests the dominance of the mass disorder, but there are
0 L more interesting points to note. In the long-wavelengpv

ﬁ) regime, the VCA, the CPA, and the ICPA curves are in-
distinguishable because the self-averaging of both mass and
1448 force constants over a single wavelength reduces both the
CPA and the ICPA to the VCA. But, as we move to high
e wave vectors, the VCA deviates to frequencies below the
Lo o] L&‘i\,@&a\\ L ;? e experimentally observed ones. This fact is due to the use of
5 A an average mass in the Hamiltonian. In the high-wave-vector
S 4 region, the lighter atoms, i.e. Ni in this case, dominate and
? 40 1 T OB B push the frequencies up. That is why the CPA and the ICPA
/?5 T R\ N ?’//50" ] agree very well across the Brillouin zone while the VCA fails
V4 AN é/ T for the high wave vectors. The reason that Kamitakahara and
i 1 ' C‘ 0 05 Brockhouse got a very good fit to the experimental points in
Ref. 3 by using their mean-crystal model is that they ob-
FIG. 3. (a)(Top panel Dispersion curvesfrequencyw Vs re- tained parametriz_ed force constants which were higher than
duced wave vector) for NigPd,s calculated in the ICPAsolid ~ those calculated in the VCA. Though they had used the av-
line) and in the VCA(dashed ling The circles are the experimental €rage mass in their calculations the higher values of the force
data(Ref. 3. (Bottom panel Dispersion curves for NiPd,s calcu-  constants(They used®=c,®,5+ cg®Pgp rather thand
lated in the CPA(solid ling) and in the VCA(dashed ling The  =c3 ,d,+c3pPga+2caCa®Pap) compensated for their
force constants used are given in the text. The circles are the eymission of the effect of the mass fluctuations. This is illus-
perimental dataRef. 3. (b) Dispersion curves for NiPd;s calcu-  trated in Fig. 8b). There, the dashed lines are their mean-
lated in the CPAsolid line) and in the mean-crystal modelashed  .ystal model calculations, the circles are the experimental
line) using the force-constants of Ref. 3. The circles are the eXpe”boints, and the solid lines represent a CPA calculation with
mental datgRef. 3. the force constants used in Ref. 3. Here we see that the CPA
) . yields frequencies that are too high in the large wave-vector
species-dependent force constants. We note that Pd is thggion. The CPA captures the effect of the mass fluctuation
larger atom here. In the alloy, the Ni-Pd separation is largeqng the domination of the Ni atoms for higher wave vectors,
than the Ni-Ni separation. As a result, the Ni-Pd force con+,;; he higher values of the assumed mean force constants
stants should be less than the Ni-Ni ones. Using this intuitivgcreases  the frequencies further, thereby worsening the
argument and for simplicity in this illustration, we kept the 4greement with experiment. Another striking feature is that
Noni and ¢pg pqthe same as those of the pure mateffals i spite of incorporating the scattering lengths in our calcu-
and reduced the ¢ifny below the #ify by an |ations there was little change in the ICPA results with re-
ap-independent factor. The dispersion curves were obtainegpect to the CPA results even though the coherent scattering
from the ICPA calculations using{feq=0.7¢nfy (solid  lengths of Ni and Pd differ significantifthe coherent scat-
lines) for the nearest neighbors and using the force constantgring length for Ni is 1.03 while that of Pd is Q.6This lack
of Ref. 3 for the higher neighbors. They are compared in thef change can be understood from a comparison between the
top panel of Fig. 8) with the experimental resuftgopen  partial and total spectral functiofifig. 4a)] and the partial
circles and the VCA for the same force constaftashed and the total coherent structure factdFsg. 4(b)]. In these
lines). These ICPA dispersion curves were constructed byigures, we have shown examples of ICPA spectral functions
numerically determining the peaks in the coherent scatteringnd structure factors along th¢Z,0,0] direction ¢
structure factot(S, (g, )))cen given by Eq.(56), whichwas  =|q|/|qmad, for a low, medium, and hight. In each case,
calculated using the partial spectral functions of E@®) the peaks corresponding to the dominating species and that
and (60), and weighting them with the coherent scatteringin the Ni-Pd curves occur at the same general positions. For

—~
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(a) [€go1

[1,0,0]L [01.0.0]T 2 L 1

14aq]

2 4 o ©o®

Arbitray scale

Width(THZ)

V(THZ)

®) FIG. 5. Disorder-induced FWHM’s in NiPd,s calculated in the
[1,0,0]T ICPA(solid line) and in the CPAdotted line using the force con-
stants of Fig. 8). The circles are the widths extracted from the
experimental result$Ref. 3. The filled circles had better experi-
mental resolution.

