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Quantum collective creep: A quasiclassical Langevin equation approach
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The dynamics of an elastic medium driven through a random medium by a small applied force is investi-
gated in the low-temperature limit where quantum fluctuations dominate. The motion proceeds via tunneling of
segments of the manifold through barriers whose size grows with decreasing driving forcef. At zero tempera-
ture and in the limit of small drive, the average velocity has the formv}exp@2const /\a f m#. For strongly
dissipative dynamics, there is a wide range of forces where the dissipation dominates and the velocity–force
characteristics takes the formv}exp@2S(f)/\#, with S( f )}1/f (d12z)/(22z) the action for a typical tunneling
event, the force dependence being determined by the roughness exponentz of thed-dimensional manifold. This
result agrees with the one obtained via simple scaling considerations. Surprisingly, for asymptotically low
forces or for the case when the massive dynamics is dominant, the resulting quantum creep law isnot of the
usual form with a rate proportional to exp@2S(f)/\#; rather we findv}exp$2@S(f)/\#2% corresponding toa52
and m52(d12z21)/(22z), with m/2 the naive scaling exponent for massive dynamics. Our analysis is
based on the quasiclassical Langevin approximation with a noise obeying the quantum fluctuation-dissipation
theorem. The many space and time scales involved in the dynamics are treated via a functional renormalization
group analysis related to that used previously to treat the classical dynamics of such systems. Various potential
difficulties with these approaches to the multi-scale dynamics—both classical and quantum—are raised and
questions about the validity of the results are discussed.

DOI: 10.1103/PhysRevB.66.214203 PACS number~s!: 66.35.1a, 05.30.2d, 74.60.Ge, 61.43.2j
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I. INTRODUCTION

Static and dynamic properties of elastic systems in
presence of disorder have attracted the attention of physi
for more than three decades. Vortices in superconducto1

charge density waves in solids,2 domain walls in magnets,3

and geological faults4 are well-known examples of such sy
tems. Mathematically, some of the problems that arise
modeling are related to those in Burgers turbulence,5 sto-
chastic growth of surfaces,6 and the stability of matter.7 The
physics of dirty elastic systems thus impacts on several
ciplines. In this paper we focus on the dynamic properties
driven elastic manifolds at temperatures low enough
quantum fluctuations to play an important role, in particu
the phenomenon of quantum creep.

In many situations the elastic system can be driven
applied forces. For example, transport currents in superc
ductors cause a Lorentz force to act on vortices, whil
magnetic field applied to a ferromagnet produces an effec
force on domain walls. One of the primary quantities of
terest in such systems is the average velocityv of the mani-
fold as a function of the applied forcef, its dependence on
the temperature, and on the magnitude of the random d
der that impedes the manifold’s motion. The presence of
random pinning forces renders a theoretical analysis diffic
as perturbation theory breaks down in most of the import
regimes due to the deformations of the manifold on ma
length- and time scales. However, some important gen
results are known: in the absence of thermal and quan
fluctuations the system stays pinned—i.e., the steady-s
velocity v50—if the driving forcef is smaller than a certain
critical value f c . At nonzero temperatures, even if the for
f is smaller thanf c , the system will move with a nonzer
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velocity due to thermal creep; see Fig. 1. In the limitf ! f c
the scaling theory of creep8–10 predicts the law

v}exp@2U~ f !/T#, ~1!

with U( f )→` as f→0, and there is no linear response to
applied force. The quantityU( f ) can be interpreted as
barrier separating two neighboring minima of the free ene
on some appropriate length scale that depends on the ap
force; on long length and time scales, the manifold’s mot
proceeds via thermally activated jumps of correspond
segments between different metastable configurations.

Several important assumptions are made in order to de
Eq. ~1!. First of all, at least in its simplest form, it is assume
that thebarriers between different metastable configuratio
scale with length in the same way as thevariations of the

FIG. 1. Tunneling~lower dotted line! and activated motion~up-
per solid line! of an elastic string in a disordered potential under t
action of a weak external forcef ! f c .
©2002 The American Physical Society03-1



r
de

di

ie
a
,

d

ol
e
a
t

en
a

pa
he
ith
in

e
,

-

ns

al
th
o

a
ti
is
w
a

,

io

c

e
on
tu

-
ld

s in
lley
the

te
ec.

the

s of
re-

stic
his
ow-

tion

n

The

-

.
the
an

a-

GOROKHOV, FISHER, AND BLATTER PHYSICAL REVIEW B66, 214203 ~2002!
free energy that are caused by the balance between the
dom pinning and elasticity; in general one could consi
two different scaling laws for these quantities.10 Second, Eq.
~1! is an Arrhenius law withtypical events dominating the
creeplike motion. In general,rare events, in particular re-
gions with anomalously high barriers, might lead to a mo
fication of this law, perhaps to a formv}exp@2(U(f)/T)a#
with aÞ1 an exponent characterizing the tails of the barr
probability distribution. Because of these assumptions,
well as the need for increased analytical understanding
would be valuable to derive the classical creep law@Eq. ~1!#
starting from a microscopic description. Progress in this
rection has recently been made~see Refs. 11 and 12!, where
Eq. ~1! has been derived from an at-least-partially contr
lable renormalization-group~RG! expansion. Although thes
results support the validity of the scaling theory for therm
creep, serious questions remain which we will discuss la
in this paper. We also note that neither the rec
renormalization-group calculations nor the present paper
dress an important aspect of creep in many contexts, in
ticular in the vortex lattice, i.e., the role of dislocations—t
results are, so far, restricted to a truly elastic manifold w
pinning weak enough that deformations are too small to
duce dislocations or other strongly nonlinear effects.13

Experimental investigations have shown that even at v
low temperatures creep of driven elastic systems, e.g.
vortex lattices,14 of domain walls in magnets,15 and of
charge-density waves in solids,16 still persists. This phenom
enon suggests an explanation in terms ofquantum tunneling
of the manifold between different metastable configuratio
the macroscopic manifestation of this is quantum creep.17 By
analogy with thermal creep, one would guess that

v}exp@2S~ f !/\#, ~2!

with S( f ) a characteristic action for tunneling of a typic
segment of the manifold whose size is determined by
applied force. In spite of a substantial number of studies
quantum creep14 there is as yet no theoretical analysis th
starts from a microscopic description of a driven elas
manifold interacting with impurities; the main goal of th
paper is to present a first start at such an analysis, along
a discussion of the difficulties involved. We will show that
law of the form

v}exp$2@S~ f !/\#a% ~3!

can be obtained using a renormalization group approach
can the functional dependence of the actionSon the external
force f be found. Whether this is indeed the correct behav
is addressed at the end of the paper.

A natural tool to investigate quantum creep is the fun
tional renormalization group expansion,18 an e expansion
near the upper critical dimension (dc54) of the random
manifold problem. This involves, intrinsically, an infinit
number of marginal operators that can be combined into
or more functions. We will find that in this approach a na
ral separation of the frequency scales occurs betweeninter-
valleyandintravalleyfluctuations of the manifold. The inter
valley fluctuations correspond to the motion of the manifo
21420
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on large scales on which there are many separate valley
the ‘‘landscape’’ caused by the randomness. The intrava
fluctuations correspond to the much faster motion of
manifold within one valley.

The paper is organized as follows. In Sec. II we formula
the model and find the appropriate effective action. In S
III we show how to derive the creep law@Eq. ~2!# using
scaling arguments. Next we study the problem using
renormalization group expansion~Sec. IV! and then summa-
rize and discuss the main results. We end with an analysi
the limitations and problematic aspects of both our and p
vious approaches to the creep problem in Sec. V.

II. MODEL AND EFFECTIVE ACTION

We describe the elastic medium by a nondispersive ela
manifold interacting with a quenched random potential; t
generic model captures all the essential physics while all
ing for an extensive analytical treatment. Theclassicalmo-
tion of the displacementsu(z,t) of the manifold away from
its undeformed state is described by the dynamical equa

h] tu1r] t
2u5c“2u1F~u,z!1 f 1 f th~z,t !, ~4!

where the friction forceh] tu and the inertiar] t
2u are bal-

anced by the elastic- (cDu), random pinning@F(u,z)#, driv-
ing ( f ), and thermal@ f th(z,t)# forces. We will consider the
case, applicable to domain walls, ofd-dimensional manifolds
in (d11)-dimensional random environments, so thatz
PR d anduPR 1.

The random pinning forceF(u,z) is taken to be Gaussia
random with mean zero and a correlator

F~u,z!F~u8,z8!5D~u2u8!d~z2z8!, ~5!

where the overbar denotes an average over the disorder.
function D(u) decays rapidly with a characteristic scalej.
The thermal noisef th(z,t) is Gaussian white with a cor
relator

^ f th~z,t ! f th~z8,t8!&52hTd~ t2t8!d~z2z8!

[k~ t2t8!d~z2z8!, ~6!

with ^•••& denoting the average over thermal fluctuations
In classical statistical mechanics we can reformulate

problem posed by a stochastic differential equation as
effective field theory19,20 with the help of the Martin-Siggia-
Rose~MSR! approach. After averaging over thermal fluctu
tions the MSR action corresponding to Eq.~4! has the form

AMSR52E ddzdtiy~z,t !~h] tu1r] t
2u2cDu!

1E ddzdtiy@ f 1F~u,z!#1
1

2E ddzdtdt8

3 iy~z,t !k~ t2t8!iy~z,t8!, ~7!
3-2
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QUANTUM COLLECTIVE CREEP: A QUASICLASSICAL . . . PHYSICAL REVIEW B 66, 214203 ~2002!
with y(z,t) an auxiliary field used to enforce the equation
motion. The probability of a particular dynamical evolutio
ū(z,t) under the stochastic process is proportional
*D@y#exp$AMSR@ ū,y#%.

The main goal of this paper is to investigate the influen
of quantum fluctuations on the system whoseclassical limit
is described by Eq.~4!. Again, it is convenient to formulate
the problem as a field theory, i.e., to write the effective act
describing the elastic system in the presence of quan
fluctuations in a way analogous to Eq.~7!. When calculating
time-independent quantities in equilibrium systems~i.e., in
the casef 50) the corresponding quantum action has a E
clidean form and the quantum partition function can be w
ten as an imaginary time path integral.21 However, here we
are interested in non-equilibrium properties (f Þ0) and the
Euclidean action cannot be used.

A formalism allowing to study thereal time dissipative
quantum mechanics of a system is that of Feynman
Vernon22: the quantum amplitudeC(xf ,t f ;xi ,t i) for a sys-
tem to have a coordinatexf at time t f , if at time t i it had a
coordinate xi , can be written as a path integr
*xi ,t i

xf ,t fD@x#exp(iS@x#/\), with S@x# the classical action. Con

sequently, the probability of the transitionxi ,t i→xf ,t f can
be written in the form

P~xf ,t f ;xi ,t i !5E
xi ,t i

xf ,t f E
xi ,t i

xf ,t fD@x#D@x8#exp~ iS@x#/\!

3exp~2 iS@x8#/\!. ~8!

In nonequilibrium quantum mechanics functional~8! plays
the same role as the partition function in equilibrium pro
lems. We see that the effective action can be written
iS@x#2 iS@x8# and includes two different paths@x(t)# and
@x8(t8)#.

The standard way to include dissipation is to write t
action S@x# in the form S@x#5S0@u#1Sbath@Xbath#1Sint@x#
representing the actions corresponding to the elastic m
fold, the bath, and the interaction between the bath and
manifold, respectively ~note that x5(u,Xbath) and x8
5(u8,Xbath8 ) are the coordinates describing both the manif
and the bath!. In the Caldeira-Leggett model23 the terms
Sbath@Xbath# andSint@x# are taken to be quadratic in the ba
coordinateXbath and hence can be integrated out at the
pense of effective interactions that couple different tim
The resulting action takes the form~see Appendix A or Ref.
24!

iS@ ũ,ỹ#

\
52

i

\E ddzdtỹ~z,t !~h] tũ1r] t
2ũ2cDũ!

1
1

2\2E ddzdtdt8i ỹ~z,t !k~ t2t8!i ỹ~z,t8!

2
i

\E ddzdtFUS ũ1
ỹ

2
,zD 2US ũ2

ỹ

2
,zD 2 f ỹG ,

~9!
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with

ũ~z,t !5@u~z,t !1u8~z,t !#/2,

ỹ~z,t !5u~z,t !2u8~z,t !,

and the random potential

U~u,z!52Eu

du1F~u1 ,z!.

The Fourier transform of the effective noise correlatork(t
2t8) of the bath fluctuations obeys the quantum fluctuatio
dissipation theorem,

k~v!5h\vcoth
\v

2T
, ~10!

where h is related to the spectral density of the bath; s
Appendix A.

