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Limited conductivity in an octagonal quasicrystal
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Conductivity of ans-band model on the octagonal tiling is studied. Using perturbation theory it is shown that
there is only one channel available for electronic transport, when the kinetic term in the Hamiltonian is small.
This feature is independent of the size of the approximant and reveals a microscopic mechanism that is capable
of severely limiting conduction processes in a quasicrystal. Numerical evidence indicates that the same result
is valid even in case of realistic kinetic energies at some values of the Fermi energy.
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I. INTRODUCTION

The discovery1 of quasicrystals~QC’s! in 1984 opened
a new research area in condensed-matter physics.
interplay between quasiperiodic structure and phys
properties is a central theme in this field. This paper focu
on the question why QC’s, with structures intermediate
tween those of lattice-periodic crystals and amorph
materials, often have a conductivity that is an order of m
nitude lower than that of nearby amorphous phases
typical example is icosahedral (i )-AlCuFe. In a sample
of high structural quality the conductivity at 4 Ks4 K can be
as low as 90V21 cm21.2 The conductivity is higher a
higher temperatures and in samples of lower structural q
ity, i.e., with more disorder.2 To compare: An amorphou
phase of AlCuFe with atomic composition similar
the i phase hass4 K5712 V21 cm21,3 liquid Fe has
s1809 K57215V21 cm21,4 in liquid Al, s933 K54.1
3105 V21 cm21,4 and face-centered cubic Al hass77 K
533106 V21 cm21.5 So, in contrast to the structure, th
conductivity of a QC is not intermediate between that
lattice-periodic crystals and amorphous materials. The or
of the anomalously low value of the conductivity of QC
still lacks a rigid microscopic explanation.

Considering the many theoretical papers that have b
devoted to this problem, there is one obvious red line t
illustrates the fact that the anomalously low conductivity
QC’s is a surprise, and, in addition, makes clear why t
problem has defied microscopic understanding so far: E
tron diffusion in a generic quasiperiodic environment is s
perdiffusive. This has been shown for many quasiperio
monatomics-band tiling models, in particular, for the oc
tagonal tiling~OT!,6,7 the two-dimensional~2D! Penrose til-
ing ~PT!,8,9 the 2D generalized Rauzy tiling~GRT!,10,11 the
3D PT,12 and the 3D GRT,10 and, recently, also for a hypo
thetical decagonal (d)-Al phase.13 Superdiffusive transpor
implicates infinite zero-temperature conductivity.14 In con-
trast, in liquid metals elastic electron scattering due to dis
der leads to diffusive transport, which corresponds to a fin
value of the conductivity.15,16So, calculations have led to th
intuitive result that, in general, electron diffusion in a qua
periodic substrate is intermediate between ballistic diffus
in a lattice-periodic crystal and diffusive transport in a d
ordered medium, which reflects the intermediateness
0163-1829/2002/66~21!/214202~5!/$20.00 66 2142
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structure, but is in clear contrast with experimental findin
In other words, the quasiperiodicity of a QC is not sufficie
to explain its low conductivity.

Nevertheless,ab initio calculations have given evidenc
that elastic electron scatteringis responsible for low QC con-
ductivity. When Fujiwaraet al.17 studied a series of approxi
mants tod-AlCuCo, they found slowly decreasing diffusio
constants for some wave functions as a function of sys
size. Solbriget al.18 found that coherence on length scal
larger than 12 Å, the size of a unit cell of a 1/1 approxima
is relevant for electronic transport ini-AlMn. In contrast,
Krajčı́ and Hafner19 found an increased conductivity fo
i-AlPdRe when they went from a 1/1 to a 2/1 approxima
They noted thatab initio calculations are extremely sensitiv
to, e.g., the modeled chemical composition. A detailed m
croscopic understanding of low QC conductivity was n
provided in any of the above-mentioned papers. Some of
difficulties met inab initio calculations are circumvented b
using tiling models, which may thus be the easier way
providing a first step in the analysis of low QC conductivit

In this paper I study a nontrivial 2D quasiperiodic tilin
model. By means of perturbation theory I derive an effect
Hamiltonian for the low kinetic energy limit. I show that i
this limit the tiling splits up in clusters and chains. Only op
chains contribute to the conductance. This feature provi
an upper bound for the latter, which is shown to stay cons
with increasing size of the approximants. I present numer
evidence, to the effect that this result is not restricted to
low kinetic energy limit. Even when the kinetic and potent
terms in the Hamiltonian are of comparable magnitude,
conductance is dominated by open chains for some value
the Fermi energy. Here a clear connection is made betw
the real-space structure of a QC and its conductivity.

