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Phonons in random alloys: The itinerant coherent-potential approximation

Subhradip Ghosh, P. L. Leath, and Morrel H. Cohen
Department of Physics and Astronomy, Rutgers, the State University of New Jersey,

136 Frelinghuysen Road, Piscataway, New Jersey 08854-8019
~Received 26 August 2002; published 30 December 2002!

We present the itinerant coherent-potential approximation~ICPA!, an analytic, translationally invariant, and
tractable form of augmented-space-based multiple-scattering theory18 in a single-site approximation for har-
monic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expres-
sions for quantities needed for comparison with experimental structure factors such as partial and average
spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni55Pd45

and Ni50Pt50 alloys which serve as test cases, the former for weak force-constant disorder and the latter for
strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the
single-site coherent potential approximation~CPA! and experiment are made which provide insight into the
physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant
disorder case but fails for strong force-constant disorder where the ICPA succeeds.

DOI: 10.1103/PhysRevB.66.214206 PACS number~s!: 72.10.Di
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I. INTRODUCTION

Many aspects of the lattice-vibrational, magnetic, a
electronic excitations in disordered alloys have been int
sively studied both theoretically and experimentally over
past few decades. Of them, the electronic problem has b
covered in most detail in recent times with the emergence
first-principles techniques which have made it possible
the theories to attain a much higher degree of accuracy
reliability. Surprisingly, this is not true for phonons desp
their being not only conceptually the simplest type of
ementary excitation but also the most readily accessible
detailed experiment. From the early 1960’s till the ea
1980’s there were many experimental investigations
phonons in random binary alloys1–5 by neutron-scattering
techniques. More recent experiments have been lack
probably due to the absence of a reliable theory. The fea
which makes the theory of phonon excitations difficult is t
inseparability of diagonal and off-diagonal disorder. The r
son for this is that the force-constant sum rule, i.e., the fo
constants between a sitei and its neighborsj obey the rela-
tion Fi i 52( j Þ iFi j , must be rigorously satisfied even if th
system is disordered. In other words, a single defect at
site in the system perturbs even the diagonal Hamiltonian
its neighbors, thereby imposing environmental disorder
the force constants. Hence, any theory must include dia
nal, off-diagonal, andenvironmentaldisorder as well in order
to produce reliable results for phonons.

From the late 1960’s there were many attempts to prov
an adequate theory of phonons in random alloys. The
successful, self-consistent approximation was the cohe
potential approximation~CPA!,6 a single-site, mean-field ap
proximation generally capable of dealing only with diagon
disorder~mass disorder in the context of phonons!. In the
early 1970’s there were several studies using the CPA~Refs.
7,8! which failed to establish it as a complete answer to
phonon problem in random alloys. The discrepancies w
experiment confirmed this need for a theory which co
include force-constant changesin addition to mass disorder
Several extensions of the CPA to include off-diagonal a
0163-1829/2002/66~21!/214206~16!/$20.00 66 2142
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environmental disorder were proposed over the next sev
years9–14 but only in certain very special cases, such as
separable9 or the additive10,11 limits of off-diagonal and en-
vironmental disorder, were there successes. The more
eral approximations12–14 produced Green’s functions whic
either failed to retain the necessary analytic properties,
translational invariance of the averaged system, or were
fully self-consistent. Moreover, all of these extensions fai
to capture the effects of multisite or cluster scatterings wh
give rise to additional structures in quantities such as
spectral density functions. Later attempts which met w
some success for real alloy systems included the recur
method15 which can handle large clusters and treats all kin
of disorder on an equal footing. However, the recurs
method is neither self-consistent nor translationally invari
when used alone. Yussouf and Mookerjee16 were able to pro-
vide a self-consistent generalization of the CPA to inclu
two-site scattering using a recursion method in conjunct
with the augmented space formalism~ASF!,17 an effective
method of keeping track of the configurations.

An alternative approach was provided by Kaplan, Lea
Gray and Diehl18 ~KLGD! which is also based on the ASF
This approach generalized the traveling cluster approxim
tion of Mills and Ratanavararaksha19 for diagonal disorder to
include the other kinds of disorder and multisite effects. U
ing the diagram symmetry rule of Mills and Ratnavararaks
and the translational symmetry of the augmented-space
erators, they presented a self-consistent multiple-scatte
theory which allows one to work with a small number
atoms instead of treating large clusters as is done in re
sion. It provides analytic, translationally-invariant approx
mations at all concentrations for diagonal, off-diagonal, a
environmental disorder. It can be applied even to proble
of charge transfer, lattice relaxation, and short-range orde
the context of electronic excitations. However, they illu
trated their method only with one-dimensional models a
presented it in a very general and complex mathematical
guage.

In this paper, we present a simple, straightforward form
©2002 The American Physical Society06-1
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lation of the KLGD method for single-site scattering
phonons in three-dimensional lattices and provide an ap
cation of it to phonons in random alloys. We term it th
itinerant coherent-potential approximation~ICPA!; it main-
tains translational invariance, unitarity, and analyticity
physical properties while including off-diagonal and enviro
mental disorder. In addition to demonstrating its superio
over the single-site CPA and its previous extensions, we p
vide insight into the physics of force-constant disorder. O
results reveal the complex interplay of forces between v
ous atomic species in a random environment, an impor
phenomenon which has never been addressed properly.

In Sec. II we describe the theory, introducing t
augmented-space representation and its use in constru
the self-consistent scattering theory and the single-site
erant coherent-potential approximation. In Sec. III we der
expressions for important physical quantities such as de
ties of states, spectral functions, inelastic scattering c
sections, and their sum rules in terms of the configurati
averaged Green’s function of the system. In Secs. IV an
we present our results on Ni55Pd45 and Ni50Pt50 alloys as test
cases and compare them with experiment. Concluding
marks are presented in Sec. VI.

II. FORMALISM

In this section, we briefly sketch the rationale behind a
mented space, introduce its representations, and define
notation to be used throughout the paper. We present
discussions here only in the context of phonons. The form
lation of the ICPA for other kinds of excitations is close
analogous.

A. Augmented space and its representations

The description of disordered systems conventionally p
ceeds as follows: the dynamical behavior of a system is
scribed by a Hamiltonian, whereas the statistical behavio
the disorder is imposed from outside. The Hamiltonian its
does not describe the full behavior of the random system,
has to be augmented with the distribution of the set of r
dom potentials which are associated with the various c
figurations of the system. The physical properties are t
obtained by ensemble averages over configurations. The
and its extensions employ this procedure.

An alternative procedure is that instead of looking at
excitations of the system as moving in a random array
disordered potentials, the excitations are considered to
moving in periodic potentials in the presence of a ‘fie
which specifies the disorder. The Hamiltonian, expanded
include the disorder field, then by itself completely describ
the disordered system. Since the information on random c
figurations is already incorporated into the Hamiltonian,
configuration averaging is not a further process as in
mean-field approaches, but simply an evaluation of ma
elements. The idea of introducing a ‘disorder field’ to d
scribe the random fluctuations in the system by extending
Hilbert space to include the disorder field and by represe
ing the Hamiltonian in this new space constitutes the core
21420
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the augmented-space formalism. The extended Hilbert sp
which captures the random fluctuations is called the ‘‘au
mented space.’’

Here, we work only with a binary alloyAcA
BcB

. We as-
sume that each lattice site is randomly occupied by anA
atom or by aB atom. We wish to calculate the configuratio
averaged values of the experimentally measurable phys
quantities, for which we need a configuration-averag
Green’s function. In particular, we shall concentrate here
the configuration-averaged displacement-displacement~one-
phonon! Green’s function20

^^Gnm
ab~ t !&&5

1

ih
^^un

a~ t !;um
b ~0!&&, ~1!

or, after Fourier transformation to the frequency domain

^^G~v2!&&5^^@mv22F#21&&. ~2!