[1,0,0]L

often manifest the effect of disorder more directly than do
the frequencies. Kamitakahara and Brockhouse extracted full
widths at half maximg FWHM) from their neutron groups
by assuming that the observed line shape could be ad-
equately approximated by the convolution of a Gaussian
resolution function(representing the experimental resolu-
tion) with a Lorentzian natural line shape. Thus, for a com-
parison of our results with theirs, we have fitted our structure
factors to a Lorentzian to extract the widths. The results are
shown in Fig. 5. Generally, there is little difference between
the widths obtained in the CPA and the ones obtained in the
V(THZ) ICPA. In all three symmetry directions and for all branches,
. ) . the ICPA performs slightly better than the CPA for high wave
FIG. 4. @ Partial and _total spectral _func_tlon_s ca_lculated in the vectors. Tphe worst aggree)r/nent with the experiment ig for high
ICPA for various{ values in thg ¢,0,0] direction in NksPd,s. (b) . I
Partial and total structure factors calculated in the ICPA for variou wave vectors in the[£,0,0] and [£,£,¢] longitudinal
¢ values in thd £,0,0] direction in NisPd,5. The solid lines are the Soranc_hes and thef, £,{] .transyerse branc.h' Iese cases,
total contributior; ’the dotted lines ;re tsh'e Ni-Ni spectra, the Iong-t.he high values of the widths in the experimental determina-
dashed lines are'the Pd-Pd spectra, and the dot-dashed’ lines are ﬂ?ens can be understood .fro”? the shape of the structure fac-
Ni-Pd contributions. The details are given in the text. The left ors. Fr(_)m the example_s in Fig. 4 one can see that the agree
(right) column is for longitudinaltransversgemodes. ment with experiment is good when we have a symmeitric
line shape, for example, for thgd.5,0,JL mode. On the
example, in thd0.3,0,0-L curves, the peak in the spectral other hand, the worst agreements with the experimental
function is mostly that of Pd atoms while for th@.5,0,03-L widths are for cases where there are highly asymmetric line
and[1,0,0-L curves, the contributions are from Ni atoms, shapes, for example, for thé&,0,0]L mode. Fitting Lorent-
the Pd-Pd contribution here is much less and that too is alzians to such asymmetric line shapes is not conducive to
most completely neutralized by the Ni-Pd contribution in themeaningful values of the FWHMSs. Also, because they obtain
low frequency region. The coincidence of the peaks of thénigher widths than the theories in those particular cases
Ni-Pd spectral functions and those of the Ni-Ni or Pd-Pdwhich have worse resolutidiopen circles in Fig. § it is not
spectral functions almost at the same position across the Britlear that this discrepancy is significant.
louin zone suggests that the inclusion of scattering lengths The discussion above clearly tells us that fogdRt,s,
would primarily alter the relative weights of various contri- the dominant effect is mass disorder. That alloy therefore
butions and thereby the line shapes, while the dispersiodoes not provide a proper test of the ICPA. Nevertheless, our
curves would hardly change. This is demonstrated in Figdiscussions have shown how a mean-crystal model can com-
4(b). One can see that the weighting affects primarily thepensate for the neglect of mass fluctuations in alloys with
peak heights. These explicit numerical results confirm thdittle force constant disorder through the introduction of er-
qualitative argument given at the end of Sec. Ill. roneous mean force-constants, a classic case of cancellation
The disorder-induced widths are important because thegf errors.