II. MODEL

The model is based on the OT. In order to obtain t
properties of the perfect quasiperiodic tiling a series
approximants20 with increasing unit-cell size is studied. B
analyzing how the conductance scales in this series of
proximants, conclusions about the conductivity of the infin
tiling can be drawn. In the electronic model there is one ba
state on each vertex of the tiling. These states can be tho
of as atomics states. The tight-binding Hamiltonian is
©2002 The American Physical Society02-1
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H5(̂
i j &

u i &t^ j u1(
i

u i &ni^ i u, ~1!

with the first sum over all nearest neighbors, i.e., all pairs
vertices that are connected by an edge of the tiling, andni
the coordination number of sitei. t is a parameter that dete
mines the relative weight of the first~kinetic! term of the
Hamiltonian relative to the second~potential! term. Without
the second term Eq.~1! would describe a monatomics-band
model. Distinguishing the on-site energies of the sites of
OT is a simple way of incorporating the effect of differe
kinds of atoms into the tiling model. As mentioned in th
Introduction, without the second term transport in the OT
superdiffusive.6,7

The same model has been studied before.6,7,21–24When
the hopping parametert is small, the electronic density o
states~DOS! consists of six narrow bands according to t
possible numbers of nearest neighbors of the individ
sites.6,22 This is illustrated in Fig. 1~a!. In this paper I study
the band withE'3. In Fig. 1~b! the substructure of this
band is shown. There are dispersionless~0D! features and
typical 1D Van Hove singularities. The bands betweenE
2352t2 andE2350 split up in subbands6 when going to
a higher approximant@Fig. 1~c!# in a similar way as, for
example, the bands of approximants to the Fibonacci cha25

It has been noted that the substructure of each main ban

FIG. 1. ~a! DOS of the OT with low kinetic energy,t50.11. It
consists of six narrow bands.~b! The substructure of the band a
E'3 has 0D dispersionless features and typical 1D Van Hove
gularities. ~a! and ~b! were obtained for an approximant with 4
vertices per unit cell,~c! with 239 vertices. In the larger approx
mant additional gaps open up.
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Fig. 1~a! can in principle be described by perturbatio
theory.6 Indeed, I found that the perturbational analysis
Sec. III A of this paper explains all the essential features~1D
and 0D! in the DOSs of Figs. 1~b! and 1~c!. The main benefit
of the perturbation approach, however, lies in the insigh
offers into the conductivity of the OT.

III. CONDUCTIVITY

A. Low kinetic energy limit

As was already mentioned in the previous section, the
kinetic energy limit of Eq.~1!, i.e., t→0, can be described
by degenerate perturbation theory.6 Following Ref. 26, the
Hamiltonian is written asH01H1, whereH0 is the potential
part, i.e.,( i u i &ni^ i u, andH1 is the relatively weak part tha
contains all hopping terms, i.e.,(^ i j &u i &t^ j u. It is useful to
define the projection operatorsQ and P512Q, whereQ
projects onto all sites with coordination number three. T
effective Hamiltonian in the subspace of all threefold co
dinated sites is then to second order int given by26

Heff 5QH0Q1QH1Q1QH1P
1

E2H0
PH1Q. ~2!

The first term of this equation is the on-site energy of t
degenerate sites of interest, viz., three. As will be shown
threefold coordinated sites are never nearest neighbor
each other. Therefore, the second term in Eq.~2! equals zero.
The third term leads to effective potentials and bonds p
portional tot2. For this reason I expressed the energy axis
Figs. 1~b! and 1~c! in units of t2. By approximatingE'3 in
Eq. ~2!, the effective Hamiltonian becomes energy indepe
dent.