In Eqs.~1! and~2! ^^•••&& stands for both configuration an
thermodynamic averaging. In Eq.~1!, m,n specify lattice
sites anda,b the Cartesian directions.un

a(t) is the displace-
ment operator of an atom at the lattice siten in the direction
a at the timet. In Eq. ~2! a bold symbol represents a matr
for which all indices are to be understood. The semico
denotes Bose time ordering.m is the mass operator,F is the
force-constant operator, andv is the frequency which con
tains a vanishingly small negative imaginary part. T
masses are random

mi j
ab5midabd i j , ~3!

with mi randomly taking on the valuemG if species G
5A,B is on site i. The force constants take on the valu
(f i j

ab)GD if speciesG is on sitei and speciesD is on sitej.
It is ^^G&& which carries all the dynamical informations o

interest, and the essential difficulty of the theory of phono
in random systems arises from taking the configuration
erage of the inverse of the matrixmv22F. The augmented-
space technique17,21 greatly facilitates this averaging. Th
displacementsu, massesm, force constantsF, and Greens
function G are defined in the dynamical Hilbert spaceC in
which the Hamiltonian of the system operates. For a bin
alloy, C is augmented by the spaceQ of all possible atomic
configurations of the system. The resulting augmented sp
V is

V5C ^ Q.

In V or Q operators are represented by symbols with sup
posed carets. In the configuration representation withinQ,
the state of sitei is specified by the single-site stateuAi& if A
is on i and byuBi& if B is on i. With respect to these state
the occupation operatorsĥ i8

G , G5A,B,

ĥ i8
AuAi&5uAi&,ĥ i8

AuBi&50,

ĥ i8
BuBi&5uBi&,ĥ i8

BuAi&50 ~4!

are represented by the matrices
6-2
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ĥ
i

8A
5S 1 0

0 0D , ĥ
i

8B
5S 0 0

0 1D 5 Î i2ĥ
i

8A
. ~5!

The configuration of the entire system is specified by
direct product of all single-site states) i uG i&, G5A,B. The
mass operator for sitei is given by

m̂i85mAĥ
i

8A
1mBĥ

i

8B
. ~6!

Similarly the force-constants for sitesi and j are given by

F̂i j8 5f i j
AAĥ

i

8A
ĥ

j

8A
1f i j

ABĥ
i

8A
ĥ

j

8B
1f i j

BAĥ
i

8B
ĥ

j

8A
1f i j

BBĥ
i

8B
ĥ

j

8B
,

~7!

with the Cartesian indices understood.
Consider now a rotated representation for sitei in which

the basis vectors for its configuration space are given by

u0i&5AcAuAi&1AcBuBi&,

u1i&5AcBuAi&2AcAuBi&. ~8!

Constructing the configuration average of any operatorÂ in
Q can be carried out simply by taking the expectation va
of Â with the state

u f &5)
i

u0i&. ~9!

Thus u0i& is the site-average state~or the virtual-crystal
state!, u1i& describes a fluctuation away from the avera
state on sitei, and

u f i&5u1i&)
j Þ i

u0 j&. ~10!

is the state in which there is a fluctuation or a defect in
average stateu f & only on sitei. In this fluctuation represen

tation the occupation operatorsĥ
i

8A
andĥ

i

8B
are transformed to

ĥ i
A5S cA AcAcB

AcAcB cB
D ,

ĥ i
B5S cB 2AcAcB

2AcAcB cA
D . ~11!

In transforming from the configuration representation to
fluctuation representation,m̂8 goes tom̂ and F̂8 to F̂, as
given by Eqs.~6! and ~7!, respectively, with theĥ8G of Eq.
~5! replaced by theĥG of Eq. ~11!. Thus the dynamical op
eratorsm̂ andF̂ are not diagonal with respect to the numb
of fluctuations or defects in the fluctuation representation
can create them, destroy them, or, in the case off i j , cause
them to travel or ‘‘itinerate.’’ We refer to the movement o
defects induced by the off-diagonal elements of theĥ i

G as the
itineration of fluctuations to distinguish it from the propag
tion of phonons. However, these operators are translation
21420
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invariant; the randomness in configuration is thus captu
by translationally invariant operators in the configurati
spaceQ. The ĥG operators constitute the disorder field r
ferred to above.

Any operatorÂ in this augmented space can be rep
sented in block form

Â5S Ā A8

A8† Ã
D , ~12!

where the bold notationA implies a matrix in the site and
Cartesian indices. The four elements of the block matrix
given by

Ā5P•Â•P,

A85P•Â~12P!,

A8†5~12P!Â•P,

Ã5~12P!Â~12P!, ~13!

where P, the projection operator onto the virtual-cryst
state, is given byP5u f &^ f u. Thus, we see thatĀ is the con-
figuration average of the quantityÂ while A8,A8† generate
the coupling between the average and the fluctuation st
and Ã is that part ofA entirely within the space of fluctua
tion states.

In the present paper we shall make the approximation
treating explicitly only single fluctuation statesu f l& in the
fluctuation spaceQ2u f &^ f u, although multiple-fluctuation
states are treated implicitly via a self-consistency conditi
States inV can then be specified byu i f & or u i f l& wherei is
the site index of the dynamical variable inC, position or
momentum, with the Cartesian index understood. For the
indices of the corresponding matrix elements we shall of
use the compact notation

^ i f uÂu j f &5Āi j ,

^ i f l uÂu j f l 8&5Ãi j
( l )( l 8) ,

^ i f uÂu j f l&5A
i j

8( l )
,

^ i f l uÂu j f &5A
i j

8†(l )
, ~14!

wherel andl 8 denote the locations of the concentration flu
tuation or defect. The parentheses aroundl indicate that it is
neither a site nor a Cartesian direction index, but indica
instead the position of a fluctuation in the lattice.

B. Multiple-scattering picture

A phonon propagating in a random alloy undergoes ir
ducible multiple scattering28 both repeatedly off a single
fluctuation and successively off fluctuations on the differe
sites it encounters in the process. The CPA takes into acc
6-3



en
rs

am
il

P
d

h
ib

e
d

the
the

aver-
he
ul-

the
tua-

elf-

tes
on
its
fig-

of
eir

e-
in

ges.
the
on
or-

he
ng
uc-
ter-
ple

els.

ergy

by
erly
the
er-
g it
ave
lso

e
th
.

SUBHRADIP GHOSH, P. L. LEATH, AND MORREL H. COHEN PHYSICAL REVIEW B66, 214206 ~2002!
the former but not the latter. To illustrate how the treatm
of this process of multiple scattering by fluctuations diffe
between the CPA and our formalism we employ diagr
~Fig. 1!. The top panel, a two-dimensional cross section,
lustrates the multiple-scattering process included in the C
There, the filled circle is a single ‘‘fluctuation site’’ immerse
in an average medium denoted by open circles. The arrow
the left is the direction of phonon propagation. When t
phonon meets the fluctuation site, it undergoes irreduc
multiple scattering at that site. In the CPA~diagonal disor-
der!, the irreducible scattering by the defect site is confin
to the defect site. The circle around the fluctuation site in

FIG. 1. Multiple scattering picture in the CPA~top! and with the
ICPA ~bottom!. The filled circle is the site of the fluctuation and th
contours around it indicate its area of influence. The arrows with
ICPA indicate theitineration of the fluctuation to neighboring sites
The details are given in the text.
21420
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cates the region of influence of the perturbation. None of
springs are affected by the presence of this defect since
force constants are the same everywhere. One does an
aging over all the possible occupations of the single site. T
phonon diagrams of the self-energy which describe this m
tiple scattering process completely are shown in Fig. 2~a!.
There, the filled circles represent the fluctuation sites,
dotted lines represent successive scatterings from the fluc
tion site, and the double solid line represents the s
consistent propagator.