Action ~9! allows one, in principle, to investigate all th
properties of a driven elastic medium in the presence
quantum fluctuations. The classical limit, the MSR acti
AMSR5 iS/\ can be recovered by expanding the random
tential energyU in the ỹ field and substitutingũ by u and
ỹ/\ by y. Such an expansion is valid at high temperatu
and it has been argued25 that it also applies to the limit\→0
at T50. This suggests that the dynamics of quantum s
tems in the semiclassical regime, where tunneling proce
through large barriers dominate, can be described by Eq~4!
with the noise obeying the fluctuation-dissipation theor
@Eq. ~10!#; this is called the quasi-classical Langev
equation25 ~QLE! approach. In a number of papers26,27 the
QLE has been used to study the non-equilibrium dynamic
quantum systems. In particular, in Ref. 26 the quantum t
neling of an overdamped quantum particle was studied us
this approximation. Writing the inverse lifetimeG of a meta-
stable state in the formG5Pe2S/\ with S the tunneling ac-
tion andP the prefactor, it turns out26 that the QLE gives the
correct value of the tunneling actionS up to a multiplicative
factor of order unity@note that for quadratic systems th
QLE is actually exact, as is the expansionU(ũ1 ỹ/2,z)
2U(ũ2 ỹ/2,z)'U8(ũ,z) ỹ for this case#.

In this paper we use the QLE to study quantum creep
disordered medium. Although we would like to do better, w
are primarily interested in obtaining the correctscaling laws
and asymptotic forms; the exact coefficients are of less in
est. Action~7!, with quantum noise~10! is much simpler to
analyze than the full quantum action@Eq. ~9!#. We believe
that the QLE should be a useful tool for investigating t
dynamics of quantum systems as it appears to capture
essential physics, while being—at least relatively—tracta
analytically. Quantum fluctuations appear in the QLE a
proach as an effective random force with a correlatork(t)
@see Eq.~10!# acting on the system. The quantum decay o
metastable state then is equivalent to the thermally activa
escape of a particle driven by colored noise.28
3-3
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III. SCALING ARGUMENTS

A. Statics and thermal creep

An elastic manifold subject to a random potential beha
as an assembly of approximately independently pinned
ments of a characteristic size that is determined by the
ance between the pinning and elastic forces. The driven
tion of the manifold is dominated, both classically a
quantum mechanically, by successive jumps of segment
the manifold between subsequent metastable configurat
In order to understand this behavior one needs to cons
various characteristic scales.

The characteristic size of the collectively pinned segme
is of order1 Lc;@c2j2/D(0)#1/(42d), the Larkin length over
which the typical distortion of the manifolduu(Lc)2u(0)u is
of orderj, the scale of the correlations in the random pinni
landscape. The characteristic energy scale of the defor
tions on scaleLc is Uc;cj2Lc

d22 . BeyondLc , the typical
displacements of the manifold grow asuu(L)2u(0)u
;j(L/Lc)

z with z the wandering exponent,z5(42d)/3 for
the random force case, whilezd,1'0.2083(42d) for a short-
range correlated random potential; the difference in ene
between metastable configurations deviating on a scaleL by
a displacementdu(L) is controlled by the balance betwee
the elastic and pinning energies, both of which have a m
nitude of orderUc(L/Lc)

u with the energy exponentu5d
12z22 and the wandering exponentz given above.

In the presence of an applied forcef it is favorable for a
segment of sizeL to move into the neighboring metastab
valley if the energyf Lddu(L); f Ldj(L/Lc)

z gained due to
the presence of the force is larger than the difference of
elastic- plus pinning energies between the two configu
tions; for small forces, this will only occur for large seg
ments. Equating the two energy scales, we obtain the m
mum characteristic size of a segment that can move to
lower energy site,8

L f;LcS f c

f D 1/(22z)

, ~11!

wheref c;cj/Lc
2 is the critical applied force needed to mov

the manifold in the absence of thermal or quantum fluct
tions. The scaleL f is the minimum size of a segment that c
hop in order to lower its energy; the macroscopic mot
then proceeds via jumps of segments of this character
size over distances

uf;jS f c

f D z/(22z)

~12!

separating two neighboring metastable configurations.
Consider first the classical motion, i.e., thermal creep: T

conventional assumption is that the height of the energy
rier that must be surmounted for such a motion to oc
classically is determined by the scaling of thestatic energy
Uc(L/Lc)

u ~we will discuss the validity of this assumptio
later in this section!. The characteristic height of the barrie
that dominates the motion at a small forcef is then
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U~ f !;cuf
2L f

d22;Uc~L f /Lc!
d12z22

;Uc~ f c / f !(d12z22)/(22z); ~13!

this yields an average velocity for thermal creep~see Ref. 8!:

v;exp@2U~ f !/T#. ~14!

B. Quantum creep with dissipative dynamics

The quantum tunneling of segments of the manifold c
be estimated in a manner analogous to their classical the
activation: Let us assume that the manifold is located in o
of the metastable configurations and subject to a small d
ing force f. One expects the lifetime of such a state to
proportional to exp(S/\), with S the characteristic action de
scribing the tunneling through the barrier separating
metastable minimum from one with a lower energy. We
timateSusing the standard theory of the decay of metasta
states. We first assume that the effects of dissipation do
nate over those of inertia; the Euclidean action of the ma
fold then can be written in the form

SEucl@u#5E
2`

1`

dtE ddzF c

2 S ]u

]zD
2

1U~u,z!2 f u

1
h

4pE2`

1`

dt8
@u~z,t!2u~z,t8!#2

~t2t8!2 G , ~15!

with t the imaginary time andh the dissipative coefficient
In order to findS one needs to find the imaginary time tr
jectory connecting the initial and final configurations of t
manifold and calculate its action. We emphasize that as
problem is a non-equilibrium one, the full quantum acti
@Eq. ~9!# should be used. However, at low driving forces, t
problem we study is aquasistationaryone, as the lifetime of
a metastable state is large and the manifold can be con
ered to be in local equilibrium. Therefore we can use
simpler ~Euclidean! action @Eq. ~15!# instead of the full dy-
namic action~9!.

In estimating the tunneling action we find the sizeL f of
the tunneling segment as in the classical case of ther
creep, since this is determined by thestaticbalance between
the variations in the pinning energy and the energy gain
to the external force. Furthermore, we assume that ther
only one characteristic time scalet f associated with the tun
neling process. We can then consider the tunneling ev
crudely, as an effective process in which a point-like obj
with a friction coefficienth f5hL f

d tunnels through a poten
tial barrier of heightU( f ) and extentuf , see Fig. 2. The
saddle point of action~15! is minimized when

h f

uf

t f
;

U~ f !

uf
, ~16!

where we have substituted the dynamic term by its cha
teristic value andU( f )/uf is the characteristic force actin
on the ‘‘particle.’’ The tunneling timet f is given by t f

;h fuf
2/U( f ), resulting in the tunneling action
3-4
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S~ f !;ShS f c

f D (d12z)/(22z)

, ~17!

with Sh;hj2Lc
d the characteristic scale of the dissipati

action of a segment with the diameter of the order of
Larkin lengthLc . The velocity of the manifold is related t
S( f ) via Eq. ~2!.

The characteristic crossover temperatureTcr from quan-
tum to classical creep can be obtained by comparingU( f )/T
andS( f )/\, i.e.,

Tcr;
\U~ f !

S~ f !
;

\Uc

Sh
S f

f c
D 2/(22z)

, ~18!

gives the scaling conjecture for the dissipative limit.

C. Quantum creep with inertial dynamics

We now assume that the inertial term in the action is m
important for the tunneling process than the dissipation
this case the Euclidean action analogous to that given by
~15! can be written in the form

SEucl@u#5E
2`

1`

dtE ddzF c

2 S ]u

]zD
2

1U~u,z!2 f u

1
r

2 S ]u

]t D
2G , ~19!

with r the mass density of the manifold. The sizeL f of the
tunneling segment is the same as in the dissipative cas
order to find the actionS( f ) one again needs to find th
tunneling timet f ; comparing kinetic and pinning energie
for the saddle-point configuration, we find~with r f5rL f

d the
effective mass of the tunneling object!

r f

uf

t f
2
;

U~ f !

uf
, ~20!

FIG. 2. Tunneling of a particle with an effective massrL f
d and

dissipative coefficienthL f
d through a barrier of heightU( f ) and

width L f .
21420
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i.e., t f;@r f /U( f )#1/2uf , and the tunneling action can b
estimated as

S~ f !;SrS f c

f D (d12z21)/(22z)

, ~21!

with Sr;(rUcLc
d)1/2j the characteristic action with inertia

dynamics on the Larkin scaleLc . The quantitiesLc andUc

have been defined in Sec. III A above. The characteri
crossover temperature can be determined as in the dissip
case and is given byTcr;(\Uc /Sr)( f / f c)

1/(22z).

D. Assumptions

Two important assumptions have been made in orde
derive scaling prediction~2!: First of all, it has been assume
that the barriers for the manifold’s motion scale in the sa
way as the variations of the energy. If there are two indep
dent exponentsu5d2212z parametrizing thestaticenergy
scaling and c.u characterizing the scaling of energ
barriers,29,30 then the barrier for thermal creep will have th
form U( f )}L f

c . The simplest assumption for the quantu
motion is that this same barrier height is the appropriate
for the quantum barrier traversal. While dissipative res
~17! would remain the same~asSdiss;h fuf

2 does not depend
on the height of the tunneling barrier!, the result for the
inertial dynamics would take the formSinertial}L f

(d1c12z)/2 .
We should emphasize, however, that ifc.u then this is

because the dynamics on intermediate length scales af
that on the large scaleL f . A dependence of the large sca
dynamics, of interest for quantum creep at small appl
forces, on the intermediate scale physics can also oc
quantum mechanically; but the way in which it occurs cou
be quite different from the classical situation and it is po
sible that each type of quantum dynamics has its own ex
nentcQ distinct from the classical valuec.31 Once we admit
the possibility of a dependence of the tunneling dynamics
large segments on the dynamics at intermediate scales
basic assumptions of the scaling arguments given ab
breakdown. But this is exactly the kind of problem for whic
a renormalization-group framework is needed.

Another potentially important effect that was not tak
into account in the simple scaling analysis summariz
above are rare events: in general, it is possible that the
locity is not controlled by the typical barriers—or, more pr
cisely, by the tunneling through these typical barriers — b
by rare anomalously large barriers. In the simplest scena
this could give rise to a quantum creep law of the formv
}exp$2@S(f)/\#a%, with aÞ1 a nontrivial exponent charac
terizing the tail of the distribution of barrier heights. Ju
such a phenomenon controls the temperature dependen
the diffusion coefficient of a single particle diffusing in
Gaussian random potential;32 see the discussion in Sec. IV E
One mechanism for an exponenta.1 is that rare, rather
than typical, events dominate the macroscopic motion.
3-5
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IV. RENORMALIZATION GROUP ANALYSIS

A. Derivation of RG equations

Having presented the basic scaling arguments for b
classical and quantum creep, we now turn to the main tas
this paper, an attempt to derive the creep laws from a mic
scopic description of the dynamics. With the roughness
ponent z vanishing in dimensionsd.4, one expects tha
dc54 is the upper critical dimension of randomly pinne
elastic manifolds, an expectation which turns out to be c
rect both for the equilibrium properties in the absence o
driving force and for the fluctuationless (T50) critical de-
pinning transition atf c in the presence of a driving forcef. A
renormalization-groupe expansion aboutdc54 then allows
one to investigate the various large scale properties of
pinned elastic manifold.18 An important feature of this renor
malization group analysis is the fact that even to lowest or
one has to take into account infinitely many variables,
practice by renormalizing a function that is essentially
correlatorD@u(z)2u(z8)# of the random force~but see the
discussion in Ref. 33 and in Sec. V B!.

The functional renormalization-group~FRG! approach
has been successfully applied to both static equilibrium18 and
fluctuationless (T50) depinning problems.34,35Recently, the
FRG was also applied to the thermal creep problem,11,12,36

although its applicability is far more problematic. For forc
f ! f c , the motion proceeds either by activation or tunneli
of large segments between different metastable minima
thus the dynamics isintrinsically nonperturbative: in particu
lar, the dynamic exponentz, which is shifted only slightly
from its naive value of two near the critical depinning tra
sition, must be radically modified in the creep regime. Ne
ertheless, itappears~though see Sec. V! that for thermal
depinning one can handle this within the FRG and renorm
ize until a scale is reached beyond which the disorder ca
taken into account perturbatively and the equation of mot
can be solved. By retracing back the FRG flow, one can t
determine the average velocity of the manifold. We will fo
low this approach here, but return later in the paper to qu
tion its validity both for the quantum and classical cases

Formally, in both classical and quantum cases, the
analysis of creep involves the flow away from the staticf
50) fixed point that controls the undriven pinned syste
under the action of a small applied forcef; under the RG
transformation the parameters describing the system flow
such a way that eventually the effects of disorder can
neglected beyond a certain length scale. But there is an
portant difference between the classical and quantum ca
In the classical case12 one can restrict the analysis to th
low-frequency limit, i.e., including the friction term (h] tu)
alone into the renormalization procedure is sufficient. This
a consequence of the fact that, to exponential accuracy,
sical creep does not depend on the dynamics~e.g., inertial
versus dissipative! of the system. In the quantum case, it w
turn out that an analogous treatment leads to a spurious
calization transition’’ where the average velocity of the ma
fold drops to zero at a finite length scale;Lc ; see Sec.
IV B. In order to carry out a correct analysis one must
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cludeall the frequencies into the renormalization group; sp
cifically, we must make the substitution

h] tu→D̂ ^ u[E
2`

t

dtD~t!u~ t2t![h] tu1 (
k52

`

h (k)] t
ku.

