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The dynamics of an elastic medium driven through a random medium by a small applied force is investi-
gated in the low-temperature limit where quantum fluctuations dominate. The motion proceeds via tunneling of
segments of the manifold through barriers whose size grows with decreasing driving. fat@ero tempera-
ture and in the limit of small drive, the average velocity has the formexd —const A“f#]. For strongly
dissipative dynamics, there is a wide range of forces where the dissipation dominates and the velocity—force
characteristics takes the forowexd —S(f)/#i], with S(f)e1/f(@+20/2=9 the action for a typical tunneling
event, the force dependence being determined by the roughness exfohtrgd-dimensional manifold. This
result agrees with the one obtained via simple scaling considerations. Surprisingly, for asymptotically low
forces or for the case when the massive dynamics is dominant, the resulting quantum creepdeef the
usual form with a rate proportional to gxpS(f)/4]; rather we findv «<exp{—[S(f)/4]?} corresponding tar=2
and u=2(d+2¢—1)/(2—¢), with u/2 the naive scaling exponent for massive dynamics. Our analysis is
based on the quasiclassical Langevin approximation with a noise obeying the quantum fluctuation-dissipation
theorem. The many space and time scales involved in the dynamics are treated via a functional renormalization
group analysis related to that used previously to treat the classical dynamics of such systems. Various potential
difficulties with these approaches to the multi-scale dynamics—both classical and quantum—are raised and
questions about the validity of the results are discussed.
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[. INTRODUCTION velocity due to thermal creep; see Fig. 1. In the lifgf,
the scaling theory of cre&p'® predicts the law

Static and dynamic properties of elastic systems in the
presence of disorder have attracted the attention of physicists voeexg —U(f)/T], (N)
for more than three decades. Vortices in superconduttors, ) )
charge density waves in solidgjomain walls in magnets, With U(f)—% asf—0, and there is no linear response to an
and geological faulfsare well-known examples of such sys- applied force. The quantityJ(f) can be interpreted as a
tems. Mathematically, some of the problems that arise ifParrier separating two neighboring minima of the free energy
modeling are related to those in Burgers turbulehstp-  ©Oh some appropriate length scale that depends on the applied
chastic growth of surfacésand the stability of matterThe force; on long length and time scales, the manifold’s motion
physics of dirty elastic systems thus impacts on several dig?roceeds via thermally activated jumps of corresponding
ciplines. In this paper we focus on the dynamic properties of€gments between different metastable configurations.
driven elastic manifolds at temperatures low enough for Severalimportant assumptions are made in order to derive
quantum fluctuations to play an important role, in particularEd. (1). First of all, at least in its simplest form, it is assumed
the phenomenon of quantum creep. that thebarriers between different metastable configurations

In many situations the elastic system can be driven byscale with length in the same way as tariations of the
applied forces. For example, transport currents in supercon-

ductors cause a Lorentz force to act on vortices, while aV g / 7\
magnetic field applied to a ferromagnet produces an effective //\\\//\ 74 . N

force on domain walls. One of the primary quantities of in- ; / //\
terest in such systems is the average velogitf the mani- /\ 7 //,\\\ \
fold as a function of the applied forde its dependence on / \&

the temperature, and on the magnitude of the random disor u @

der that impedes the manifold’s motion. The presence of the
random pinning forces renders a theoretical analysis difficult, //\
as perturbation theory breaks down in most of the important
regimes due to the deformations of the manifold on many
length- and time scales. However, some important genera
results are known: in the absence of thermal and quantun
fluctuations the system stays pinned—i.e., the steady-state
velocity v = 0—if the driving forcef is smaller than a certain FIG. 1. Tunnelinglower dotted ling and activated motiofup-
critical valuef.. At nonzero temperatures, even if the force per solid ling of an elastic string in a disordered potential under the
f is smaller thanf., the system will move with a nonzero action of a weak external force<f.
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free energy that are caused by the balance between the raon large scales on which there are many separate valleys in
dom pinning and elasticity; in general one could consideithe “landscape” caused by the randomness. The intravalley
two different scaling laws for these quantit®sSecond, Eq. fluctuations correspond to the much faster motion of the

(1) is an Arrhenius law withtypical events dominating the manifold within one valley.

creeplike motion. In generafare events, in particular re- The paper is organized as follows. In Sec. Il we formulate
gions with anomalously high barriers, might lead to a modi-the model and find the appropriate effective action. In Sec.
fication of this law, perhaps to a formecexd —(U(f)/T)*] Il we show how to derive the creep lajEq. (2)] using

with «# 1 an exponent characterizing the tails of the barrierscaling arguments. Next we study the problem using the
probability distribution. Because of these assumptions, asenormalization group expansig¢8ec. I\) and then summa-
well as the need for increased analytical understanding, itize and discuss the main results. We end with an analysis of
would be valuable to derive the classical creep [&g.(1)]  the limitations and problematic aspects of both our and pre-
starting from a microscopic description. Progress in this divious approaches to the creep problem in Sec. V.

rection has recently been ma@iee Refs. 11 and 12where
Eqg. (1) has been derived from an at-least-partially control-
lable renormalization-grouRG) expansion. Although these
results support the validity of the scaling theory for thermal  we describe the elastic medium by a nondispersive elastic
creep, serious questions remain which we will discuss latefanifold interacting with a quenched random potential; this
in this paper. We also note that neither the recengeneric model captures all the essential physics while allow-
renormalization-group calculations nor the present paper adng for an extensive analytical treatment. Ttiassicalmo-
dress an important aspect of creep in many contexts, in pation of the displacements(z,t) of the manifold away from

ticular in the vortex lattice, i.e., the role of dislocations—theijts undeformed state is described by the dynamical equation
results are, so far, restricted to a truly elastic manifold with

pinning weak enough that deformations are too small to in-
duce dislocations or other strongly nonlinear effégts.
Experimental investigations have shown that even at ver
low temperatures creep of driven elastic systems, e.g., i
vortex lattices’* of domain walls in magnets, and of ¢ _ :
charge-density waves in solid&still persists. This phenom- N9 (f), and therma[ fy,(z,t)] forces. We will consider the
enon suggests an explanation in termgoéntum tunneling  €aSe, appllcgble tQ domain Walls,d>fj|men3|onal manifolds
of the manifold between different metastable configurationsi (d+1)-dimensional random environments, so that

: i . o d 1
the macroscopic manifestation of this is quantum crédgy € andue R T . .
analogy with thermal creep, one would guess that The random pinning forc€(u,z) is taken to be Gaussian
random with mean zero and a correlator

Il. MODEL AND EFFECTIVE ACTION

néu+ pdfu=cV2u+F(u,z)+f+fu(z1), (4)

here the friction forcepd;u and the inertiaoatzu are bal-
anced by the elasticc@Au), random pinning F(u,z)], driv-

voeexd — S(f)/A], (2
with S(f) a characteristic action for tunneling of a typical Fuz)F(u".z)=A(u=-u")d(z=2"), ®)
segment of the manifold whose size is determined by the here the overbar denotes an average over the disorder. The

applied force. In spite of a substantial number of studies o tion A q idlv with h teristi
quantum cree}d there is as yet no theoretical analysis that unction A (u) ecays rapidly with a characteristic scdle
The thermal noisef(z,t) is Gaussian white with a cor-

starts from a microscopic description of a driven elastic
manifold interacting with impurities; the main goal of this relator
paper is to present a first start at such an analysis, along with

a discussion of the difficulties involved. We will show that a (fn(z)f (2 t))y=29T8(t—t")8(z—2')

law of the form =k(t—t")8(z—27), (6)

oc _ a
vocexpl—[S(D/A ® with (---) denoting the average over thermal fluctuations.

can be obtained using a renormalization group approach, as In classical statistical mechanics we can reformulate the
can the functional dependence of the act®wn the external problem posed by a stochastic differential equation as an
force f be found. Whether this is indeed the correct behavioeffective field theory®?°with the help of the Martin-Siggia-
is addressed at the end of the paper. Rose(MSR) approach. After averaging over thermal fluctua-

A natural tool to investigate quantum creep is the func-tions the MSR action corresponding to E4) has the form
tional renormalization group expansibhan e expansion
near the upper critical dimensiord{=4) of the random
manifold problem. This involves, intrinsically, an infinite AMSR=—f ddzdtiy(z,t)(nﬁtu+pat2u—cAu)
number of marginal operators that can be combined into one

or more functions. We will find that in this approach a natu- 1

ral separation of the frequency scales occurs betvirten- +f dzdtiy{ f+F(u,2)]+ EJ dzdtdt
valleyandintravalleyfluctuations of the manifold. The inter-

valley fluctuations correspond to the motion of the manifold Xiy(z,t)k(t—t")iy(zt"), 7
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with y(z,t) an auxiliary field used to enforce the equation of with
motion. The probability of a particular dynamical evolution
u(z,t) under the stochastic process is proportional to
JDLylexplAusd U,y 1}

The main goal of this paper is to investigate the influence
of quantum fluctuations on the system whasassical limit y(z,t)=u(z,t)—u'(zt),
is described by Eq4). Again, it is convenient to formulate
the problem as a field theory, i.e., to write the effective actiorand the random potential
describing the elastic system in the presence of quantum
fluctuations in a way analogous to E@). When calculating u
time-independent quantities in equilibrium syste(ns., in U(u,z)=—J du;F(uq,z).
the casef =0) the corresponding quantum action has a Eu-
clidean form and the quantum partition function can be writ-
ten as an imaginary time path integfalHowever, here we
are interested in non-equilibrium propertiesA0) and the
Euclidean action cannot be used.

A formalism allowing to study theeal time dissipative
guantum mechanics of a system is that of Feynman and
Vernorf% the quantum amplitud® (x; ,t;:X;,t;) for a sys-
tem to have a coordinate at timet;, if at timet; it had a
coordinate x;, can be written as a path integral where 7 is related to the spectral density of the bath; see
f:f ”ttifD[x]eprS[x]/ﬁ), with S[x] the classical action. Con- Appendix A. S _ .
sequently, the probability of the transition,t;— X; ,t; can AC“‘?” ©) aIIowg one, In p_r|nC|pIe_, to investigate all the
be written in the form properties of a driven elastic medium in the presence of

quantum fluctuations. The classical limit, the MSR action
Ansr=1S/% can be recovered by expanding the random po-

U(z,t)=[u(z,t)+u'(z1)]/2,

The Fourier transform of the effective noise correlakgt
—1t") of the bath fluctuations obeys the quantum fluctuation-
dissipation theorem,

hw
k(w)= nhwcothﬁ, (10

P(X; b X 1) = JX' ’thXf 'tfp[x]p[xr]exp(is[x]/ﬁ) tential energyU in they field and substitutingi by u and
Xioti I Y/h by y. Such an expansion is valid at high temperatures
X exp(—iS[X'/%). ) and it has been argu&tthat it also applies to the limii—0

at T=0. This suggests that the dynamics of quantum sys-
tems in the semiclassical regime, where tunneling processes
b_through large barriers dominate, can be described by(4q.

lems. We see that the effective action can be written a ith the noise obeying the fluctuation-dissipation theorem

: T : ; Eq. (10)]; this is called the quasi-classical Langevin
Eig?t]’)]l.S[x ] and includes two different patfi(t)] and equatioR® (QLE) approach. In a number of pap&té’ the

The standard way to include dissipation is to write theQLE Nas been used to study the non-equilibrium dynamics of

; ; _ tum systems. In particular, in Ref. 26 the quantum tun-
action §x] in the form § x]= Sy[ u]+ Spatl Xpatnl T Sindl X] guan . . .
representing the actions corresponding to the elastic manfi€!ing of an overdamped quantum particle was studied using

fold, the bath, and the interaction between the bath and thiIS approximation. Writing th_eS/igve_rse lifetinteof a meta-
manifold, respectively (note that x=(u,Xps) and x’ ;table state in the forrﬁf Pe E\éwth Sthe tunne!lng ac-
= (U',X]) are the coordinates describing both the manifoldtion andP the prefactor, it turns ot that the QLE gives the

and the bath In the Caldeira-Leggett mod@lthe terms correct value of the tunneling acti@®up to a multiplicative

L factor of order unity[note that for quadratic systems the
Sba“{xbatrﬂ and S,( x] are taken to pe quadratic in the bath QLE is actually exact as is the expansiot)(T+V/2,2)
coordinateX,,, and hence can be integrated out at the ex- ~ = ARt )
o . ) ; —U(U—-Vy/2,2~U’'(0,z)y for this casé
pense of effective interactions that couple different times. . :
In this paper we use the QLE to study quantum creep in a

The resulting action takes the fortaee Appendix A or Ref. disordered medium. Although we would like to do better, we

In nonequilibrium quantum mechanics function8) plays
the same role as the partition function in equilibrium pro

24) are primarily interested in obtaining the correcalinglaws
o and asymptotic forms; the exact coefficients are of less inter-
iS[u,y] V(g ~ e ~ est. Action(7), with quantum nois€10) is much simpler to
o %f d*zdty(z,t)(du+pdiu—cAu) analyze than the full quantum acti¢iq. (9)]. We believe

that the QLE should be a useful tool for investigating the

dynamics of quantum systems as it appears to capture the

essential physics, while being—at least relatively—tractable

analytically. Quantum fluctuations appear in the QLE ap-

Y 5 proach as an effective random force with a correlatfr)

U( u-— E’Z) - fy}, [see Eq(10)] acting on the system. The quantum decay of a

metastable state then is equivalent to the thermally activated
(9)  escape of a particle driven by colored ndiée.