The lower three panels in Fig. 1 illustrate scattering si
in the ICPA. The difference from the CPA is that the regi
of influence is not only the site of fluctuation but also
neighboring environment around the fluctuation site. The
ure shows an example~dotted contour! where the environ-
ment includes nearest neighbors only.~The calculations
could be extended to further neighbors as well.! When the
phonon interacts with the fluctuation site in the top panel
the three, it scatters also from all of its neighbors since th
spring constants also undergo changes~denoted by the thick
spring lines in contrast to the thin ones for the average m
dium!. The whole cluster of atoms undergoes fluctuations
force constants as the location of the fluctuation site chan
One has to keep in mind that the force constant between
fluctuation site and its neighbor on the right, say, depends
the occupation of both sites, as is true for the next neighb
ing site on its right as well. So, one is led to include t
irreducible scatterings by the fluctuation on all neighbori
sites, which then requires inclusion of scattering by the fl
tuations on its neighbors, etc., until the irreducible scat
ings extend throughout the entire sample. A simple exam
of this process is indicated in the middle and bottom pan
Indeed, Mills and Ratanavararaksha19 have shown that once
there are non-diagonal terms in the scattering, the self-en
must include these migrations~itinerations! of the scatterer
throughout the sample in order to attain unitarity and there
guarantee that the average Green’s function will be prop
analytic or Herglotz. The self-consistent scattering and
resulting coherent potential about a single defect thus itin
ates from defect to defect throughout the sample, makin
an itinerant coherent potential. The scattering could h
started from any site in the sample so that the result is a
fully translationally invariant, and the self-energy isq depen-
dent but diagonal in theq space of the Brillouin zone of the
underlying periodic lattice structure. Figure 2~b! illustrates a

e

FIG. 2. The self-energy diagrams in the CPA~top! and a typical
example in the ICPA~bottom!. The details are given in the text.
6-4
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PHONONS IN RANDOM ALLOYS: THE ITINERANT . . . PHYSICAL REVIEW B 66, 214206 ~2002!
typical self-energy diagram in the ICPA. The solid and dot
overlapping ellipses denote the multiple scattering by
single-site and its neighbors, i.e., by a cluster of atoms,
the subsequent itineration of this process. The thin do
lines and the thick double lines are as in Fig. 2~a!.

In the multiple scattering framework, we calculate t
self-energyS(v2), defined by

^^G~v2!&&5@Gvca
21 ~v2!2S~v2!#21, ~15!

whereGvca is the unperturbed Green’s function,

Gvca5~m̄v22F̄!21, ~16!

andm̄ andF̄ are the configuration-averaged mass and for
constant operators respectively.

Our major task is to calculate the self-energyS(v2). Let
us considerK̂5(m̂v22F̂)5Ĝ21. Using the 232 block
representation of augmented-space operators of Eq.~12! we
get

Ĝ5S Ḡ G8

G8† G̃
D 5S K̄ K 8

K 8† K̃
D 21

. ~17!

Using the relation for the inverse of an operator in 232
block form,26 namely,

Â215S ~Ā2A8•Ã21A8†!21 2~Ã•A821
•Ā2A8†!21

2~Ā•A8†21Ã2A8!21 ~Ã2A8†
•Ā21

•A8!21 D ,

~18!

we get

Ḡ5@~m̄•v22F̄!2K 8~m̃•v22F̃!21K 8†#215@Gvca
21 2K 8

3$Gvca
21 2@~m̄•v22F̄!2~m̃•v22F̃!#%21K 8†#21

5@Gvca
21 2K 8•F•K 8†#21. ~19!

Therefore, the self-energy is given by

S5K 8•F•K 8†, ~20!

where

F5K̃215$Gvca
21

• Ĩ2Ṽ%21, ~21!

and where

Ṽ5~m̄• Ĩ2m̃!v22~f̄ Ĩ2F̃!. ~22!

The quantityṼ denotes all perturbations to the average m
dium andF contains the itineration of the fluctuation in th
average medium.

Up to this point, the scattering formalism is exact. W
now introduce the ICPA by restricting the states within t
configuration spaceQ2u f &^ f u to the single-fluctuation
states, the notation for which is given by Eq.~14!. Making
the site and Cartesian indices explicit, we obtain forS in Eq.
~20!, under this restriction,
21420
d
a
d
d

-

-

S i j
ab5( Ka i ,dk

(m) Fdk,g l
(m)(n)K

g l ,b j

8†(n)
. ~23!

The sumations are over the repeated indices and the fluc
tion itineratorF is given by a Dyson equation

F( i )( j )5GvcaFd ( i )( j )1(
l

Ṽ( i )( l )
•F( l )( j )G , ~24!

where only the site index of the fluctuation is shown. T
quantities in Eq.~23! are translationally invariant as follows

Kik
(m)5Ki 2m,k2m

(0) ,

Fkl
(m)(n)5Fk2m,l 2m

(0)(n2m) . ~25!

The single fluctuation in Eq.~23! can be considered to
have been ‘‘created’’ byK 8(n) at siten, itinerated to sitem by
F(n)(m) and ‘‘destroyed’’ byK 8†(m) at sitem. The K , K 8†,
andF matrices have elements which are nonzero only for
indices within the environment of the appropriate defec
i.e., the indicesi andk ( l and j ) must be within the neigh-
borhood perturbed by the defect atm(n). The terms with
more than one fluctuation~defect! present at a time corre
spond to coherent pair and ‘‘defect cluster’’ scattering a
are neglected in the single-site scattering considered here
of these operators act in the augmented space. The
~20!–~24! define an itinerant single-site multiple scatterin
theory.

C. Self-consistency

The restriction in Eq.~23! to states ofQ2u f &^ f u contain-
ing only a single fluctuation is a very severe approximatio
Multiple-fluctuation states are of course present inF and
contribute toS. In the spirit of the CPA, these are include
approximately by introducing self-consistency. As in t
CPA ~Refs. 18,20! we obtain self-consistency by replacin
Gvca in F in Eq. ~24! by a conditional propagatorG( i ), iden-
tical to Ḡ5^^G&& except that all irreducible scatterings b
ginning or ending on sitei are omitted, so thatF would then
be given by

F( i )( j )5G( i )Fd ( i )( j )1(
l

Ṽ( i )( l )
•F( l )( j )G . ~26!

In parallel with Eq.~15!, G( i ) contains a conditional self
energyS( i ) which is similar to Eq.~23!, except that it in-
cludes only those scatterings that neither start nor end oi,

G( i )5@~Gvca!
212S( i )#21, ~27!

S( i )5 (
l ,mÞ i

K 8( l )
•F( l )(m)

•K 8†(m). ~28!

Referring to Fig. 2~a!, the double line in the multiple-
scattering graphs is the propagatorG( i ) when the solid dot
refers to sitei. We obtain theitinerant CPA by allowingK 8,
K 8†, and Ṽ to include force-constant disorder as well a
therefore defect itineration in Eqs.~26!–~28!. This closed set
of equations defines our single-site, self-consistent, multip
6-5
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scattering theory which, when solved, yieldsF. InsertingF
into Eq.~20! for S and the result into Eq.~15! then yieldsG.
It is already known that Eqs.~15!,~20!,~26!–~28! have a
unique solution which yields a Herglotz average Gree
function.18 A major difference between this and previo
generalizations of the CPA is that for scattering from sing
site fluctuations with off-diagonal and/or environmental d
order, as is considered here, the matrix representation o
operatorṼ has elements which transfer or itinerate the flu
tuation from site to site. This feature causes the self-ene
to have nonzero off-diagonal elements in real-space exte
ing across the sample and thus contributes importantly
such quantities as the two-particle vertex corrections i
way the CPA cannot.27

It now remains to solve these equations, making use
the translational symmetry of the augmented-space op
tors. We accomplish this by Fourier transforms on t
fluctuation-site labels

A~qW !mn5N21(
l ,l 8

Al 1m,l 81n
( l )( l 8) e2 iqW •RW l l 8 ~29!

and

Al 1m,l 81n
( l )( l 8)

5N21(
qW

A~qW !mne
iqW •RW l l 8, ~30!

where RW l l 8 is the lattice vector connecting the fluctuatio
sitesl andl 8, m andn are neighbors ofl andl 8, respectively,
and theqW sum is over the Brillouin zone.

We can also effect Fourier transforms on the site indi
themselves. That of the self-energy is

S~qW !5N21(
i j

S i j e
2qW •RW i j . ~31!

From Eqs.~20!, ~25!, and~29!, it follows that

S~qW !5 (
l ,m,n,p

Klm
(0)F~qW !mnKnp

8†(0)
e2 iqW •RW lp. ~32!

In this notation, Eq.~26! becomes

F~qW !mn5Gmn
(0)1(

rp
Gmr

(0)Ṽ~qW !rpF~qW !pn . ~33!

The Cartesian indices here are implicit so that each quan
is a 333 matrix.

Since the range of interaction in real-space is finite,
perturbationsK 8( i ) and Ṽ(qW ) are finite matrices, nonzer
only over a finite set of real sites. For example, if we co
sider nearest-neighbor perturbation only in a single-site
proximation, theṼ(qW ) and K 8 are 3(Z11)33(Z11) ma-
trices whereZ is the number of nearest neighbors. This is t
minimum matrix size necessary to exhibit all the impur
modes or states about each fluctuation site.