By means of the cut-and-project method or with help
the inflation rules27 for the OT it is readily verified that each
threefold coordinated site is a nearest neighbor of eithe
sixfold, a sevenfold, or an eightfold coordinated site. The
three possibilities are illustrated in Figs. 2~a!–2~c!. From
Figs. 2~a!–2~c! it is clear that two threefold coordinated site
are never in nearest neighbor positions, but they may
second nearest neighbors of each other. The environmen
the sites with coordination number three of Figs. 2~a!–2~c!
are fixed up to a sufficiently large distance, so that all eff
tive second nearest neighbor bonds as well as the on
energies are unique for the patches shown. For the sak
completeness, omitting the factorst2, the effective potential
of sitesA and B equals211/6, of sitesC and G it equals
27/4, of sitesD, E, andF it is 29/4, and of all sites of Fig.
2~c! it equals211/5. The effective hoppings over the sho
diagonals of the rhombuses of Figs. 2~a!, 2~b!, and 2~c! equal
24/3, 25/4, and26/5, respectively. The other bonds with
the clusters of Figs. 2~b! and 2~c! are21/4 and21/5. The
bonds that point outward of the clusters of Figs. 2~a! and
2~b! have strengths21/2. Like the potentials all bonds are i
units of t2.

Via their outward pointing bonds the clusters of Figs. 2~a!
and 2~b! form chains. The clusters of Fig. 2~c! remain iso-
lated. Figure 2~d! shows the unit cell of an approximant t
the OT. There is one closed and one open chain. If the clu

n-
2-2
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of Fig. 2~a! is called short~S! and the one of Fig. 2~b! long
(L), then the open chain of Fig. 2~d! is SSSSLSLSL. This
chain is responsible for the 1D features in the DOS of F
1~c!. States on the closed chain and on the isolated clus
are dispersionless to second order int, thus giving rise to the
0D features in Fig. 1~c!. Larger approximants can be mad
by successive application of the inflation rules27 of the OT. In
each step the linear size of the unit cell increases by a fa
of approximatelyA211. In this process isolated clusters a
closed chains are inflated to isolated clusters and a la
number of closed chains. Some new isolated clusters ap
The open chain goes into an open chain three times lon
according to the inflation rules

S→SL, ~3a!

L→SSSSL. ~3b!

These rules can be derived from the inflation rules27 for the
OT. In every inflation step the open chain becomes longe

FIG. 2. Dashed lines indicate square and rhombus tiles of
OT. ~a!–~c! show the possible environments of sites with coordin
tion number three~dots!. Solid lines are effective bonds in the low
kinetic energy limit. In this limit,~a! and~b! form chains.~d! is the
unit cell of an approximant with 239 sites. There is one closed
one open chain. The effective Hamiltonian of the open chain re
duces the 1D features in the DOS of Fig. 1~c!.
21420
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a factor of three. It becomes more meandering. Therefor
has a fractal dimensionD5 log(3)/log(A211)'1.2465. The
substitution rules of Eq.~3! define an aperiodic chain. Th
most important result is that there is only one open chain
the unit cell of each approximant.

Since only one channel, viz., the open chain, is availa
for transport in the low kinetic energy limit, it follows im
mediately that the conductance of a unit cell of an appro
mant to the OT is at moste2/h. This upper bound does no
depend on the size of the approximant. Assuming that
bound is realized in all approximants, and that the thickn
of the OT equals l 51 Å, I arrive at s5g/ l'3.87
3103 V21 cm21, which does not depend on the size of t
unit cell. This value can of course not be taken seriou
since it was not derived from a realistic atomic model. T
point is that the analysis of a quasiperiodic structure
proven its low conductivity and simultaneously provide
considerable insight in the physical transport mechanism

B. Realistic values of the kinetic energy

In order to study the effect of higher kinetic energy, I ha
used Landauer’s formula. The procedure is analogous to
one in Ref. 9. In the unit cell of an approximant a set
parallel bonds is cut. The loose ends are connected to s
infinite leads consisting of square tiles. In the perpendicu
direction periodic boundary conditions are applied.12 The re-
sults are averaged over a sufficient number ofk points, so
that full convergence with respect to the perpendicular ext
sion of the system is reached. All sites in the leads h
on-site energy three. In order to minimize the impedan
misfit between the octagonal cell and the leads, the hopp
in the leads are chosen equal tot2. Hoppings connecting the
leads and the octagonal cell equalt2 when they connect a site
with coordination number three, andt otherwise. The con-
ductance in this geometry is then evaluated as a functio
the Fermi energyEF with a Green’s function method.9,12 I
have studied two cells, with 239 and 8119 sites.