Arbitray scale
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FIG. 6. (a) Incoherent neutron scattering structure factor vs fre- 0

0 1 0 0.5
guency calculated in the ICP&olid line) and in the CPA(dashed e

line) in NisgPtsg (b) Same plot aga) in the ICPA(solid line) and

experimental resultéRef. 4) (dashed ling FIG. 7. The solid lines are thie branch in all the three panels,

the dashed lines are tfiebranch in the left and the right panels. In
V. NisPts; the central column, the long-dashed curves are Tthebranches
STRONG MASS AND FORCE-CONSTANT DISORDER while the dot-dashed curves are tfig branches. The shaded re-
. . gions span the FWHM’s. The circles in the left panels are the ex-
The mass ratianp,/my;=3, is much larger here. The perimental datdRef. 4. The filled ones are those with better reso-
force constants of Pt are, on an average, 55% I&dBan  |yton and accuracy(Top panel Dispersion curves for NPt
those of Ni. This makes it a potential ﬁxample of strongcajculated in the ICPA.(Bottom panel Dispersion curves for
force-constant  disorder.  Tsunodeet al” investigated N Pt calculated in the CPA. Here, the shaded regions in the left

Ni,Pt,_ by inelastic neutron scattering and compared theifane| span the FWHM's. In other two panels the thin dotted lines
observations with the CPA. Here, for illustration, we havegenote the FWHM:’s.

consideredk=0.5 only, because this is a concentrated alloy
and the failure of CPA was very prominent at this concentra- )
tion. They compared their incoherent scattering data witHeutron structure fact¢Eq. (54)] with those of the CPA and
that of the CPA which predicted a split band separating outhe expenmen_‘t. The CPA shows a split-band behavior,
Ni and Pt contributions with a gap between thEfig. 6(a)]. cI_earIy separating t.he Iow_ frequency Pt contribution from the
The experimentgFig. 6(b)] did not reveal a split band, and it high frequency Ni contribution. The overall contrlbgtlon
was very clear that the interspecies forces play a significarffom the Pt region is much less than that of the Ni region in
role. We performed calculations with the CPA and the ICPA this system because Pt has a much lower incoherent scatter-
As before, we used the ICPA force constants in the CPA. Théng lengttf than Ni, 0.1 in comparison to 4.5 for Ni. Includ-
choice of ICPA force constants was more difficult than foring only mass fluctuations and ignoring the Ni-Pt correlated
the NiPd because of the larger size difference between Nfotion gives rise to this spurious gap in the CPA resullts as is
and Pt. In this alloy, the Ni-Pt separation is also larger thaﬁ‘ur_ther discussed below in connection with the c_oherent scat-
the Ni-Ni separation. As a result, the Ni-Pt force constantdering results. On the other hand, by incorporating the force-
should also be less than those of Ni-Ni. Moreover, a pair offonstant disorder, as is done in the ICPA, we get rid of this
Ni atoms would find themselves in a cage partly made ofPurious gap and obtain good agreement with the experimen-
larger Pt atoms which would therefore reduce the Ni-NiFal results, including the position of the rlght band edge. The
force constants relative to their values in the pure materiafinfluence of the force-constant disorder is demonstrated more
Similarly, the bigger Pt atoms find themselves compresse@rominently in the dispersion curves and the line shapes.
between much smaller Ni atoms, which would increase the N Fig. 7, we compare the dispersion curves and widths
Pt-Pt force constants with respect to their values in pure p@btained in the ICPA from the coherent scattering structure
Using this intuitive argument, we found that the following factors, using t'he force constants as given above, with those
guesses for the force-constants worked Weél{! ni, Prr.pe in Ejhe %PQ using the a\t/elrageé,1 t(;;‘ht_hﬁ same fo_:cEl-consltants,
27 2z and with the experimental res ich are available only
mhz;iglriglnd :;]PJ” are kept the same as those of the PU % or the[£,0,0] directions. The ICPA agrees much better with
the experiments than the CPA for both the longitudinal and

A Ni= m_Ni:o,gqsﬁi‘(pure), the transverse b_ranches. The CPA frequencie_s are generally
below the experimental ones at low frequencies and above

dhrp= boer= 1- 1B purey the experimental ones at high frequencies. The discrepancy
g g gets worse as we move from the middle of the zone towards
dnip=0.8pyiyi  forall a,pB. the zone edge. This is because the high wave-vector region is