~22!

It will turn out that, even if initiallyh (k)[0 for all k>2, the
dynamic parametersh (k) will grow rapidly under the flow
and become crucial; the renormalized spectrumDl(v) is
very different from the bare linear spectrum2 ivh.

It has been argued above that in order to investigate qu
tum creep we can use action~7! with the correlator given by
Eq. ~10!. It is convenient to perform the disorder average
Eq. ~7! and work in a frame moving at the average veloc
of the manifold, i.e., we substituteu(z,t)→u(z,t)1vt. We
also introduce the above general dynamicsD̂; the resulting
action, averaged over both quantum fluctuations and rand
pinning, takes the form

A52E ddzdtiy~D̂ ^ u2c]z
2u!1

1

2E ddzdtdt8iy~z,t !

3k~ t2t8!iy~z,t8!1E ddzdtiy~ f 2hv !

1
1

2E ddzdtdt8iy~z,t !D@u~z,t !2u~z,t8!

31v~ t2t8!# iy~z,t8!. ~23!

The correlation functions corresponding to the quadratic
tion in the absence of pinning are given by

u~k,v!u~k8,v8!5
k~v!

uck21D~v!u2
d~v1v8!d~k1k8!

[C~k,v!d~v1v8!d~k1k8!, ~24!

u~k,v!iy~k8,v8!5
1

ck21D~v!
d~v1v8!d~k1k8!

[R~k,v!d~v1v8!d~k1k8!, ~25!

with the usual definition of the Fourier transform

f ~k,v![E ddzdt f~z,t !exp~2 ikz1 ivt !, ~26!

andD(v)'h(2 iv) for smallv. Because of the fluctuation
dissipation theorem, we have

k~v!52\ Im D~v!coth
\v

2T
. ~27!

In the regime of interest for quantum creep, the motion
the elastic manifold can be represented as jumps betw
different metastable states and the lifetime of each m
stable state is large. It is thus possible to extract some in
mation about the dynamic properties of the system, in p
ticular, the average velocityv, from static equations if we
3-6
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cut off the renormalization group flow at the relevant leng
scale, hereL f;Lc( f c / f )1/(22z); see Sec. III~a similar situa-
tion arises in the conventional theory of the decay of me
stable states: although the original problem is formally n
equilibrium, the system is trapped for a long time in the lo
equilibrium state corresponding to a local minimum of t
free energy; one can approximate the partition function
the system by that calculated assuming quasi-equilibr
and then find the flow of the probability out of the loc
potential well!. This is why we could use the Euclidean a
tion instead of the full quantum mechanical action in Sec.
For values of the RG variablel smaller than ln(Lf /Lc) we
then can use the appropriate static versions of RG equat

The RG flow equations are obtained by integrating o
fast modes in effective action~23! with the last two terms in
the action treated as perturbations about the quadratic ac
We write all the equations, except those for the correla
D l(u), the temperatureTl , and the Planck constant\ l at
finite velocity. We will use the subscriptl in order to distin-
guish renormalized quantities at length scaleL5L21el from
bare quantities without subscripts, e.g.,h5h0 , T5T0 , \
5\0 , D(u)5D0(u), etc. Introducing the large momentu
cutoff L, we obtain, to leading nontrivial order inD l ,

] lD l~u!5~42d22z!D l~u!1zuD l8~u!1Cl
.~L,t50!

3D l9~u!1ID l9~u!@D l~0!2D l~u!#2ID l8
2~u!,

~28!

] l f̃ l5~222z! f̃ l1E dtRl
.~L,t !D l8~v l t !, ~29!

] lv l5~z2z!v l , ~30!

] lk l~ t !5~42d22z!k l~ t !1zt] tk l~ t !2Cl
.~L,t !D l9~v l t !,

~31!

] lDl~v!52Dl~v!2zv]vDl~v!2E dv8

2p

1

v l
D̂ l9~v8/v l !

3@Rl
.~L,v8!2Rl

.~L,v1v8!#, ~32!

] lTl5~22d22z!Tl , ~33!

] l\ l5~22d22z2z!\ l , ~34!

with I[AdLd/c2L4 defined in terms of the surface areaAd
of a d-dimensional unit sphere. Both the dynamic expon
z5z( l ) and the roughness exponentz( l ) are at our disposa
to adjust for convenience; it will generally be most useful
choosez to be thel-independent value giving rise to a we
behaved fixed point functionD* (u) in the absence of fluc
tuations or drive. How best to adjustz( l ) we reserve for
later; conventionally it would be chosen to fix the coefficie
in the low-frequency part ofDl(v), in the dissipative situa-
tion studied here, ofh l . The shell-restricted correlation func
tions C.(L,t) andR.(L,t) are given by
21420
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.~L,t !5

AdLd

~2p!dE dv

2p
e2 ivtC~L,v! ~35!

and

Rl
.~L,t !5

AdLd

~2p!dE dv

2p
e2 ivtR~L,v!; ~36!

here C(L,v) and R(L,v) are defined via Eqs.~24! and
~25!, with D(v) substituted for byDl(v). Also, we define
the coefficient

G l[Cl
.~L,t50!, ~37!

which will appear frequently in the following. We chose a
initial dynamic spectrum of the form

D0~v!52 ihv1rv2. ~38!

The excess of the applied force over that needed to sus
the motion of an unpinned system with dissipative coe
cient h l is

f̃ l5 f l2h lv l . ~39!

Above, we have defined the Fourier transform of the sec
derivativeD9(u)[]u

2D by D̂9(p)[*dueipuD9(u), so that

D̂ l9~v/v ![vE
2`

1`

dteivtD l9~vt !; ~40!

this quantity plays a crucial role in the dynamic renormaliz
tion. Equations~28!, ~29!, ~31!, ~30!, and ~33! have been
obtained before in the discussion of classical creep12; they
are the same in the quantum case, while Eq.~32! is different,
however. We now show how it can be obtained and in w
respect it differs from its classical analog.

After averaging the disorder term over the fast mod
one obtains the following feedbackdA to the term
2*ddzdtiy(z,t)D̂ l ^ u in the action:

dA52E dDzdtdt8iy~z,t !Rl
.~L,t2t8!@u~z,t !2u~z,t8!#

3D l9@v~ t2t8!#dl. ~41!

Writing the functionsD l(vt) andRl
.(L,t) as Fourier inte-

grals we obtain Eq.~32!, which explicitly includes the full
dependence of the displacement fieldu(z,t) on time, i.e., it is
nonperturbative in frequency. In the classical analysis of R
12 it was assumed that the low-frequency limit of the R
equations is valid for all frequencies, i.e., forv→0 the only
important term is that containingh l] tu @corresponding to
2h l ivu(v) in Fourier space#. The equation analogous t
~32! then is given by its low-frequency limit, i.e., instead
the full dependenceu(z,t)2u(z,t8) one considers only the
first term of its Taylor expansion int2t8. It was also as-
sumed in Ref. 12 that the response functionRl

.(L,t) and the
correlation functionCl

.(L,t) depend only on the frictiona
coefficienth l . In the classical limit this approach leads
reasonable results. By contrast, ignoring the frequency
3-7
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pendence of the dynamics in the quantum case leads
spurious ‘‘localization transition,’’ implying a zero averag
velocity of the manifold below a small but nonzero drivin
force f and in the presence of quantum fluctuations\Þ0. We
will discuss this issue in Sec. IV B.

In the case of a purely dissipative dynamics there is
other problem that occurs even at the initial stage of
renormalization: the integral in the expression forCl

.(L,t
50) diverges at large frequencies; see Eqs.~35! and ~24!.
For largev the noisek l(v) @see Eq.~10!# and the dynamic
spectrumDl(v) are both proportional tov for a dissipative
dynamics and, consequently,Cl

.(L,t50) diverges logarith-
mically as*dv/v at large frequencies; see Eq.~24!. This is
not unexpected: it is just such a logarithmic frequency
pendence that can cause localization in models with a si
degree of freedom coupled to a bath that provides a lin
friction;37 thus integrating out all the frequencies at once
problematic even for short wavelength deformations of
manifold. In reality, we expect that an inertial termr] t

2u or
some other frequency dependence describing the small s
dynamics will provide a cutoff at high frequencies~at v0
;h/r for the inertial case!; alternatively one could introduc
a sharp cutoff by hand. We will consider both possibiliti
later, noting now that how this is done will affect the resu
far more than one might expect.

B. Structure of the quantum RG flow

The main goal of the remainder of this section is to a
lyze the system of RG equations derived in Sec. IV A in t
limit of small driving forces. We first discuss the importa
features and then provide a more detailed analysis in
following section. First, let us analyze the renormalizati
@Eq. ~28!# of the force-force correlator. In the absence
quantum and thermal fluctuations@i.e., k(v)50 for all v],
the correlation functionCl

.(L,t50) is zero. In this case, th
nonlinearities in the flow equation of the functionD l(u)
cause it to become nonanalytic on a finite length scale, e
if the bare correlatorD0(u) is analytic; see Ref. 18. This i
easily seen by differentiating Eq.~28! twice with respect tou
and substitutingu50, resulting in an equation for the evo
lution of the quantityD l9(0) alone. The simple autonomou
flow equation forD l9(0) leads to a divergence at a finite sca
l c;e21 ln@c2/Ld24D09(0)#, producing the Larkin- or pinning
length Lc.@c2/D9(0)#1/(42d);@c2j2/D(0)#1/(42d) where
collective pinning goes over into strong pinning. BeyondLc ,
the perturbative description breaks down as multiple com
ing minima appear in the pinning energy landscape. The
finite second derivative suggests that the functionD l(u) will
have a discontinuous first derivative atu50, i.e., D l8(10)
52D l8(20)Þ0. On length scales shorter thatLc , the
smoothness ofD l(u) reflects the smooth reversible evolutio
of a segment as it is pulled by its neighboring regions. But
larger length scales the internal deformations of the segm
will cause it to jump discontinuously and irreversibly fro
one metastable configuration to another — this is reflecte
the discontinuity inD l8 . At the scaleLc the force correlator
essentially has reached its fixed point shape with a he
21420
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D* (0);(cL2)2j2L2de22z l c and a widthj* ;je2z l c, re-
sulting in a cuspuD* 8(01)u;(cL2)2jL2de2z l c; see Ap-
pendix B.

In the presence of small quantum or thermal fluctuatio
the coefficientG l[Cl

.(L,t50) becomes nonzero and th
leads to asmearingof the cusp inD l(u).11,12,38The deriva-
tive D l8(0) of the correlator at the origin is zero fo
C.(L,t50)Þ0 but changes rapidly in a boundary lay
around the origin. The cusp that was present in the abse
of fluctuations is smeared over a regionusmearwhich can be
estimated by comparing12 the termsG l uD l9(0)u;G l uD l8(u
;usmear)u/usmear and @Ld/(cL2)2#D l8

2(u) in Eq. ~28!. The
derivative D l8(u.usmear) approaches the fixed point valu
D* 8(10) found in the absence of fluctuations and we obt
the boundary widthusmear;G l(cL2)2/LduD* 8(01)u. The
curvature D l9(0);2@Ld/(cL2)2#uD* 8(01)u2/G l then di-
verges as the fluctuations renormalize to zero on large sc

Physically, usmear( l ) can be understood in terms of th
equilibrium response of a segment of sizeL5L21el to the
motion of its neighboring regions. Usually, a small displac
ment of neighboring regions will cause only a small readju
ment of the segment of interest within its local energy mi
mum. The exceptions to this occur when the minimu
energy configuration of the segment jumps from one c
figuration to another as its neighboring regions are sligh
displaced: it is these jumps that give rise to the cusp inD(u)
in the absence of fluctuations. At a nonzero temperature o
the presence of quantum fluctuations, the behavior will
change much except near these jumps, where there will
range of positions of the neighboring regions over which
segment of concern will have a non-negligible probability
be ineitherof two distinct configurations. This will result in
a smearing of the cusp inD l(u) over the scaleusmear( l ) of
neighboring region displacements on which this split pro
ability typically occurs. On large scales, the fact that t
energy scale grows asLu means that it is much less likel
that the position of a segment will fluctuate between t
energy minima. This is reflected in the renormalization
wards zero ofG l and the concomitant flow towards zero
the smearing scaleusmear}G l . Summarizing, the function
D l(u), whose renormalization is given through Eq.~28!, de-
velops under the RG in the following way: At the scaleLc ,
D l(u) is close to its fluctuationless fixed-point functio
D* (u), with fluctuations affecting its behavior only in th
vicinity of the pointu50 via a smearing of the discontinuit
in D l8 in a boundary layer whose size is controlled byG l .
Once we know how the functionD l(u) evolves, we can sub
stitute it into the other RG equations and see how other qu
tities renormalize under the RG flow.

