PHYSICAL REVIEW B 66, 214201 (2002

Hysteresis in driven disordered systems: From plastic depinning to magnets
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We study the dynamics of a viscoelastic medium driven through quenched disorder by expanding about
mean field theory in 6 e dimensions. The model exhibits a critical point separating a region where the
dynamics is hysteretic, with a macroscopic jump between strongly pinned and weakly pinned states, from a
region where the sliding state is unique and no jump occurs. The disappearance of the jump at the critical point
is described by universal exponents. As suggested by Mar@tedti [Phys. Rev. Lett85, 1104(2000], the
model appears to be in the same universality class as the zero-temperature random field Ising model of
hysteresis in magnets.
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. INTRODUCTION (RFIM).}* By showing that the two models are in fact in the
same universality class we obtain the critical exponents for

Since the 1980's the depinning of varioefastic inter-  hysteresis in plastic flow in an expansion ir-€é dimen-
faces, ranging from domain walls in magnets to geologicakions.
faults, has received great attention. Many elastic interface
models with dissipative dynamics display a continuous tran- Il. DRIVEN VISCOELASTIC MODEL
sition from pinned to sliding at a critical driving forde, > _ o
Near this transition the behavior is universal on long length !N Ref. 13 it was proposed that a description of shear
scales, i.e., it does not depend on microscopic details, bifteformations in the plastic regime may be obtained by fo-
only on general properties of the system, such as symmetrie§USing on the dynamics of coarse-grained degrees of freedom
dimensions, the range of interactions, and the dynamics. Thihe solidiike regiongthat are allowed to slip past each other.
sliding state is unique, and no hysteresis can otctis The modgl of a driven _wscoelgshc medlpm is then obtlalned
class of systems has been studied extensively by renormd!y "éplacing the elastic couplings of displacements in the
ization group (RG) method? and numerical simulatiorfs. Ccoarse-grained model of an overdamped driven elastic me-
Meanwhile, a large body of experimerttiland numerical ~dium with Maxwell-type couplings of velocities.Consider-
work”8 has shown that many extended condensed matter sy$19. for simplicity, the overdamped dynamics of a scalar
tems with strong disorder exhibit a spatially inhomogeneoudi€!d, the equation of motion for the local displacement at
plastic response when set into motion by an external dfive. discrete lattice sites u(r,t)—ui(t), is
In this plastic flow regime, topological defects proliferate .
and the system is brokgn up into fdehke regions flowing u=> J ds,uije(tfs)/f[uj(s)_ui(s)]JrF+Fi(ui)7
around pinned solid regions. The elastic restoring forces are O Jo
replaced by viscous flow on various scat@sjlowing for a (1)
gﬁé%riﬂzéfcsgﬁgj Sfolfs)(, acmhglr(;sé IS g:‘us(:gl \\;\?&;@temx aﬂ ,r;?)llr? ;r;]fjlso(ﬂlhere the dot denotes a time derivative, the summation is on

isotropic metals, colloids, and many others. Only for weakSiteSj that are nearest neighborsitand vy, is the friction. If

disorder can these extended systems be described as ela@iciN€ nNearest-neighbor elastic couplings are equgl=t »

objects pulled through a quenched random medium by a uni-. ), the first term on t'he rig'ht hand side of H) is t_he
form force F. Although severamean-field(MF) models of discrete Laplama_n _md dimensions. The second term IS the
dissipative dynamics with locally underdamped relaxationhpm?geneogs. dn;/mg forcé;, aEdF‘(ui) denotes the pin-
have been proposed in the literature in various physicafind force arising from a quenched random potentfaly;),
context€!:?and shown to exhibit hysteresis, very little is

Fi(ui):_dVi/dui:hiY(ui_Bi)! with Y(U) a periOdiC
known analytically about the behavior of such models infunction with period 1, ands; random phases uniformly
finite dimensions. This paper provides analytical RG resultdlistributed in[0,1]. The random pinning forces; are dis-

