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Limited conductivity in an octagonal quasicrystal
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Conductivity of ans-band model on the octagonal tiling is studied. Using perturbation theory it is shown that
there is only one channel available for electronic transport, when the kinetic term in the Hamiltonian is small.
This feature is independent of the size of the approximant and reveals a microscopic mechanism that is capable
of severely limiting conduction processes in a quasicrystal. Numerical evidence indicates that the same result
is valid even in case of realistic kinetic energies at some values of the Fermi energy.
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[. INTRODUCTION structure, but is in clear contrast with experimental findings.
In other words, the quasiperiodicity of a QC is not sufficient
The discovery of quasicrystalsQC's) in 1984 opened to explain its low conductivity.
a new research area in condensed-matter physics. The Neverthelessab initio calculations have given evidence
interplay between quasiperiodic structure and physicathat elastic electron scatteriigresponsible for low QC con-
properties is a central theme in this field. This paper focuseguctivity. When Fujiwaraet al.*’ studied a series of approxi-
on the question why QC’s, with structures intermediate bemants tod-AlCuCo, they found slowly decreasing diffusion
tween those of lattice-periodic crystals and amorphousonstants for some wave functions as a function of system
materials, often have a conductivity that is an order of magsize. Solbriget al!® found that coherence on length scales
nitude lower than that of nearby amorphous phases. Aarger than 12 A, the size of a unit cell of a 1/1 approximant,
typical example is icosahedrali)¢AICuFe. In a sample is relevant for electronic transport iRAIMn. In contrast,
of high structural quality the conductivity at 4 &, , can be  Krajci and Hafnet® found an increased conductivity for
as low as 900 ' cm %2 The conductivity is higher at i-AIPdRe when they went from a 1/1 to a 2/1 approximant.
higher temperatures and in samples of lower structural qualFhey noted thaab initio calculations are extremely sensitive
ity, i.e., with more disordet. To compare: An amorphous 10, e.g., the modeled chemical composition. A detailed mi-
phase of AICuFe with atomic composition similar to croscopic understanding of low QC conductivity was not
the i phase haso, «=712Q "*cm ™%, liquid Fe has provided in any of the above-mentioned papers. Some of the
01800 k= 7215071 cm 1% in  liquid Al Tgazk=4.1 difficulties met inab initio calculations are circumvented by
x10° O~ *ecm 1% and face-centered cubic Al has,;  Using tiling models, which may thus be the easier way of
=3%x10° Q1 ecm 1% So, in contrast to the structure, the Providing a first step in the analysis of low QC conductivity.
conductivity of a QC is not intermediate between that of In this paper I study a nontrivial 2D quasiperiodic tiling
lattice-periodic crystals and amorphous materials. The origifnodel. By means of perturbation theory | derive an effective
of the anomalously low value of the conductivity of QC’s Hamiltonian for the low kinetic energy limit. | show that in
still lacks a rigid microscopic explanation. this limit the tiling splits up in clusters and chains. Only open
Considering the many theoretical papers that have beeghains contribute to the conductance. This feature provides
devoted to this problem, there is one obvious red line tha@n upper bound for the latter, which is shown to stay constant
illustrates the fact that the anomalously low conductivity inWith increasing size of the approximants. | present numerical
QC'’s is a surprise, and, in addition, makes clear why thisevidence, to the effect that this result is not restricted to the
problem has defied microscopic understanding so far: EledoW kinetic energy limit. Even when the kinetic and potential
tron diffusion in a generic quasiperiodic environment is su-terms in the Hamiltonian are of comparable magnitude, the
perdiffusive. This has been shown for many quasiperiodi€onductance is dominated by open chains for some values of
monatomics-band tiling models, in particular, for the oc- the Fermi energy. Here a clear connection is made between
tagonal tiling(OT),®" the two-dimensional2D) Penrose til-  the real-space structure of a QC and its conductivity.
ing (PT),2° the 2D generalized Rauzy tilingGRT),'> the
3D PT!? and the 3D GRT? and, recently, also for a hypo-
thetical decagonald)-Al phase'® Superdiffusive transport
implicates infinite zero-temperature conductivityln con- The model is based on the OT. In order to obtain the
trast, in liquid metals elastic electron scattering due to disorproperties of the perfect quasiperiodic tiling a series of
der leads to diffusive transport, which corresponds to a finitepproximant®’ with increasing unit-cell size is studied. By
value of the conductivity>*°So, calculations have led to the analyzing how the conductance scales in this series of ap-
intuitive result that, in general, electron diffusion in a quasi-proximants, conclusions about the conductivity of the infinite
periodic substrate is intermediate between ballistic diffusiortiling can be drawn. In the electronic model there is one basis
in a lattice-periodic crystal and diffusive transport in a dis-state on each vertex of the tiling. These states can be thought
ordered medium, which reflects the intermediateness if as atomics states. The tight-binding Hamiltonian is
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@ Fig. 1(@ can in principle be described by perturbation
theory® Indeed, | found that the perturbational analysis in