In addition tousmear, there are two other important dis
placement scales: the characteristic scalej* of the fixed-
point correlatorD* (u) and the scaleuvel associated with the
velocity uvel;h lv l /cL2. The latter is the product of the ve
locity v l and the characteristic timescaleh l /cL2 of the low-
frequency part of the response functionRl

.(L,t) at wave-
lengths of the order of the cutoffL21. At scales somewha
larger than the Larkin lengthLc}L21el c:
3-8
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uvel!usmear!j* . ~42!

This is a consequence of the fact thatv l is exponentially
small„}exp$2@S(f)/\#a%… in \, while usmearproportional to a
powerof \ l andj* is a static quantity that does not depe
on \ l ~in the classical case the relevant displacement sc
obey the same relation with the role of\ played by the
temperatureT). During the RG flow,usmeardecreases gradu
ally with decreasing\ l whereasuvel increases rapidly due to
the sharp increase in the viscosityh l .

Eventually at some scale bothusmear and uvel are of the
same order. At this scale, which is the crossover scaleL f
appearing in the scaling arguments for creep, the functi
D l8(vt) and D l9(vt) are roughly given byD* 8(10) and
D* 9(10) on the time scales that dominate in Eqs.~29!, ~31!,
and ~32!. At even longer scales,uvel eventually becomes
comparable toj* , see Ref. 12. Beyond this scale the ra
domness is effectively smoothed by the motion of the ma
fold and can be neglected or treated perturbatively.

In analyzing the renormalization of other quantities by t
random pinning forces, we thus see that there are two im
tant regimes:

~ i! uvel,usmear the nucleation regime. ~43!

where we can approximateD l8(vt) by D l8(0)50 andD l9(vt)
by D l9(0); and

~ ii ! usmear,uvel,j* the depinning regime. ~44!

It was argued12 that this latter regime resembles that of t
critical depinning transition34 in the absence of fluctuations
we can then approximateD l8(vt) by D l* 8(10) andD l9(vt)
by D l* 9(10). These two regimes are separated by the s
L f discussed in Sec. III. We will now show how the sca
L f;Lc( f c / f )1/(22z) naturally appears in the solution of th
RG equations and separates the two regimes.

In order to do so we concentrate on force equation~29!
which involves the slopeD l8(v l t) of the disorder correlato
near the origin. The latter is small and vanishes atu50 for
l , l c , hencef̃ l5e(22z) l f̃ grows exponentially~since the ve-
locity v l of the manifold is exponentially small we can n
glect the termh lv l in the equation forf̃ l). In the absence o
fluctuations the slopeD l8(v l t);D* 8(01) rapidly turns on as
the correlator forms a cusp atl c ; if the disorder term
(Ld/cL2)uD* 8(01)u overcompensates for the scaling ter
(22z)e(22z) l c f̃ , the force will start renormalizing to zer
while in the opposite case it will continue to increase. B
ancing the two terms we find the critical force densityf c

;cj/Lc
2 .

Fluctuations smearing the correlator on the scaleusmear
soften and delay the depinning transition until the grow
width uvel of the response function encloses the emerg
cusp inD l(u) at l f , uvel( l f);usmear( l f). Below l f we have
D l8(v l t)'D l8(0)50 and the force increases exponentia

f̃ l5e(22z) l f̃ ; starting with a small forcef ! f c , depinning
occurs as the cusp emerges atusmear( l f);uvel( l f). Again re-
placingD l8(v l t)'D* 8(01) in Eq. ~29! we obtain the depin-
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depinning scalel f then relates to the forcef via (22z)( l f
2 l c); ln(fc /f) or

L f;Lc~ f c / f !1/(22z). ~45!

We thus see that the characteristic length scale for cree
the sizeL f of the segments that can jump to lower the ene
— appears naturally within the RG framework. We emph
size, however, thatL f is entirely determined bystatic prop-
erties; so far we have not had to address the crucial issu
dynamic renormalizations — to these we now turn.

The crucial quantity needed for the dynamic renormali
tion is D l9(0), which can be obtained from Eq.~28! by com-
paring G lD l9(u) with the nonlinear terms evaluated at th
origin u50. This yields12

2D l9~0!'
1

G l

Ld

~cL2!2
D l8~10!2 ~46!

~see Appendix B!, and enables us to find the renormalizati
of the viscosityh l . Since we are primarily interested in ca
culating the velocity to exponential accuracy, the calculatio
simplify significantly. If we donot renormalize time scales
explicitly, i.e., choosingz( l )50, the velocityv is given ap-
proximately by the viscosity at the scaleL f :

ln v' ln
1

h l f

. ~47!

The validity of this condition to exponential accuracy is d
to the following argument: At the scaleLdyn where uvel
;h lv l /cL2;j* we have a velocityv l}1/h l as the effects
of pinning are negligible beyond this scale. On intermedi
scales, i.e., betweenL f andLdyn both h l andv l renormalize
but not exponentially; the only exponentially large renorma
ization originates from scales betweenLc and L f . Thus, to
exponential accuracy, we can ignore the renormalization
scales larger thanL f ~and smaller thanLc) and justify Eq.
~47! ~note that, in general, only such dynamic quantities
h l and v l are exponentially renormalized, i.e., proportion

to exp@6constL f
ã#, with ã a positive constant!.39

The crucial equations for calculating the renormalized
locity are Eqs.~31! and~32!. Substitutingv l by zero in these
equations and performing the Fourier transformation in E
~31! we obtain the two equations

] lk l~v!5~42d22z2z!k l~v!2zv]vk l~v!

2
AdLd

~2p!d
D l9~0!

k~v!

ucL21Dl~v!u2
, ~48!

] lDl~v!52Dl~v!2zv]vDl~v!

2
AdLd

~2p!d
D l9~0!

Dl~v!

cL2@cL21Dl~v!#
. ~49!
3-9
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Note that Eqs.~48! and ~49! are very similar except for
the trivial scaling parts. This is the consequence of the qu
tum fluctuation-dissipation theorem40 ~FDT!,

k l~v!5
\ l Im@Rl

.~L,v!#

uRl
.~L,v!u2

coth
\ lv

2Tl
, ~50!

which is valid in the quasiequilibrium situation produced
the long time scales associated with the creep motion
relation~50! is satisfied in the bare system (l 50), then Eqs.
~48! and ~49! guarantee its validity for anyl. Strictly speak-
ing the FDT is not applicable forvÞ0, but its appearance
here is understood to be consistent with our assumptio
being close to local equilibrium and our use of the appro
mation v50 in the RG equations forL,L f . Using Eqs.
~25!, ~36!, and ~50! one can see that expressions~48! and
~49! are identical up to scaling terms.

Substituting Eq.~46! into Eq. ~49!, we obtain

] lDl~v!52Dl~v!2zv]vDl~v!

1
AdLd

~2p!d

Ld

~cL2!3

D l8~10!2

G l

Dl~v!

@cL21Dl~v!#
.

~51!

Note thatG l and Rl
.(L,t50) are functions ofl via their

dependence onDl(v). Using Eqs.~24!, ~25!, and ~50! we
can writeG l in the form

G l52
AdLd

~2p!dE2`

1`dv

2p

\ l Im@Dl~v!#coth~\ lv/2Tl !

ucL21Dl~v!u2
.

~52!

In a nearly static system\ l and temperatureTl renormalize
to zero in a trivial way@see Eqs.~33! and ~34!#, and the
elasticityc is not renormalized at all,] lc50. This is a con-
sequence of the statistical tilt symmetry (u→u1b•z, with b
an arbitrary constant vector! of action ~7!.

We now concentrate on the zero temperature limit wh
the correlation functionG l5Cl

.(L,t50) can be written in
the form @cf. Eqs.~25! and ~50!#

G l5
AdLd

~2p!dE0

`dv

2p

2\ l

cL21Dl~ iv!
. ~53!

This is a consequence of the identity40

E
0

`

dvRl
.~L,iv!5E

0

`

dv Im@Rl
.~L,v!# ~54!

following from the analytic structure of the correlatorRl as
implied by causality. It is convenient to work within th
imaginary time formalism and substitutev→ iv. This sub-
stitution transforms the dynamic spectrum intoDl( iv)
5hv1(k>2h (k)vk with the advantage thatDl( iv) is real
and non-negative for positivev. The calculation of the ve-
locity v of the driven elastic manifold reduces to the proble
of solving the equation
21420
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] lDl~ iv!52Dl~ iv!2zv]vDl~ iv!

1
AdLd

~2p!d

Ld

~cL2!3

D l8~10!2

G l

Dl~ iv!

@cL21Dl~ iv!#
,

~55!

with the initial conditionD0( iv)5huvu1rv2 ~valid for any
v) and calculating the renormalized low-frequency viscos
h l5]vDl( iv), v→0; having foundh l we can determine the
velocity v using relation~47!. Note that if D0( iv)5D0
(2 iv) then this property is preserved under the RG tra
formation.

On very short scalesl , l c the disorder-dependent term o
the right-hand side of Eq.~55! can be neglected. On interme
diate scalesl c, l , l f we can substituteD l8(10) by its fixed-
point value which is related to the bare potential through~see
Appendix B!

D* 8~10!2.ee(e22z) l c
~cL2!2

Ld
D~0!;

~cL2!4

L2d
j2e22z l c,

~56!

where we have used the relationD(0);c2j2(L/el c)e in the
last equation.

C. Naive RG and ‘‘localization’’ transition

Before embarking on the complete analysis it is instru
tive to see what happens if we simply keep the leading lo
frequency form ofD( iv) as is conventionally done in dy
namic renormalization group calculations. To do this w
substitute the ansatzDl( iv)5h l uvu for all frequencies into
Eq. ~53!. Calculating the integral we easily obtainG l
;(\ lL

d/h l)ln(hlv̄/cL2), where we have introduced a high
frequency cutoffv̄. Substituting this expression into Eq.~55!
and approximating

Dl~ iv!/~cL21Dl~ iv!!→Dl~ iv!/cL25h lv/cL2,
~57!

i.e., assuming that the low-frequency asymptoticsDl( iv)
5h lv is valid for anyv andl, we obtain the equation for the
renormalized friction coefficient,

] lh l;
Sh

\h
e2(d12z) l ch l

2 , ~58!

with Sh;hj2Lc
d . Unfortunately, the behavior of this equa

tion is pathological: one can see that it would imply a dive
gence ofh l at a finite length scale. This would presumab
mean that the velocity goes to zero in the presence o
nonzero force and quantum fluctuations, a result that app
to be implausible. Of course, what one must check in a
situation where some parameter in an effective action
verges under the RG flow is, whether this is due to an
physical restriction of the space of relevant parameters
breakdown in whatever approximations that have been m
in deriving the RG flow, or some other effect. In our case
will turn out that the renormalization of the whole frequen
spectrum is very important. This should be contrasted w
3-10
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the classical case for which one can obtain the resuv
}exp@2U(f)/T# by considering the low-frequency limi
only.12

D. RG analysis of dynamic response

We now turn to the analysis of the RG flow equations~55!
and~56!. In order to find the flow of the functionDl(v) it is
convenient to make the unconventional choicez( l )50 and
allow h l to change arbitrarily. If one is more comfortab
with a flowing dynamical exponentz( l ), one can work more
generally with the quantity

El~V!5Dl~ iV!/cL2, ~59!

whereV[v exp@2*ldl8z(l8)# represents the unrenormalize
frequency; substituting Eq.~59! into Eq.~55! and accounting
for Eq. ~56! as well as the trivial renormalization of\ l @see
Eq. ~34!# we arrive at

] lEl~V!'2El~V!

1Ke(d12z22)l
El~V!Q~ l 2 l c!

11El~V!

1

E
2`

1`hdV/cL2

11El~V!

[2El~V!1
El~V!Q~ l 2 l c!

11El~V!
Bl , ~60!

with the dimensionless constantK given by

K52pe
hD~0!

~cL2!2\
e2(d12z24)l c;

Sh

\
e2(d12z) l c ~61!

and

Bl5
Ke(d12z22)l

E
2`

1`hdV/cL2

11El~V!

;
U~L !

E
2`

1` \dV

11El~V!

. ~62!

For l , l c the renormalization of the dynamics due to disord
can be neglected, as properly expressed by the step fun
Q( l 2 l c) in Eq. ~60!. The quantityBl}1/G l governs the
fluctuation-induced smearing of the cusp in the force-fo
correlator. The right-hand side of Eq.~60! behaves differ-
ently for El(V)!1 andEl(V)@1; using the approximation

El~V!

11El~V!
'min@El~V!,1# ~63!

considerably simplifies the analysis but does not change
result qualitatively. We rewrite Eq.~60! in the corresponding
( l -dependent! frequency regions in the forms

] lEl~V!'2El~V!1El~V!Bl , El~V!,1, ~64!

] lEl~V!'2El~V!1Bl , El~V!.1. ~65!

As is readily seen from Eqs.~64! and ~65! the function
El(V) is an increasing function ofl for all V and El(V)
→` as l→`. In addition, if E0(V) is a monotonically in-
21420
r
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e
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creasing function ofV thenEl(V) remains monotonic inV
for any l. Let us define the frequencyṼ l and the scalel̃ V

which solve the equation

El~V!51; ~66!

the function Ṽ l starts atl 50 with a finite valueṼ0 and
decreases with increasingl. For anyl .0 we distinguish be-
tween the three regions 0,V,Ṽ l , Ṽ l,V,Ṽ0, and Ṽ0
,V; see Fig. 3.