. . .y _ 7h/h .
for a viscoelastic model that was introduced and previouslyiouted with probabilityp(h) =e "e/hq, of width hy. The
studied in MF theory by Marchettt al,* and makes an model can be used to describe pure shear deformations,

important contribution toward the identification of universal- Where the interactions among the degrees of freedom are
ity classes for nonequilibrium disordered systems. In Ref. 13ransverse to the direction of mean motion. As shown in Ref.

it was shown that in MF theory the model has a critical point,13: the integrodifferential equation can be transformed into a

separating continuous from hysteretic dynamics. In this paS€cond order differential equation, given by

per we show that in finite dimensions the behavior maps onto
critical hysteresis in disordered magnets as modeled by the

P , : U+
zero temperature nonequilibrium random field Ising model !

k). o
Y_Tﬁ_ui Ui:<i2j) ﬂij[uj_ui]+F+Fi(Ui), 2
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,/’ FIG. 2. Schematic MF phase diagram and RG flo¢as.The
a1 r " bold curves are the critical linds;(7) for the onset of the vertical
0.05 L 7 jump in the MF responsg.e., wheredv/dF— <) when the forcd~
| is (i) increased adiabatically from a static random configuration at
- 5 . \ F=0 (up), and(ii) decreased adiabatically from (down). The

%.05 0.1 045 02 025 03 035 04 critical point studied here is at the end of these lihgs,F.(7.)].

F (b) RG flows below six dimensions in the{ %,u) plane. The MF
fixed point becomes unstable belas 6 and the critical behavior
is obtained by linearizing around the Wilson-Fish&/F) fixed
point.

FIG. 1. Typical MFv —F curves forr=0 and »= 24 (dashed-
dotted line, »=75.=9.745 (solid line), and =6 (dashed line.
The inset shows the phase diagram in ther) plane. The shaded

area is the region where the dynamics is hysteretic. — . .
v—F curve between strongly pinneglowly moving and

with 7= ;7. The MF critical line () separating con- weakly pinned(fast moving states. For wgak couplingn(
tinuous from hysteretic dynamics was obtained in Ref. 13<7c) most degrees of freedom advance independently, and
and is shown in the inset of Fig. 1. thev—F curve has no macroscopic jumps. In MF the hys-
In this paper we consider the limit=0, with »=pur  teresis disappears #&and below a special valuen= 7.,
#0, referred to as the viscous limit, and study the criticalwhere thev — F curve has a vertical slope. Preliminary re-
point along ther=0 line. The MF analysis suggests that any sults indicate the same for simulations in three dimensions
finite value of 7 may be irrelevant, and the large scale be-(up to fluctuations Figure 2 shows a schematic phase dia-
havior can be generically described by 0. In this limitthe  gram for the dynamical model defined by E@®) in the

model reduces to (F,n) plane. The MF critical pointK, 7.) is obtained from
x=dv/dF—» andd?v/dF2—, wherey is the static re-
u=_>, ﬂij[Uj—Ui]+F+ Fi(u)). (3)  sponse function. As shown in Appendix A, near this critical

{ point the velocityv — v, , with v.=v(7¢,Fc), obeys a uni-

We have introduced dimensionless variables by incorporat/€rsal scaling law

ing vy in our unit of time and scaling all forces and velocities ,

by the width hy of the disorder distribution. The relevant D=0 ~|r|ﬁg+<f_) (6)
dimensionless tuning parameters are then the strength ¢ “\|r|Be '

the viscous coupling and the driving forde, The MF solu-

tion of Eq.(3) for piecewise parabolic pinning potential was
obtained in Ref. 13 and is given by

wherer=(n— )/ 5., and f'=fxv. n|r|/(1+ 7)), with
f=F—F.(7:), is a(nonuniversalrotation between the con-
trol variables (¢,f) and the scaling variables f'). The =