Sec. Il A of this paper explains all the essential featfd3
and 0D in the DOSs of Figs. (b) and Xc). The main benefit
of the perturbation approach, however, lies in the insight it
| offers into the conductivity of the OT.
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A. Low kinetic energy limit

As was already mentioned in the previous section, the low

100 ©) kinetic energy limit of Eq.(1), i.e.,t—0, can be described
by degenerate perturbation the8rfollowing Ref. 26, the
w 50 L ] Hamiltonian is written a$iy+H,, whereH, is the potential
Q part, i.e.,2;|li)ni(i|, andH, is the relatively weak part that
2 A L },/ contains all hopping terms, i.€%;,|i)t(j|. It is useful to
5 100 | M /L\ /Ju define the projection operato@ and P=1-Q, whereQ
2 (c) projects onto all sites with coordination number three. The
[ effective Hamiltonian in the subspace of all threefold coor-
S 50l L" 4 dinated sites is then to second ordett igiven by?®
1
0 “ | il Her =QHoQ+QH1Q+ QHP=——PH.Q. (2
-6 —4 -2 0 0
energy — 3 (£ The first term of this equation is the on-site energy of the

. o degenerate sites of interest, viz., three. As will be shown two
FIG. 1. (a) DOS of the OT with low kinetic energy=0.11. It  threefold coordinated sites are never nearest neighbors of
consists of six narrow bandgb) The substructure of the band at each other. Therefore, the second term in @yequals zero.
E~3 has 0D dispersionless features and typical 1D Van Hove sinThe third term leads to effective potentials and bonds pro-
gularities. (a) and (b) were obtained for an approximant with 41 portional tot2. For this reason | expressed the energy axis of
vertices per unit cell(c) with 239 vertices. In the larger approxi- Figs. 4b) and 1c) in units oft2 By approximatingE~3 in
mant additional gaps open up. Eq. (2), the effective Hamiltonian becomes energy indepen-

dent.
_ L g By means of the cut-and-project method or with help of
H % il +§i: [Dnicil, D the inflation rule& for the OT it is readily verified that each

threefold coordinated site is a nearest neighbor of either a
with the first sum over all nearest neighbors, i.e., all pairs ofixfold, a sevenfold, or an eightfold coordinated site. These
vertices that are connected by an edge of the tiling, mnd three possibilities are illustrated in Figs(a-2(c). From
the coordination number of sifet is a parameter that deter- Figs. 2a-2(c) it is clear that two threefold coordinated sites
mines the relative weight of the firgkinetic) term of the are never in nearest neighbor positions, but they may be
Hamiltonian relative to the secor{gotentia) term. Without ~ second nearest neighbors of each other. The environments of
the second term Eq1) would describe a monatomgband  the sites with coordination number three of Figéa)22(c)
model. Distinguishing the on-site energies of the sites of th@re fixed up to a sufficiently large distance, so that all effec-
OT is a simple way of incorporating the effect of different tive second nearest neighbor bonds as well as the on-site
kinds of atoms into the tiling model. As mentioned in the energies are unique for the patches shown. For the sake of
Introduction, without the second term transport in the OT iscompleteness, omitting the factdrs the effective potential
superdiffusive®’ of sitesA and B equals—11/6, of sitesC and G it equals