In full matrix notation, we obtain

F~qW !5@G(0)212Ṽ~qW !#21. ~34!
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These matrices, for example, for an fcc lattice, are of dim
sion 39339.

In order to evaluateG(0) we rewrite Eq.~27! as

G(0)5@~Gvca!
212S(0)#215@^^G&&211S̃(0)#21, ~35!

where S̃(0)5(S2S(0)). The conditional self-energyS̃(0)

containsonly those scatterings which either start or end w
a perturbation caused by a fluctuation at site 0. Thus
evaluate the self-consistent propagatorG(0), we need to
know ^^G&&. But ^^G&& is obtained from Eq.~15!, which
becomes

^^G~qW !&&5@Gvca~qW !212S~qW !#21,

^^Gi j &&5N21(
qW

^^G~qW !&&e2 iqW •RW i j . ~36!

After reaching self-consistency by the procedure descri
below, we use these expressions to calculate densitie
states and spectral functions.

The conditional self-energyS̃(0) can be broken up into
two contributions:~i! Scattering that starts from a defect
site 0 and ends at sitej and ~ii ! scattering that starts atj but
ends at 0.

This decomposition results in

S̃(0)5(
j

@K 8(0)
•F(0)( j )

•K 8†( j )1K 8( j )
•F( j )(0)

•K 8†(0)#

2K 8(0)
•F(0)(0)

•K 8†(0). ~37!

The last term is subtracted to avoid overcounting whenj 50.
In a block notation similar to that of Eq.~12!, we have

S̃(0)5S S1 S3

S3
† 0 D , ~38!

G(0)5S G1
(0) G3

(0)

G3
†(0) G2

(0)D , ~39!

^^G&&5S G1 G3

G3
† G2

D , ~40!

where, for a general operatorÂ, A1 begins and ends with
scattering about site 0,A2 neither begins nor ends with sca
tering about site 0 andA3(A3

†) begins~ends! with scattering
at the site 0 and ends~begins! with scattering about a site
different from 0. The termS2 is 0 sinceS̃(0) must begin or
end at the site 0. From Eq.~35!, we have

G(0)5^^G&&~ I1S̃(0)^^G&&!21, ~41!

which leads to

G1
(0)5X̄@ I1~S12S3•G2•S3

†!X̄1S3•G3
†#21, ~42!

where

X̄5~ I1G3•S3
†!21G1 , ~43!
6-6
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after a lengthy algebraic analysis which was previou
given in Ref. 18.

In order to evaluate these expressions,18 we need to cal-
culate four terms:G1 ,S1 , G3S3

† , and S3G2S3
† . The first

term S1 is just a finite sum of finite matrices and can
evaluated directly, but the other two terms involve su
which range over all sites in the solid and must be evalua
by Fourier transforms. This is done in the following way:

~G3S3
†! t,t85(

m
(
r ,n,l

^^G~v2!&& t,m1rKm1r ,m1n

8(m)
Fm1n,l

(m)(0)K
l ,t8

8†(0)

2(
r

^^G~v2!&& t,rS̃ r ,t8
(0) ,

which becomes

~G3S3
†! t,t85

1

N (
qW

(
r

^^G~qW !&&eiqW •RW trM ~qW !r ,t82~G1S1! t,t8

~44!

and, similarly,

~S3G2S3
†! t,t85

1

N (
qW ,r ,r 8

M ~qW ! tr^^G~qW !&&eiqW •RW rr 8M ~qW !r 8,t8

2~S1G1S11S1G3S3
†1S3G3

†S1! t,t8 ,

~45!

where

M ~qW !r ,t85(
nl

K
rn

8(0)
F~qW !nlKlt 8

8†(0)

. ~46!

In these equations, 0 is the index of the single fluctuation-
in consideration;r ,r 8,t,t8,l ,n are the neighboring sites of 0
andm,m8 are general sites in the sample. So, it is clear t
one needs to work only on matrices of size 3(Z11)33 (Z
11) and use the Fourier transform of operators to handle
itineration of the fluctuation throughout the entire sample.
interesting point to note is that the quantitiesG3S3

† and
S3G2S3

† represent the scattering and itineration of the d
turbance including the effect of the off-diagonal and enviro
mental disorder. In case of diagonal-disorder only, they v
ish giving G1

(0)5G1(I1S1)21, which is the CPA self-
consistent propagator, and the self-consistent set of equa
reduces to the CPA equations.

The inputs to the self-consistency cycle areGstart
(0) 5Gvca

~or some better guess!, K 8, K 8†, andṼ(qW ). The procedures
for evaluating the latter three quantities are given in the A
pendix. The cycle consists of the following steps.

~1! Calculation ofF(qW ) using Eqs.~33! and ~34!.
~2! Calculation ofS(qW ) using Eq.~32!.
~3! Calculation of ^^G(qW )&& and ^^G(v2)&& using

Eq. ~36!.
~4! Calculation of G1

(0) using Eqs. ~42!, ~43!, ~44!,
and ~45!.
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~5! If the results of steps~1!–~4! are acceptably close to
those of the previous cycle, stop. If not, use as input to s
1 and iterate.

The iterations are done till self-consistency is achieved
eachqW point in the Brillouin zone. In the process of achie
ing self-consistency, one calculates^^G&& in both real space
and in qW space; each is needed to obtain densities of st
and spectral densities, respectively. In the next section,
describe how these are used to calculate physical quan
of interest and discuss their significance.

III. IMPORTANT QUANTITIES; SUM RULES

In this section we derive results for important physic
quantities such as the densities of states~partial and total!,
spectral densities~partial and total!, and inelastic scattering
cross sections~coherent and incoherent! which enable us to
make direct comparisons with experimental measuremen

A. Densities of states

The total density of states for a three-dimensional sys
is defined as

n~v!5
1

3pN
Im$Tr^^m•G~v2!&&%, ~47!

wherem is the mass matrix andN is the number of sites. In
augmented space we have

^^mG&& i i 5^ i f um̂•Ĝu i f &,

5^ i f um̂u i f &^ i f uĜu i f &1^ i f um̂u i f i&^ i f i uĜu i f &,

5m̄Ḡ001m8^ i f i uĜu i f &. ~48!

To evaluate the second term, we use the notation of Eq.~12!

for the operatorsĜ and K̂5Ĝ21. Then, using Eq.~18!, we
obtain

^ i f i uĜu i f &5G8†52K̃21
•K 8†

•Ḡ52F•K 8†
•Ḡ. ~49!

We can, therefore, write

^ i f i uĜu i f &52(
l

(
j ,n

Fi j
( i )( l )K

jn

8†(l )
^^G&&ni .

Fourier transforming over the fluctuation site according
Eq. ~29! gives

^ i f i uĜu i f &52
1

N (
l , j ,n

(
qW

F~qW !0,j 2 le
iqW •RW i l K

j 2 l ,n2 l

8†
^^G&&ni .

The Fourier transform of̂^G&& on the real-site index now
gives

^ i f i uĜu i f &52
1

N2 (
l , j ,n

(
qW qW 8

3F~qW !0,j 2 le
iqW •RW i l K

j 2 l ,n2 l

8†
^^G~qW 8!&&eiqW •RW ni.
6-7
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Finally we obtain

^ i f i uĜu i f &52(
mp

(
qW

F~qW !0,mK
mp

8†
eiqW •RW p^^G~qW !&&,

wherem5 j 2 l , p5n2 l , the neighboring sites perturbed b
the fluctuation. All the terms on the right hand side ha
been calculated already in the process of achieving s
consistency. The evaluation of the average density of stat
thus straightforward.

The partial density of states for atoms of types is given
by

n~v!s5
ms

3pN
Im$Tr^^G~v2!ss&& i i %, ~50!

where

^^Gss&& i i 5^^Gss&&005^0 f uĥ0
s
•Ĝu0 f & ~51!

because of translation invariance. We thus have

^^Gs&&05^^Gss&&005^0 f uĥ0
su0 f &^0 f uĜu0 f &

1^ i f uĥ0
su0 f 0&^0 f 0uĜu0 f &, ~52!

and, from Eq.~11!, it follows that

n~v!A52
mA

3p
Im@cA$^0 f uĜu0 f &%1AcAcB$^0 f 0uĜu0 f &%#,

n~v!B52
mB

3p
Im@cB$^0 f uĜu0 f &%2AcAcB$^0 f 0uĜu0 f &%#.

