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Hysteresis in driven disordered systems: From plastic depinning to magnets

M. Cristina Marchetti1 and Karin A. Dahmen2
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We study the dynamics of a viscoelastic medium driven through quenched disorder by expanding about
mean field theory in 62e dimensions. The model exhibits a critical point separating a region where the
dynamics is hysteretic, with a macroscopic jump between strongly pinned and weakly pinned states, from a
region where the sliding state is unique and no jump occurs. The disappearance of the jump at the critical point
is described by universal exponents. As suggested by Marchettiet al. @Phys. Rev. Lett.85, 1104~2000!#, the
model appears to be in the same universality class as the zero-temperature random field Ising model of
hysteresis in magnets.
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I. INTRODUCTION

Since the 1980’s the depinning of variouselastic inter-
faces, ranging from domain walls in magnets to geologi
faults, has received great attention. Many elastic interf
models with dissipative dynamics display a continuous tr
sition from pinned to sliding at a critical driving forceFc .1,2

Near this transition the behavior is universal on long len
scales, i.e., it does not depend on microscopic details,
only on general properties of the system, such as symmet
dimensions, the range of interactions, and the dynamics.
sliding state is unique, and no hysteresis can occur.3 This
class of systems has been studied extensively by renor
ization group ~RG! methods2 and numerical simulations.4

Meanwhile, a large body of experimental5,6 and numerical
work7,8 has shown that many extended condensed matter
tems with strong disorder exhibit a spatially inhomogene
plastic response when set into motion by an external driv9

In this plastic flow regime, topological defects prolifera
and the system is broken up into fluidlike regions flowi
around pinned solid regions. The elastic restoring forces
replaced by viscous flow on various scales,10 allowing for a
hysteretic response. Examples include vortex arrays in di
dered superconductors, charge density waves~CDW’s! in an-
isotropic metals, colloids, and many others. Only for we
disorder can these extended systems be described as e
objects pulled through a quenched random medium by a
form force F. Although severalmean-field~MF! models of
dissipative dynamics with locally underdamped relaxat
have been proposed in the literature in various phys
contexts9,11,12 and shown to exhibit hysteresis, very little
known analytically about the behavior of such models
finite dimensions. This paper provides analytical RG res
for a viscoelastic model that was introduced and previou
studied in MF theory by Marchettiet al.,13 and makes an
important contribution toward the identification of universa
ity classes for nonequilibrium disordered systems. In Ref.
it was shown that in MF theory the model has a critical poi
separating continuous from hysteretic dynamics. In this
per we show that in finite dimensions the behavior maps o
critical hysteresis in disordered magnets as modeled by
zero temperature nonequilibrium random field Ising mo
0163-1829/2002/66~21!/214201~6!/$20.00 66 2142
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~RFIM!.14 By showing that the two models are in fact in th
same universality class we obtain the critical exponents
hysteresis in plastic flow in an expansion in 62e dimen-
sions.

II. DRIVEN VISCOELASTIC MODEL

In Ref. 13 it was proposed that a description of she
deformations in the plastic regime may be obtained by
cusing on the dynamics of coarse-grained degrees of free
~the solidlike regions! that are allowed to slip past each othe
The model of a driven viscoelastic medium is then obtain
by replacing the elastic couplings of displacements in
coarse-grained model of an overdamped driven elastic
dium with Maxwell-type couplings of velocities.13 Consider-
ing, for simplicity, the overdamped dynamics of a sca
field, the equation of motion for the local displacement
discrete lattice sitesi, u(r ,t)→ui(t), is

g0u̇i5(̂
j &
E

0

t

dsm i j e
(t2s)/t@ u̇ j~s!2u̇i~s!#1F1Fi~ui !,

~1!