_ 1 refers to the sign of. In MF theory the critical exponents
v= <m> (4)  have the valueg@yr=1/2 anddyr=3.
|
where(- - -} denotes an average over disorder dift};) is I1l. BEYOND MEAN-FIELD THEORY

the period of thath degree of freedoni.e., the time over _
which the displacement; is incremented by )1 A. Formalism
Here we set up the formalism to study fluctuations about
MF theory. We use the method of Martin, Siggia, and Rose
(MSR) to transform the stochastic equation of moti(8)
into a field theory. This is done by introducing a generating
T(hy=% for h>2g, (5) functional Z, which contains the sum over the probabilities
. of all possiblepaths(i.e., microscopic configurationsvhich
with g=F + nv. The various types of dynamical responsesthe system follows for different configurations of disorder as
are shown in Fig. 1. For strong coupliricelative to disor- the forceF is slowly increased. The generating functional is
den, »> 5., a marginally pinned degree of freedom pusheswritten as the exponential of an action, which is then renor-
over its neighbors, driving a vertical hysteretic jump in themalized perturbatively by standard methods. The MSR for-

1+7

2g+h
T(h)=——

In —Zg—h

for h=<2g,
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malism was adapted to driven systems by Narayan and TABLE I. Universal exponents for the critical point discussed in
Fisher to describe the depinning of an elastic model othe text. The exponent8 and & describe hows scales withF and
CDWs? It was later employed by Dahmen and Sethna tos, respectivelyr is the correlation length exponent.

study the hysteretic response of disordered madfidtere
we only give a very sketchy summary of the method and Exponents Mean field € expansion
refer to the literature for details. The crucial point is to rec-

. 2
ognize that the coarse grained local velocities defined 'f " 142 12/2 ;:lir(f((;))
below) in the present model play the role of local magneti- B

W P piay g B 312 3/2+0.08334542

zations in the RFIM. The formal manipulations then follow
closely those of Ref. 14, although important differences oc-
cur in the detailed calculation of the response and correlatio
functions.

The functionalZ is defined as a product aof functions
(one for each site each of which imposes that the dynamics
of eachu; is described at all times by equation of moti@).
The & functions are then rewritten using a standard identity,
so that

The suffix! in Eqg. (12) indicates that the response and cor-
relation functions are obtained by solving the MF equation
with fixed local fields vy and an infinitesimal perturbation,
ne(t,ty), att,<t,

(L+ ) au () =F + oo+ Fj(u) + pe(t,ty). (12

The effective actiori10) has the same structure as that of the
152:[ [du][dU]I[u]es, @) spin model in Ref. 14, with local velocities replacing local

magnetizations. Note that while in the RFIM at fixed field all
. spins are fixed in tim€in the steady stajein the CDW
with u; MSR auxiliary fields. Heré[u] is a functional Jaco- model each phase is subject to a quasiperiodic noise due to
bian chosen so that integrates to unity an®is an action jts coupling to the neighboring sites that move in a periodic
given by potential even at a fixed force. In the calculation done here
this additional noise is averaged out and does not seem to
(AT . affect the scaling results on long length scales. A detailed
S=i ftui ul—% mjluj—uil—F—=Fi(u) |, (8 study of whether or not it matters on long length scales in
ways not captured by this approach is left to future work.
where(ij) denotes nearest-neighbor pairs. To study pertur-
batively fluctuations about MF theory we change variables B. Results
from u; andu; to the local velocities); = (1/7)27;u; by The response function of ordaris calculated by perturb-
introducing another auxiliary fieldy;. The MF solution ing the system withn &-function pulses of strength
(vo,00) is the saddle point of the resulting generating func-€1,€,, . . . €, at t;<t,<---<t,, and evaluating the re-
tional. By expanding about this solution and shifting thesponse at a timé>t,. In contrast to the case of driven
definition of v to v—v,, (and absorbing a factarin the ~ CDW’s? terms of order-e AT with x=h/(1+ 7), can-
definitior), we obtain the generating functiofaf not be neglected in the calculation, as, even when the mean
velocity is very small, a fraction of degrees of freedom may