~53!

The elements ofĜ in Eq. ~53! were already evaluated whil
calculating the average density of states above.

The partial Green’s functionŝ̂ Gs&&0 are used in calcu-
lating the incoherent scattering structure factor which is
rectly measured in the experiments

^^Sincoh~QW ,v!&&5(
s

bs
2QW •Im^^Gs~v!&&0•QW , ~54!

wherebs is the incoherent scattering length for atoms of ty
s andQ is the phonon wave number.

B. Spectral densities

The average spectral function is defined as

^^Al~qW ,v2!&&5
1

p
Im^^Gl~qW ,v2!&&, ~55!

where l is a normal-mode branch index. More interesti
quantities to calculate are the conditional or partial Gree
functions ^^Gss8(qW ,v2)&& in qW space because these ena
one to calculate the coherent-scattering structure fac
which are measured directly in the neutron-scattering exp
ments and are given by
21420
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^^Sl~qW ,v!&&coh5(
ss8

dsds8

1

p
Im^^Gl

ss8~qW ,v2!&&, ~56!

whereds is the coherent scattering length for the speciess.
The conditional Green’s functions are defined as

^^Gss8~qW ,v2!&&5
1

N (
i j

^^Gss8~v2!&& i j e
2qW •RW i j ,

^^Gss8~v2!&& i j 5^^ĥi
sĜ~v2!ĥj

s8&&

5^ i f uĥi
sĜĥj

s8u j f &5^ i f uĥi
su i f &^ i f uĜu j f &

3^ j f uĥj
s8u j f &1^ i f uĥi

su i f i&^ i f i uĜu j f &

3^ j f uĥj
s8u j f &1^ i f uĥi

su i f &^ i f uĜu j f j&

3^ j f j uĥj
s8u j f &1^ i f uĥi

su i f i&^ i f i uĜu j f j&

3^ j f j uĥj
s8u j f &. ~57!

In Eq. ~57! the indexl is to be understood. These four term
include all the possible scattering processes when two dif
ent sites are occupied by two species. The four differ
terms involve calculations of the Green’s function und
various circumstances of coupling between the average
the fluctuation states weighted by the appropriate concen
tions.

We obtain from Eq.~57!

^^Gss8&& i j 5cscs8^ i f uĜu j f &

1@cs8Acs~12cs!~21!(12ns)^ i f i uĜu j f &#

1@csAcs8~12cs8!~21!(12ns8)^ i f uĜu j f j&#

1cscs8~21!(ns1ns8)^ i f i uĜu j f j&. ~58!

The integerns is equal to 1 ifs5A and is equal to 0 ifs
5B.

These terms can be easily calculated using Fourier tra
forms as has been previously demonstrated for the densi
states. The final forms of the conditional Green’s functions
qW space are

^^GAA~qW ,v2!&&5cA
2^^G~qW ,v2!&&

1cAAcAcB~T11T2!1cAcBT3 ,

^^GBB~qW ,v2!&&5cB
2^^G~qW ,v2!&&

2cBAcAcB~T11T2!1cAcBT3 ,

^^GAB~qW ,v2!&&5cAcB^^G~qW ,v2!&&

1AcAcB~cBT12cAT2!2cAcBT3 ,

^^GBA~qW ,v2!&&5cAcB^^G~qW ,v2!&&

2AcAcB~cAT12cBT2!2cAcBT3 ,

~59!

where
6-8
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T15(
nm

F0n~qW !K
nm

8†
eiqW •RW m^^G~qW ,v2!&&,

T25(
nm

^^G~qW ,v2!&&e2 iqW •RW nKnm8 Fm0~qW !,

T35F00~qW !1(
nm

(
lp

F0n~qW !K
nm

8†

3eiqW •RW m^^G~qW ,v2!&&e2 iqW •RW lKlp8 Fp0~qW !, ~60!

and wheren, m, l, and p are the neighboring sites of th
fluctuation site 0 influenced by the perturbation. For the
tices with each site having inversion symmetry,T15T2 holds
becauseT1 andT2 are the contributions from two process
which are conjugate to one another. In that ca

^^GAB(qW ,v2)&&5^^GBA(qW ,v2)&& whencA5cB .
The sum rules for the conditional Green’s functions a

derived the following way: IntegratevĜ(v2), Eq. ~2!, along
the real axis, closing the contour above at infinity, obtain

R dv vĜ~v2!5m̂21p i

or

E
0

`

dv2v Im Ĝ~v2!5m̂21p. ~61!

Similarly, using Eq.~57!, taking the Fourier transform of Eq
~58!, carrying out the contour integral, and inserting Eq.~61!
yields the sum rule for the partial spectral functions

E
0

`

dv2v Im^^Gss8~qW ,v2!&&5p
cs

ms
dss8 . ~62!

For the total Green’s function we obtain

E
0

`

dv2v Im^^G~qW ,v2!&&5pS cA

mA
1

cB

mB
D . ~63!

The experimental dispersion curves are obtained from
wave-vector dependence of the peak frequencies of the s
ture factors as measured, after a deconvolution of the exp
mental resolution function. The question is whether the d
persion curves so obtained, which incorporate the effec
the coherent scattering lengths, differ significantly fro
those obtained from the peak frequencies of the Gre
function itself which gives, in principle, a proper descriptio
of the dynamics but does not contain the scattering len
weighting. To answer that question one needs to recog
that the peak positions in ImG are very closely related to th
zeroes of ReG21 at a given wave vector. If we diagonaliz
the Hermitian ReG21 both with respect to mode and speci
index, each of the two species components of ReG21 will
have a zero. Correspondingly, each of the two componen
Im G will have a peak, if ImS does not wipe it out. So, in
the species representation, the different matrix eleme
Im Gss8 will thus all have these peaks at nearly the sa
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frequencies. Thus, the weighting of theGss8 by the scattering
lengths will not shift the peak positions significantly eve
when the scattering lengths differ appreciably though the
tensities and the line shapes ofScoh and ImG may differ
significantly. In summary, the structure factor fairly acc
rately reflects the phonon dynamics contained inG with re-
gard to the dispersion curves, an important fact illustra
below in the next two sections where we present our ca
lations on Ni55Pd45 and Ni50Pt50 alloys.

IV. APPLICATION TO Ni 55Pd45;
WEAK FORCE-CONSTANT DISORDER

In Ni55Pd45 alloy, the mass disorder is much larger th
the force-constant disorder. The mass ratiomPd/mNi is 1.812,
whereas the Pd force constants are only about 15% la
than those of Ni.22,23In Ni50Pt50 alloy, both the mass disorde
and the force-constant disorder are large, providing an in
esting contrast between the two materials. For both the c
we have done our calculations on 200v points and have
used a small imaginary frequency part of20.01 in the
Green’s function. For the Brillouin-zone integration 356qW
points in the irreducible 1/48th of the zone produced w
converged results. The simplest linear-mixing scheme w
used to accelerate the convergence. For both cases the
ber of iterations ranged from 3 to 13 depending on the f
quencyv.

For Ni55Pd45, we compare the results of virtual cryst
~VCA!, CPA, and ICPA computations, using the ICPA for
constants to construct the averages used in the VCA and
and compare the results with experiment. We make a dist
tion between that use of the VCA and of ‘‘mean crysta
models in which the average mass is employed and a se
‘‘mean-crystal’’ force constants are fitted as parameters to
experimental data.

Kamitakahara and Brockhouse3 investigated Ni55Pd45 by
inelastic neutron scattering and reported a strange obse
tion. A theoretical calulation based on a mean crystal mo
having the average mass and fitted force constants betw
those of Ni and Pd agreed closely with the experimen
dispersion curves. This was quite a puzzle because it s
gested that the large mass disorder had little effect. Th
were theoretical studies on this system using recursion24 and
the averaget-matrix approximation,25 but no theoretical re-
sults for the frequencies were available. In an attempt
solve this puzzle, we have carried out calculations with
CPA, the ICPA, and the VCA, as well as with the mea
crystal model used in Ref. 3.