In each of these regions the functionEl(V) can be found
explicitly in terms of E0(V) and the yet-to-be-determine
function Bl :

El~V!5E0~V!expF2l 1E
0

l

dl8Bl 8G , 0,V,Ṽ l , ~67!

El~V!5e2(l 2 l̃ (V))F11E
l̃ (V)

l

dl8e22(l 82 l̃ (V))Bl 8G ,
Ṽ l,V,Ṽ0 , ~68!

El~V!5E0~V!e2l1e2lE
0

l

dl8e22l 8Bl 8 , Ṽ0,V. ~69!

Note that we integrate Eqs.~64! and~65! subsequently in the
first two regions 0, l , l̃ V and l̃ V, l , while for V.Ṽ0 Eq.
~65! applies for all values ofl. Correspondingly, the integra
*2`

1`dV/@11El(V)# that determinesBl @see Eq.~62!# can
be written as a sum of three terms. We will show below th
Bl increases exponentially, implying that the boundaryṼ l is
exponentially small and the first integral extending over
interval 0,V,Ṽ l can be neglected; hence

FIG. 3. Different regimes relevant in the integration of the d

namical equation~60!: For V,Ṽ0 the integration is split into two

regimes 0, l , l̃ V and l̃ V, l , while for V.Ṽ0 the integration in-
volves only one regime.
3-11
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dV
1

11El~V!
'E

Ṽ l

Ṽ0
dV

11e2[ l 2 l̃ (V)] 11E l

dl8e22(l 82 l̃ (V))B

1E
Ṽ0

1` dV

11E ~V!e2l1e2lE l

dl8e22l 8B
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F
l̃ (V)

l 8G 0
0

l 8

~70!

'E
0

Ṽ0 dV

11Gl
1E

Ṽ0

` dV

11E0~V!e2l1Gl

. ~71!
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In the last equation we have approximatedṼ l'0 and
l̃ (V)'0, and introduced the expression

Gl[e2lE
0

l

dl8Bl 8e
22l 8'

Bl

d ln Bl /dl22
; ~72!

the last approximation applies ifBl increases faster thane2l .
SubstitutingE0(V)5(hV1rV2)/cL2 @see Eqs.~38! and
~59!# into Eq. ~71!, we see that the second integral on t
right-hand side of Eq.~71! always dominates and we con
clude that it is thehigh-frequencybehavior ofD0(v) that
controls the large length scale renormalization of the dyna
ics.

Using the definition ofBl @see Eq.~62!# and evaluating
the integrals overV explicitly, we obtain an implicit equa-
tion for Bl valid at large length scales,

Bl;
Ke(d12z22)l

minFe22l ln
e2lh2/r

GlcL2
,e2 l

h/Ar

AGlcL2G , ~73!

where we have ignored multiplicative factors of order un
The first term in the denominator applies for smallr at in-
termediate length scales whenGl is not too large, while the
second is relevant if the inertia is substantialr
.h2e2l /cL2Gl) and for asymptotically large scales forany
non-zeror. Given that the approximation in Eq.~72! is
valid, as is the case in the regimes of interest, we hav
non-linear differential equation forBl ; in its simplest ap-
proximation withGl'Bl this reduces to an algebraic equ
tion which is readily solved. Using the definition ofK @Eq.
~61!# and the expressionsLc5L21el c, Uc;c(j2/Lc

2)Lc
d ,

Sh;hj2Lc
d , andSr

2;rj2UcLc
d , we find the result

Bl;
r

h

cL2

h
K2@e(d12z21)l #2;FSr

\
e(d12z21)(l 2 l c)G2

~74!

in the inertial case. The behavior is rather more complicate
for the dissipative case: at intermediate length scales we h

Bl;
Ke(d12z) l

ln@~h2/rcL2K !e2(d12z22)l #

;
Sh

\

e(d12z)( l 2 l c)

ln@~Sh\/Sr
2!e2(d12z22)(l 2 l c)#

, ~75!
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which increases slightlyfasterwith length scale than in the
absence of the logarithmic factor. The crossover between
dissipative and massive results appears at

Bl I
;K

h2

rcL2
e2l I;

Sh
2

Sr
2

e2(l I2 l c); ~76!

comparing with Eq.~75! this translates into the length sca

LI;LcS Sh\

Sr
2 D 1/(d2212z)

, ~77!

with a corresponding energy scale

UI;UcS LI

Lc
D (d12z22)

;Uc

Sh\

Sr
2

;
\h

r
. ~78!

For L.LI the behavior ofBl is always dominated by the
inertia and result~74! takes over.

In the end we see that the coefficientBl}1/G l describing
the fluctuations rounding the cusp in the correlatorD l in-
creases dramatically with increasing scalel ~with a corre-
spondingly decreasingG l). Substituting El→E0e2l1Gl
→Bl1(V/Vc)

a in the integral of Eq.~62!, we see that the
integration is squeezed to the high energy side where
ultimately cutoff by the inertial term (a52) or a more gen-
eral cutoff (V/Vc)

a. Hence the remaining high-frequenc
fluctuations measured with respect to the typical barri
U(L) at this scale determine the smoothing coefficientG l .
Technically, the exponent in the non-Arrhenius type law@Eq.
~74!# then appears via solution of the implicit equation forBl
with the resultBl}1/\a. For the extreme case with a linea
spectrum sharply cut at the frequencyVc , D0( iv, ivc)
5hv and D0( iv. ivc)5`, a similar calculation provides
an action that isexponentially~rather than power-law! en-
hanced in the limit of small forcesf.

Substituting the expressions forBl into the equation for
El we can find how the dynamic spectrumDl( iv) is renor-
malized. At low frequencies

] lDl~ iv→ i0!;@21B~ l !#Dl~ iv→ i0!, ~79!

and henceDl( iv→0)}exp@2l1*0
l dl8Bl8#; consequently the

renormalized viscosityh f on the scalel f is

h l f
'h expF2l f1E

0

l f
dl8Bl 8G . ~80!
3-12
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@Note that if we had used the conventional normalization
the action, adjusting the dynamic exponentz( l ) to keeph l

fixed, we would have obtained the same results for phys
quantities but the renormalization would have gone i
z( l )521Bl rather than the friction coefficienth l ].

Going back to dynamical equation~60!, we see thatBl not
only determines the low-frequency part but the entire fu
tion Dl( iv) ~we assumez50 and identifyV with v). A
schematic renormalization of the dynamic spectrumDl( iv)
is shown in Fig. 4: the low-frequency part atv,ṽ l
;(cL2/h)exp(2Bl) where Dl,cL2 remains linear,Dl( iv)
;h lv, but is boosted exponentially withh l;h exp(Bl)
~with Bl itself growing exponentially inl ). At frequencies
aboveṽ l the upward renormalization is reduced and the
sponseDl( iv) develops a flat intermediate regime. Final
at high frequenciesv.ṽ0 the renormalization remain
small, while the shape of the dynamical response again
flects the form of the original bare dynamicsD0 with an
additional shift}cL2Bl . It is this high-frequency part ofDl
that dominates the important renormalization ofh l at low
frequencies. We attribute the strongly renormalized lo
frequency partDl,cL2 to those degrees of freedom of th
manifold describing its intervalley motion, while the remai
ing modes at intermediate and high frequencies describ
intravalley motion smoothing the disorder landscape. In S
IV E we will discuss the meaning, significance, and proble
atic aspects of the unusual dynamical renormalizat
scheme uncovered above.

E. Results: quantum creep

The physical quantities of primary interest can be o
tained from the analysis of the previous section. In particu
using relation~47! we find the creep velocity at low forces i
the inertial case,

FIG. 4. Schematic renormalization of the dynamic spectr
Dl( iv) for a dissipative/massive initial dynamics,D0( iv)5huvu
1rv2, with a crossover atvhr5h/r. The spectrum is renormal
ized differently on small and large frequencies: in the reg
Dl( iv)!cL2 the spectrum is double–exponentially enhanced
grows ashuvuexp@consteb l #, with b.0 an exponent depending o
the specific dynamics. ForDl( iv)@cL2 the renormalization takes
the different formDl( iv)'hve(22z) l1rv2e(222z) l1Fl , with Fl

independent of the frequencyv.
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v}expH 2FSr

\ S f c

f D (d12z21)/(22z)G2J , ~81!

with an unknown multiplicative coefficient of order unit
incorporated intoSr . In the dissipative case there is a cha
acteristic crossover force

f I; f cS rUc

\h D 2/(d2212z)

~82!

that separates two distinct regimes: For intermediate for
f I! f ! f c we have

v}expF2
Sh

\ S f c

f D (d12z)/(22z) 1

ln~ f I / f !G , ~83!

with an unknown constant coefficient incorporated intoSh .
But at asymptotically low forcesf ! f I the inertial term in the
action dominates and the behavior of the velocity cros
over to inertial result~81!. For the dissipative case, the resu
is similar to that obtained using scaling arguments in S
III B in the intermediateregime, but the logarithmic facto
causes the velocity to decrease slightly faster with decrea
force than anticipated. By contrast, in the inertial case
creep velocity is much smaller that anticipated: it can
written in the formv}exp@2(Smass( f )/\)2#, with Smass( f )
the characteristic action obtained in Sec. III C using scal
arguments. At asymptotically low forces, this result is a
valid for the more general model including a dissipative d
namics at low frequencies and an inertial dynamics at h
frequencies.

F. Results: classical creep and crossover

At high temperatures the coefficientG l5Cl
.(L,t50) is

independent of the dynamics and the evolution of the sp
trum Dl( iv) does not feed back intoG l . Equation~79!, writ-
ten in terms of the bare temperature, then takes the form

] lDl~ iv→0!;
U~L !

T
Dl~ iv→0!. ~84!

Using relations ~47!, U(L);Uc(L/Lc)
(d12z22), and L

;Lc( f / f c)
1/(22z), we obtain the classical creep lawv(F)

;exp@2U(f)/T# with U( f );Uc( f c / f )(d12z22)/(22z); see
Ref. 12. The exponentu5d12z22 that determines the
scaling of U(L) is simply the scaling dimensionality o
the temperature@see Eq.~33!#, in terms of which Eq.~84!
can be written with a prefactor U(L)/T;Uc /Tl
;e(d12z22)(l 2 l c)Uc /T.

One can find the crossover temperature from classica
quantum creep by comparing the exponents in Eqs.~83! and
~81! with U( f )/T. For the inertial case,

Tcr} f (d12z)/(22z), ~85!

which is different from the naive result obtained via simp
scaling arguments; see Sec. III. For the dissipative case
crossover temperature depends on the regime. For inte
diate forces, it is the same as that given by the naive sca

d
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GOROKHOV, FISHER, AND BLATTER PHYSICAL REVIEW B66, 214203 ~2002!
arguments~up to a logarithmic factor!, but for f ! f I the
crossover temperature is again given by result~85! for the
inertial case.

G. Interpretation

As mentioned earlier, a dependence on\ of the form of
Eq. ~81! might be expected if the dynamics were domina
by atypical barriers. A simple example is given by a classi
particle diffusing in a short-range correlated random pot
tial. At positive temperatures there is a linear response to
external force with the inverse mobility of the particle pr
portional to*dUP(U)exp(U/T), whereP(U)dU is the prob-
ability density of barriersU. For the case of a Gaussian di
tribution of the random potential, we see thatv} f exp
(2const /T2), resulting in a non-Arrhenius temperature d
pendence.

Analogous effects can occur in quantum transport: C
sider a quantum particle of massm and with a dissipative
coefficienth l , tunneling through a succession of barriers
random heightsU but, for simplicity, uniform widtha. The
inverse mobility of such a particle can be written as

1

m
}E dUP~U !expS ha2

\
1

AmUa

\ D . ~86!

The exponent contains a sum of two actions, the first du
dissipation and the second describing the inertial respo
One can see that even if the dissipation is strong, in the l
\→0 the inertial effects can dominate: the integral in E
~86! is calculated using the method of steepest descent
since the massive contribution to the action is proportiona
AU, it will contribute a term larger than the dissipative on
In particular, with a Gaussian distribution of barriers of t
form P(U);exp@2(U/U0)

2# this leads to m}exp@
2(AmU0a/\)4/3# and we obtain a similar non-trivial depen
dence on\ as found above in Eq.~81! for the creeping
elastic manifolds of interest here.

In this simple single-particle example it is easy to und
stand what is going on: Because the particle must tun
through a succession of barriers, the dynamics is domin
by the largest ones as long as there is a sufficiently long
to the barrier distribution; the smaller the quantum fluctu
tions, the larger the barriers that dominate. For the proba
ity distribution function P(U) chosen above, U
.(AmaU0

2/\)2/3→` for \→0. The form of the tail of the
distribution of barriers thus dominates the mobility and giv
rise to the unusual dependence on\. The fact that for small
\ the dominant barriers are high implies that the charac
istic time scale for tunneling through the barrier is short~in
the above case the timet is given throught.aAm/U); this
is what causes the long-time behavior as manifested in
mobility to be dominated by the inertia rather than by t
dissipative response. In the case of interest here, the el
manifold, the barriers that must be surmounted depend
the driving force—the lower the force, the higher these b
riers are. If one assumes that the barriers relevant for tun
ing have an unbounded distribution similar to the toy mo
21420
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studied above, it is not surprising that it is the inertial d
namics that dominates the limit of low forces.