. be sliding freely, with corresponding large periods. Further-
=f [dv][dv]e®t, (9 more, the response must be evaluated over the entire history
to obtain the correct low frequency behavior. An example of
with an effective action such a calculation for the simplest case of the linear response

function is shown in Appendix B. Although the details of the
R calculation for the present model are different from the spin
Sef= —Z Jdtni}lvi(t)vj(t) model, we find that the,, of the two models have indeed
ot the same long wavelength and low frequency behavior, i.e.,
the effective actions of the two models are identical. Conse-
+E f f quently, the RG analysis of the viscoelastic model is the
I mn=o minlJy, tmin same as for the RFIM! and is not reproduced here. We
- obtain the same expansion to all orders ie. Note that
XUmn(ty, -+ tmen)vj(ta) - - while the e expansion for theequilibrium RFIM is
X5t v, (b 1) - () (10 controversial® and thee expansion for the nonequilibrium
m m+1 m+n RFIM has been mapped onto that of the equilibrium RFIM
(Ref. 19 to all orders ine, our main result here does not
depend on the outcome of this controversy. The mapping of
the plastic CDW depinning model onto the hysteretic RFIM
is based on mapping the actions of the two models onto each
(U(ty) Uty . (12) other, by identifying the local velocities in the CDW model
with the local magnetizations in the spin mod&This map-

Unn are the linear and nonlinedocal response and con-
nected {.) correlation functions, of the form

J
u = PR
mn d€(tmy1) Je(tmin)
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ping holds independently of the subsequemxpansions for  vertical jump in thev —F curve (wherey *=0 andw+0)

the respective critical exponents. The critical exponents ofemains criticalt’ The MF scaling exponents are exact in this
the two systems are the same and are given in Table I.case.

Fourier transforming the fields andv in both space and Ford<8 we need to distinguish two cases, depending on

time, the quadratic part of the effective action is given by Whetherw’ ~b*~%w is initially finite or zero. A bare action
with x~1=0 andw+0 at the onset lin€ (%) corresponds

to the hysteretic regiom> 7. . In this case the RG analysis
SS = _f 0(—a,— o) 777 Xq)— Uy (@) Jv(q,w) carried out by Dahmen and Sethna for the RFIM shows that
d. ’ w flows tooe, suggesting a sharp jump onset in the hysteresis
1 loop for 7> 7.. A bare action withy =0 andw=0 cor-
- A - responds to the critical point of interest here. If the baris
* ZL wv( A~ @)Uz @)v(q,0), (13 zero, we must consider higher order terms. In particular we
find that u’~b® %, while all the higher order response

where uy , is trivially zero because we expand around thefunctions are irrelevant fod=6—¢. Sod.=6 is the upper
stationary point. In the long wavelength and low frequencycritical dimension and fod>6 the critical exponents near
limit, we approximate ™ 1(q)~(1/5)+Kqg? and uy (o) (F¢,7c) are given by MF theory. Below six dimensionsis

~usfljwa, Whereuiti% 7' (go)/(1+ 1), with go= 7v¢ relevant. Corrections to the critical exponents were com-

+F. The functionv(g) is a scaled mean velocity defined in puted in 6- € dimensions in Ref. 14, the results are summa-

Eq. (A1) and the prime denotes derivative with respecgto "1z€d in Table I.

ui“’l“anda are given in Appendix B. The correlation function Many open quegtions remain. First the RG14caIcuIation
’ near F.,7n.) described here applies fop<n..” More

i ~ 2y _ 2 -
S Uz o @) =27 (@) [((LIT) ")y~ (1/T)1]. The bare propaga work is needed to extend it abovg, as well as for a proper

. . . ~l —i 2_ . -1
tor is given by G;,(q,w)~[~iwa+ 7Kg=y ], where understanding of the noise in this region. Secondly, we

_r,stat_q1-1 ; ; ; _
i‘ ;i[ullil inl]r |?npre():([[silr?/ Itr;erstanclrelsaor&s% t:\)/”? trr?onro would like to study the finite range viscoelastic model for a
onically increasing external force calculate eo y‘general value of-.