1 - -
d H YA '
+ ZﬁZJ d9zdtdtiy(z,t) k(t—t")iy(z,t")

LN
hfdzd U

TH—%,Z -
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IIl. SCALING ARGUMENTS U(f)~cu$L?‘2~ Ue(L; /Lc)d+2§—2

A. Statics and thermal creep Nuc(fc/f)(dug—z)/(z— o (13)

An elastic manifold subject to a random potential behaves )
as an assembly of approximately independently pinned segbis Yields an average velocity for thermal créspe Ref. &
ments of a characteristic size that is determined by the bal-

ance between the pinning and elastic forces. The driven mo- v~exd —U(f)/T]. (14
tion of the manifold is dominated, both classically and
quantum mechanically, by successive jumps of segments of B. Quantum creep with dissipative dynamics

the manifold between subsequent metastable configurations. Th tum t i f ts of th ifold
In order to understand this behavior one needs to consider ' ¢ guantum tunneling of segments ot the manitold can
various characteristic scales. e estimated in a manner analogous to their classical thermal

The characteristic size of the collectively pinned segment?cnvat'on: Let us assume th_at the manlfo_ld is located in one
is of ordef L~[c2£2/A(0)]¥4~ 9 the Larkin length over of the metastable configurations and subject to a small driv-

ing forcef. One expects the lifetime of such a state to be

which the typical distortion of the manifoldi(L.) —u(0)| is : . - :
of order¢, the scale of the correlations in the random pinning‘“-’ro.p(.)rtIonal to ex;ﬁ{h), with Sthe charact_enstlc action de-
cribing the tunneling through the barrier separating the

landscape. The characteristic energy scale of the deform%netastable minimum from one with a lower eneray. We es-
tions on scald . is U;~c&?L"2. BeyondL,, the typical a9y

) : a timateS using the standard theory of the decay of metastable
TS;():_a/CLe Tgevr\];fh ;Ih;hvsanrggﬂgglixp?(:ﬁg mf_'lﬂ(‘(lL) d);Js‘(?gL states. We first assume that the effects of dissipation domi-
C l_ - 1 H . H H '_

the random force case, whilg ;~0.2083(4- d) for a short- nate over those of inertia; the Euclidean action of the mani

; . i fold then can be written in the form
range correlated random potential; the difference in energy

between metastable configurations deviating on a dcale . PR
a displacementu(L) is controlled by the balance between SEuc[u]:f de ddz E<_u +U(u,2)—fu
the elastic and pinning energies, both of which have a mag- —o 2\ 9z
nitude of orderU(L/L.)? with the energy exponem=d
+2¢—2 and the wandering exponefigiven above. n (=, [u(z,r)—u(z,7)]?
In the presence of an applied forté is favorable for a + A _.. dr (7—7')2 (19

segment of sizé to move into the neighboring metastable

valley if the energyfL96u(L)~fLY¢(L/L.)¢ gained due to  with 7 the imaginary time and the dissipative coefficient.
the presence of the force is larger than the difference of thén order to findS one needs to find the imaginary time tra-
elastic- plus pinning energies between the two configurajectory connecting the initial and final configurations of the
tions; for small forces, this will only occur for large seg- manifold and calculate its action. We emphasize that as our
ments. Equating the two energy scales, we obtain the miniproblem is a non-equilibrium one, the full quantum action
mum characteristic size of a segment that can move to thieq. (9)] should be used. However, at low driving forces, the

lower energy sité, problem we study is guasistationaryone, as the lifetime of
a metastable state is large and the manifold can be consid-
fo\ 120 ered to be in local equilibrium. Therefore we can use the
Lf~Lc(T : (1) simpler(Euclidean action[Eq. (15)] instead of the full dy-

namic action(9).

In estimating the tunneling action we find the sizgof
the tunneling segment as in the classical case of thermal
creep, since this is determined by ttatic balance between
the variations in the pinning energy and the energy gain due
to the external force. Furthermore, we assume that there is
8nly one characteristic time scate associated with the tun-
neling process. We can then consider the tunneling event,
crudely, as an effective process in which a point-like object
with a friction coefficientyn;= 77L‘f‘1 tunnels through a poten-
tial barrier of heightU(f) and extentu;, see Fig. 2. The
saddle point of actioril5) is minimized when

Wherefc~c§/L§ is the critical applied force needed to move
the manifold in the absence of thermal or quantum fluctua
tions. The scalé ; is the minimum size of a segment that can
hop in order to lower its energy; the macroscopic motion
then proceeds via jumps of segments of this characteristi
size over distances
£\ 29
UfNS(?) (12

separating two neighboring metastable configurations.

Consider first the classical motion, i.e., thermal creep: The us  U(f)
conventional assumption is that the height of the energy bar- 77f7f~ Tup
rier that must be surmounted for such a motion to occur
classically is determined by the scaling of thimtic energy ~ where we have substituted the dynamic term by its charac-
U(L/Lo)? (we will discuss the validity of this assumption teristic value andJ(f)/u; is the characteristic force acting
later in this section The characteristic height of the barrier on the “particle.” The tunneling timer; is given by 7;
that dominates the motion at a small forfcis then ~ nfufZIU(f), resulting in the tunneling action

(16)
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E(u)‘

FIG. 2. Tunneling of a particle with an effective masis{ and
dissipative coeﬂicientr;L?I through a barrier of height/(f) and
width L; .

fe (d+29)/(2=90)
S(f)~3n<T) : (17)

PHYSICAL REVIEW B 66, 214203 (2002

i.e., 7i~[p;/U(f)]Y2u;, and the tunneling action can be
estimated as

fe
f

(d+2¢-1)/(2- )
) : (21)

S(f)~Sp(

with S,~(pU.L%)Y2% the characteristic action with inertial
dynamics on the Larkin scale,. The quantitied ; andU,

have been defined in Sec. Ill A above. The characteristic
crossover temperature can be determined as in the dissipative
case and is given by~ (AU./S,)(f/f;)V9.

D. Assumptions

Two important assumptions have been made in order to
derive scaling predictiof®): First of all, it has been assumed
that the barriers for the manifold’s motion scale in the same
way as the variations of the energy. If there are two indepen-
dent exponent§=d—2+ 2/ parametrizing thetaticenergy
scaling and > 6 characterizing the scaling of energy

with S,~ 7&2LY the characteristic scale of the dissipative barriers?>®then the barrier for thermal creep will have the
action of a segment with the diameter of the order of theform U(f)=L?. The simplest assumption for the quantum

Larkin lengthL.. The velocity of the manifold is related to
S(f) via Eq. (2).

The characteristic crossover temperatiiye from quan-
tum to classical creep can be obtained by compad§)/T
andS(f)/4, i.e.,

2((2-0)
AU(f) hUC( f) , 19

“SH S, I,

gives the scaling conjecture for the dissipative limit.

C. Quantum creep with inertial dynamics

motion is that this same barrier height is the appropriate one
for the quantum barrier traversal. While dissipative result
(17) would remain the sam@s Sy~ 77fuf2 does not depend
on the height of the tunneling barrjerthe result for the
inertial dynamics would take the for,enacL{?" ¥+ 2972,

We should emphasize, however, thayif- 6 then this is
because the dynamics on intermediate length scales affects
that on the large scale;. A dependence of the large scale
dynamics, of interest for quantum creep at small applied
forces, on the intermediate scale physics can also occur
quantum mechanically; but the way in which it occurs could
be quite different from the classical situation and it is pos-

~ We now assume that the inertial term in the action is moresible that each type of quantum dynamics has its own expo-
important for the tunneling process than the dissipation. Imenty, distinct from the classical valug.** Once we admit
this case the Euclidean action analogous to that given by Eqhe possibility of a dependence of the tunneling dynamics of

(15) can be written in the form
c(du
2\ oz

: (19

2
+U(u,z)—fu

SEuc{u]zj’j:dq-J' diz

2
. 2(1“)

2\ ot
with p the mass density of the manifold. The sizgof the
tunneling segment is the same as in the dissipative case.
order to find the actior5(f) one again needs to find the
tunneling timer;; comparing kinetic and pinning energies
for the saddle-point configuration, we figdith pfsz? the
effective mass of the tunneling objgct

U Uf)
—~ , 20
Pt T? Uy ( )

large segments on the dynamics at intermediate scales, the
basic assumptions of the scaling arguments given above
breakdown. But this is exactly the kind of problem for which

a renormalization-group framework is needed.

Another potentially important effect that was not taken
into account in the simple scaling analysis summarized
above are rare events: in general, it is possible that the ve-
locity is not controlled by the typical barriers—or, more pre-
cisely, by the tunneling through these typical barriers — but
by rare anomalously large barriers. In the simplest scenario,
this could give rise to a quantum creep law of the faym
cexp—[S(f)/1]*}, with a#1 a nontrivial exponent charac-
terizing the tail of the distribution of barrier heights. Just
such a phenomenon controls the temperature dependence of
the diffusion coefficient of a single particle diffusing in a
Gaussian random potenti#isee the discussion in Sec. IV E.
One mechanism for an exponeat>1 is that rare, rather
than typical, events dominate the macroscopic motion.
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IV. RENORMALIZATION GROUP ANALYSIS cludeall the frequencies into the renormalization group; spe-

A. Derivation of RG equations cifically, we must make the substitution

Having presented the basic scaling arguments for both ~ [t B - (k) ok
classical and quantum creep, we now turn to the main task of79U—D®U= wdTD(T)u(t_ 7)= ”ﬁtu+gfz UAMCUE
this paper, an attempt to derive the creep laws from a micro-

; - : . (22)
scopic description of the dynamics. With the roughness ex- o )
ponent¢ vanishing in dimensionsl>4, one expects that It will turn out that, ev((la()n |f_|n|t|ally77 fO forallk=2, the
d.=4 is the upper critical dimension of randomly pinned dynamic parameterg™ will grow rapidly under the flow

elastic manifolds, an expectation which turns out to be corf’md b?come crucial, the renormallzed Sp‘?c”f’m“’) IS
very different from the bare linear spectrumi w 7.

rect both for the equilibrium properties in the absence of a . . .

driving force and for the fluctuationlesg €0) critical de- Ithas been argued aboye thqt In order to Investigate quan-
ining t i £ inth ¢ a driving fordeA tum creep we can use action) with the correlator given by

pinning transition at . In the presence ot a driving foree Eq. (10). It is convenient to perform the disorder average in

renormalization-groug expansion aboull;=4 then allows g4 (7) and work in a frame moving at the average velocity
one to investigate the various large scale properties of thgt ihe manifold. i.e.. we substitute(z,t) —u(z,t) + vt. We
pinned elastic manifold® An important feature of this renor-

malization group analysis is the fact that even to lowest ordeéction averaged over both quantum fluctuations and random
one has to take into account infinitely many variables, in_. .’
. . . ) ) pinning, takes the form
practice by renormalizing a function that is essentially the
correlatorA[u(z) —u(z’)] of the random forceébut see the . 1
discussion in Ref. 33 and in Sec. \J.B AZ—J dzdtiy(D®u—caiu) + Ef dzdtdtiy(zt)

The functional renormalization-grougFRG) approach
has been successfully applied to both static equilibtiland
fluctuationless T=0) depinning problem&**Recently, the
FRG was also applied to the thermal creep probleff;®

also introduce the above general dynanil;sthe resulting

xK(t—t')iy(z,t’)+f dzdtiy(f— 7v)

although its applicability is far more problematic. For forces + lf d9zdtdtiy(z,t)Alu(z,t)—u(zt')
f<f., the motion proceeds either by activation or tunneling 2
of large segments between different metastable minima and X +u(t—t"]iy(z,t'). (23)

thus the dynamics imtrinsically nonperturbative: in particu-
lar, the dynamic exponerg, which is shifted only slightly ~The correlation functions corresponding to the quadratic ac-
from its naive value of two near the critical depinning tran-tion in the absence of pinning are given by

sition, must be radically modified in the creep regime. Nev- (@)

ertheless, itappears(though see Sec. that for thermal L Klw ' '
depinning ongrt):an handlegthis within the FRG and renormal- utk,)u(k’,0’)= Ick?+ D(w)|2 do+ao’)sk+k’)

ize until a scale is reached beyond which the disorder can be

taken into account perturbatively and the equation of motion =C(k,0)6(w+o")o(k+k"), (24)

can be solved. By retracing back the FRG flow, one can then
determine the average velocity of the manifold. We will fol-

low this approach here, but return later in the paper to ques- u(k,w)iy(k’,w’)= 2 Sw+w’)o(k+k’)
o e . ck“+D(w)
tion its validity both for the quantum and classical cases.