where the dot denotes a time derivative, the summation is
sitesj that are nearest neighbors toi andg0 is the friction. If
all the nearest-neighbor elastic couplings are equal (m i j 5m
>0), the first term on the right hand side of Eq.~1! is the
discrete Laplacian ind dimensions. The second term is th
homogeneous driving force,F, andFi(ui) denotes the pin-
ning force arising from a quenched random potential,Vi(ui),
Fi(ui)52dVi /dui5hiY(ui2b i), with Y(u) a periodic
function with period 1, andb i random phases uniformly
distributed in@0,1#. The random pinning forceshi are dis-
tributed with probabilityr(h)5e2h/h0/h0, of width h0. The
model can be used to describe pure shear deformati
where the interactions among the degrees of freedom
transverse to the direction of mean motion. As shown in R
13, the integrodifferential equation can be transformed int
second order differential equation, given by

tüi1S g2t
]Fi

]ui
D u̇i5(̂

i j &
h i j @ u̇ j2u̇i #1F1Fi~ui !, ~2!
©2002 The American Physical Society01-1
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with h i j 5m i j t. The MF critical linehc(t) separating con-
tinuous from hysteretic dynamics was obtained in Ref.
and is shown in the inset of Fig. 1.

In this paper we consider the limitt50, with h5mt
Þ0, referred to as the viscous limit, and study the criti
point along thet50 line. The MF analysis suggests that a
finite value oft may be irrelevant, and the large scale b
havior can be generically described byt50. In this limit the
model reduces to

u̇i5(̂
j &

h i j @ u̇ j2u̇i #1F1Fi~ui !. ~3!

We have introduced dimensionless variables by incorpo
ing g0 in our unit of time and scaling all forces and velociti
by the width h0 of the disorder distribution. The relevan
dimensionless tuning parameters are then the strengthh of
the viscous coupling and the driving force,F. The MF solu-
tion of Eq. ~3! for piecewise parabolic pinning potential wa
obtained in Ref. 13 and is given by

v̄5 K 1

T~hi !
L , ~4!

where^•••& denotes an average over disorder andT(hi) is
the period of thei th degree of freedom~i.e., the time over
which the displacementui is incremented by 1!,

T~h!5
11h

h F lnS 2g1h

2g2hD G for h<2g,

T~h!5` for h.2g, ~5!

with g5F1h v̄. The various types of dynamical respons
are shown in Fig. 1. For strong coupling~relative to disor-
der!, h.hc , a marginally pinned degree of freedom push
over its neighbors, driving a vertical hysteretic jump in t

FIG. 1. Typical MFv2F curves fort50 andh524 ~dashed-
dotted! line, h5hc59.745 ~solid line!, and h56 ~dashed! line.
The inset shows the phase diagram in the (h,t) plane. The shaded
area is the region where the dynamics is hysteretic.
21420
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v̄2F curve between strongly pinned~slowly moving! and
weakly pinned~fast moving! states. For weak coupling (h
,hc) most degrees of freedom advance independently,
the v̄2F curve has no macroscopic jumps. In MF the hy
teresis disappears at~and below! a special valueh5hc ,
where thev̄2F curve has a vertical slope. Preliminary r
sults indicate the same for simulations in three dimensi
~up to fluctuations!. Figure 2 shows a schematic phase d
gram for the dynamical model defined by Eq.~3! in the
(F,h) plane. The MF critical point (Fc ,hc) is obtained from
x5dv̄/dF→` and d2v̄/dF2→`, wherex is the static re-
sponse function. As shown in Appendix A, near this critic
point the velocityv̄2vc , with vc5 v̄(hc ,Fc), obeys a uni-
versal scaling law

v̄2vc;ur ubG6S f 8

ur ubdD , ~6!

where r 5(h2hc)/hc , and f 85 f 6vchcur u/(11hc), with
f 5F2Fc(hc), is a~nonuniversal! rotation between the con
trol variables (r , f ) and the scaling variables (r , f 8). The 6
refers to the sign ofr. In MF theory the critical exponents
have the valuesbMF51/2 anddMF53.