For the ICPA calculation, we assumed that the expl
scattering caused by the force-constant disorder was confi
to the nearest neighbors. This assumption is justified beca
the nearest-neighbor force constants are an order of ma
tude larger than those of the further neighbors so that
nearest neighbors feel the effect of disorder most stron
For the virtual crystal or the average medium into which t
scattering was embedded, we kept terms in the Hamilton
up to the fourth neighbor, which turned out to be sufficie
The problem with force constant disorder-scattering calcu
tions is the general absence of prior information ab
6-9
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species-dependent force constants. We note that Pd is
larger atom here. In the alloy, the Ni-Pd separation is lar
than the Ni-Ni separation. As a result, the Ni-Pd force co
stants should be less than the Ni-Ni ones. Using this intui
argument and for simplicity in this illustration, we kept th
fNi-Ni

ab and fPd-Pd
ab the same as those of the pure material22

and reduced the fNi-Pd
ab below the fNi-Ni

ab by an
ab-independent factor. The dispersion curves were obtai
from the ICPA calculations usingfNi-Pd

ab 50.7fNi-Ni
ab ~solid

lines! for the nearest neighbors and using the force const
of Ref. 3 for the higher neighbors. They are compared in
top panel of Fig. 3~a! with the experimental results3 ~open
circles! and the VCA for the same force constants~dashed
lines!. These ICPA dispersion curves were constructed
numerically determining the peaks in the coherent scatte
structure factor̂ ^Sl(qW ,v)&&coh given by Eq.~56!, which was
calculated using the partial spectral functions of Eqs.~59!
and ~60!, and weighting them with the coherent scatteri

FIG. 3. ~a!~Top panel! Dispersion curves~frequencyn vs re-
duced wave vectorz) for Ni55Pd45 calculated in the ICPA~solid
line! and in the VCA~dashed line!. The circles are the experimenta
data~Ref. 3!. ~Bottom panel! Dispersion curves for Ni55Pd45 calcu-
lated in the CPA~solid line! and in the VCA~dashed line!. The
force constants used are given in the text. The circles are the
perimental data~Ref. 3!. ~b! Dispersion curves for Ni55Pd45 calcu-
lated in the CPA~solid line! and in the mean-crystal model~dashed
line! using the force-constants of Ref. 3. The circles are the exp
mental data~Ref. 3!.
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lengths for Ni and Pd. We could thus make a direct comp
son with the experimental results because the neutron
observed in the experiments inherently incorporates the
fect of the scattering lengths of the species.

Excellent agreement of the ICPA with experiment w
obtained for all three symmetry directions and for ea
branch by varying only one parameter in the force-const
matrix. This suggests that the force-constant disorder is w
and the system is dominated by the mass disorder, as
would expect from the numerical values of the parameters
is confirmed by the results of the CPA calculations shown
the bottom panel of Fig. 3~a!, using the same force constant
As in the top panel, the solid lines are the CPA results,
circles are the experimental points, and the dashed lines
the VCA results. The agreement with the experiment ag
suggests the dominance of the mass disorder, but there
more interesting points to note. In the long-wavelength~low
qW ) regime, the VCA, the CPA, and the ICPA curves are
distinguishable because the self-averaging of both mass
force constants over a single wavelength reduces both
CPA and the ICPA to the VCA. But, as we move to hig
wave vectors, the VCA deviates to frequencies below
experimentally observed ones. This fact is due to the us
an average mass in the Hamiltonian. In the high-wave-ve
region, the lighter atoms, i.e. Ni in this case, dominate a
push the frequencies up. That is why the CPA and the IC
agree very well across the Brillouin zone while the VCA fa
for the high wave vectors. The reason that Kamitakahara
Brockhouse got a very good fit to the experimental points
Ref. 3 by using their mean-crystal model is that they o
tained parametrized force constants which were higher t
those calculated in the VCA. Though they had used the
erage mass in their calculations the higher values of the fo
constants~They usedF̄5cAFAA1cBFBB rather thanF̄
5cAA

2 FAA1cBB
2 FBB12cAcBFAB) compensated for thei

omission of the effect of the mass fluctuations. This is illu
trated in Fig. 3~b!. There, the dashed lines are their mea
crystal model calculations, the circles are the experime
points, and the solid lines represent a CPA calculation w
the force constants used in Ref. 3. Here we see that the
yields frequencies that are too high in the large wave-vec
region. The CPA captures the effect of the mass fluctua
and the domination of the Ni atoms for higher wave vecto
but the higher values of the assumed mean force const
increases the frequencies further, thereby worsening
agreement with experiment. Another striking feature is t
in spite of incorporating the scattering lengths in our calc
lations there was little change in the ICPA results with
spect to the CPA results even though the coherent scatte
lengths of Ni and Pd differ significantly~the coherent scat
tering length for Ni is 1.03 while that of Pd is 0.6!. This lack
of change can be understood from a comparison between
partial and total spectral functions@Fig. 4~a!# and the partial
and the total coherent structure factors@Fig. 4~b!#. In these
figures, we have shown examples of ICPA spectral functi
and structure factors along the@z,0,0# direction z

5uqW u/uqW maxu, for a low, medium, and hightz. In each case,
the peaks corresponding to the dominating species and
in the Ni-Pd curves occur at the same general positions.

x-

ri-
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example, in the@0.3,0,0#-L curves, the peak in the spectr
function is mostly that of Pd atoms while for the@0.5,0,0#-L
and @1,0,0#-L curves, the contributions are from Ni atom
the Pd-Pd contribution here is much less and that too is
most completely neutralized by the Ni-Pd contribution in t
low frequency region. The coincidence of the peaks of
Ni-Pd spectral functions and those of the Ni-Ni or Pd-
spectral functions almost at the same position across the
louin zone suggests that the inclusion of scattering leng
would primarily alter the relative weights of various cont
butions and thereby the line shapes, while the dispers
curves would hardly change. This is demonstrated in F
4~b!. One can see that the weighting affects primarily t
peak heights. These explicit numerical results confirm
qualitative argument given at the end of Sec. III.

The disorder-induced widths are important because t

FIG. 4. ~a! Partial and total spectral functions calculated in t
ICPA for variousz values in the@z,0,0# direction in Ni55Pd45. ~b!
Partial and total structure factors calculated in the ICPA for vari
z values in the@z,0,0# direction in Ni55Pd45. The solid lines are the
total contribution, the dotted lines are the Ni-Ni spectra, the lo
dashed lines are the Pd-Pd spectra, and the dot-dashed lines a
Ni-Pd contributions. The details are given in the text. The l
~right! column is for longitudinal~transverse! modes.
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often manifest the effect of disorder more directly than
the frequencies. Kamitakahara and Brockhouse extracted
widths at half maxima~FWHM! from their neutron groups
by assuming that the observed line shape could be
equately approximated by the convolution of a Gauss
resolution function~representing the experimental resol
tion! with a Lorentzian natural line shape. Thus, for a co
parison of our results with theirs, we have fitted our struct
factors to a Lorentzian to extract the widths. The results
shown in Fig. 5. Generally, there is little difference betwe
the widths obtained in the CPA and the ones obtained in
ICPA. In all three symmetry directions and for all branche
the ICPA performs slightly better than the CPA for high wa
vectors. The worst agreement with the experiment is for h
wave vectors in the@z,0,0# and @z,z,z# longitudinal
branches and the@z,z,z# transverse branch. In these cas
the high values of the widths in the experimental determi
tions can be understood from the shape of the structure
tors. From the examples in Fig. 4 one can see that the ag
ment with experiment is good when we have a symme
line shape, for example, for the@0.5,0,0#L mode. On the
other hand, the worst agreements with the experime
widths are for cases where there are highly asymmetric
shapes, for example, for the@1,0,0#L mode. Fitting Lorent-
zians to such asymmetric line shapes is not conducive
meaningful values of the FWHMs. Also, because they obt
higher widths than the theories in those particular ca
which have worse resolution~open circles in Fig. 5!, it is not
clear that this discrepancy is significant.