The same model has been studied befdr&=2*When  —7/4, of sitesD, E, andF it is —9/4, and of all sites of Fig.
the hopping parametdris small, the electronic density of 2(c) it equals—11/5. The effective hoppings over the short
states(DOS) consists of six narrow bands according to thediagonals of the rhombuses of Fig$aR 2(b), and Zc) equal
possible numbers of nearest neighbors of the individual-4/3, —5/4, and—6/5, respectively. The other bonds within
sites®?? This is illustrated in Fig. @a). In this paper | study the clusters of Figs.(®) and Zc) are —1/4 and—1/5. The
the band withE~3. In Fig. 1b) the substructure of this bonds that point outward of the clusters of Fig$a)2and
band is shown. There are dispersionlé8P) features and 2(b) have strengths- 1/2. Like the potentials all bonds are in
typical 1D Van Hove singularities. The bands between units oft2.

—3=—t2 andE—3=0 split up in subbandsvhen going to Via their outward pointing bonds the clusters of Fig&)2

a higher approximanfFig. 1(c)] in a similar way as, for and 2b) form chains. The clusters of Fig(@ remain iso-
example, the bands of approximants to the Fibonacci chain. lated. Figure ) shows the unit cell of an approximant to

It has been noted that the substructure of each main band tfe OT. There is one closed and one open chain. If the cluster
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a factor of three. It becomes more meandering. Therefore it
has a fractal dimensiob =log(3)/log(y2+1)~1.2465. The
substitution rules of Eq(3) define an aperiodic chain. The
most important result is that there is only one open chain in
the unit cell of each approximant.

Since only one channel, viz., the open chain, is available
for transport in the low kinetic energy limit, it follows im-
mediately that the conductance of a unit cell of an approxi-
mant to the OT is at mos#?/h. This upper bound does not
depend on the size of the approximant. Assuming that this
bound is realized in all approximants, and that the thickness
of the OT equalsl=1A, | arrive at o=g/I~3.87
x10° O~ cm™1, which does not depend on the size of the
unit cell. This value can of course not be taken seriously,
since it was not derived from a realistic atomic model. The
point is that the analysis of a quasiperiodic structure has
proven its low conductivity and simultaneously provided
considerable insight in the physical transport mechanism.

B. Realistic values of the kinetic energy
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In order to study the effect of higher kinetic energy, | have
A MR used Landauer’s formula. The procedure is analogous to the
p I one in Ref. 9. In the unit cell of an approximant a set of
parallel bonds is cut. The loose ends are connected to semi-
infinite leads consisting of square tiles. In the perpendicular