In Fig. 6, we compare the ICPA results for the incoherentdominated by the lighter Ni atoms. The severity of this effect
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@ weighted by the coherent scattering lengths of the species.
H00L [1,000T The coherent scattering lengths of Ni and Pt differ by only 7
% (the scattering length of Ni is 1.03 while that of Pt is
0.95. However, even this small difference produces signifi-
cant changes in the line shapes and in the peak frequencies.
A close inspection of the various contributions reveals that
unlike in NiPd, the Ni-Pt contribution plays the key role in
determining the weight in the middle of the bafahd in
obtaining the merged bands in Fig. & well as adding or
subtracting weights to the Ni-Ni or Pt-Pt contributions, thus
elevating or suppressing one of the peaks. For example, in
Fig. 8@), in the [0.5,0,JT curves, the Ni-Pt contribution
adds weight to the total spectral function on top of the Pt-Pt
peak at the low frequenies while it subtracts weight from the
Ni-Ni contribution at higher frequencies thereby causing a
weakly defined peak at high frequencies. In fl@e5,0,JL
v(THZ) and in the[1,0,0]T curves, the Ni-Pt contribution adds
®) weight between the Pt-Pt and Ni-Ni peaks, thereby removing
the gap in the CPA spectrum. The Ni-Pt contribution is to-
tally due to inclusion of force-constant disorder, since diag-
onal disorder produces no such contribution. The effect of
j incorporation of the difference in scattering lengths can be
S > : LS i seen from these two figures as well. For example, in the
' [1,0,0]T curves, there are two well-defined peaks in the total
spectral functions, whereas the low-frequency peak is trans-
formed into a shoulder in the total structure factor. This is
because Ni has the larger scattering length which enhances
. . . the weight associated with the Ni-Pt contribution thereby
(2000 (3007 cancelling more effectively the contribution from the Pt-Pt
part. Similar effects are seen in th@.5,0,JL and[1,0,0]L
curves. Moreover, this weighting sometimes produces a
0 weakly defined peak whose FWHM cannot be well deter-
3 5 mined, which explains the observed washing out of the dis-
V(THZ) persion curves noted above. The effect of the small differ-
ence in scattering lengths is amplified by the force-constant
FIG. 8. (a) Partial and total spectral functions calculated in the disorder through the Ni-Pt structure factor which plays an
ICPA for various{ values in thd £,0,0] directions in NigPts. (b) important role here.
Partial and total structure factors calculated in the ICPA for various  In sum, the force-constant disorder plays a significant role
¢ values in thd £,0,0] directions in NigPts,. The solid lines are the  in NiggPtsp, and a theory with mass disorder only fails both
total contributions, the dotted lines are the Ni-Ni contributions, thequalitatively and quantitatively in such cases. On the other
long-dashed lines are the Pt-Pt contributions, and the dot-dashethnd, the ICPA successfully explains the effects of force-
lines are the Ni-Pt contributions. The details are given in the textconstant dlsorder through |ts eﬁect on the part|a| structure
factors, and demonstrates the relative importance of the con-

can be understood from the widths as well. In the CPA, thdributions of various atomic species to the coherent and in-
experimental points stay well outside the disorder-induced:Oherent structure factors which the CPA cannot. The ICPA

widths centered at the peak frequencies. The discrepancy #d the NyPtso system therefore provide a proper test case
substantially reduced by the inclusion of force-constant disfor force-constant disorder and show that the ICPA can form
order, as is seen from the ICPA results. Its inclusion change8 basis for understanding the lattice dynamics of other binary
the dispersion curves qualitatively as well. In the CPA, thealloys.
bands extend fully across the Brilluoin zone for all symmetry
directions while in the ICPA, the Pt-dominated peaks disap-

pear at hight and the Ni-dominated peaks wash out at low

for all modes and symmetry directions, an effect observed in We have presented a straightforward and tractable formu-
the experiments. This is a clear consequence of the forcdation of the KLGD (Ref. 18 method for single-site scatter-
constant disorder which can be understood by inspecting thiag of phonons in three dimensional lattices. We have dem-
spectral line shapes. In Fig(a88 we present the partial and onstrated how this multiple-scattering based formalism
the total spectral densities for three different wave-vectorscaptures the effects of off-diagonal and environmental disor-
In Fig. 8b) we present the partial and the total coherentder. The use of augmented-space to keep track of the con-
scattering structure factors i.e., the spectral functiondigurations of the system has made the formalism simple yet