The discussion above clearly tells us that for Ni55Pd45,
the dominant effect is mass disorder. That alloy theref
does not provide a proper test of the ICPA. Nevertheless,
discussions have shown how a mean-crystal model can c
pensate for the neglect of mass fluctuations in alloys w
little force constant disorder through the introduction of e
roneous mean force-constants, a classic case of cancell
of errors.

s

-
the

t

FIG. 5. Disorder-induced FWHM’s in Ni55Pd45 calculated in the
ICPA~solid line! and in the CPA~dotted line! using the force con-
stants of Fig. 3~a!. The circles are the widths extracted from th
experimental results~Ref. 3!. The filled circles had better experi
mental resolution.
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V. Ni50Pt50;
STRONG MASS AND FORCE-CONSTANT DISORDER

The mass ratiomPt /mNi53, is much larger here. Th
force constants of Pt are, on an average, 55% larger22 than
those of Ni. This makes it a potential example of stro
force-constant disorder. Tsunodaet al.4 investigated
NixPt12x by inelastic neutron scattering and compared th
observations with the CPA. Here, for illustration, we ha
consideredx50.5 only, because this is a concentrated al
and the failure of CPA was very prominent at this concen
tion. They compared their incoherent scattering data w
that of the CPA which predicted a split band separating
Ni and Pt contributions with a gap between them@Fig. 6~a!#.
The experiments@Fig. 6~b!# did not reveal a split band, and
was very clear that the interspecies forces play a signific
role. We performed calculations with the CPA and the ICP
As before, we used the ICPA force constants in the CPA.
choice of ICPA force constants was more difficult than
the NiPd because of the larger size difference between
and Pt. In this alloy, the Ni-Pt separation is also larger th
the Ni-Ni separation. As a result, the Ni-Pt force consta
should also be less than those of Ni-Ni. Moreover, a pair
Ni atoms would find themselves in a cage partly made
larger Pt atoms which would therefore reduce the Ni-
force constants relative to their values in the pure mate
Similarly, the bigger Pt atoms find themselves compres
between much smaller Ni atoms, which would increase
Pt-Pt force constants with respect to their values in pure
Using this intuitive argument, we found that the followin
guesses for the force-constants worked well:fNi-Ni

xy , fPt-Pt
xy ,

fNi-Ni
zz and fPt-Pt

zz are kept the same as those of the pu
materials22 and

fNi-Ni
yy 5fNi-Ni

xx 50.9fNi(pure)
xx ,

fPt-Pt
yy 5fPt-Pt

xx 51.1fPt(pure)
xx ,

fNi-Pt
ab 50.8fNi-Ni

ab for all a,b.
In Fig. 6, we compare the ICPA results for the incoher

FIG. 6. ~a! Incoherent neutron scattering structure factor vs f
quency calculated in the ICPA~solid line! and in the CPA~dashed
line! in Ni50Pt50 ~b! Same plot as~a! in the ICPA~solid line! and
experimental results~Ref. 4! ~dashed line!.
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neutron structure factor@Eq. ~54!# with those of the CPA and
the experiment.4 The CPA shows a split-band behavio
clearly separating the low frequency Pt contribution from t
high frequency Ni contribution. The overall contributio
from the Pt region is much less than that of the Ni region
this system because Pt has a much lower incoherent sca
ing length4 than Ni, 0.1 in comparison to 4.5 for Ni. Includ
ing only mass fluctuations and ignoring the Ni-Pt correla
motion gives rise to this spurious gap in the CPA results a
further discussed below in connection with the coherent s
tering results. On the other hand, by incorporating the for
constant disorder, as is done in the ICPA, we get rid of t
spurious gap and obtain good agreement with the experim
tal results, including the position of the right band edge. T
influence of the force-constant disorder is demonstrated m
prominently in the dispersion curves and the line shapes

In Fig. 7, we compare the dispersion curves and wid
obtained in the ICPA from the coherent scattering struct
factors, using the force constants as given above, with th
in the CPA, using the averages of the same force-consta
and with the experimental results4 which are available only
for the @z,0,0# directions. The ICPA agrees much better wi
the experiments than the CPA for both the longitudinal a
the transverse branches. The CPA frequencies are gene
below the experimental ones at low frequencies and ab
the experimental ones at high frequencies. The discrepa
gets worse as we move from the middle of the zone towa
the zone edge. This is because the high wave-vector regio
dominated by the lighter Ni atoms. The severity of this effe

-

FIG. 7. The solid lines are theL branch in all the three panels
the dashed lines are theT branch in the left and the right panels. I
the central column, the long-dashed curves are theT1 branches
while the dot-dashed curves are theT2 branches. The shaded re
gions span the FWHM’s. The circles in the left panels are the
perimental data~Ref. 4!. The filled ones are those with better res
lution and accuracy.~Top panel! Dispersion curves for Ni50Pt50

calculated in the ICPA.~Bottom panel! Dispersion curves for
Ni50Pt50 calculated in the CPA. Here, the shaded regions in the
panel span the FWHM’s. In other two panels the thin dotted lin
denote the FWHM’s.
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can be understood from the widths as well. In the CPA,
experimental points stay well outside the disorder-indu
widths centered at the peak frequencies. The discrepan
substantially reduced by the inclusion of force-constant d
order, as is seen from the ICPA results. Its inclusion chan
the dispersion curves qualitatively as well. In the CPA,
bands extend fully across the Brilluoin zone for all symme
directions while in the ICPA, the Pt-dominated peaks dis
pear at high-z and the Ni-dominated peaks wash out at lowz
for all modes and symmetry directions, an effect observe
the experiments. This is a clear consequence of the fo
constant disorder which can be understood by inspecting
spectral line shapes. In Fig. 8~a! we present the partial an
the total spectral densities for three different wave-vecto
In Fig. 8~b! we present the partial and the total cohere
scattering structure factors i.e., the spectral functio

FIG. 8. ~a! Partial and total spectral functions calculated in t
ICPA for variousz values in the@z,0,0# directions in Ni50Pt50. ~b!
Partial and total structure factors calculated in the ICPA for vari
z values in the@z,0,0# directions in Ni50Pt50. The solid lines are the
total contributions, the dotted lines are the Ni-Ni contributions,
long-dashed lines are the Pt-Pt contributions, and the dot-da
lines are the Ni-Pt contributions. The details are given in the te
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weighted by the coherent scattering lengths of the spec
The coherent scattering lengths of Ni and Pt differ by only
% ~the scattering length of Ni is 1.03 while that of Pt
0.95!. However, even this small difference produces sign
cant changes in the line shapes and in the peak frequen
A close inspection of the various contributions reveals t
unlike in NiPd, the Ni-Pt contribution plays the key role
determining the weight in the middle of the band~and in
obtaining the merged bands in Fig. 6! as well as adding or
subtracting weights to the Ni-Ni or Pt-Pt contributions, th
elevating or suppressing one of the peaks. For example
Fig. 8~a!, in the @0.5,0,0#T curves, the Ni-Pt contribution
adds weight to the total spectral function on top of the Pt
peak at the low frequenies while it subtracts weight from
Ni-Ni contribution at higher frequencies thereby causing
weakly defined peak at high frequencies. In the@0.5,0,0#L
and in the @1,0,0#T curves, the Ni-Pt contribution add
weight between the Pt-Pt and Ni-Ni peaks, thereby remov
the gap in the CPA spectrum. The Ni-Pt contribution is
tally due to inclusion of force-constant disorder, since dia
onal disorder produces no such contribution. The effect
incorporation of the difference in scattering lengths can
seen from these two figures as well. For example, in
@1,0,0#T curves, there are two well-defined peaks in the to
spectral functions, whereas the low-frequency peak is tra
formed into a shoulder in the total structure factor. This
because Ni has the larger scattering length which enha
the weight associated with the Ni-Pt contribution there
cancelling more effectively the contribution from the Pt-
part. Similar effects are seen in the@0.5,0,0#L and @1,0,0#L
curves. Moreover, this weighting sometimes produces
weakly defined peak whose FWHM cannot be well det
mined, which explains the observed washing out of the d
persion curves noted above. The effect of the small diff
ence in scattering lengths is amplified by the force-cons
disorder through the Ni-Pt structure factor which plays
important role here.

In sum, the force-constant disorder plays a significant r
in Ni50Pt50, and a theory with mass disorder only fails bo
qualitatively and quantitatively in such cases. On the ot
hand, the ICPA successfully explains the effects of for
constant disorder through its effect on the partial struct
factors, and demonstrates the relative importance of the c
tributions of various atomic species to the coherent and
coherent structure factors which the CPA cannot. The IC
and the Ni50Pt50 system therefore provide a proper test ca
for force-constant disorder and show that the ICPA can fo
a basis for understanding the lattice dynamics of other bin
alloys.