Formally, in both classical and quantum cases, the RG =R(k,w)8(w+w")8(k+k"), (25

analysis of creep involves the flow away from the stafic ( . h th | definii f th . f
=0) fixed point that controls the undriven pinned systemw't the usual definition of the Fourier transform

under the action of a small applied foréeunder the RG

transformation the parameters describing the system flow in f(k,w)Ef dzdtf(zt)exp —ikz+iwt), (26)
such a way that eventually the effects of disorder can be

neglected beyond a certain length scale. But there is an imandD (w)~ 7(—iw) for small w. Because of the fluctuation
portant difference between the classical and quantum casegissipation theorem, we have

In the classical cadé one can restrict the analysis to the
low-frequency limit, i.e., including the friction termyg;u)
alone into the renormalization procedure is sufficient. This is
a consequence of the fact that, to exponential accuracy, clas-
sical creep does not depend on the dynanics., inertial In the regime of interest for quantum creep, the motion of
versus dissipativeof the system. In the quantum case, it will the elastic manifold can be represented as jumps between
turn out that an analogous treatment leads to a spurious “lodifferent metastable states and the lifetime of each meta-
calization transition” where the average velocity of the mani-stable state is large. It is thus possible to extract some infor-
fold drops to zero at a finite length scaleL.; see Sec. mation about the dynamic properties of the system, in par-
IV B. In order to carry out a correct analysis one must in-ticular, the average velocity, from static equations if we

ho
kK(w)=—fhIm D(w)cothﬁ. (27)
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cut off the renormalization group flow at the relevant length AAY [ do
scale, heré (~L(f./f)Y?9; see Sec. ll(a similar situa- Cr (A )= df 2—e*'“"C(A,w) (35
tion arises in the conventional theory of the decay of meta- (2m) ™

stable states: although the original problem is formally non-nq
equilibrium, the system is trapped for a long time in the local

equilibrium state corresponding to a local minimum of the AAY [ do
free energy; one can approximate the partition function of R(A )= df Z—e*"”tR(A,w); (36)
the system by that calculated assuming quasi-equilibrium (2m) ™

and then find the flow of the probability out of the local here C(A,w) and R(A,w) are defined via Eqs(24) and

potential wel). This is why we could use the Euclidean ac- (25), with D(w) substituted for byD(w). Also, we define
tion instead of the full quantum mechanical action in Sec. lll.the coefficient

For values of the RG variablesmaller than In(;/L.) we

then can use the appropriate static versions of RG equations.
The RG flow equations are obtained by integrating over | . . . .

fast modes in effective actiof23) with the last two terms in W.h!Ch will appear frequently in the following. We chose an

the action treated as perturbations about the quadratic actioffitial dynamic spectrum of the form

We write all the equations, except those for the correlator _ 2

A, (u), the temperaturd|, and the Planck constarit at Do(w)=~inwtpw”. (38

finite velocity. We will use the subscriptin order to distin-

guish renormalized quantities at length sdate A ~*e' from

bare quantities without subscripts, e.g@p= 79, T=Ty, %

=fg, A(u)=Ay(u), etc. Introducing the large momentum

cutoff A, we obtain, to leading nontrivial order i, ,

I/=Cf (A,t=0), (37)

The excess of the applied force over that needed to sustain
the motion of an unpinned system with dissipative coeffi-
cient », is

Ti=fi—nu,. (39

Above, we have defined the Fourier transform of the second

AAI(U)=(4=d =20 (W +LUA () + G (At=0) derivativeA”(u)=92A by A”(p)=fdueP'A"(u), so that

XA/ (U)+TAT(W[A(0)— A (u)]—TA[*(u), Y
(28) Af’(w/v)Evf_ dte'“'A] (vt); (40)

this quantity plays a crucial role in the dynamic renormaliza-
tion. Equations(28), (29), (31), (30), and (33) have been
obtained before in the discussion of classical ctéethey
are the same in the quantum case, while B8) is different,
however. We now show how it can be obtained and in what
respect it differs from its classical analog.

a,?,=(2—2gﬁ|+fdtR,>(A,t)A,’(u|t), (29

du=(z— vy, (30

(1) =(4—d—20) k(1) + 219y (1) = C (A, DA (v1),
(31

do’" 1.,
&|D|(w)=2D|(w)—zwr?wD|(w)—fgv—lm(w’/m)

X[R{ (A, 0")—R (A o+ o')], (32

(9|T|:(2_d_2€)T|, (33)

After averaging the disorder term over the fast modes
one obtains the following feedbackA to the term

— fd9%dtiy(z,t)D,®u in the action:

SA= —f d®zdtdtiy(z )R (A,t—t")[u(z) —u(zt")]

X AlTv(t—t")]dl. (41)
Writing the functionsA,(v ) andR; (A, 7) as Fourier inte-

grals we obtain Eq(32), which explicitly includes the full
(34) dependence of the displacement fie(@,t) on time, i.e., itis

nonperturbative in frequency. In the classical analysis of Ref.
with 1=A4AYc2A* defined in terms of the surface ardg 12 it was assumed that the low-frequency limit of the RG
of a d-dimensional unit sphere. Both the dynamic exponengquations is valid for all frequencies, i.e., for—0 the only
z=z2(1) and the roughness exponjft) are at our disposal important term is that containing;d;u [corresponding to
to adjust for convenience; it will generally be most useful to — 7i @u(w) in Fourier spacg The equation analogous to
choose! to be thel-independent value giving rise to a well (32) then is given by its low-frequency limit, i.e., instead of
behaved fixed point function* (u) in the absence of fluc- the full dependence(z,t)—u(zt’) one considers only the
tuations or drive. How best to adjus{l) we reserve for first term of its Taylor expansion ib—t’. It was also as-
later; conventionally it would be chosen to fix the coefficientsumed in Ref. 12 that the response functiyin(A,t) and the
in the low-frequency part ob,(w), in the dissipative situa- correlation functionC;”(A,t) depend only on the frictional
tion studied here, ofy, . The shell-restricted correlation func- coefficient z,. In the classical limit this approach leads to
tionsC~(A,t) andR™(A,t) are given by reasonable results. By contrast, ignoring the frequency de-

Hf=(2=d=2{=2)%,
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pendence of the dynamics in the quantum case leads to &* (0)~ (cA?)?&?A % 2%c and a width&* ~ e e, re-
spurious “localization transition,” implying a zero average sulting in a cuspA*’(0+)|~(cA?)?£A 9 ¢c; see Ap-
velocity of the manifold below a small but nonzero driving pendix B.
forcef and in the presence of quantum fluctuatiérs0. We In the presence of small quantum or thermal fluctuations
will discuss this issue in Sec. IV B. the coefficientl’;=C;”(A,t=0) becomes nonzero and this
In the case of a purely dissipative dynamics there is anjga4s to asmearingof the cusp inA,(u).1212%8The deriva-
other prqblem Fhat occurs even at the initi_al stage of thqive A/(0) of the correlator at the origin is zero for
renorm_ahzatlon. the integral in Fhe. expression @f (At C*(A,t=0)#0 but changes rapidly in a boundary layer
I;o?)ladrlvsrg?rfezﬁc:izge (fr()aq[lézgcllzesi 1%?faﬁ(ﬁ)h:gd r(gr?{ic around the origin. The cusp that was present in the absence
gew Katw =0 > dynar of fluctuations is smeared over a regiog,.,Which can be
spectrumD,(w) are both proportional te for a dissipative timated b g the t T/[A(0)|~T)[A/
dynamics and, consequently; (A,t=0) diverges logarith- estimated by comparld 623 Zerrgs e 1(0) 14 (u
mically as/dw/w at large frequencies; see EQ4). This is Nu_smea,”/usmear and [A%/(cA%)7]A["(u) in Eq. (28). The
not unexpected: it is just such a logarithmic frequency dederivative A{(U>Usmes) approaches the fixed point value
pendence that can cause localization in models with a singld* ' (+0) found in the absence of fluctuations and we obtain
degree of freedom coupled to a bath that provides a linedihe boundary widthugyea~T'1(CA%)2/A%A*"(0+)]. The
friction;3’ thus integrating out all the frequencies at once iscurvature A'(0)~ —[A%(cA?)2]|A*’(0+)|4T, then di-
problematic even for short wavelength deformations of theverges as the fluctuations renormalize to zero on large scales.
manifold. In reality, we expect that an inertial tepn?u or Physically, usmeafl) can be understood in terms of the
some other frequency dependence describing the small scadguilibrium response of a segment of size= A €' to the
dynamics will provide a cutoff at high frequenciéat o,  motion of its neighboring regions. Usually, a small displace-
~ nlp for the inertial cask alternatively one could introduce ment of neighboring regions will cause only a small readjust-
a sharp cutoff by hand. We will consider both possibilitiesment of the segment of interest within its local energy mini-
later, noting now that how this is done will affect the resultsmym. The exceptions to this occur when the minimum
far more than one might expect. energy configuration of the segment jumps from one con-
figuration to another as its neighboring regions are slightly
displaced: it is these jumps that give rise to the cusfi(n)
in the absence of fluctuations. At a nonzero temperature or in
The main goal of the remainder of this section is to anathe presence of quantum fluctuations, the behavior will not
lyze the system of RG equations derived in Sec. IV Ain thechange much except near these jumps, where there will be a
limit of small driving forces. We first discuss the important range of positions of the neighboring regions over which the
features and then provide a more detailed analysis in theegment of concern will have a non-negligible probability to
following section. First, let us analyze the renormalizationpe in either of two distinct configurations. This will result in
[Eqg. (28)] of the force-force gor_relator. In the absence of 5 smearing of the cusp if,(u) over the scal@iges(l) of
quantum and thermal fluctuatiofie., «(w)=0 for all ], neighboring region displacements on which this split prob-
the correlation functiol©;” (A,t=0) is zero. In this case, the apjlity typically occurs. On large scales, the fact that the
nonlinearities in the flow equation of the functialy(u)  energy scale grows ds’ means that it is much less likely
cause it to become nonanalytic on a finite length scale, eveghat the position of a segment will fluctuate between two
if the bare correlatody(u) is analytic; see Ref. 18. This is energy minima. This is reflected in the renormalization to-
easily seen by differentiating E(8) twice with respectt@  \ards zero ofl'; and the concomitant flow towards zero of
and SUbStitUtingJ:O, reSUlting in an equation for the evo- the Smearing Sca|elsmeapc]—‘| . Summarizing, the function
lution of the quantityA['(0) alone. The simple autonomous A, (u), whose renormalization is given through E8), de-
flow equation forAy'(0) leads to a divergence at a finite scale velops under the RG in the following way: At the scélg,
|~ e LIn[c?A9*A(0)], producing the Larkin- or pinning A,(u) is close to its fluctuationless fixed-point function
length L.=[c?/A"(0)]Y* D~[c2£2/A(0)]Y 4D where A*(u), with fluctuations affecting its behavior only in the
collective pinning goes over into strong pinning. Beyadnd vicinity of the pointu=0 via a smearing of the discontinuity
the perturbative description breaks down as multiple competin A/ in a boundary layer whose size is controlled By.
ing minima appear in the pinning energy landscape. The inOnce we know how the functiof,(u) evolves, we can sub-

B. Structure of the quantum RG flow

finite second derivative suggests that the functigtu) will stitute it into the other RG equations and see how other quan-
have a discontinuous first derivative @0, i.e., A[(+0) tities renormalize under the RG flow.
=—A/(—0)#0. On length scales shorter that,, the In addition toUgyea, there are two other important dis-

smoothness o, (u) reflects the smooth reversible evolution placement scales: the characteristic scifleof the fixed-
of a segment as it is pulled by its neighboring regions. But orpoint correlatorA* (u) and the scalel, associated with the
larger length scales the internal deformations of the segmenelocity u,q~ 7v,/cA?. The latter is the product of the ve-
will cause it to jump discontinuously and irreversibly from locity v, and the characteristic timescag/cA? of the low-
one metastable configuration to another — this is reflected ifrequency part of the response functi®i (A,t) at wave-
the discontinuity inA| . At the scalel . the force correlator lengths of the order of the cutoff ~. At scales somewhat
essentially has reached its fixed point shape with a heigHarger than the Larkin length <A ~telc:
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Uyel< Usmear< £ - (42)  ning condition 7|f~(Ad/cA2)|A*’(0+)|~fce(2*§)'c; the
depinning scald; then relates to the forckvia (2—¢)(l;

This is a consequence of the fact thatis exponentially —1)~In(f/f) or
C Cc

small (xcexp{—[S(f)/%]*}) in £, while ugpeaproportional to a
powerof 7, and £€* is a static quantity that does not depend
on #, (in the classical case the relevant displacement scales
obey the same relation with the role éf played by the
temperaturd’). During the RG flowug,.,decreases gradu-
ally with decreasingi; whereasu,¢ increases rapidly due to
the sharp increase in the viscosity.