At the MF critical point y =0 and the bare propagator

becomes diﬁUSiVEG{)v(q,w:O)"’llqz, while the correla- ACKNOWLEDGMENTS
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with  w~720"(go)/(1+7), and Uyowy,wy,wz)~U

=7°v"(go)/(1+ 7). Note thatw=0 at the MF critical APPENDIX A: MEAN-FIELD SCALING
point. We then obtain Here we derive the scaling behavior near the MF critical
point. It is convenient to rewrite the mean velocity as
R u.
Sef~ Sﬁ+2 f —vilvi(t) ]2+ Zvi(D[vi (D ]3], — v(9)
! t 2 6 - 1+ (Al)
(14 K
by introducing the function/(g),
which is identical to the effective action for the soft spin 29
RFIM,* with the local velocities here playing the role of w(g)= f dh p(h) —5—, (A2)
the local magnetizations in the RFIM. The generic behavior 0 n g+
at long time and length scales is therefore identical to that 2g—h

of the RFIM. To perform the coarse-graining transformation,
as usual we integrate out modes in the wave vector she . )
Alb<g<A (b>1), rescale coordinates as=bx’ and 'Nhe MF critical points,n= 7., F=F., andv=v. are the
t=b%', and choose the rescaling of the fields so thafPoints wh.e.re the mean vg_locny curve has an infinite sIop_e.
the quadratic part of the action is unchanged at the criticaf "€ conditions for the critical point easily are expressed in
point (y '=0). This requiresz=2 and yields u/,, terms v(g) by differentiating both sides of EqAl) with

ith p(h) the normalized distribution of pi@ing strengths.

— pl—(m+n)+2]di2+2n, respect tag, to obtain
mn-
If d>8, all u,,, other than those yielding quadratic terms o0 1+ 7
in the action renormalize to zero and become irrelevant at — | —sw=y'(g)=——, (A3)
large scales, indicating that the MF line for the onset of the JF 7 7
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&% "(g)=0
_— — 0= =0,
9F? ) g

where the prime denotes a derivative with respeda.to
To determine the critical liné-.(#) where the slope of

the (v_,F) curve diverges, we solve Eq$§Al), (A3), and
(A4) for n» nearn.. By expanding both sides of EGAL) in
09¢(7)=9c(n)—9. and énp=n—7n., and using that
v"(ge) =0, we obtain 6g.(7)~ +[—28n/72v2 12 with

vy =1"(g.)<0. We then usedF (7)=689.(n)—v.d7n

—n.0v.— dndv., expand both sides of E¢AL), and elimi-
nate 6g.(7) between the two equations, to obtain

(A4)

1/2
( 5,’]) 3/2.
(A5)

Ue
— Sn+
1+ 77 352(1+ 7o)

"
< C

oFo(7m)=

Note that the critical lind-.( ) is rotated as compared to the

PHYSICAL REVIEW B 66, 214201 (2002

é u=2

(]

2

&

B u=1
'It1 : } u=
t 5 t J+T t J+2T

time ——»

FIG. 3. Time evolution of the displacemen(t). Both the un-
perturbed(dashed and perturbedsolid line) solutions are shown.
The perturbed solution is obtained by applying-&unction pulse at
time ty, with t;<t;<t;+T.

critical line in the magnetic system. To obtain the scaling

function, we now Writev_(F,n)zv_(Fc,nc)+5v_ in Eq.
(A1), expand around the critical point, and eliminaig in
favor of v, &7, and 6F. Retaining only terms up to cubic

0 on the local fieldvy in EqQ. (12)]. The other local response
and correlation functions can be evaluated by similar meth-
ods.