III. BEYOND MEAN-FIELD THEORY

A. Formalism

Here we set up the formalism to study fluctuations ab
MF theory. We use the method of Martin, Siggia, and Ro
~MSR! to transform the stochastic equation of motion~3!
into a field theory. This is done by introducing a generati
functional Z, which contains the sum over the probabilitie
of all possiblepaths~i.e., microscopic configurations! which
the system follows for different configurations of disorder
the forceF is slowly increased. The generating functional
written as the exponential of an action, which is then ren
malized perturbatively by standard methods. The MSR f

FIG. 2. Schematic MF phase diagram and RG flows.~a! The
bold curves are the critical linesFc(h) for the onset of the vertica

jump in the MF response~i.e., wheredv̄/dF→`) when the forceF
is ~i! increased adiabatically from a static random configuration
F50 ~up!, and ~ii ! decreased adiabatically from1` ~down!. The
critical point studied here is at the end of these lines@hc ,Fc(hc)#.
~b! RG flows below six dimensions in the (x21,u) plane. The MF
fixed point becomes unstable belowd56 and the critical behavior
is obtained by linearizing around the Wilson-Fisher~WF! fixed
point.
1-2
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HYSTERESIS IN DRIVEN DISORDERED SYSTEMS: . . . PHYSICAL REVIEW B 66, 214201 ~2002!
malism was adapted to driven systems by Narayan
Fisher to describe the depinning of an elastic model
CDWs.2 It was later employed by Dahmen and Sethna
study the hysteretic response of disordered magnets.14 Here
we only give a very sketchy summary of the method a
refer to the literature for details. The crucial point is to re
ognize that the coarse grained local velocities (v i defined
below! in the present model play the role of local magne
zations in the RFIM. The formal manipulations then follo
closely those of Ref. 14, although important differences
cur in the detailed calculation of the response and correla
functions.

The functionalZ is defined as a product ofd functions
~one for each site!, each of which imposes that the dynami
of eachui is described at all times by equation of motion~3!.
The d functions are then rewritten using a standard ident
so that

1[Z5E @du#@dû#J@u#eS, ~7!

with ûi MSR auxiliary fields. HereJ@u# is a functional Jaco-
bian chosen so thatZ integrates to unity andS is an action
given by

S5 i E
t
ûiF u̇i2(̂

i j &
h i j @ u̇ j2u̇i #2F2Fi~ui !G , ~8!

where^ i j & denotes nearest-neighbor pairs. To study per
batively fluctuations about MF theory we change variab
from ui and ûi to the local velocitiesv i5(1/h)( jh i j u̇ j by
introducing another auxiliary field,v̂ i . The MF solution
(v0 ,v̂0) is the saddle point of the resulting generating fun
tional. By expanding about this solution and shifting t
definition of v to v2v0, ~and absorbing a factori in the
definition!, we obtain the generating functional2,14

Z̄5E @dv#@dv̂#eSeff, ~9!

with an effective action

Seff52(
i j

E
t
dth i j

21v̂ i~ t !v j~ t !

1(
j

(
m,n50

`
1

m!n! Et1

•••E
tm1n

3umn~ t1 , . . . ,tm1n!v̂ j~ t1!•••

3 v̂ j~ tm!v j~ tm11!•••v j~ tm1n!. ~10!

umn are the linear and nonlinearlocal response and con
nected (&c) correlation functions, of the form

umn5
]

]e~ tm11!
•••

]

]e~ tm1n!
^u̇~ t1!•••u̇~ tm!& l ,c . ~11!
21420
d
f

o

d
-

-

-
n

,

r-
s

-

The suffix l in Eq. ~11! indicates that the response and co
relation functions are obtained by solving the MF equat
with fixed local fields v0 and an infinitesimal perturbation
he(t,t1), at t1,t,

~11h!] tuj~ t !5F1hv0 j1F j~uj !1he~ t,t1!. ~12!