Eventually at some scale both.,,and u, are of the
same order. At this scale, which is the crossover stale
appearing in the scaling arguments for creep, the function
A/(vt) and A/(vt) are roughly given byA*’(+0) and
A*”(+0) on the time scales that dominate in E@9), (31),
and (32). At even longer scalesy,. eventually becomes
comparable tat*, see Ref. 12. Beyond this scale the ran-
domness is effectively smoothed by the motion of the mani-
fold and can be neglected or treated perturbatively.

In analyzing the renormalization of other quantities by the
random pinning forces, we thus see that there are two impor-
tant regimes: (see Appendix B and enables us to find the renormalization

of the viscosityn,. Since we are primarily interested in cal-
(i) Uyer<Usmear the nucleation regime.  (43)  culating the velocity to exponential accuracy, the calculations
simplify significantly. If we donot renormalize time scales
explicitly, i.e., choosing(l)=0, the velocityv is given ap-

Li~L(fc/f)YE9, (45)

We thus see that the characteristic length scale for creep —
the sizel ; of the segments that can jump to lower the energy
— appears naturally within the RG framework. We empha-
size, however, thalt; is entirely determined bygtatic prop-
erties; so far we have not had to address the crucial issue of
dynamic renormalizations — to these we now turn.

" The crucial guantity needed for the dynamic renormaliza-
tion is A(0), which can be obtained from E¢28) by com-
paring T'|A/'(u) with the nonlinear terms evaluated at the
origin u=0. This yield$?

”n 1 Ad ’ 2
_A'(O)%r_l(cA—z)zA'HO) (46)

where we can approximatg (vt) by A/ (0)=0 andA[ (vt)

by A{(0); and proximately by the viscosity at the scalg:
(I1) Ugmea<Uye<&* the depinning regime. (44) 1
It was arguetf that this latter regime resembles that of the lnv%ln?]_“' “n

critical depinning transitiotf in the absence of fluctuations;
we can then approximat&, (vt) by A’ (+0) andA{(vt) The validity of this condition to exponential accuracy is due
by AF”(+0). These two regimes are separated by the scalt®o the following argument: At the scaleqy,, where Uy
L, discussed in Sec. lll. We will now show how the scale ~ v, /cA?~&* we have a velocity, = 1/7, as the effects
Li~L(fo/f)¥? 9 naturally appears in the solution of the of pinning are negligible beyond this scale. On intermediate
RG equations and separates the two regimes. scales, i.e., betwedrn; andL 4, both 7, andv, renormalize

In order to do so we concentrate on force equati®9 but not exponentially; the only exponentially large renormal-
which involves the slopé\/ (v t) of the disorder correlator ization originates from scales betwekp andL;. Thus, to
near the origin. The latter is small and vanishesiat0 for ~ exponential accuracy, we can ignore the renormalization on
I<l., henceéf,=e~9'F grows exponentiallysince the ve- scales larger th{:mf (and smaller thar. ;) anq justify Eq
locity v, of the manifold is exponentially small we can ne- (47) (note that, in gene_ral, only SUCh_ dyna_mlc quantities as
» andv, are exponentially renormalized, i.e., proportional
to exg =constL#], with « a positive constanf®

The crucial equations for calculating the renormalized ve-
locity are Eqs(31) and(32). Substitutingy, by zero in these
equations and performing the Fourier transformation in Eq.
(31) we obtain the two equations

glect the termypv, in the equation foff,). In the absence of
fluctuations the slopa/ (v t)~A*’(0+) rapidly turns on as
the correlator forms a cusp dt; if the disorder term
(AYcA?)|A*"(0+)| overcompensates for the scaling term
(2—0)e?= 9t the force will start renormalizing to zero
while in the opposite case it will continue to increase. Bal-
ancing the two terms we find the critical force density

~C§/L§. Ik(w)=(4—d—2{-2)k|(®)—Zwd Kk (w)
Fluctuations smearing the correlator on the saajgq,, AgA® ()

soften and delay the depinning transition until the growing - ! , (48

width u, of the response function encloses the emerging (2m)¢ |cA?+Dy(w)|?

cusp inA(u) atls, uye(ls) ~Usmeafl). Below l; we have

A/ (vit)=~A[(0)=0 and the force increases exponentially dD|(w)=2D|(w)—2wd,D|(w)

T,=e?~9F; starting with a small forcéf<f., depinning p

occurs as the cusp emergesughesf!¢) ~Uyell:). Again re- _ AdA A7(0) Di(w) o)

placingA( (v ;t)~A*'(0+) in Eq. (29) we obtain the depin- (2m)d ! cA?[cA?+D(w)]

214203-9



GOROKHOQV, FISHER, AND BLATTER

Note that Eqs(48) and (49) are very similar except for

PHYSICAL REVIEW B66, 214203 (2002

&|D|(iw)=2D|(iw)—Zw&wD|(iw)

the trivial scaling parts. This is the consequence of the quan-

tum fluctuation-dissipation theorédf(FDT),

Ay Im[R7 (A, )]

= 50
TR Wl 0

tﬁ|w
cothaT

AGAY  AY A[(+0)2

(2m)9(cA?)® T

[cA2+D(iw)]’
(55)
with the initial conditionD (i ) = 5| w|+ pw? (valid for any

which is valid in the quasiequilibrium situation produced by ) and calculating the renormalized low-frequency viscosity
the long time scales associated with the creep motion. If, =y D (iw), 0—0; having founds, we can determine the

relation(50) is satisfied in the bare systerh=0), then Egs.
(48) and (49) guarantee its validity for anl; Strictly speak-

velocity v using relation(47). Note that if Dy(iw)=Dy
(—1w) then this property is preserved under the RG trans-

ing the FDT is not applicable foy #0, but its appearance formation.
here is understood to be consistent with our assumption of on very short scalels<I, the disorder-dependent term on

being close to local equilibrium and our use of the approXi-the right-hand side of Eq55) can be neglected. On interme-

mation v=0 in the RG equations foL.<L;. Using Egs.
(25), (36), and (50) one can see that expressio@8) and
(49) are identical up to scaling terms.

Substituting Eq(46) into Eqg. (49), we obtain

9D|(w)=2D|(w)—zwd ,Di(w)

AGAY A9 A[(+0)?

N Di(w)
(2md(cA®® T

[cA%+Dy(w)]
(51)

Note thatl', and R;"(A,t=0) are functions ofl via their
dependence ob,(w). Using Egs.(24), (25), and (50) we
can writel"| in the form

_ AdAdf+xd_w fl| |m[D|((x))]C0ﬂ'(ﬁ|(1)/2T|)
(2m)¢ |cA2+D)(w)|?

— 2

(52

In a nearly static systerh, and temperaturd, renormalize
to zero in a trivial way[see Eqs.(33) and (34)], and the
elasticityc is not renormalized at aly,c=0. This is a con-
sequence of the statistical tilt symmety-¢u+b-z, with b
an arbitrary constant vectoof action (7).

We now concentrate on the zero temperature limit where

the correlation functio”,=C; (A,t=0) can be written in
the form[cf. Egs.(25) and (50)]

AAY [=dw 27,
1= f 5 —. (53
(2m)%J0 27 cA?+D|(iw)
This is a consequence of the idenffty
f dwRﬁ(A,iw)zf do IM[R (A, )] (54)
0 0

following from the analytic structure of the correlat@r as

implied by causality. It is convenient to work within the

imaginary time formalism and substitute—iw. This sub-
stitution transforms the dynamic spectrum inf® (i w)
=g+ 3=,7% " with the advantage thdd,(iw) is real
and non-negative for positive. The calculation of the ve-

diate scale$.<|<I; we can substitutd| (+0) by its fixed-
point value which is related to the bare potential thro(gge
Appendix B

(cA?)? (cA?)*

A*I(+0)2:Ge(f—2§)lc Ad A(O)"“ AZd gZe—Zglc’

(56)

where we have used the relatid{0)~ c2£%(A/e'c)€ in the
last equation.

C. Naive RG and “localization” transition

Before embarking on the complete analysis it is instruc-
tive to see what happens if we simply keep the leading low-
frequency form ofD(iw) as is conventionally done in dy-
namic renormalization group calculations. To do this we
substitute the ansaf2,(iw)= 7| w| for all frequencies into
Eqg. (53). Calculating the integral we easily obtaih,
~ (5, A% 7)) In(mwlcA?), where we have introduced a high-
frequency cutoffw. Substituting this expression into E&5)
and approximating

Dy(iw)/(cA?+D(iw))—D(iw)/cA?= pwlcA?,
(57)

i.e., assuming that the low-frequency asymptotizgi )
= nw is valid for anyw andl, we obtain the equation for the
renormalized friction coefficient,

g (59)

S

~ ﬁe*(dﬂé)'cmz ,
with S, ~ ngng. Unfortunately, the behavior of this equa-
tion is pathological: one can see that it would imply a diver-
gence of, at afinite length scale. This would presumably
mean that the velocity goes to zero in the presence of a
nonzero force and quantum fluctuations, a result that appears
to be implausible. Of course, what one must check in any
situation where some parameter in an effective action di-
verges under the RG flow is, whether this is due to an un-
physical restriction of the space of relevant parameters, a
breakdown in whatever approximations that have been made
in deriving the RG flow, or some other effect. In our case, it

locity v of the driven elastic manifold reduces to the problemwill turn out that the renormalization of the whole frequency

of solving the equation

spectrum is very important. This should be contrasted with
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the classical case for which one can obtain the result
ocex%—U(f)/T] by considering the low-frequency limit
only.

D. RG analysis of dynamic response

We now turn to the analysis of the RG flow equati¢bs)
and(56). In order to find the flow of the functioD,(w) it is
convenient to make the unconventional chaz¢g) =0 and
allow 7, to change arbitrarily. If one is more comfortable
with a flowing dynamical expone(l), one can work more
generally with the quantity

E|(Q)=D,(iQ)/cA? (59

where Q)= w exf —f'dI’z(1")] represents the unrenormalized
frequency; substituting E¢59) into Eq.(55) and accounting
for Eq. (56) as well as the trivial renormalization df, [see
Eqg. (34)] we arrive at

) E(Q)=~2E(Q)

+ Keld+2:-2)! E(Q)O(-1¢) 1
1+E/(Q) f+°cnd9/cA2
% 1+E(Q)
_ E(Q)O(-1y)
with the dimensionless constaldtgiven by
K=2me 73(0) e‘(d+24‘4)'c~%e—(d+25)lc (61)
(cA?)?h h
and
K eld+2¢-2)l U(L)
1= f+xndQ/CA2 f+°° hdQ . (62)
—« 1+E|(Q) 1+ E(Q)

Forl <l the renormalization of the dynamics due to disorder
can be neglected, as properly expressed by the step function

O -1, in Eqg. (60). The quantityB,«1/1", governs the

fluctuation-induced smearing of the cusp in the force-force

correlator. The right-hand side of E¢0) behaves differ-
ently for E;(Q2)<1 andE,({2)>1; using the approximation

E ()

m%mln[EKQ),l]

(63

considerably simplifies the analysis but does not change the

result qualitatively. We rewrite Eq60) in the corresponding
(I-dependentfrequency regions in the forms
IE(Q)~2E|(Q)+E(Q)By,

E(Q)<1, (69

(9|E|(Q)%2E|(Q)+B|, E|(Q)>1

As is readily seen from Eq964) and (65) the function
E(Q) is an increasing function of for all  and E;(Q)
—oo asl—oo, In addition, if E¢({2) is a monotonically in-

(65)
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FIG. 3. Different regimes relevant in the integration of the dy-
namical equatiori60): For Q< ), the integration is split into two
regimes 0<1<Tq andTo<!, while for Q>0 the integration in-
volves only one regime.

creasing function of) thenE,;({)) remains monotonic if)

for any|. Let us define the frequend, and the scald,
which solve the equation

E(Q)=1; (66)

the function(), starts atl=0 with a finite valueQ), and
decreases with increasimgFor anyl>0 we distinguish be-
tween the three regions<00 <@, 0,<0<0,, andQ,
<(; see Fig. 3.