For very lowt ~0.001! I found that the conductance is les
than e2/h for all values of the Fermi energy. When I in
creasedt to 0.25, I saw that most values of the Fermi ener
give an increased conductance. In a small part of the sp
trum, however, the conductance had hardly changed.
calculated conductance in this energy range is shown in
3. It is seen that even fort50.67 most features of Fig. 3~a!
can still be recognized in the energy rangeEF23*
20.3 t2. This result is quite unexpected, for in this case t
kinetic and potential terms in the Hamiltonian are of comp
rable magnitude.t51 gives an increased conductance f
Fermi energies through the whole energy range shown
agreement with the expectation that the above-derived
turbation theoretical result does not hold when the expans
parametert51. The fluctuations in Figs. 3~a!–3~c! are due
to impedance mismatches between the leads and the oc
nal cell. In general, each narrow band of Fig. 1~c! gives rise
to one maximum. In higher approximants there are m
bands and the conductance becomes a more strongly flu
ating function. Figure 3 provides strong numerical eviden
that the remarkable low conductivity established for the l
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kinetic energy limit survives when the hopping has the m
realistic valuet50.67, at least for some values of the Fer
energy.

IV. DISCUSSION

By looking at the energy eigenfunctions of the Ham
tonian~1! I have obtained an independent confirmation of
surprising result that the description of the OT in terms
clusters and chains as given by degenerate perturba
theory ~Sec. III A! is still valid for realistic values of the
kinetic energy, e.g.,t50.67. Figure 4 shows a wave functio
with E'320.2 t2, t50.67. It was obtained by direc
diagonalization28 of the Hamiltonian~1!. 91% of the weight
of ucu2 is on the open chain. This shows that, at the giv
energy andt, the effective Hamiltonian, Eq.~2!, accurately
describes the OT. I have also calculated wave functions
t51. They are more delocalized, again indicating a bre
down of the perturbation theory for this value oft. Figure 4
illustrates the remarkable feature that the transport in the
is locally anisotropic. Rocheet al.29 showed that the assump
tion of subdiffusive electron transport in QC’s can quali
tively explain the anomalously low value of the conductivi
It was suggested that the subdiffusive behavior is a con

FIG. 3. Conductance of two cells of the OT with, respective
239 ~dashed lines! and 8119 sites~solid lines!. ~a! When the kinetic
energy is low, only the open chain of Fig. 2 can conduct. As
consequence, the conductance is at most one natural unit, i.e.,e2/h,
independent of the approximant size.~b! For t50.25 and~c! 0.67
this upper bound is not exceeded for some values of the Fe
energy. ~d! For t51, the conductance increases with increas
approximant size.
21420
e
i

e
f
on

n

or
-

T

-

e-

quence of critical states in a QC. Such states are intermed
between exponentially localized states and extended st
They have a power-law envelope. It is expected that the
plitude of such a wave function falls off in roughly the sam
way in all directions. The mechanism described in this pa
is locally anisotropic and should in that aspect be dist
guished from the one of Rocheet al.29

V. CONCLUSION

I have shown that in the OT electronic transport is dom
nated by a chain of atoms that meanders around the m
clusters of the tiling. As a consequence conductivity is li
ited. I have given numerical evidence that for some values
the Fermi energy (EF23*20.3 t2) this is still true for re-
alistic kinetic energies (t50.67). It should be stressed th
this paper does not intend to make a prediction about
particular class of QC’s that have octagonal symmetry. T
main result of this paper is a mechanism that is capable
limiting conductivity in a QC. When the quasiperiodicity
limited to two dimensions, as it is in the OT and ind-QC’s,
a fixed number of open channels independent of the app
imant size gives an upper bound on the conductivity. F
i-QC’s, which are 3D, the number of open channels m
grow proportional to the linear size of the approximants. T
main challenge for the future is to find out whether this ty
of mechanism applies to real QC’s.

,

a

i

FIG. 4. Wave function on an approximant to the OT with 13
vertices per unit cell. Antiperiodic boundary conditions apply. T
energy of this state equals 320.19425t2, t50.67. The wave func-
tion is localized on an open chain. This confirms the result of Fig
that, for some energies,t50.67 gives results that are not qualita
tively different from those obtained with lowert.
2-4
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