Arbitray scale

[1,0,0]L

N
e .'zﬁéNA -
-
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powerful. The resulting translational invariance makes it nu- a b O

merically tractable as well. In addition, we have derived the

partial Green’s functions in real space as well as partial spec- $(000530)= b a 0f. (A2)
tral functions and their sum rules. This enables one to make 0 0g

direct comparison with neutron scattering experiments be- . .
cause of the incorporation of the scattering lengths of the' h.e force-constant matrices between the atom 0 a_nd its other
different species. We have applied the formalism to real ranpelghbors can easily t.)e calculated from E42) via the
dom alloys. In NisPd,;s we have demonstrated that massCUb'C symmeiry operations. The results are

disorder plays the prominent role, and the CPA consequently . Txx

does a rather good job whereas the mean-crystal model rec; L i‘JYB:me—SD)l‘X— 4D, ifi=j,a=p,

quires erroneous fitted force constants. Our partial structure

factors enabled us to understand the insensitivity of the nor- =0 ifi=j, a#B,

mal modes towards the difference in the coherent scattering

lengths of the two species despite the significant difference XX

of 43% in this system. The MjPt, results demonstrate the =D, ifi=0,j=n=1-12,a=4,R{"=0,
prominence of force-constant disorder even in a case where

the mass ratio is 3. We have clearly demonstrated that for =D¥ ifi=0,j=n=1-12,a=8, R*#0,
systems such as NiPt, where the force constants are strongly ! !

species dependent, the determination of their values is cru- =2Rj“><2Rjﬁ>< DY ifi=0,j=n=1-12,a+#p,

cial. However, we had no prior information about the species
dependence of the force constants. Intuitive arguments led to

a set of force constants which turned out to be quite good. A =0 otherwise (A3)
better understanding of the role of disorder in the lattice dy-and
namics of random alloys could be achieved with prior infor-
mation about the force constants. These could be obtained, (G,5){#=(G,0){#=(G, )" foralli, j, a, ands.
e.g., from first-principles calculations on a set of ordered ]
rap r 2 XX XX s H
ACKNOWLEDGMENTS (K)j"=m'w"=8D3"=4D, ifi=j=0,a=4,
We thank Professors David Vanderbilt, Gabriel Kotliar, =0 ifi=]=0,a#p,
and Karin Rabe for useful discussions and for the use of their
computer systems. We thank W. Kamitakahara and R. Nick- XX ) "
low for useful communications regarding their experimental =D, ifi=0,j=n=1-12,a=4,R{'=0,

results.
=D3" ifi=0,j=n=1-12,a=4,R{'#0,
APPENDIX: MATRIX ELEMENTS =2RJ-“><2RJ-B>< DY ifi=0,j=n=1-12,a% 8,
For the calculations in the nearest-neighbor approxima-
tion, one needs to evaluate the(Z+ 1)}? matrix elements = —(K’)gf ifi#0,j=i=n=1-12,
of the operator’, K'T, \7(&), andG;cla and use them as
inputs. These evaluations are done in augmented space using =0 otherwise (A4)
Eq. (14). The symmetry of the lattice structure is used to nd
reduce the number of matrix elements evaluated. Here, w
ive results only for an fcc lattice. All the matrices are, there- NaB_ (wryaB_ (i1 Ba -
?ore, of dimens)i/on 39 39. (KDP=(KDF= (K" foralli, |, @, andp.
In an fcc system, each atom has 12 nearest neighbors with
coordinates £ 3,+ 3,0), (+3,0,+3), and (0 3,* 3) with
respect to the coordinates of the reference atom at (O,O,O}Q(a)qul_a
The force constants, between the atom 0 and its neighbors® """
satisfy the following cubic symmetry relation:

Similarly, we obtain
ifi=j=0,a=p,

=4D3’sin(q,)sin(q,) ifi=j=0,a# B,

b6l =61 = b= dok (A1) =Ds ifi=0,j=n=1-12,a=8,R*=0,
whereRy; = — Ry, andk and] are two neighbors on opposite =D¢ ifi=0,j=n=1-12,a=pB,R}'#0,
sides of site 0. For example, the force-constant matrix be-
tween the atoms (0,0,0) and,§,0) is of the form =2R"x2RxD; ifi=0,j=n=1-12,a#§,
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=D,/-D{™ ifi#0,j=i=n=1-12, D, *=CaCa(gaat Uss) T (Ca+C3)0ns,
a=B,R*=0,

' D}Y=caCa(baa+bgp) +(Ca+C3)bag,
—D¥-D¥ ifi£0,j=i=n=1-12, )

— XX__ XX XXAiq-R

af, RE£0, Ds=(D7"—Dy")+D3%
=2R*x2RFx (DY~ DY) ifi#0, Dg= (DY~ D)+ DYl Ry,
j=i=n=1-12,a+ 4,

- D7_(D/xx /XX)+D/XX |q R
_DéXXelq-Ri ifj#i=n=1-12,R;=—R;,

a=p,Ri=0, L= (m—m)w?—8(D}*~ D)~ 4(D{*~ D

3 3 —4D¥Ycosq,(cosq.,+ cos
= - D%l R ifj#i=n=1-12,R;=—R,, 3 1€0s0,(c0sq, ds)

—4D3%cosq.cosq;; v,0#a. A6
a:ﬁ,Rl—aiO, 3 q Qs ¥ a ( )
— _Déyeid-ﬁiszqszﬂ if j£i=n=1—12,R, The symmetries of the force-constant matrices are reflected
! ! v in the operators as well. The effect of itineration is captured
=—R;, a# B, in V()¢ through the quantitiesD§”. When there is
—0 otherwi (A5) no force-constant disorder thB; terms vanish andV
—Y ofherwise, becomes independent af. A g-independent self-energy
results, and we arrive at the CPA equations. As an example
and . . .
of how to obtain the various matrix elements of the opera-
o tors, we present the calculation oKy{® where R,
V(@)= V(@)")P=V(q)b*, foralli,j, e, andp. —(1,1.0):

In these evaluations, we have used the notatRy)

=Rj, n=1-12 to represent the 12 nearest neighbors, and Kégo):<0f||<|1f0>'

the notations
m=cam*+cgm®,

m’ = ycacg(m*—m®),

m=cgm”+c,m®,

=(0f|(m- w?—®)|1f,).

Using Egs.(6) and(11),

D{*=c3apa+ Ciaps+ 2CACRAAR, (0f|m[1fo)=0,

D{*=cigan+ Ci0saT2CACETAE and using Eqs(7) and (11),

DYY=cabaat Cabaa+2CACEbAR A A
(Of[D[1fo) =(f[ Doy fo),

=((Vea(Aol+ Vea(Bol), (Vea(A]

D3*=VcaCg{Ca@aa—Cpappt (Cg—Cp)ang},

D ;"= \caCg{CaGan—Cp3ret (Ce—Ca)Tas}, +\/C—B<Bl|)|{¢éf;lé;7/i\+ ¢(?18;75;7?
D3’=VcaCs{Cabaa— Cebggt (C—Ca)bAg}, + By nB+ pBL BT (Veg| Ag)
D{*=CaCg(@na+ aps—2apg), —ealBo)), (VealAr) +Veg[By))).

D5”=caCa(ganTJea—20as),
ATBLEAATEES he If we use the Cartesian coordinates explicitly, thenxke

DY=caCg(baatbgs—2bag), component is, for example,
2 2
D}*=caCe(aaa+agp) +(CA+Cg)ans, (f]®51]fo) = VeaCa{Cagan— Caapps+ (Cg—Ca)ans} = D3".
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