As shown in Fig. 3, the perturbation has two effects: it

in the deviations from the critical point, we obtain a cubic yje|ds a discontinuous jump of the displacement at time

equation fordv, given by

4 m
NeVe

31(1+ 7.)

L snsor -2 sm sF=0
R T e

+ 7
(AB)

We define a rotation fromHK, ) to new scaling variables
(F' %), with F'=F+[v./(1+ 75.)]n. In terms of the new
variables Eq(A6) becomes

(6v)3+

1

— 6(1+ 7
R A R 2}
" 4_m

CVC 7]CVC

(6v)3+ SF'=0, (A7)

whose solution is given by E@6), with G.(x) the smallest
real root of the cubic equation

6 6(1+ )
G+ a ZC x=0.
NcVe NeVe

(A8)

The scaling function satisfie§..(0)=const andg..(x>1)
~x13

APPENDIX B: EVALUATION OF THE LINEAR
RESPONSE

The linear response functian ; is obtained by perturbing
the system with a-function pulse of strengtlk>0 at time

t, and evaluating the responée(t))m at timet>t,,

ﬁ(';'(t))l,c

ﬁE(tl) ’ (Bl)

upq(t,ty)=

where u(t) is obtained by solving Eq(12) for e(t,t;)

and it causes a shift in the “jump timet’y where the dis-
placement jumps between neighboring wells of the periodic
pinning potential. Without loss of generality we assutpe
<t,;<t;+T, whereT is the period defined in Eq5) andt,
is the jump time of the unperturbed solution.

Fort=t,, the perturbed solution can be written as

u(t,tysty) =0 (t—ty)uyt+oty;ty), (B2)

whereuy,(t;t;) is the unperturbed solution, given by

o

lJun,,(t;tJ)=nZO O(t;+(n+1)T-1)O(t—t;—nT)

1— e Mt—t;=nT)

x| n+ , (B3)

1_e*)\T

with A=h/(1+ ). The shift in the jump timedt; is deter-
mined by requiringu(t;— 6t;,t;;t;) =0, with the result

1
oty=—+In(1- eae MUTT 1)) (B4)

if t;=t;—T+t,, with t,.=(1/\)In(1+e), and 6t;=0 oth-
erwise, witha= 7(e*"—1)/(1+ 7).

The local response is obtained by averaging over a uni-
form distribution of jump times, as well as over the distribu-
tion p(h) of pinning strengths. The average over jump times

=ed(t—1,) [to simplify the notation, we drop the subscript of the perturbed velocity is given by

214201-5
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. u-Tedty 9
O
ty
gl
t-
(BS)

Carrying out the integral¥ differentiating the response with
respect toe, and evaluating the result at=0, we obtain the
mean local linear response functiony,(t—t;) =uy 4(t,t;),

—[O(t—t)uyndt;ty)]

r T at[.(t t)Uungt+6t55ty)].

with
)\ o
xi(t)=8t) 7~ <t)<(1+ T 7 &, Ot-nDe((n
M=n 1
+1)T—t)e Mt=D (nT—t+ﬁ (e”—l)—lD,
(86)

where the bracket§ - -) denote the average ovpth). For
t=0, the response consists of the sum aof-&unction con-

PHYSICAL REVIEW B 66, 214201 (2002

where the limit{—0 is intended,ws=2ws/T, with s an
integer, and

n)\e)\T (1_67XT)2
9= 15, AT

i wg

(iws_)\)z.

(B8)

For a small frequency, we can carry out the summation over
s and find

tribution and a periodic function. The frequency dependent

local response is given by
x.(w)=f0 dte“x(t),

Js
{—i(0—w) ,

Y

=1y (B7)

+<%Es

Yi(0)~uiioa, (B9)
with
nv'(9)
usi= 15y (B10)
and
n |1 1 _
:_lT X 5 ()\T_e )\T)
7 2\2T
e (e T-1)(1-e ”)> (B11)
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