However, the reason for the anomalous dependence o\
is more subtle for the elastic manifold with its many degre
of freedom. As can be seen from the analysis in the previ
section, the anomalous dependence can be traced back t
dependence of the quantum fluctuations on one length sc
as parametrized byG l , on the random pinning at smalle
scales. Very crudely, this might be interpreted as leading
an increase of theeffective mass densitywith length scale
caused by the motion of smaller scale sections of the m
fold implicit in the tunneling motion of a segment of sizeL f .
Determining whether or not this is a reasonable interpre
tion must wait for a better understanding of the physics
derlying the RG results and whether these are valid.

V. VALIDITY OF RG RESULTS

In both the previous and present work on classical a
quantum creep of elastic manifolds the validity of the a
proximations that underly the RG formulation have not be
carefully examined. In unpublished work41 one of the prob-
lematic aspects, the possible effects of tails in the distribut
of local effective friction coefficients, has been investigate
Here, we briefly summarize the potential problems that t
suggests as well as more basic ones that have not, to
knowledge, been raised previously.

A. Random friction

One difficulty, analyzed in Ref. 41, is already apparent
the toy model of a single particle in a random potential: t
broad distribution of times to go through or over barriers.
particular, as discussed in Sec. IV E above, for a single p
ticle the mobility is dominated not by the typical or even t
average rate for overcoming the local barriers, but by
average timeto overcome them; and the average time
dominated by anomalously large barriers. As this probl
already arises in the classical case both in the toy model
for elastic manifolds, we restrict our discussion to the si
pler classical limit.

The main idea of the RG is to derive equations whi
relate the renormalized parameters of the field theory to
bare ones. Very often the parametric space of the bare
renormalized theories are identical. In other words, if t
bare theory is described by the parameter seta0

(1) ,a0
(2) . . .

the renormalized theory will be described by the same se
variablesa l

(1) ,a l
(2) . . . . An example of this kind of RG is

the f4 theory to one-loop order. It could be, however, th
under the RG flow additional variablesb l

(1) ,b l
(2) . . . are

generated even if their bare values are zero. These varia
might be strongly relevant and feed back to the original
of parameters. An example of such a behavior, which
could handle successfully, has already been conside
above: in order to obtain sensible results we had to introd
a functionDl( iv) describing the dynamics onall frequen-
cies. In this paragraph we will show that another set of d
gerous variables is generated under the RG flow—these v
ables describe the probability distribution function of waitin
3-14
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QUANTUM COLLECTIVE CREEP: A QUASICLASSICAL . . . PHYSICAL REVIEW B 66, 214203 ~2002!
times. In the RG scheme considered above the most cru
quantity is the renormalized viscosityh l which is propor-
tional to the waiting time at the scalel. We will show that the
randomness due to the point-like disorder will produce
random and spatially inhomogeneous distribution of frictio
which appears to be very broad and hence cannot be prop
described by its first momenth l alone.

Let us then consider randomness in the local effec
friction coefficients from the beginning and assume that
friction h is a functionh5h@u(z),z# of both the displace-
mentu(z) and the internal coordinatez of the manifold. The
local h has the natural interpretation as a characteristic t
to overcome barriers involving the smaller length scale
formations that have already been integrated out. The s
plest case to consider is a random potential that is period
u with a locally random phase shift; such a model is app
cable to charge density waves~CDW’s!. Because of the pe
riodicity, for CDWs we can expand the functionh(u,z) into
the Fourier series and there will be a component that is
dependent ofu and only depends onz; we consider the ef-
fects of such randomness here.

We assume thath(z) is a random short-range correlate
variable with cumulantsh (n); e.g., the first three take th
form h(z)5h (1)[h, h(z)h(z8)2h(z)h(z8)5h (2)d(z
2z8), and

h~z!h~z8!h~z9!2h~z!h~z8!h~z9!2h~z9!h~z8!h~z!

2h~z9!h~z!h~z8!12h~z!3

52h (3)@d~z2z8!d~z2z9!1d~z82z9!d~z82z!

1d~z92z!d~z92z8!#. ~87!

Note that we define cumulantsh (n) up to a factorn!. After
averaging over the randomness the classical MSR action@Eq.
~7!# will have additional terms of the form

Arand5 (
n>2

A(n)5 (
n>2

~21!nh (n)E ddzdt1 . . . dtn

3u̇~z,t1!iy~z,t1! . . . u̇~z,tn!iy~z,tn!. ~88!

When deriving the RG equations with an action that includ
terms of the formArand, it is necessary to find the averag
over fast modes of terms containing products of two per
bations, in particular, terms of the form

dA5
1

2 K ArandE ddzt1dt2D l@u~z,t1!2u~z,t2!#

3 iy~z,t1!iy~z,t2!L
.

, ~89!

with ^•••&. the standard RG average over fast modes. M
ing use of Eq.~88!, average~89! can be written as a sum o
terms involving the cumulantsh l

(n) ~see Appendix C for de-
tails; here, we summarize the main ideas of the calculati!.
The term of ordern in Eq. ~89! then generates 2n terms
proportional todA1

(n) ,
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dA1
(n)5~21!nh l

(n)D l9~0!E ddzdt1 . . . dtnu̇

3~z,t1!iy~z,t1! . . . u̇~z,tn!iy~z,tn!, ~90!

which feed back to term~88!. In addition, there are 4n2

24n terms proportional todA2
(n) ;

dA2
(n)5~21!nh l

(n)E ddzdt1 . . . dtnu̇~z,t1!iy~z,t1! . . .

3u̇~z,tn!iy~z,tn!D l9@u~z,t1!2u~z,t2!#. ~91!

These renormalizations involve the behavior of the correla
D l(u) at the origin whose growth at long length scales
crucial for the renormalization group analysis, see the ab
discussion. We can keep track of the most dangerous te
by substitutingD l9(u) by D l9(0) in Eq. ~91!. The renormal-
ization of the cumulantsh l

(n) from the above process can b
written in the form

] lh l
(n)}2D l9~0!~2n22n!h l

(n) ; ~92!

furthermore, there are nonlinear terms that create higher
ments from lower moments; see Appendix C. As2D l9(0)
grows exponentially withl, i.e., as a power of the lengt
scale, the cumulantsh l

(n) grow very rapidly. Then2 coeffi-
cient and the positivity of2D l9(0)}1/Tl}eu l in Eq. ~92!
imply that the high order moments grow so fast that ratios
the formh l

(n)/h l
n , which naively are expected to be dime

sionsless~in the RG sense!, themselvesgrow exponentially
with increasing length scale. Indeed, the high order mome
increase so rapidly withn that, if these results are take
literally, the distribution ofh l(z) has such a long tail that it is
not uniquely determined by its moments—and it is certai
not well characterized by its meanh l(z)5h l . Note that a
random friction h l(z) is not dangerous near the zer
temperature depinning transition (f 2 f c! f c) as in this case
D l9(0) should be substituted for byD l9(01).0, and Eq.
~92! suggests thath l

(n) renormalizes to zero for anyn ~al-
though it will actually be stabilized at a small value of th
order of ann-dependent power ofe because of other terms!.

The analysis in Appendix C shows that even if initial
the friction is non-random, the disorder term alone will ge
erate the corrections to the second cumulant. The sec
cumulant will then generate the third cumulant to the n
loop order, and so forth. As the cumulants grow extrem
rapidly, the RG flow becomes essentially uncontrollab
However note, that there is still an approximation in t
above analysis: we have substituted the argument of the
ond derivative of the disordered correlatorD l9(u) by zero in
Eq. ~91!. In order to be accurate we have to include the ter
of the form

dA2
(n)5~21!nh l

(n)E ddzdt1 . . . dtnu̇~z,t1!iy~z,t1! . . .

3u̇~z,tn!iy~z,tn!(
iÞ j

n

Fl@u~z,t i !2u~z,t j !# ~93!
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GOROKHOV, FISHER, AND BLATTER PHYSICAL REVIEW B66, 214203 ~2002!
@cf. Eq. ~91!#, into the action, i.e., we have to renormaliz
one more functionFl(u). Under the RG transformation thi
function will produce a new set functions, and so forth—it
presently unclear how all these variables can be analyze
a regular way.

One way that one might hope to make progress is to
write the equations of motion so that instead of having
deal with a randomh on the left hand side, one works wit
a random mobilitym51/h on the right-hand side. This quan
tity, as it is bounded from above by the fastest motion,
unlikely to have troublesome long tails in its distributio
But the appearance of a random mobility multiplying all t
spatially random pinning forces introduces additional tech
cal complications into the formalism and it is presently n
clear how to handle them. Nevertheless, there are a lo
constraints on the renormalization, e.g., thestatic response
will not be modified by the randomness of either the pinn
or the mobility at any wavelength. Whether this is enough
make possible a fully controlled analysis of at least the c
sical thermal creep regime is an interesting challenge.

B. Underlying formulation

It is possible that the apparent runaway of the distribut
of the local friction coefficients is indicative of a breakdow
in the basic scaling assumption that underlies this and ea
work: If the barriers for motion scale with an exponentc that
is larger than the exponentu5d2212z controlling the
scaling of fluctuations in minimal energies and the renorm
ization of the inverse temperature, then the present sch
where the dynamics is controlled by static properties, suc
the correlatorD(u), cannot be valid. One then has to ta
into account all the dangerous variables discussed abov

It is instructive to go back to the original formulation o
the RG expansion for the depinning in the absence
fluctuations,33 henceforth NF. In the derivation of thef4

theory from the Ising model for conventional equilibriu
phase transitions, the starting point is an expansion arou
mean field theory and the actual ‘‘field’’f(x) used in the RG
formulation is closely related to the local effective field —
applied plus exchange — acting on a spin rather than to
spin itself. If the interactions are long but finite range, the
fields will be slowly varying in space and weakly fluctuatin
enabling a systematic expansion to be started.

NF focused on one segmentz and use the linear combi
nation u(z,t) of the displacements ofother segmentsthat
determine the elastic force onz as the basic field, which is
hence intrinsically a coarse-grained quantity. The underly
local displacements we will here callw(z,t). The segmentz
feels a linear restoring force proportional tou(z,t)—w(z,t),
plus the applied driving force, plus a quenched random p
ning force that is a function ofw(z), and thermal noise. The
vertices in the effective field theory are given by correlatio
and responses ofw(z,t) to the time-dependent fieldsu(z,t).
In particular, the force-force correlatorD(u) that plays an
essential role is related to the average

Y[^@w~z,t !2w~z,t8!#2& ~94!
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over the random pinning forces and, at positive temperat
thermal noise. In general,Y is a functionalof u(z,t) over all
timest. For zero-temperature depinning, the case of prim
interest, the possible fieldsu are limited to those that are
non-decreasing in time. In this case, it can be seen that
crucial parts ofY ~which are sufficient to analyze the depin
ning critical behavior! depend only onu(z,t)2u(z,t8) and
the functionalY simplifies to a function of this one variable
it is then of the form assumed forD(u). In particular, if u
does not change betweent and t8, w will not change either
unless thew at the earlier time was the cause of a jump out
a formerly stable configuration into another; this jumpi
case can be handled by putting in time delays into the d
nition of u and, beyond this, the local dynamics will be in
dependent on the history ofu prior to timest and t8.

As soon as one considers a more general dynamics—
still fluctuationless but with the applied force allowed to d
crease with time, non-monotonic stress transfer kernels
thermal noise—the simplification of the functionalY does
not occur. In general, it is then not clear how to proceed.
the case of interest for the present paper, one could
assume, as in all expansions about a mean field theory,
the fields are slowly varying in space and time and wea
fluctuating about a uniformly advancing solution which ha
slow mean velocityv. The local displacements will lag be
hind due to the pinning but will be pulled ahead by t
driving force: the balance of these effects determines
velocity–force relation. With thermal fluctuations, the di
placements will lag less than they would otherwise beca
at low velocities they have the time to surmount energy b
riers. Now consider the effects of a time-dependent chang
u(z,t) on ^w(z,t)&. If this change is very slow,w will follow
approximately adiabatically. But if the change is relative
fast—as it can be due to the fast motion of a neighbor
segment over a barrier—how the local displacementw will
respond will depend crucially on whether it has already be
near a surmountable barrier for some time, and thus is lik
to have already surmounted it, or has recently arrived ne
barrier and could thus be pushed over it by the change iu.
Thus we expect the responses and correlations ofw to de-
pend on the whole prior~and intervening! history of the
fields u.