In each of these regions the functi&n({) can be found
explicitly in terms of Eq({2) and the yet-to-be-determined
function B, :

E,(Q)=EO(Q)ex;{2I+JIdI’BV}, 0<0<Q,, (67
0

E(Q)=e?(-T(®)

[ .
1+f~ dle—2¢ '(Q))BV},
Q)

0,<Q<Qy, (68)

| , -
E,(Q)=EO(Q)e2'+e2'f di'e™?'B;,, 0,<Q. (69
0

Note that we integrate Eq&4) and(65) subsequently in the
first two regions 81 <T andT,<I, while for Q>0 Eq.
(65) applies for all values of. Correspondingly, the integral
[72dQ/[1+E|(Q)] that determines, [see Eq.(62)] can

be written as a sum of three terms. We will show below that
B, increases exponentially, implying that the bound@yis
exponentially small and the first integral extending over the

interval 0<Q < (), can be neglected; hence
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1+ 1 G, dQ +oo dQ
Efocd01+E|(Q)~fﬁ - I , - " Ja, I ,
1+l 1+f~ dire 20 -1, 1+EO(Q)e2'+e2'J di'e”?' By
[(Q) 0
(70)
fﬁo dQ +F dQ -
o 14+G Ja,1+Ex(Q)e?+G,

In the last equation we have approximatéfj~0 and Which increases slightlfasterwith length scale than in the
T(Q)~0, and introduced the expression absence of the logarithmic factor. The crossover between the

dissipative and massive results appears at

| , BI
—e? | g1'B.e-2" ~ : 2 2
Gi=e fod' Bre " ~dng a2 B KT e 12010, 76
| 2 !
pCA S,

the last approximation applies i, increases faster thaat'.
Substituting Eq(Q) =(7Q + pQ?)/cA? [see Eqs(38) and comparing with Eq(75) this translates into the length scale
(59)] into Eq. (71), we see that the second integral on the

right-hand side of Eq(71) always dominates and we con- S,h =220
clude that it is thehigh-frequencybehavior ofDy(w) that Li~Lc ? ' (77)
controls the large length scale renormalization of the dynam- P
ics. with a corresponding energy scale
Using the definition ofB, [see Eq.(62)] and evaluating
the integrals ovef) explicitly, we obtain an implicit equa- L,\@*+2¢=2) S,i hn
tion for B, valid at large length scales, U,~UC(L—C) - c?”?- (78)
P
5 Keld+2e-2)l 73 For L>L, the behavior ofB, is always dominated by the
I e? 72l p l \/; ’ inertia and resul{74) takes over.
min[ e 2 In - In the end we see that the coefficidt< 1/, describing

GicA? VGcA the fluctuations rounding the cusp in the correlatgrin-

where we have ignored multiplicative factors of order unity.créases dramatically with increasing scaléwith a corre-
The first term in the denominator applies for smalat in- ~ Spondingly decreasindl’). Substituting Ei—Eqe” +G
termediate length scales wh@ is not too large, while the —Bi+(Q/Q)* in the integral of Eq(62), we see that the
second is relevant if the inertia is substantiap ( integration is squeezed to the high energy side where it is
> n%e?/cA%G)) and for asymptotically large scales fany  ultimately cutoff by the inertial term¢=2) or a more gen-
non-zerop. Given that the approximation in Eq72) is  eral cutoff (2/Qc)“. Hence the remaining high-frequency
valid, as is the case in the regimes of interest, we have guctuations measured with respect to the typical barriers
non-linear differential equation foB, ; in its simplest ap- Y(L) at this scale determine the smoothing coefficiEnt
proximation withG,~ B, this reduces to an algebraic equa- Technically, the exponent in the non-Arrhenius type [&4).

tion which is readily solved. Using the definition f[Eq.  (74)]then appears via solution of the implicit equation Byr

(61)] and the expressionk.=A e, Us~c(£Z/L2)LY, with the resultB, > 1/2“. For the extreme case with a linear
S,~ 77§2|-g. and82~p§2UCLg, we find the result spectrum sha.rply .cut at the frequen@c, DQ(|w<|w_c)
P =7nw andDy(io>iw.) =, a similar calculation provides
p CA? ~ S P an action that isexponentially(rather than power-layen-
Bl”; TKz[e(d”g D2~ fe(d”g D=l hanced in the limit of small forcek
(74) Substituting the expressions f&; into the equation for

_ o o ) E, we can find how the dynamic spectru(i w) is renor-
in theinertial case The behavior is rather more complicated majized. At low frequencies

for the dissipative case: at intermediate length scales we have

@200 9Dy (iw—i0)~[2+B(1)]D;(iw—i0), (79)

B ~
| In[( 9%/ pcA2K)e~ (d+2(=2)0

and henceD|(iw—>0)oceX|:[2I+f'OdI’B|,]; consequently the
renormalized viscosity; on the scald; is

S eld+20)(1-1¢)
~ 7 (75 2l +J|de’B
— — — ! ~ ex ’
h |n[(Snﬁ/Si)e (d+20=2)(1=10)7 U//Pa/] ], [

. (80)
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S, [ fe
Dl(l(,[)) vxexpy — z T

with an unknown multiplicative coefficient of order unity
incorporated intdS, . In the dissipative case there is a char-
acteristic crossover force

(d+2{-1)/(2-0)

2
] ; (81)

cA pU, | 2/@-2+20)
fi~f (—C) (82)
‘ | c f”?
1=0
L that separates two distinct regimes: For intermediate forces
Wy Wyp 0, © fi<f<f, we have
FIG. 4. Schematic renormalization of the dynamic spectrum S, | fe (@+29/1(2=9) 1
D|(iw) for a dissipative/massive initial dynamicB(iw)= 7|o| veexp — 2|+ nChio | (83
|

+ pw?, with a crossover ab ,,= n/p. The spectrum is renormal-

ize(_i differently on small gnd large frequenci_es: in the regionyith an unknown constant coefficient incorporated iSip
Dy(iw)<cA? the spectrum is double-exponentially enhanced andzt at asymptotically low forceb<f, the inertial term in the
grows asy| |exgconste”'], with 5>0 an exponent depending on a¢tion dominates and the behavior of the velocity crosses
:E: Zf;:r'gﬁt%?rirg'ifw';f'(c:)g()fg,ﬁ tr)geﬂgﬂggﬁ“fgzat'va’ift‘htikes over to inertial resul81). For the dissipative case, the result
independent of thelfrequer?(zy P b ! is S|r_n|Iar to that obt_alned using scaling arguments in Sec.
' Il B in the intermediateregime, but the logarithmic factor
causes the velocity to decrease slightly faster with decreasing
[Note that if we had used the conventional normalization inforce than anticipated. By contrast, in the inertial case the
the action, adjusting the dynamic exponef(it) to keep 7, creep velocity is much smaller that anticipated: it can be
fixed, we would have obtained the same results for physicalritten in the formuvo<exd —(Snas{ f)/%)?], with Sae{f)
quantities but the renormalization would have gone intothe characteristic action obtained in Sec. Il C using scaling
z(1)=2+ B, rather than the friction coefficieny,]. arguments. At asymptotically low forces, this result is also
Going back to dynamica| equatiQﬁo)' we see thaBI not valid for the more general model inClUding a diSSipative dy'
only determines the low-frequency part but the entire funcamics at low frequencies and an inertial dynamics at high
tion D,(iw) (we assume=0 and identify) with w). A frequencies.
schematic renormalization of the dynamic spectipi w)
is shown in Fig. 4: the low-frequency part a;b<Z), F. Results: classical creep and crossover
~(cA%n)exp(~B,) where D;<cA? remains linearD,(i w) At high temperatures the coefficieR{=C; (A,t=0) is
~mo, but is boosted exponentially withy~7exp®) independent of the dynamics and the evolution of the spec-
(with B, itself growing exponentially il). At frequencies  trumD,(i w) does not feed back intB, . Equation(79), writ-
abovew, the upward renormalization is reduced and the reten in terms of the bare temperature, then takes the form
sponseD,(iw) develops a flat intermediate regime. Finally,

i i ~ i ati ; U(L
at high f_requenC|eSw>w0 the reno.rmallzatlon remains 9,D,(iw—0)~ ( )D|(iw—>0). (84)
small, while the shape of the dynamical response again re-

.
flects the form of the original bare dynami&, with an . . (d+2¢-2)
additional shiftxcA2B, . It is this high-frequency part d,  YSINg relf‘,?g‘g)s (47), U(L)~U(L/Lo) , and L
that dominates the important renormalization ,gf at low ~Lo(f/f) , We obtain the class:ﬁazl Ege,eﬁ law(F)
~exd —U(f)/T] with U(f)~U(f./f)d2¢-2/(2=0. gee

frequencies. We attribute the strongly renormalized low- " i
frequency parD,<cA? to those degrees of freedom of the Ref: 12. The exponent=d+2{—2 that determines the

manifold describing its intervalley motion, while the remain- SCaling of U(L) is simply the scaling dimensionality of
ing modes at intermediate and high frequencies describe it8€ temperaturgsee Eq.(33)], in terms of which Eq(84)
intravalley motion smoothing the disorder landscape. In Sec@n be written with ~a prefactor U(L)/T~U./T,

- . o L ald+2{=2)(1-1¢)
IV E we will discuss the meaning, significance, and problem-""¢ c Uc/T. ]
atic aspects of the unusual dynamical renormalization One can find the crossover temperature from classical to

scheme uncovered above. guantum creep by comparing the exponents in E8@. and
(81) with U(f)/T. For the inertial case,

d+20)/(2—
E. Results: quantum creep T 42010, (89

The physical quantities of primary interest can be ob-which is different from the naive result obtained via simple
tained from the analysis of the previous section. In particularscaling arguments; see Sec. lll. For the dissipative case, the
using relation47) we find the creep velocity at low forces in crossover temperature depends on the regime. For interme-
the inertial case, diate forces, it is the same as that given by the naive scaling
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arguments(up to a logarithmic factgr but for f<f, the studied above, it is not surprising that it is the inertial dy-
crossover temperature is again given by re¢88 for the  namics that dominates the limit of low forces.
inertial case. However, the reason for the anomalous dependende on
is more subtle for the elastic manifold with its many degrees
of freedom. As can be seen from the analysis in the previous
section, the anomalous dependence can be traced back to the
As mentioned earlier, a dependencefowf the form of  dependence of the quantum fluctuations on one length scale,
Eq. (81) might be expected if the dynamics were dominatedas parametrized by, on the random pinning at smaller
by atypical barriers. A simple example is given by a classicakcales. Very crudely, this might be interpreted as leading to
particle diffusing in a short-range correlated random potenan increase of theffective mass densityith length scale
tial. At positive temperatures there is a linear response to agaused by the motion of smaller scale sections of the mani-
external force with the inverse mobility of the particle pro- fold implicit in the tunneling motion of a segment of size.
portional tof dUP(U)expU/T), whereP(U)dU is the prob-  Determining whether or not this is a reasonable interpreta-
ability density of barrierd). For the case of a Gaussian dis- tion must wait for a better understanding of the physics un-
tribution of the random potential, we see that<f exp  derlying the RG results and whether these are valid.
(—const IT?), resulting in a non-Arrhenius temperature de-