VI. CONCLUSIONS

We have presented a straightforward and tractable for
lation of the KLGD~Ref. 18! method for single-site scatter
ing of phonons in three dimensional lattices. We have de
onstrated how this multiple-scattering based formali
captures the effects of off-diagonal and environmental dis
der. The use of augmented-space to keep track of the
figurations of the system has made the formalism simple
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powerful. The resulting translational invariance makes it n
merically tractable as well. In addition, we have derived
partial Green’s functions in real space as well as partial sp
tral functions and their sum rules. This enables one to m
direct comparison with neutron scattering experiments
cause of the incorporation of the scattering lengths of
different species. We have applied the formalism to real r
dom alloys. In Ni55Pd45 we have demonstrated that ma
disorder plays the prominent role, and the CPA conseque
does a rather good job whereas the mean-crystal mode
quires erroneous fitted force constants. Our partial struc
factors enabled us to understand the insensitivity of the n
mal modes towards the difference in the coherent scatte
lengths of the two species despite the significant differe
of 43% in this system. The Ni50Pt50 results demonstrate th
prominence of force-constant disorder even in a case w
the mass ratio is 3. We have clearly demonstrated that
systems such as NiPt, where the force constants are stro
species dependent, the determination of their values is
cial. However, we had no prior information about the spec
dependence of the force constants. Intuitive arguments le
a set of force constants which turned out to be quite good
better understanding of the role of disorder in the lattice
namics of random alloys could be achieved with prior info
mation about the force constants. These could be obtai
e.g., from first-principles calculations on a set of order
alloys.
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APPENDIX: MATRIX ELEMENTS

For the calculations in the nearest-neighbor approxim
tion, one needs to evaluate the$3(Z11)%2 matrix elements
of the operatorsK 8, K 8†, Ṽ(qW ), andGvca

21 and use them as
inputs. These evaluations are done in augmented space
Eq. ~14!. The symmetry of the lattice structure is used
reduce the number of matrix elements evaluated. Here,
give results only for an fcc lattice. All the matrices are, the
fore, of dimension 39339.

In an fcc system, each atom has 12 nearest neighbors
coordinates (6 1

2 ,6 1
2 ,0), (6 1

2 ,0,6 1
2 ), and (0,6 1

2 ,6 1
2 ) with

respect to the coordinates of the reference atom at (0,0
The force constants, between the atom 0 and its neigh
satisfy the following cubic symmetry relation:

f0 j
ab5f0 j

ba5f j 0
ab5f0k

ab , ~A1!

whereRW 0 j52RW 0k andk andj are two neighbors on opposit
sides of site 0. For example, the force-constant matrix

tween the atoms (0,0,0) and (1
2 , 1

2 ,0) is of the form
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f (000,
1
2

1
2 0)5S a b 0

b a 0

0 0 g
D . ~A2!

The force-constant matrices between the atom 0 and its o
neighbors can easily be calculated from Eq.~A2! via the
cubic symmetry operations. The results are

~Gvca
21 ! i j

ab5m̄v228D1
xx24D

1

8xx
if i 5 j , a5b,

50 if i 5 j , aÞb,

5D
1

8xx
if i 50, j 5n51212,a5b, Rj

a50,

5D1
xx if i 50, j 5n51212,a5b, Rj

aÞ0,

52Rj
a32Rj

b3D1
xy if i 50, j 5n51212,aÞb,

50 otherwise ~A3!

and

~Gvca
21 ! i j

ab5~Gvca
21 ! j i

ab5~Gvca
21 ! i j

ba for all i , j , a, andb.

Also, we find

~K8! i j
ab5m8v228D2

xx24D
2

8xx
if i 5 j 50, a5b,

50 if i 5 j 50, aÞb,

5D
2

8xx
if i 50, j 5n51212,a5b, Rj

a50,

5D2
xx if i 50, j 5n51212,a5b, Rj

aÞ0,

52Rj
a32Rj

b3D2
xy if i 50, j 5n51212,aÞb,

52~K8!0 j
ab if iÞ0, j 5 i 5n51212,

50 otherwise ~A4!

and

~K8! i j
ab5~K8! j i

ab5~K8! i j
ba for all i , j , a, andb.

Similarly, we obtain

Ṽ~qW ! i j
ab5La if i 5 j 50, a5b,

54D3
xy sin~qa!sin~qb! if i 5 j 50, aÞb,

5D5 if i 50, j 5n51212,a5b, Rj
a50,

5D6 if i 50, j 5n51212,a5b, Rj
aÞ0,

52Rj
a32Rj

b3D7 if i 50, j 5n51212,aÞb,
6-14
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5D48
xx2D18

xx if iÞ0, j 5 i 5n51212,

a5b, Ri
a50,

5D4
xx2D1

xx if iÞ0, j 5 i 5n51212,

ab, Ri
aÞ0,

52Rj
a32Rj

b3~D4
xy2D1

xy! if iÞ0,

j 5 i 5n51212,aÞb,

52D38
xxeiqW •RW i if j Þ i 5n51212,RW j52RW i ,

a5b, Rj
a50,

52D3
xxeiqW •RW i if j Þ i 5n51212,RW j52RW i ,

a5b,Rj
aÞ0,

52D3
xyeiqW •RW i32Ri

a32Ri
b if j Þ i 5n51212,RW j

52RW i , aÞb,

50 otherwise, ~A5!

and

Ṽ~qW ! i j
ab5~Ṽ~qW !!! j i

ab5Ṽ~qW ! i j
ba , for all i , j , a, andb.

In these evaluations, we have used the notationR0 j
5Rj , n51212 to represent the 12 nearest neighbors,
the notations

m̄5cAmA1cBmB,

m85AcAcB~mA2mB!,

m̃5cBmA1cAmB,

D1
xx5cA

2aAA1cB
2aBB12cAcBaAB ,

D18
xx5cA

2gAA1cB
2gBB12cAcBgAB ,

D1
xy5cA

2bAA1cB
2bBB12cAcBbAB ,

D2
xx5AcAcB$cAaAA2cBaBB1~cB2cA!aAB%,

D28
xx5AcAcB$cAgAA2cBgBB1~cB2cA!gAB%,

D2
xy5AcAcB$cAbAA2cBbBB1~cB2cA!bAB%,

D3
xx5cAcB~aAA1aBB22aAB!,

D38
xx5cAcB~gAA1gBB22gAB!,

D3
xy5cAcB~bAA1bBB22bAB!,

D4
xx5cAcB~aAA1aBB!1~cA

21cB
2 !aAB ,
21420
d

D48
xx5cAcB~gAA1gBB!1~cA

21cB
2 !gAB ,

D4
xy5cAcB~bAA1bBB!1~cA

21cB
2 !bAB ,

D55~D1
xx2D4

xx!1D3
xxeiqW •RW j ,

D65~D1
xy2D4

xy!1D3
xyeiqW •RW j ,

D75~D18
xx2D48

xx!1D38
xxeiqW •RW j ,

La5~m̄2m̃!v228~D1
xx2D4

xx!24~D18
xx2D48

xx!

24D3
xx$cosqa~cosqg1cosqd!

24D38
xxcosqgcosqd ; g,dÞa. ~A6!

The symmetries of the force-constant matrices are refle
in the operators as well. The effect of itineration is captur
in Ṽ(qW ) i j

ab through the quantitiesD3
ab . When there is

no force-constant disorder theD3 terms vanish andṼ
becomes independent ofqW . A qW -independent self-energ
results, and we arrive at the CPA equations. As an exam
of how to obtain the various matrix elements of the ope
tors, we present the calculation ofK018

(0) where R1

5( 1
2 , 1

2 ,0):

K018
(0)5^0 f uK̂ u1 f 0&,

5^0 f u~m̂•v22F̂!u1 f 0&.

Using Eqs.~6! and ~11!,

^0 f um̂u1 f 0&50,

and using Eqs.~7! and ~11!,

^0 f uF̂u1 f 0&5^ f uF̂01u f 0&,

5^~AcA^A0u1AcB^B0u!,~AcA^A1u

1AcB^B1u!u$f01
AAĥ0

Aĥ1
A1f01

BBĥ0
Bĥ1

B

1f01
ABĥ0

Aĥ1
B1f01

BAĥ0
Bĥ1

A%u~AcBuA0&

2AcAuB0&!,~AcAuA1&1AcBuB1&!&.

If we use the Cartesian coordinates explicitly, then thexx
component is, for example,

^ f uF01
xxu f 0&5AcAcB$cAaAA2cBaBB1~cB2cA!aAB%5D2

xx.
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