The basic issue that must be addressed to make fur
progress is whether or not the essential information about
basic activation processes can be subsumed in simpl
functions, such as the force-force correlatorD(u2u8), that
appear in the formulation used in the present paper~note,
however, that as we are performing an epsilon expansion
central limit theorem is likely to be helpful: as we go fro
one scale to another, we can always assume that there
large number of segments~or effective intermediate scal
segments! whose dynamics contributes to the fields on larg
scales!. One possible route to proceed is to start by cons
ering the nature of the typical fields that will arise from th
thermally activated motion of large segments on the dyna
ics at smaller scales and ask whether the local response
these are typically simple enough to be captured by the t
of approximations used here.
3-16
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We leave further work on these points as a challenge
the future. It is worth noting, however, that the physical o
gin of the problems, the intrinsic history dependence of
phenomena of interest, arise in many other non-equilibri
systems with many degrees of freedom. Better understan
of them in this context is thus likely to bear fruit more ge
erally.

C. Alternative expansions

Many of the difficulties encountered in this paper wou
be lessened if the energy scale—and hence the barriers—
not grow rapidly with length scale. One way to get arou
this difficulty might be to consider an expansion abou
different limit, one in which not only the roughness expone
z is small, but also the scaling exponentu for the energy. In
d-dimensional manifolds with long range elastic interactio
that fall off as 1/r d1a with 0,a,2, the upper critical di-
mension for both fluctuationless depinning and rough ma
folds in equilibrium isdc52a ~i.e., z50 at d5dc). The
energy scaling exponent isu5d2a12z so that fora small,
u(dc)5a is also small. One might then hope to attempt
expansion ina and e5dc2d simultaneously. This would
have the advantage that, assuming the barrier scaling e
nent c is also small for smalla near dc , the exponential
dependence of the velocity on the length dependent bar
would be relatively weak and hence, perhaps, systematic
controllable. We must also leave this limit and other possi
limits about which more controllable expansions might
attempted for future research.

D. Quasiclassical Langevin equation

In addition to potential problems with the renormalizati
group formulation that are analogous to those discus
above for classical creep, in order to obtain results for qu
tum creep we have resorted to a quantum Langevin equa
to approximate the quantum dynamics. We would like to
able to investigate this formalism more deeply and und
stand its limitations and regimes of validity. It is instructiv
to first consider simpler problems.

The QLE can be used to analyze tunneling of a sin
particle if the barrier separating the metastable state from
lower-energy stable one has a single characteristic height
width. In this case the tunneling action obtained from t
QLE differs from the true one only by a factor of order unit
In principle, the QLE can lead to an overestimation of t
tunneling rate. For example, consider an overdamped par
~with viscosityh) in a one-dimensional~1D! potential well
U(x) of depthU0 with a minimum atx50 andU(x) rapidly
decaying forx→6`. In the presence of an external forcef
~see Fig. 5!, the well becomes metastable and the parti
will leave. The quantum actionS can be estimated as

S.h~x22x1!2'h~U0 / f !2. ~95!

This action is dominated by a region of width;1/f where
the potentialU(x) is negligible butf x is less than the depth
of the well: this yieldsS}1/f 2 as f→0. If we use the QLE
approximation, the tunneling action would be much sma
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than the true semiclassical value in the limitf→0: since the
QLE is a local approximation, the only relevant part of th
potential would be that forx,x1, with x1 the point where
U(x)2 f x is maximal. In the QLE, once the random forc
that obeys the quantum fluctuation–dissipation theor
brings the particle to the pointx1, the particle can leave the
well and the regionx.x1 that dominated the semiclassic
action does not matter. Since in the limitf→0, x12x0!x2
2x1, the tunneling action obtained within such an approa
is much smaller than the correct one,SQLE.h(x12x0)2

!S; the QLE can thus drasticallyoverestimatetunneling
rates.

We believe, however, that for the quantum creep probl
considered in this paper the QLE should be a reasona
accurate approximation for the action whose exponential
termines velocity~81!: in the naive scaling arguments, th
effective potential wells that segments must tunnel out
have only one characteristic width and height. Neverthele
the results we obtain from the QLE and RG analysis yiel
much larger effective action for the tunneling than the na
scaling arguments. The source of this is unlikely to be due
the QLE approximation as, by analogy with the single p
ticle case above, we would expect that, if anything, the Q
would underestimate the tunneling action. This argumen
reinforced by noting that the scaling analysis in Sec. III c
be applied directly to a system driven by a stochastic fo
obeying the quantum FDT for which the QLE is exact: the
would lead to the same results as those obtained from
scaling arguments for the full quantum dynamical proble
also see Ref. 26.

VI. CONCLUSIONS

In this paper we have considered the motion of an ela
manifold driven through a disordered medium at low te
peratures where quantum fluctuations are important. We h
focused on the limit of small driving forces (f ! f c) for
which the average velocity of the manifold is small a
dominated by quantum tunneling through barriers betw
locally stable configurations. Using an at-least-partially co
trolled RG expansion, we find that the resulting creep vel
ity is exponentially small in a power of 1/f . While for strong
dissipation we find an intermediate range of forces where
creep law agrees with the result of simple scaling estima
@up to logarithmic corrections; cf. Eqs.~17! and ~83!#, we
find that the results of the RG analysis are more complex
particular, at asymptotically small forces the creep veloc

FIG. 5. Tunneling of an overdamped particle out of a 1D pote
tial well in the presence of an external forcef. The quantum me-
chanical answer for the tunneling action is of the formS}1/f 2, f
→0. The action obtained via the QLE is determined only by t
region x0,x,x1. Sincex12x0!x22x1, the QLE overestimates
tunneling effects~i.e. gives smaller action!.
3-17
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has a nontrivial form@Eq. ~81!#, combining an underlying
massive~or other high-frequency! dynamics with an unex-
pected non-Arrhenius-like dependence on\. The structure of
the renormalization group flow is rather subtle and very d
ferent from that for classical creep. In particular, because
the importance of both rapid motion during a tunneling ev
and the slow overall motion, it is necessary to consider
dynamics of the manifold atall frequenciesv. This is in
contrast to the classical case for which Chauveet al.12 con-
sidered only the low-frequency limit of the dynamics. In t
quantum case such a low-frequency approximation wo
lead to a spurious ’’localization transition’’ with the averag
velocity of the manifold dropping to zero at a small but fin
value of the driving force. Although future improvemen
based on the analysis of the complete quantum mecha
action @Eq. ~9!# rather than the quantum Langevin appro
mation might change some of the results presented here
believe that the main feature, the importance of the wh
spectrum of frequencies for the tunneling dynamics, will p
sist.

In spite of the subtleties that appeared in the analysis
have carried out there are further difficulties associated w
both the broad distribution of barriers and the underly
field theoretic formulation of expansions about mean-fi
theory. Although we have not resolved all the difficultie
and thus are not sure whether the present results are
systematic, we have noted the physical and formal source
the problems in ways that we hope will help direct futu
progress.

Note added. Recently, we learned of related work by L
Balents and P. Le Doussal~Ref. 42! where some difficulties
with RG mentioned in Sec. V have been discussed.
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APPENDIX A: DERIVATION OF THE REAL-TIME
QUANTUM ACTION

In this appendix we discuss the derivation of action~9!:
Consider theclassical equation of motion~4! with the
d-correlated noisef th(z,t); we search for the quantum
Hamiltonian that reproduces the same equation of motio
the classical limit. One class of possible Hamiltonians w
introduced by Caldeira and Leggett,23 where the system un
der consideration~an elastic manifold in our case! was as-
sumed to be coupled to a bath consisting of harmonic os
lators. The Hamiltonian of the bath can be written in t
form
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Ĥbath5E ddz(
j

F P̂j
2~z!

2M j~z!
1

M j~z!

2
V j

2~z!

3S Xj~z!2
cj~z!

M j~z!V j
2~z!

u~z!D 2G , ~A1!

where each segment of the manifoldz is coupled to the sys-
tem of harmonic oscillators. This Hamiltonian contributes
the quantum-mechanical action with

Sbath@X#1Sint@u,X#

5E dtE ddz(
j

FM j~z!

2
Ẋj

2~z!2
M j~z!

2
V j

2~z!

3S Xj~z!2
cj~z!

M j~z!V j
2~z!

u~z!D 2G , ~A2!

where X is the vector with componentsXj describing the
oscillators of the bath. The action corresponding to the e
tic manifold S0@u# has the form

S0@u#52E dtE ddzF c

2 S ]u

]zD
2

2
r

2 S ]u

]t D
2

1U~u,z!2 f uG .
~A3!

After substituting the actionS5Sbath1Sint1S0 into Eq. ~8!
we can eliminate the bath degrees of freedom appearing
quadratically in the action. We define the spectral density

J~v![
p

2 (
j

cj
2~z!

M j~z!V j~z!
d~v2V j !, v.0; ~A4!

the ohmic kernelJ(v)5hv produces action~9!. In the clas-
sical limit ~high temperatures! one canrigorouslyexpand the
potential energy terms in Eq.~9! in ỹ and obtain action~7!
which is equivalent to Eq.~4!. Note that we have introduce
new coordinatesũ and ỹ in action ~9! corresponding to the
‘‘center of mass’’ and relative motion of the trajectories
Eq. ~8!.

APPENDIX B: FIXED-POINT FUNCTION
OF THE CORRELATOR

In this appendix we derive relation~56!. We investigate
the static RG fixed-point in the absence of a driving forc
the temperature and quantum fluctuations renormalize
zero, Cl

.(L,t50)→0, and hence we need to consider t
functionD l(u) alone. Forl , l c we can neglect the nonlinea
terms on the right-hand side of~28!. Solving the remaining
linear equation we obtain

D l c
;D~0!e(e22z) l c ~B1!

for the correlator height andj* 'j exp(2zlc) for its width
@the latter result follows from integration of the second te
in Eq. ~28!#. On the other hand, forl @ l c the correlator is
close to its fixed-point value. Using Eq.~28! for ] lD l(u)
50 and substitutingu50 we obtain
3-18
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~e22z!D l c
~0!;~e22z!D* ~0!;ID* 82~10! ~B2!

and replacingI 5AdLd/c2L4 andz;e we obtain~56!. Com-
bining these results withuD* 8(01)u;D* (0)/j* we find the
estimates D* (0);(cL2)2j2L2de22z l c and uD* 8(01)u
;(cL2)2jL2de2z l c.

APPENDIX C: DANGEROUS RELEVANT VARIABLES

As mentioned in Sec. V A, the RG flow generates dang
ousrelevantvariables corresponding to the cumulants of t
friction distribution.41 From a physical point of view, the
friction coefficient h in equation of motion~4! is always
spatially inhomogeneous due to the presence of disorde
that the bare values of the cumulants describing the fric
distribution are always nonzero. It turns out that under
RG transformation these cumulants grow extremely rap
and the description of the thermally activated or quant
motion in terms of the renormalized viscosityh l or the func-
tion Dl(v) ~see Sec. IV D! alone is not appropriate. Sinc
the renormalized viscosity on a certain length scale co
sponds to the waiting time on this scale, we conclude that
broad distribution of the friction~it is broad as the cumulant
grow very rapidly! implies a broad distribution of waiting
times. Hence, the proper description of the problem requ
renormalization of the waiting time probability distributio
function rather than its first moment alone. The main goa
this appendix is to show how the dangerous variables
renormalized under the RG flow. We will also show that ev
if initially all of them are zero, they will be generated by th
random pinning. We will restrict ourselves to the case of h
temperatures; the same variables will be generated in
quantum case.

Let us assume that the frictionh in equation of motion~4!
is a spatially inhomogeneous function of the coordinate
general,h5h(u,z). For simplicity, we neglect the depen
dence onu ~this does not change the result qualitatively!. A
physical realization where this approximation is valid is t
pinned charge-density wave: the frictionh(u,z) is a periodic
function ofu and, hence, can be expanded in a Fourier ser
h(z) then is theu-independent~the zeroth! harmonic. Below
we will assume that theh disorder and theD disorder are
uncorrelated and short ranged; in reality, these two type
disorder should be correlated. If we take these correlati
into account, the dangerous variables will still exist and
RG flow will be similar. In this section we assume that t
response function has the form 1/(ck22 ih lv), i.e., we do
not consider the full dynamic response associated w
Dl(v); this approach is valid in the classical case; see S
IV C and IV F.

Averaging over the disorder inh within the MSR func-
tional @Eq. ~7!# we see that the friction term will be trans
formed into

2E ddzdthu̇~z,t !iy~z,t !

→2E ddzdthu̇~z,t !iy~z,t !1Arand

[2E ddzdthu̇~z,t !iy~z,t !1 (
k>2

A(k)
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52E ddzdthu̇~z,t !iy~z,t !

1 (
k>2

~21!kh (k)E ddz)
i 51

k

dti u̇~z,t i !iy~z,t i !.

~C1!