G. Interpretation

pendence.
Analogous effects can occur in quantum transport: Con- V. VALIDITY OF RG RESULTS
sider a quantum particle of mass and with a dissipative In both the previous and present work on classical and

coefficient,, tunneling through a succession of barriers ofquantum creep of elastic manifolds the validity of the ap-
random heightdJ but, for simplicity, uniform widtha. The  proximations that underly the RG formulation have not been

inverse mobility of such a particle can be written as carefully examined. In unpublished wétkone of the prob-
lematic aspects, the possible effects of tails in the distribution
1 na’ \/Wa of local eﬁegtive friction qoefficients, ha}s been investigatec_i.
—ocf dUP(U)ex T+ 5 (86) Here, we briefly summarize the potential problems that this
)2

suggests as well as more basic ones that have not, to our

. ) . knowledge, been raised previously.
The exponent contains a sum of two actions, the first due to

dissipation and the second describing the inertial response. o
One can see that even if the dissipation is strong, in the limit A. Random friction
fi—0 the inertial effects can dominate: the integral in Eq. One difficulty, analyzed in Ref. 41, is already apparent in
(86) is calculated using the method of steepest descent artle toy model of a single particle in a random potential: the
since the massive contribution to the action is proportional throad distribution of times to go through or over barriers. In
JU, it will contribute a term larger than the dissipative one. particular, as discussed in Sec. |V E above, for a single par-
In particular, with a Gaussian distribution of barriers of theticle the mobility is dominated not by the typical or even the
form  P(U)~exd—(U/Ug?] this leads to uxexd  average rate for overcoming the local barriers, but by the
—(ymUya/#)*?] and we obtain a similar non-trivial depen- average timeto overcome them; and the average time is
dence on% as found above in Eq(81) for the creeping dominated by anomalously large barriers. As this problem
elastic manifolds of interest here. already arises in the classical case both in the toy model and
In this simple single-particle example it is easy to under-for elastic manifolds, we restrict our discussion to the sim-
stand what is going on: Because the particle must tunngbler classical limit.
through a succession of barriers, the dynamics is dominated The main idea of the RG is to derive equations which
by the largest ones as long as there is a sufficiently long tailelate the renormalized parameters of the field theory to the
to the barrier distribution; the smaller the quantum fluctua-bare ones. Very often the parametric space of the bare and
tions, the larger the barriers that dominate. For the probabilrenormalized theories are identical. In other words, if the
ity distribution function P(U) chosen above, U  bare theory is described by the parameterst, of? . . .
:(\/ﬁauélﬁ)mﬂoo for #—0. The form of the tail of the the renormalized theory will be described by the same set of
distribution of barriers thus dominates the mobility and givesvariablesa() ,a(? ... . An example of this kind of RG is
rise to the unusual dependencefonThe fact that for small  the ¢* theory to one-loop order. It could be, however, that
f the dominant barriers are high implies that the characterunder the RG flow additional variablqsfl), fz) ... are
istic time scale for tunneling through the barrier is sh@t  generated even if their bare values are zero. These variables
the above case the timeis given throughr=a\m/U); this  might be strongly relevant and feed back to the original set
is what causes the long-time behavior as manifested in thef parameters. An example of such a behavior, which we
mobility to be dominated by the inertia rather than by thecould handle successfully, has already been considered
dissipative response. In the case of interest here, the elastibove: in order to obtain sensible results we had to introduce
manifold, the barriers that must be surmounted depend oa functionD,(i w) describing the dynamics oall frequen-
the driving force—the lower the force, the higher these barcies. In this paragraph we will show that another set of dan-
riers are. If one assumes that the barriers relevant for tunnegrerous variables is generated under the RG flow—these vari-
ing have an unbounded distribution similar to the toy modelables describe the probability distribution function of waiting
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times. In the RG scheme considered above the most crucial .
quantity is the renormalized viscosity, which is propor- 5A(1n):(—1)”77|(n)Af'(0)f d’zdt, .. .dtyu

tional to the waiting time at the scaleWe will show that the

randomness due to the point-like disorder will produce a X(z,t))iy(zty) .. -U(Z,tn)i)’(zytn), (90)

random and spatially inhomogeneous distribution of frictions N
which appears to be very broad and hence cannot be propeyhich feed back to term88). In addition, there are @
described by its first momeny; alone. —4n terms proportional taAS” ;

Let us then consider randomness in the local effective
friction coefficients from the beginning and assume that the (M_/_ 1yn,(n d ) ;
friction # is a function= [ u(z),z] of both the displace- oAz =(=1"m j dzdy ... dtuzt)iy(zt) . ..
mentu(z) and the internal coordinateof the manifold. The . _ R
local 5 has the natural interpretation as a characteristic time Xu(zty)iy(z,th)ATTu(zt) —u(z, ) ]. (91
to overcome barriers involving the smaller length scale deypgge renormalizations involve the behavior of the correlator
formations that have already been integrated out. The S|mA|(u) at the origin whose growth at long length scales is
plest case to consider is a random potential that is periodic i, ~ial for the renormalization group analysis, see the above

u Vt‘)’ilth a Iohcally rgndo_m phase [S)C\'/ﬁ SléCh a mod;elris appli-giscussion. We can keep track of the most dangerous terms
cable to charge density waveS8DW's). Because of the pe- by substitutingA|'(u) by A/(0) in Eq.(92). The renormal-

riodicity, _for CD.WS We can expgnd the functioy(u,2) nto ization of the cumulant37,(”) from the above process can be
the Fourier series and there will be a component that is in-

dependent ofi and only depends or, we consider the ef- written in the form
fects of such randomness here.

We assume thag(z) is a random short-range correlated
variable with cumulants)™; e.g., the first three take the furthermore, there are nonlinear terms that create higher mo-
form  n(2=7Y=%, 9(2n(Z)- (@ n(2)=9?8(z ments from lower moments; see Appendix C. A\ (0)

oMo — Al (0)(2n%—n) " ; (92)

—27'), and grows exponentially with, i.e., as a power of the length
scale, the cumulants(™ grow very rapidly. Then? coeffi-
() 9(2') n(Z") = n(2) 9(2') p(Z") — 9(Z2") 9(2") »(2) cient and the positivity of-A]'(0)=1/T,xe” in Eq. (92)

imply that the high order moments grow so fast that ratios of

_ 1" ’ 3
(2 7(2)7(Z') +2n(2) the form 5™/ 5", which naively are expected to be dimen-

=270 8(z—2')8(z—2")+ 8(Z' — ") 8(Z' — 2) sionslesqin the RG senge themselvegrow exponentially
, L with increasing length scale. Indeed, the high order moments
+8(z'-2)0(2'=2")]. (87)  increase so rapidly with that, if these results are taken

literally, the distribution ofy,(z) has such a long tail that it is
not uniquely determined by its moments—and it is certainly
not well characterized by its meam(z) = »,. Note that a
random friction #7,(z) is not dangerous near the zero-
temperature depinning transitiofi- f.<f;) as in this case

Note that we define cumulants™ up to a factom!. After
averaging over the randomness the classical MSR affiqn
(7)] will have additional terms of the form

Aram,zz A(”):Z (—1)" 5™ f dizdt, ... dt, A7'(0) should be substituted for b/(0+)>0, and Eq.
n=2 n=2 (92) suggests thay{" renormalizes to zero for any (al-
XU(zt)iy(zty) - . . Uz t)iy(2t,). (89) though it will actually be stabilized at a small value of the

order of ann-dependent power of because of other terms
When deriving the RG equations with an action that includes The analysis in Appendix C shows that even if initially
terms of the formA .4, it is necessary to find the average the friction is non-random, the disorder term alone will gen-
over fast modes of terms containing products of two perturerate the corrections to the second cumulant. The second
bations, in particular, terms of the form cumulant will then generate the third cumulant to the next
loop order, and so forth. As the cumulants grow extremely
rapidly, the RG flow becomes essentially uncontrollable.
5A:§<Arandf dzrd 7oA [U(z,71) —U(Z,75)] However note, that there is still an approximation in the
above analysis: we have substituted the argument of the sec-
i i ond derivative of the disordered correlatbf(u) by zero in
Xiy(z,m)iy(z,m) ) (89 Eq.(91). In order to be accurate we have to include the terms
- of the form
with (- - -)~ the standard RG average over fast modes. Mak-
ing use of Eq(88), averagg89) can be written as a sum of

(N—(_1\n,,(N d ' i
terms involving the cumulants{™ (see Appendix C for de- OAz"=(=1)"m j dzdy . .. diu(zt)iy(zt) ..

tails; here, we summarize the main ideas of the calculation n
The term of ordem in Eq. (89) then generates?terms Y U(Zt)iv(zZ t Elu(zt)—u(zt: 93
oroportional toSA (2t)iy(2t) 2 Flu@t) -u(zt)] (93
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[cf. Eq. (91)], into the action, i.e., we have to renormalize over the random pinning forces and, at positive temperature,

one more functiorF(u). Under the RG transformation this thermal noise. In generd, is afunctionalof u(z,7) over all

function will produce a new set functions, and so forth—it istimes . For zero-temperature depinning, the case of primary

presently unclear how all these variables can be analyzed iiterest, the possible fields are limited to those that are

a regular way. non-decreasing in time. In this case, it can be seen that the
One way that one might hope to make progress is to regrycial parts ofY (which are sufficient to analyze the depin-

write the equations of motion so that instead of having toning critical behavior depend only oru(z,t)—u(zt') and

deal with a randomy on the left hand side, one works with e fnctionalY simplifies to a function of this one variable:
a random mobility. =1/ on the right-hand side. This auan- it is then of the form assumed fax(u). In particular, ifu

tity, as it is bounded from above by the fastest motion, IS40es not change betweerandt’, w will not change either

unlikely to have troublesome long tails in its distribution. S !
- o unless thev at the earlier time was the cause of a jump out of
But the appearance of a random mobility multiplying all the : L R :
a formerly stable configuration into another; this jumping

spatially random pinning forces introduces additional techni- L . .
cal complications into the formalism and it is presently not¢ase can be handled by putting in time delays into the defi-

clear how to handle them. Nevertheless, there are a lot djition of u and, beyond this, the local dynamics will be in-
constraints on the renormalization, e.g., #tatic response dependent on the history efprior to timest andt’.
will not be modified by the randomness of either the pinning AS S00N as one considers a more general dynamics—e.g.,
or the mobility at any wavelength. Whether this is enough tostill fluctuationless but with the applied force allowed to de-
make possible a fully controlled analysis of at least the clascrease with time, non-monotonic stress transfer kernels, or
sical thermal creep regime is an interesting challenge. thermal noise—the simplification of the function¥l does
not occur. In general, it is then not clear how to proceed. In
the case of interest for the present paper, one could first
B. Underlying formulation assume, as in all expansions about a mean field theory, that
It is possible that the apparent runaway of the distributiorthe fields are slowly varying in space and time and weakly
of the local friction coefficients is indicative of a breakdown fluctuating about a uniformly advancing solution which has a
in the basic scaling assumption that underlies this and earlieglow mean velocitw. The local displacements will lag be-
work: If the barriers for motion scale with an expongnthat  hind due to the pinning but will be pulled ahead by the
is larger than the exponem=d—2+2/ controlling the driving force: the balance of these effects determines the
scaling of fluctuations in minimal energies and the renormalvelocity—force relation. With thermal fluctuations, the dis-
ization of the inverse temperature, then the present schenmacements will lag less than they would otherwise because
where the dynamics is controlled by static properties, such aat low velocities they have the time to surmount energy bar-
the correlatorA (u), cannot be valid. One then has to take riers. Now consider the effects of a time-dependent change in
into account all the dangerous variables discussed above. u(z,t) on{w(zt)). If this change is very slowy will follow
It is instructive to go back to the original formulation of approximately adiabatically. But if the change is relatively
the RG expansion for the depinning in the absence ofast—as it can be due to the fast motion of a neighboring
fluctuations>® henceforth NF. In the derivation of th¢*  segment over a barrier—how the local displacementill
theory from the Ising model for conventional equilibrium respond will depend crucially on whether it has already been
phase transitions, the starting point is an expansion aroundreear a surmountable barrier for some time, and thus is likely
mean field theory and the actual “fields(x) used in the RG to have already surmounted it, or has recently arrived near a
formulation is closely related to the local effective field — barrier and could thus be pushed over it by the change in
applied plus exchange — acting on a spin rather than to th&hus we expect the responses and correlations &6 de-
spin itself. If the interactions are long but finite range, thesepend on the whole priofand intervening history of the
fields will be slowly varying in space and weakly fluctuating, fields u.
enabling a systematic expansion to be started. The basic issue that must be addressed to make further
NF focused on one segmentand use the linear combi- progress is whether or not the essential information about the
nation u(z,t) of the displacements abther segmentshat  basic activation processes can be subsumed in simplified
determine the elastic force anas the basic field, which is functions, such as the force-force correlatgiu—u’), that
hence intrinsically a coarse-grained quantity. The underlyingppear in the formulation used in the present papete,
local displacements we will here call(z,t). The segmenz  however, that as we are performing an epsilon expansion, the
feels a linear restoring force proportionaluéz,t)—w(z,t),  central limit theorem is likely to be helpful: as we go from
plus the applied driving force, plus a quenched random pinene scale to another, we can always assume that there is a
ning force that is a function af(z), and thermal noise. The large number of segmen{®r effective intermediate scale
vertices in the effective field theory are given by correlationssegmentswhose dynamics contributes to the fields on larger
and responses of(z,t) to the time-dependent fieldgz,t). scale$. One possible route to proceed is to start by consid-
In particular, the force-force correlatdr(u) that plays an ering the nature of the typical fields that will arise from the
essential role is related to the average thermally activated motion of large segments on the dynam-
ics at smaller scales and ask whether the local responses to
these are typically simple enough to be captured by the type
Y=([w(z,t)—w(zt")]? (94)  of approximations used here.
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We leave further work on these points as a challenge for
the future. It is worth noting, however, that the physical ori-
gin of the problems, the intrinsic history dependence of the
phenomena of interest, arise in many other non-equilibrium
systems with many degrees of freedom. Better understanding :
of them in this context is thus likely to bear fruit more gen- x| X, X, X
erally.