direction periodic boundary conditions are appHéd@he re-
sults are averaged over a sufficient numbek gfoints, so
that full convergence with respect to the perpendicular exten-
sion of the system is reached. All sites in the leads have
m on-site energy three. In order to minimize the impedance
- misfit between the octagonal cell and the leads, the hoppings
FIG. 2. Dashed lines indicate square and rhombus tiles of thé the leads are chosen equaltfo Hoppings connecting the
OT. (a)—(c) show the possible environments of sites with coordina-leéads and the octagonal cell eqtfaivhen they connect a site
tion number threddots. Solid lines are effective bonds in the low with coordination number three, aridotherwise. The con-
kinetic energy limit. In this limit,(a) and(b) form chains(d) is the ~ ductance in this geometry is then evaluated as a function of
unit cell of an approximant with 239 sites. There is one closed andhe Fermi energyEr with a Green’s function methot? |
one open chain. The effective Hamiltonian of the open chain reprohave studied two cells, with 239 and 8119 sites.
duces the 1D features in the DOS of Figc)1 For very lowt (0.00 | found that the conductance is less
than e?/h for all values of the Fermi energy. When | in-
of Fig. 2@) is called shor(S) and the one of Fig. ®) long  creased to 0.25, | saw that most values of the Fermi energy
(L), then the open chain of Fig(@ is SSSSLSLSLThis  give an increased conductance. In a small part of the spec-
chain is I’eSponSible for the 1D features in the DOS of Fig.trum, however, the conductance had hard|y Changed. The
1(c). States on the closed chain and on the isolated clustegaiculated conductance in this energy range is shown in Fig.
are diSperSionleSS to second ordet,ithus g|V|ng rise to the 3. It is seen that even fdr=0.67 most features of F|g(3
0D features in Fig. ). Larger approximants can be made can still be recognized in the energy rangg—3=
by successive application of the inflation rdiesf the OT. I _ o 32 This result is quite unexpected, for in this case the
each step the linear size of the unit cell increases by a factQjnetic and potential terms in the Hamiltonian are of compa-
of approximatelyy2+ 1. In this process isolated clusters andraple magnitudet=1 gives an increased conductance for
closed chains are inflated to isolated clusters and a |arg¢l’ermi energies through the whole energy range shown, in
number of closed chains. Some new isolated clusters appeajgreement with the expectation that the above-derived per-
The open chain goes into an open chain three times longegrbation theoretical result does not hold when the expansion
according to the inflation rules parametett=1. The fluctuations in Figs.(8-3(c) are due
S.sL (3 to impedance mismatches between the Iea_ds and the_ octago-
' nal cell. In general, each narrow band of Figc)lgives rise
L_.SSSSL (3b) to one maximum. In higher approximants there are more
bands and the conductance becomes a more strongly fluctu-
These rules can be derived from the inflation réfider the  ating function. Figure 3 provides strong numerical evidence
OT. In every inflation step the open chain becomes longer byhat the remarkable low conductivity established for the low
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FIG. 3. Conductance of two cells of the OT with, respectively, ~FIG. 4. Wave function on an approximant to the OT with 1393
239 (dashed linesand 8119 sitesolid lines. (a) When the kinetic ~ Vertices per unit cell. Antiperiodic boundary conditions apply. The
energy is low, only the open chain of Fig. 2 can conduct. As a€Nergy of this state equals-3.19425t2, t=0.67. The wave func-
consequence, the conductance is at most one natural unié?ife,, tion is localized on an open chain. This confirms the result of Fig. 3,
independent of the approximant sizb) For t=0.25 and(c) 0.67 that, for some energie$=0.67 gives results that are not qualita-
this upper bound is not exceeded for some values of the Ferndively different from those obtained with lower
energy. (d) For t=1, the conductance increases with increasing
approximant size. quence of critical states in a QC. Such states are intermediate

between exponentially localized states and extended states.

kinetic energy limit survives when the hopping has the moreThey have a power-law env_elope. Itis e_xpected that the am-
realistic valuet=0.67, at least for some values of the Fermi plitude of such a wave function fa_lls off in rqughly th? same
energy ' way in all directions. The mechanism described in this paper

is locally anisotropic and should in that aspect be distin-
guished from the one of Roche al?°
IV. DISCUSSION

. . . . V. CONCLUSION
By looking at the energy eigenfunctions of the Hamil-

tonian(1) | have obtained an independent confirmation of the | have shown that in the OT electronic transport is domi-
surprising result that the description of the OT in terms ofnated by a chain of atoms that meanders around the main
clusters and chains as given by degenerate perturbatiariusters of the tiling. As a consequence conductivity is lim-
theory (Sec. Il A) is still valid for realistic values of the ited. | have given numerical evidence that for some values of
kinetic energy, e.gt=0.67. Figure 4 shows a wave function the Fermi energyEr—3=—0.3t?) this is still true for re-
with E~3-0.2 t?, t=0.67. It was obtained by direct alistic kinetic energiest0.67). It should be stressed that
diagonalizatiof® of the Hamiltonian(1). 91% of the weight this paper does not intend to make a prediction about the
of |4]? is on the open chain. This shows that, at the giverparticular class of QC’s that have octagonal symmetry. The
energy and, the effective Hamiltonian, Eq2), accurately main result of this paper is a mechanism that is capable of
describes the OT. | have also calculated wave functions folimiting conductivity in a QC. When the quasiperiodicity is
t=1. They are more delocalized, again indicating a break#imited to two dimensions, as it is in the OT anddrQC'’s,
down of the perturbation theory for this valuetofFigure 4  a fixed number of open channels independent of the approx-
illustrates the remarkable feature that the transport in the Oimant size gives an upper bound on the conductivity. For
is locally anisotropic. Rochet al?® showed that the assump- i-QC’s, which are 3D, the number of open channels may
tion of subdiffusive electron transport in QC’s can qualita-grow proportional to the linear size of the approximants. The
tively explain the anomalously low value of the conductivity. main challenge for the future is to find out whether this type
It was suggested that the subdiffusive behavior is a consesf mechanism applies to real QC's.
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