When deriving the RG equations we consider the termArand
and the usual disorder-induced term

Adis5
1

2E ddzdt1dt2D@u~z,t1!2u~z,t2!# ~C2!

as perturbations. To one-loop order we have to calculate
second cumulant of the perturbation. There will be a cro
term of the formd^ArandAdis&. , whered^H&. denotes the
change inH after averaging over fast modes. Let us sho
that the average of this form gives rise to the singular ren
malization of the coefficientsh (n). Figure 6 summarizes the
various symbols appearing in the diagrammatic expans
Lines without arrows denote displacement fieldsu, lines with
arrows at the end correspond to the auxiliary fieldsiy , and
lines with arrows in the middle denote response functio
Crosses stand for time derivatives, and the wavy horizo
lines denote disorder correlatorsD l@u(z,t1)2u(z,t2)#.
Dashed horizontal lines stand for (21)kh (k) and dots . . .
represent further omitted lines. For each response func
with an arrow coming into a wavy vertex@see e.g., the dia-
grams in Figs. 8~a! and 8~b!#, the disorder correlator
D@u(z,t1)2u(z,t2)# is differentiated with respect to its ar
gument. These derivatives appear as a consequence of
aging of the correlator and theiy fields; see Eq.~C4! below.
Dashed and wavy lines in diagrams connect times, the up
line connectst1 , t2 , . . . , and thelower line connects the
times t1 and t2. Note that there is no time ordering corre
sponding to vertical or horizontal directions. The fields at t
upper vertices in diagrams are taken at the spacial coordi
z and the lower vertex is atz8. The argument of the respons

FIG. 6. Elements used in diagrams:~a! the displacement fieldu,
~b! the iy field, and ~c! the response functionR.. ~d! Crosses
denote derivatives, with respect to time in theu field if the cross is
on a solid line, or with respect to the time difference in the respo
function if the cross is on a response function line.~e! Diagram-
matic representation of the correlatorD. ~f! Diagrammatic repre-

sentation of random friction terms (21)nh (n)) u̇(z,tk) iy(z,tk), see
~C1!; dots . . . stand for further omitted lines.
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function involves the differences between the times and s
tial coordinates of the end and starting points. We quote th
useful formulas

d^u~z,t !iy~z8,t8!&.5Rl
.~z2z8,t2t8!dl, ~C3!

d^D@u~z,t1!2u~z,t2!# iy~z8,t8!&.5D8@u~z,t1!2u~z,t2!#

3@Rl
.~z2z8,t12t8!2Rl

.~z2z8,t22t8!#dl ~C4!

E ddz8Rl
.~z8,t1!Rl

.~z8,t2!5
AdLd

~2p!d
dlRl~L,t1!Rl~L,t2!,

~C5!

whereRl(L,t) denotes the~partly Fourier transformed! re-
sponse function@Eq. ~25!# and Rl

.(L,t) is defined in Eq.
~36!.

The contributiondD1 of the diagram in Fig. 7~a! has the

FIG. 7. Dangerous diagrams contributing to the renormaliza
of the cumulants of the friction-coefficient distribution. These ter
arise from averaging over fast modes in^ArandAdis&. : ~a! with mul-
tiplicative factorsn(n21) ~due to the permutation symmetry!, ~b!
with multiplicative factor 2n, and ~c! with multiplicative factor
2n(n21), ~d! with multiplicative factor n(n21)/2. For conve-
nience we draw some of theiy fields and response functions at
45° angle or deform the lines.
21420
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dD15
1

2
h l

(n)E ddzddz8E dt1dt2F )
k51

n

dtkGd^u̇~z,t1!

3 iy~z8,t1!&.d^u̇~z,t2!iy~z8,t2!&.

3 iy~z,t1!iy~z,t2!D l@u~z8,t1!2u~z8,t2!#

3)
k53

n

u̇~z,tk!iy~z,tk!

5
1

2
h l

(n) AdLd

~2p!d
dlE ddzF )

k51

n

dtkG Ṙl~L,t12t1!Ṙl

3~L,t22t2!iy~z,t1!iy~z,t2!E dt1dt2D l@u~z,t1!

2u~z,t2!#)
k53

n

u̇~z,tk!iy~z,tk!. ~C6!

In the last equation, we have used Eq.~C3! in order to ex-
press averages over fast modes through response func
and have integrated overz8 using~C5!. We rewrite the prod-
uct of the two response functions asṘl(L,t12t1)Ṙl(L,t2
2t2)5]t1

Rl(L,t12t1)]t2
Rl(L,t22t2) and integrate by

parts over variablest1 and t2, thus generating the secon
derivative of the correlatorD. The response functions con
nect timest1 andt1 andt2 andt2. Consequently, we can se
t1't1 and t2't2 in the time arguments of theiy-fields and
integrate over the variablest1 and t2 in the response func
tions using the formula*dtR(L,t)5R(L,v50)51/cL2.
In the end we obtain an expression involving the integr
*ddzdt1dt2dt3 . . . dtn and performing substitutiont1→t1
andt2→t2 we arrive at the final contribution of Fig. 7~a!:

dD152
1

2
h l

(n) AdLd

~2p!d

dl

~cL2!2E ddz

3F )
k51

n

dtku̇~z,tk!iy~z,tk!GD l9@u~z,t1!2u~z,t2!#.

~C7!

n
s

FIG. 8. Diagrams describing the generation of the second cu
lant of the friction distribution; their low-frequency expansions fe
back to the second cumulant.
3-20



ar

w

f

s.

m

is

to
th
tor

e
-

-
ise

om

over
con-

QUANTUM COLLECTIVE CREEP: A QUASICLASSICAL . . . PHYSICAL REVIEW B 66, 214203 ~2002!
Note that in the diagrammatic language integrating by p
corresponds to drawingu-field lines out of the wavy vertex
and moving crosses~i.e., time derivatives! from the response
functions down to the displacement fields. The lo
frequency expansion of the diagram in Fig. 7~a! then takes
the form of the diagram in Fig. 6~f! @this low-frequency
analysis involves the expansion of the argumentu(z,t1)
2u(z,t2) of the correlatorD in a Taylor series in powers o
(t12t2); the first term~equal to zero! of this expansion
produces the desired contribution#. There are n(n21)
equivalent diagrams of the type in Fig. 7~a! allowed by the
permutation symmetry.

The expression corresponding to the diagram in Fig. 7~b!
is given by

dD25
1

2
h l

(n)E ddzddz8E dt1dt2F )
k51

n

dtkG
3d^u̇~z,t1!iy~z8,t1!&.d^D l@u~z8,t1!2u~z8,t2!#

3 iy~z,t1!&.iy~z8,t2!)
k52

n

u̇~z,tk!iy~z,tk!

52
1

2
h l

(n)D l9~0!
AdLd

~2p!d

dl

~cL2!2E ddz

3)
k51

n

dtku̇~z,tk!iy~z,tk!; ~C8!

there are 2n topologically equivalent diagrams of this clas
Note that in contrast to the termdD1 the argument of the
functionD l(u) in the above expression is zero. The diagra
shown in Fig. 7~c! gives the contribution

dD35
1

2
h l

(n)E ddzddz8E dt1dt2F )
k51

n

dtkGd^u̇~z,t1!

3 iy~z8,t1!&.d^D@u~z8,t1!2u~z8,t2!#

3 iy~z,t2!&.iy~z,t1!u̇~z,t2!iy~z8,t2!

3)
k53

n

u̇~z,tk!iy~z,tk!

52
1

2
h l

(n) AdLd

~2p!d

dl

~cL2!2E ddz

3F )
k51

n

dtku̇~z,tk!iy~z,tk!GD l9@u~z,t1!2u~z,t2!#;

~C9!

there are 2n(n21) topologically equivalent diagrams of th
class. Finally, the diagram in Fig. 7~d! is given by the ex-
pression
21420
ts

-

dD45
1

2
h l

(n)E ddzddz8E dt1dt2F )
k51

n

dtkG u̇~z,t1!u̇~z,t2!

3 iy~z8,t1!iy~z8,t2!F )
k53

n

u̇~z,tk!iy~z,tk!G
3d^ iy~z,t1!d^D@u~z8,t1!2u~z8,t2!# iy~z,t2!&.&.

5
1

2
h l

(n) AdLd

~2p!d

dl

~cL2!2E ddzF )
k51

n

dtkGdt1dt2u̇~z,t1!

3u̇~z,t2!iy~z,t1!iy~z,t2!F )
k53

n

u̇~z,tk!iy~z,tk!G
3$R~L,t12t1!R~L,t12t2!1R~L,t22t1!

3R~L,t22t2!2R~L,t12t1!

3R~L,t22t2!2R~L,t12t2!

3R~L,t22t1!%D9@u~z,t1!2u~z,t2!#52dD3 .

~C10!

The first two terms in the curly brackets do not feed back
the random friction cumulants, while the third and four
terms give the desired contribution. The multiplication fac
of the diagram in Fig. 7~d! is equal ton(n21)/2.

In order to find the contribution toh l
(n) we need to set the

argumentu(z,t1)2u(z,t2) in the correlatorD(u) to zero in
~C7!, ~C9!, and ~C10! ~as only this term feeds back to th
random friction cumulants! and sum over the four contribu
tions ~C7!, ~C8!, ~C9!, and ~C10!, each multiplied by its
appropriate weight; the result takes the form

dh l
(n)52h l

(n)~2n22n!
AdLd

~2p!d

D l9~0!

~cL2!2
dl. ~C11!

Next we show that the termAdis itself generates the sec
ond cumulanth (2). The dangerous relevant diagrams ar
from the average^AdisAdis&. ; see Fig. 8. Their low-
frequency expansion gives the contribution to the rand
friction. The contribution of Fig. 8~a! takes the form

dD̃15
1

8

AdLd

~2p!4
dlE ddzdt1dt2D l8@u~z,t1!2u~z,t2!#

3 iy~z,t2!iy~z,t2!E dt1dt2D l8@u~z,t1!2u~z,t2!#

3Rl~L,t22t1!Rl~L,t22t1!, ~C12!

where the averaging over fast modes and the integration
z8 has already been carried out. The response functions
nect the timest2 , t1 andt2 , t1 and we can expand

u~z,t1!2u~z,t2!5u@z,t21~ t12t2!#2u~z,t2!

'u~z,t2!2u~z,t2!1u̇~z,t2!~ t12t2!;

~C13!
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similarly, u(z,t1)2u(z,t2)'u(z,t2)2u(z,t2)1u̇(z,t2)(t1
2t2). Substituting these expansions into~C12! and expand-
ing the correlatorsD8(u) we arrive at the expression@note
that *dttR(L,t)5h l /(cL2)2]

dD̃15
1

8

AdLd

~2p!d

h l
2

~cL2!4
dlEddzdt1dt2D l9

2@u~z,t1!

2u~z,t2!#u̇~z,t1!iy~z,t1!u̇~z,t2!iy~z,t2!; ~C14!

there are four topologically equivalent diagrams of this cla
Diagram~b! in Fig. 8 gives the contribution

dD̃25
1

8

AdLd

~2p!d
dlE ddzdt1dt2D l9@u~z,t1!2u~z,t1!#

3 iy~z,t1!iy~z,t2!E dt1dt2D l@u~z,t1!2u~z,t2!#

3Rl~L,t12t1!Rl~L,t22t2!, ~C15!

where the averaging over fast modes and the integration
z8 again has been performed already. The response func
connect the pointst1 and t1 and t2 and t2. Expanding the
displacement fields int12t1 and t22t2, substituting them
into Eq. ~C15!, and expanding the correlatorD(u) we see
thatdD̃25dD̃1. There are four topologically equivalent dia
grams of class~b!. Summing up the contributionsdD̃1 and
dD̃2 and multiplying the sum by 4 we obtain the contributio
dh̃ l

(2) of the disorder term to the second cumulant:

dh̃ l
(2)5

AdLd

~2p!d

h l
2

~cL2!4
D l9

2~0!dl. ~C16!

Finally, we can write the one-loop RG equation for t
cumulants of the random friction distribution; accounting f
P.

hy

ys

.

-
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the terms~C7!, ~C8!, ~C9!, ~C10!, and~C16! we find the flow
equations

] lh l
(2)5~42d22z!h l

(2)1I
h l

2

~cL2!4
D l9

2~0!

2
6I

~cL2!2
D l9~0!h l

(2) , ~C17!

] lh l
(n)5~d12n2dn2zn!h l

(n)2~2n22n!

3
I

~cL2!4
D l9~0!h l

(n) , nÞ2. ~C18!

The system of RG equations~C17! and ~C18! has been de-
rived to lowest order in 42e. To next order, the second cu
mulant will generate the third cumulant. To third order, t
third cumulant will generate the fourth cumulant, etc., i.
all cumulants will be generated in the RG flow even if all
them ~except for the first one! are equal to zero initially.
From a physical point of view, the friction will always b
random as the point-like impurities suppress the order
rameter randomly and, hence, the dynamic characteristic
the medium~e.g., a superconductor! is random as well. Since
2D l9(0)}1/Tl}eu l and the correction due to disorder grow
asn2 for largen, the random friction probability distribution
becomes very broad and one needs to take into accountall its
moments and not just the frictionh l only. In order to obtain
Eqs. ~C17! and ~C18! we have made the approximatio
u(z,t1)2u(z,t2)50 in the final expressions fordD1 , dD3 ,
dD̃1, anddD̃2; in general, however, one needs to renorm
ize the full functional@Eq. ~93!#. During the RG procedure
other terms will be generated and it is unclear at this st
how to take all these terms into account in a controlla
way.
bs/
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