FIG. 5. Tunneling of an overdamped particle out of a 1D poten-
tial well in the presence of an external forEeThe quantum me-
chanical answer for the tunneling action is of the foBml/f2, f

Many of the difficulties encountered in this paper would —0. The action obtained via the QLE is determined only by the
be lessened if the energy scale—and hence the barriers—adigigion Xo<Xx<X;. Sincex;—Xo<X,—X;, the QLE overestimates
not grow rapidly with length scale. One way to get aroundtunneling effectdi.e. gives smaller action

th's d|ﬁ|cylty m|ght be .to consider an expansion about %han the true semiclassical value in the liit-0: since the
different limit, one in which not only the roughness exponentQLE is alocal approximation, the only relevant part of the

¢ is small, but also the scaling exponenfor the energy. In  pstential would be that for<x,, with X, the point where
d-dimensional manifolds with long range elastic interactionsU(X)_fX is maximal. In the QLE, once the random force
that fall off as 1"« with 0<a<2, the upper critical di- ~ that obeys the quantum fluctuation—dissipation theorem
mension for both fluctuationless depinning and rough maniprings the particle to the point;, the particle can leave the
folds in equilibrium isd.=2a (i.e., {=0 atd=d;). The well and the regionx>x, that dominated the semiclassical
energy scaling exponent &=d— a+2¢ so that fora small,  action does not matter. Since in the linfit>0, X;—Xo<X,
6(d;) = a is also small. One might then hope to attempt an—x;,, the tunneling action obtained within such an approach
expansion inae and e=d.—d simultaneously. This would is much smaller than the correct OnSQLEZ 77()(1—)(0)2
have the advantage that, assuming the barrier scaling expeS: the QLE can thus drasticallpverestimatetunneling
nent ¢ is also small for smalke neard;, the exponential rates.

dependence of the velocity on the length dependent barriers We believe, however, that for the quantum creep problem
would be relatively weak and hence, perhaps, systematicallyonsidered in this paper the QLE should be a reasonably
controllable. We must also leave this limit and other possibleaccurate approximation for the action whose exponential de-
limits about which more controllable expansions might betermines velocity(81): in the naive scaling arguments, the

C. Alternative expansions

attempted for future research. effective potential wells that segments must tunnel out of
have only one characteristic width and height. Nevertheless,
D. Quasiclassical Langevin equation the results we obtain from the QLE and RG analysis yield a

much larger effective action for the tunneling than the naive
caling arguments. The source of this is unlikely to be due to
e QLE approximation as, by analogy with the single par-
cle case above, we would expect that, if anything, the QLE

In addition to potential problems with the renormalization
group formulation that are analogous to those discusse,
above for classical creep, in order to obtain results for quang

:um creep wet h?r\]/e resortted tg a q“"?‘”‘“{}‘v LangcT(\jllpkeq;JaEqnould underestimate the tunneling action. This argument is
oblapi)ro.xmat(_a te (tq#anfum lynamlcs. de wc:u Ide Od Seinforced by noting that the scaling analysis in Sec. Il can
avie o investigate tnis formalism more deeply and undery,, applied directly to a system driven by a stochastic force
stand its limitations and regimes of validity. It is instructive obeying the quantum FDT for which the QLE is exact: these
to first consider simpler problems. would lead to the same results as those obtained from the

The QLE can be used to analyze tunneling of a singl ; ; .
particle if the barrier separating the metastable state from tr?%csacilr;geeaggfm ggts for the full quantum dynamical problem;

lower-energy stable one has a single characteristic height an

width. In this case the tunneling action obtained from the VI. CONCLUSIONS

QLE differs from the true one only by a factor of order unity.

In principle, the QLE can lead to an overestimation of the In this paper we have considered the motion of an elastic
tunneling rate. For example, consider an overdamped partickanifold driven through a disordered medium at low tem-
(with viscosity z) in a one-dimensionallD) potential well ~ peratures where quantum fluctuations are important. We have
U(x) of depthU, with a minimum atx=0 andU(x) rapidly ~ focused on the limit of small driving forcesf+f.) for
decaying forx— +. In the presence of an external force Which the average velocity of the manifold is small and
(see Fig. 5, the well becomes metastable and the particledominated by quantum tunneling through barriers between

will leave. The quantum actio8 can be estimated as locally stable configurations. Using an at-least-partially con-
trolled RG expansion, we find that the resulting creep veloc-
S=n(X,—X1)?~ p(Uy/f)>2. (95) ity is exponentially small in a power of fl/ While for strong

dissipation we find an intermediate range of forces where the
This action is dominated by a region of width1/f where  creep law agrees with the result of simple scaling estimates
the potentiall (x) is negligible butfx is less than the depth [up to logarithmic corrections; cf. Eq$17) and (83)], we
of the well: this yieldsSx1/f2 asf—0. If we use the QLE find that the results of the RG analysis are more complex. In
approximation, the tunneling action would be much smallemparticular, at asymptotically small forces the creep velocity
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has a nontrivial form{Eq. (81)], combining an underlying

; _ ng ar [ Pl M2 ,
massive(or other high-frequengydynamics with an unex- Hpar= J d zz + Q7 (2)
pected non-Arrhenius-like dependenceforThe structure of T [2M(2) 2
the renormalization group flow is rather subtle and very dif- 2
ferent from that for classical creep. In particular, because of x( (2)— Lu(z)) , (A1)
the importance of both rapid motion during a tunneling event Mj(z)QjZ(z)

and the slow overall motion, it is necessary to consider the -
) . : o where each segment of the manifalds coupled to the sys-
dynamics of the manifold aall frequenciesw. This is in

contrast to the classical case for which Chaeval con- tem of harmonic oscillators. This Hamiltonian contributes to

. . . the quantum-mechanical action with
sidered only the low-frequency limit of the dynamics. In the a

guantum case such a low-frequency approximation would Spatl X1+ Sind U, X]

lead to a spurious "localization transition” with the average

velocity of the manifold dropping to zero at a small but finite B q Mi(2). , Mi(z) ,
value of the driving force. Although future improvements =|dtfd sz: 5 X[~ ——Qj(2)

based on the analysis of the complete quantum mechanical
action[Eq. (9)] rather than the quantum Langevin approxi- ¢j(2) 2
mation might change some of the results presented here, we X| Xj(2) = ———=—u(2)
believe that the main feature, the importance of the whole M;i(2)0{(2)
s_pectrum of frequencies for the tunneling dynamics, will perwhere X is the vector with componenty; describing the
sist. oscillators of the bath. The action corresponding to the elas-
In spite of the subtleties that appeared in the analysis wéic manifold Sy[u] has the form
have carried out there are further difficulties associated with

: (A2)

2

both the broad distribution of barriers and the underlying B qlcfou 2 plou
field theoretic formulation of expansions about mean-field Sofu]=— | dt] dz 219z  2\at +U(u,2)—ful.
theory. Although we have not resolved all the difficulties, (A3)

and thus are not sure whether the present results are tru
systematic, we have noted the physical and formal sources
the problems in ways that we hope will help direct future

|

fter substituting the actiol®= Sy,+ S+ Sp into Eq. (8)
we can eliminate the bath degrees of freedom appearing only
quadratically in the action. We define the spectral density

progress.
Note addedRecently, we learned of related work by L. - (2)

Balents and P. Le DousséRef. 42 where some difficulties Jw)== D ——"—§(w—Q)), ©>0; (Ad)

with RG mentioned in Sec. V have been discussed. 2 T Mi(2Q4(2) !

the ohmic kernel(w) = nw produces actio). In the clas-
sical limit (high temperaturgsone carrigorously expand the

potential energy terms in E@9) in y and obtain actior(7)
D.S.F. thanks L. Radzihovsky and L. Balents for the col-which is equivalent to Eq4). Note that we have introduced

laboration that led to the understanding of some of thenew coordinatesi andy in action (9) corresponding to the

subtleties in the RG scheme discussed in the last section. Weenter of mass” and relative motion of the trajectories in

thank J.-P. Bouchaud and D.R. Nelson for helpful discus£q. (8).
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In this appendix we derive relatiofb6). We investigate
the static RG fixed-point in the absence of a driving force;
APPENDIX A: DERIVATION OF THE REAL-TIME the temperature and quantum fluctuations renormalize to
QUANTUM ACTION zero,C; (A,t=0)—0, and hence we need to consider the
functionA(u) alone. For <I. we can neglect the nonlinear

In this appendix we discuss the derivation of acti®t  terms on the right-hand side ¢28). Solving the remaining
Consider theclassical equation of motion(4) with the  |inear equation we obtain

o6-correlated noisefy,(z,t); we search for the quantum

Hamiltonian that reproduces the same equation of motion in A, ~A(0)ele 2Dl (B1)
the classical limit. One class of possible Hamiltonians was ¢

introduced by Caldeira and Leggé?twhere the system un- for the correlator height ang* ~ & exp(—¢l.) for its width
der consideratiorian elastic manifold in our casaevas as- [the latter result follows from integration of the second term
sumed to be coupled to a bath consisting of harmonic oscilin Eqg. (28)]. On the other hand, for>1. the correlator is
lators. The Hamiltonian of the bath can be written in theclose to its fixed-point value. Using Eq28) for d,A(u)
form =0 and substitutingt=0 we obtain
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(€=20)A, (0)~(e—2H)A*(0)~1A*"2(+0) (B2)

and replacind = A4A %/c?A* and {~ e we obtain(56). Com- u iy R X
bining these results witgﬁ* "(04)|~A*(0)/&* we find the ;
estimates A*(0)~ (cA?)2£2A "% 2dc and |A*'(0+)] J
~(cA?)?EN e e, @ (b) © G

APPENDIX C: DANGEROUS RELEVANT VARIABLES

As mentioned in Sec. V A, the RG flow generates danger- A ¢
ousrelevantvariables corresponding to the cumulants of the AAAAAA !
friction distribution! From a physical point of view, the © eee N4
friction coefficient % in equation of motion(4) is always
spatially inhomogeneous due to the presence of disorder, so ()
that the bare values of the cumulants describing the friction
distribution are always nonzero. It turns out that under the FIG. 6. Elements used in diagrants) the displacement field,

RG transformation these cumulants grow extremely rapidiytb) the iy field, and (c) the response functioR”. (d) Crosses
and the description of the thermally activated or quantunfienote derivatives, with respect to time in théeld if the cross is
motion in terms of the renormalized viscosity or the func- ~ on a solid line, or with respect to the time difference in the response
tion D,(w) (see Sec. IV D alone is not appropriate. Since function if the cross is on a response function lig@. Diagram-

the renormalized viscosity on a certain length scale corrematic representation of the correlatar (f) Diagrammatic repre-
sponds to the waiting time on this scale, we conclude that theentation of random friction terms<1)"7™Ilu(z,t,)iy(zt,), see
broad distribution of the frictiorit is broad as the cumulants (C1); dots ... stand for further omitted lines.

grow very rapidly implies a broad distribution of waiting
times. Hence, the proper description of the problem requires
renormalization of the waiting time probability distribution

:—f dzdtpu(z,t)iy(zt)

function rather than its first moment alone. The main goal of K

this appendix is to show how the dangerous variables are K (k d : .
renormalized under the RG flow. We will also show that even +k§2 (=17 )f d ZiHl dtu(z,t)iy(zt).

if initially all of them are zero, they will be generated by the

random pinning. We will restrict ourselves to the case of high (CY
temperatures; the same variables will be generated in the/hen deriving the RG equations we consider the térgq
quantum case. and the usual disorder-induced term

Let us assume that the frictiomin equation of motior{4)
is a spatially inhomogeneous function of the coordinate; in
general,n= 7n(u,z). For simplicity, we neglect the depen-
dence onu (this does not change the result qualitatively
physical realization where this approximation is valid is the
pinned charge-density wave: the frictiaiiu, z) is a periodic
function ofu and, hence, can be expanded in a Fourier serie
7(2) then is theu-independentthe zeroth harmonic. Below
we will assume that the disorder and theé\ disorder are

Adis=% f dizdrdmAlu(z, ) —u(z,75)]  (C2)

as perturbations. To one-loop order we have to calculate the
second cumulant of the perturbation. There will be a cross-
Jerm of the formS(ArandAdis)~ » Where 5(H)~. denotes the
change inH after averaging over fast modes. Let us show
that the average of this form gives rise to the singular renor-
uncorrelated and short ranged; in reality, these two types Orpalization of the coefficients™. Figure 6 summarizes the

' ' various symbols appearing in the diagrammatic expansion:

ghsorder should be correlated. h.c we takga thgse 9O"elat'onl§ines without arrows denote displacement fialdléines with
into account, the dangerous variables will still exist and the

RG flow will be similar. In this section we assume that theﬁIrrOWS _ar;[ the end_corr:esp(_)ggl todthe auxiliary fIGMfS and_
response function has the form dke—in ), L., we do ines with arrows in the middle denote response functions.
10 = Crosses stand for time derivatives, and the wavy horizontal

not consider the full dynamic response associated W|tr|1ineS denote disorder correlatora,[u(z,t;) — u(zt,)].

D,(w); this approach is valid in the classical case; see Sec?)ashed horizontal lines stand for-@)»® and dots ...

IV.Cand IVF represent further omitted lines. For each response function

Averaging over the disorder i within the MSR func- . L .
. . : with an arrow coming into a wavy vertdsee e.g., the dia-
tional [Eqg. (7)] we see that the friction term will be trans- grams in Figs. @ and 8b)], the disorder correlator

formed into Alu(zty) —u(zt,)] is differentiated with respect to its ar-
§ ) ) gument. These derivatives appear as a consequence of aver-
—f d*zdtyu(z,t)iy(zt) aging of the correlator and thg fields; see Eq(C4) below.
Dashed and wavy lines in diagrams connect times, the upper
line connectsty, t,, ..., and thelower line connects the

| g9 dtricz b
- f d®zdtyu(z,t)iy (z.t) + Arang times 7, and 7,. Note that there is no time ordering corre-

sponding to vertical or horizontal directions. The fields at the
— _J' dizdtyu(zt)iy(z,t) + 2 A upper vertices in diagrams are taken at the spacial coordinate
’ = z and the lower vertex is & . The argument of the response
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(d)

FIG. 7. Dangerous diagrams contributing to the renormalization
of the cumulants of the friction-coefficient distribution. These terms

arise from averaging over fast modes M, ,Aqis) > : (& with mul-
tiplicative factorsn(n—1) (due to the permutation symmelryb)
with multiplicative factor 21, and (c) with multiplicative factor
2n(n—1), (d) with multiplicative factorn(n—1)/2. For conve-
nience we draw some of thg fields and response functions at a
45° angle or deform the lines.

PHYSICAL REVIEW B66, 214203 (2002

A i

4 2 AAAAA

A J

T, 1, IANAAAAN
(a) (b)

FIG. 8. Diagrams describing the generation of the second cumu-
lant of the friction distribution; their low-frequency expansions feed
back to the second cumulant.

form

S(u(z,ty)

l n
5D1:§n,<“>f ddzddz’f drldrz{kl_ll dt,

X iY(Z/v7'1)>>5<U(Z,t2)iY(Z/,Tz)>>
xXiy(zt)iy(z,t) AfLu(z", 7)) —u(z',72) ]

n

x [T uztiy(zt)
k=3

dlfddz

X (A= iy 2ty () [ drdr [uz )

AgA¢
(2m)°

m Ri(A,t;— )R

n
[1 dt
k=1

1
P

n
—uz )] u@ iy . (Co)
In the last equation, we have used EG3) in order to ex-
press averages over fast modes through response functions
and have integrated ovef using(C5). We rewrite the prod-

uct of the two response functions &(A,t;— 71)R/(A,t,

function involves the differences between the times and spa= 72) =d- Ri(A,t1— 1), Ri(A,t,— 7)) and integrate by
tial coordinates of the end and starting points. We quote threparts over variables; and 7,, thus generating the second

useful formulas
Su(zt)iy(z',t")~-=R/(z—2',t—t")dl, (C3

S(A[u(z,m)—u(z, ) ]iy(Z',1"))>=A'[u(z,71) —u(z,72)]

X[R{ (z—2',7—t')—R{ (z—2',7,—t')]dI (C4)
f . - AgA¢
d Z,R| (Z’,tl)R| (Z’,tz):—dd|R|(A,tl)R|(A,t2),
(27)
(CH

whereR,(A,t) denotes thepartly Fourier transformedre-
sponse functiofEq. (25)] and R (A,t) is defined in Eq.
(36).

The contributionsD, of the diagram in Fig. & has the

derivative of the correlatoA. The response functions con-
nect timeg; andr; andt, andr,. Consequently, we can set
t,~ 7, andt,~ 7, in the time arguments of thig-fields and
integrate over the variabldg andt, in the response func-
tions using the formulal dtR(A,t)=R(A,w=0)=1/cAZ.

In the end we obtain an expression involving the integrals
fd9zdr,dr,dt; . . .dt, and performing substitution; —t,
and r,—t, we arrive at the final contribution of Fig.(a):

1 AT dl
8Dy =——p" fddz
2" (2m)d (cA?)?

X

kljl dtkU(z,tk)iy(z,tk)}A{’[U(z,tl)— u(zty)].

(C7)
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Note that in the diagrammatic language integrating by parts 1
corresponds to drawing-field lines out of the wavy vertex 5D4=§ m(”)f ddzddz’f drdm
and moving crosses.e., time derivativesfrom the response

functions down to the displacement fields. The low-

frequency expansion of the diagram in Figa)7then takes Xiy(z',m)iy(Z', 1)

U(Z!tl)u(Z!tZ)

n
[T dt
k=1

I1 u(z,tk)iwz,tk)}

the form of the diagram in Fig. (§ [this low-frequency k=3
analysis involves the expansion of the argumefi, ) : , o .
—u(z,7,) of the correlatorA in a Taylor series in powers of X &iy(z,t) S(ALU(Z', ) —u(Z', ) iy (Z.L2))> )
(71— 71); the first term(equal to zerp of this expansion AAY I
)

1 o .
produces the desired contributionThere aren(n—1) =5 7" J ddz[ I1 dtk}drldrzu(z,tl)
equivalent diagrams of the type in Fig(ay allowed by the k=1
permutation symmetry.

The expression corresponding to the diagram in Fig) 7

(2m)? (cA?)?

X U(z,t,)iy(z,7)iy(z 75)

I1 u(z,tk>iy<z,tk>}
k=3

is given by
X{R(A, 7~ t)R(A, 7~ t) + R(A, 7o~ 1)
5D2=%7;|(”)J ddzddz’J' dTldTZ[kl:[l dtk} XR(A 72~ 1) = R(A, 7~y
- XR(A,Tz_tz)_R(A,T]__tZ)
X AUz t)iy(Z',m)> KA LU, 1) ~u(Z', )] XR(A, 73— t)}A"[U(z, 71) — U(2,72)]= 28D5.

n

_ o - (C10
xiy(zty))-iy(2, ) [ u(ztiy(zty _ _
k=2 The first two terms in the curly brackets do not feed back to
1 AAY dl the random friction cumulants, while the third and fourth
=~ Z7MAr(0) d J' d terms give the desired contribution. The multiplication factor
2 T 2m)d (cA2)2 of the diagram in Fig. @) is equal ton(n—1)/2.
In order to find the contribution tg{™ we need to set the
: . ) argumentu(z,t;) —u(z,t,) in the correlatorA (u) to zero in
Xkﬂl dtu(z,t)ly (z,t); (C8) (C7), (C9), and (C10 (as only this term feeds back to the
random friction cumulanjsand sum over the four contribu-
) . . ] tions (C7), (C8), (C9), and (C10, each multiplied by its
there are B topologically equivalent diagrams of this class. appropriate weight; the result takes the form
Note that in contrast to the terdD, the argument of the

n

function A;(u) in the above expression is zero. The diagram AGAY A(0)
shown in Fig. Tc) gives the contribution on\M=— 5" (2n2— ———dIl. (C1)
(2m)? (cA?)?
1 n _ Next we show that the terrAy; itself generates the sec-
D3=3 nf”)f ddzddz’f drdr,| [T dt|s(u(zty) ond cumulant®). The dangerous relevant diagrams arise
k=1 from the average(AgAgs~; see Fig. 8. Their low-
Xiy(Z', 7)) SALU(Z , 7)—u(Z',75)] frequency expansion gives the contribution to the random

friction. The contribution of Fig. &) takes the form
Xiy(z,t5))=iy(z,t)u(z,t,)iy (2", 72)

n sD 1AdAdo||fdd dtdtA/[u(zt) —u(z,ty)]
== 4 u(z, —u(z,
xI1 W@ toiy(z "8 (2m! T i
__l (n) AdAd dI f g Xiy(z,tz)iy(Z,Tz)f dTldeA([U(Z,Tl)_U(Z,Tz)]
— 27 2 (eA?)?

XR(At,— 1) R(A, 72— ty), (C12

where the averaging over fast modes and the integration over
Z' has already been carried out. The response functions con-
nect the timeg,, =, and,, t; and we can expand

X

|£[l dtku(zitk)iy(zvtk):|Alﬂ[u(zitl) - U(Z,tz)];

(C9)
u(zty) —u(zty) =ufz, o+ (t;— 72) ] - u(z,ty)
there are &(n—1) topologically equivalent diagrams of this

class. Finally, the diagram in Fig(d is given by the ex-
pression (C13

~U(Z,75) —U(Z,t) +U(Z,72) (11— T2);
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similarly, u(z,m)—u(z,m)~u(zt,) —u(z, =) +u(zt,)(r, the terms(C?), (C8), (C9), (C10), and(C16) we find the flow
—1t,). Substituting these expansions irf®12) and expand- €quations
ing the correlators\’(u) we arrive at the expressidmote

h R(A _ AZ 2 ]
that fdttR(A,t) = 7,/(cA?)?] a) ,7|<2):(4—d—2z)77,(2)+|—77'2 ZA7%(0)
1 A 7P o
B, == dl [ d9%zdt,dt, Al u(zty)
1 3 q >4 f 1Y L28 1+l
(2m)% (cA?) - A7(0)n?, (C17)

. . A22
Uz Uz )iy (2 Uz L)Y (Zt):  (C14 (A%

there are four topologically equivalent diagrams of this class. a7(M=(d+2n—dn—zn) 5™ —(2n?—n)
Diagram(b) in Fig. 8 gives the contribution

|
1 AL X———A[(0) (", n*2. (C18
8 f d'zddtA{Tu(zt) —u(zty)] (eA®*

The system of RG equatiorf€17) and (C18) has been de-

. . rived to lowest order in 4 €. To next order, the second cu-
le(z,tl)ly(z,tz)f drid7pA[u(z,m1) ~U(Z,72)] mulant will generate the third cumulant. To third order, the
third cumulant will generate the fourth cumulant, etc., i.e.,
XR(A, 1= t)Ri(A, 72— 1), (C19  all cumulants will be generated in the RG flow even if all of

where the averaging over fast modes and the integration ovépem (except for the first oneare equal to zero initially.

z' again has been performed already. The response functiofg0m & physical point of view, the friction will always be
connect the points; andt; and =, andt,. Expanding the random as the point-like impurities suppress the order pa-
displacement fields in,— 7, and 7,—t,, substituting them rameter randomly and, hence, the dynamic characteristics of
into Eq. (C15, and expanding the correlatdr(u) we see the Tediun{e.g.,gla superconduct)d_s random as well. Since
that 5D, = 8D ,. There are four topologically equivalent dia- —Ay(0)=1/T,=e” and the correction due to disorder grows

. L~ asn? for largen, the random friction probability distribution
grams of classb). Summing up the contributionsD, and becomes very broad and one needs to take into acediuits

5D and multiplying the sum by 4 we obtain the contribution moments and not just the friction, only. In order to obtain

577|(2) of the disorder term to the second cumulant: Egs. (C17 and (C18 we have made the approximation
. , u(z,ty) —u(zt,) =0 in the final expressions fafD, 6D3,
~ AgA 7 D D." i -
577|(2): d [ A[’Z(O)dl. (C16 6D, andéD,; in general, however, one needs to renormal

ize the full functional[Eg. (93)]. During the RG procedure,
other terms will be generated and it is unclear at this stage

Finally, we can write the one-loop RG equation for thehow to take all these terms into account in a controllable
cumulants of the random friction distribution; accounting for way.

(2m)? (cA?)*
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