The effective action~10! has the same structure as that of t
spin model in Ref. 14, with local velocitiesv i replacing local
magnetizations. Note that while in the RFIM at fixed field a
spins are fixed in time~in the steady state!, in the CDW
model each phase is subject to a quasiperiodic noise du
its coupling to the neighboring sites that move in a perio
potential even at a fixed force. In the calculation done h
this additional noise is averaged out and does not seem
affect the scaling results on long length scales. A deta
study of whether or not it matters on long length scales
ways not captured by this approach is left to future work

B. Results

The response function of ordern is calculated by perturb-
ing the system with n d-function pulses of strength
e1 ,e2 , . . . ,en at t1,t2,•••,tn , and evaluating the re
sponse at a timet.tn . In contrast to the case of drive
CDW’s,2 terms of order;e2lT(h), with l5h/(11h), can-
not be neglected in the calculation, as, even when the m
velocity is very small, a fraction of degrees of freedom m
be sliding freely, with corresponding large periods. Furth
more, the response must be evaluated over the entire his
to obtain the correct low frequency behavior. An example
such a calculation for the simplest case of the linear respo
function is shown in Appendix B. Although the details of th
calculation for the present model are different from the s
model, we find that theumn of the two models have indee
the same long wavelength and low frequency behavior,
the effective actions of the two models are identical. Con
quently, the RG analysis of the viscoelastic model is
same as for the RFIM,14 and is not reproduced here. W
obtain the samee expansion to all orders ine. Note that
while the e expansion for theequilibrium RFIM is
controversial,15 and thee expansion for the nonequilibrium
RFIM has been mapped onto that of the equilibrium RF
~Ref. 14! to all orders ine, our main result here does no
depend on the outcome of this controversy. The mapping
the plastic CDW depinning model onto the hysteretic RF
is based on mapping the actions of the two models onto e
other, by identifying the local velocities in the CDW mod
with the local magnetizations in the spin model.16 This map-

TABLE I. Universal exponents for the critical point discussed

the text. The exponentsb andd describe howv̄ scales withF and
h, respectively.n is the correlation length exponent.

Exponents Mean field e expansion

b 1/2 1/22e/61O(e2)
1/n 2 22e/31O(e2)
bd 3/2 3/210.0833454e2
1-3
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M. CRISTINA MARCHETTI AND KARIN A. DAHMEN PHYSICAL REVIEW B 66, 214201 ~2002!
ping holds independently of the subsequente expansions for
the respective critical exponents. The critical exponents
the two systems are the same and are given in Table17

Fourier transforming the fieldsv and v̂ in both space and
time, the quadratic part of the effective action is given by

Seff
G 52E

q,v
v̂~2q,2v!@hh21~q!2u1,1~v!#v~q,v!

1
1

2Eq,v
v̂~2q,2v!u2,0~v!v̂~q,v!, ~13!

where u1,0 is trivially zero because we expand around t
stationary point. In the long wavelength and low frequen
limit, we approximateh21(q)'(1/h)1Kq2 and u1,1(v)
'u1,1

stat1 iva, whereu1,1
stat5hn8(g0)/(11h), with g05hv0

1F. The functionn(g) is a scaled mean velocity defined
Eq. ~A1! and the prime denotes derivative with respect tog.
u1,1

stat anda are given in Appendix B. The correlation functio
is u2,0(v)'2pd(v)@^(1/T)2&h2^1/T&h

2#. The bare propaga
tor is given by Gv̂v(q,v)'@2 iva1hKq22x21#, where
x5@u1,1

stat21#21 is precisely the static response to a mon
tonically increasing external force calculated in MF theo
At the MF critical point x2150 and the bare propagato
becomes diffusive,Gv̂v(q,v50);1/q2, while the correla-
tion function is static, withGvv(q,v);d(v)/q4. This be-
havior is the same as for the RFIM. In contrast, the b
propagator for drivenelasticCDW’s is always diffusive even
away from the critical point.

To set up a RG calculation, we need to consider ter
beyond Gaussian in the action. To obtain an approxim
effective action, we Fourier transform the fields in tim
retain only the low frequency limit of the response fun
tions, and then transform back to time. In the static lim
the u1,2 term has a bare valueu1,2(v1 ,v2)'w,
with w;h2n9(g0)/(11h), and u1,3(v1 ,v2 ,v3)'u
5h3n-(g0)/(11h). Note that w50 at the MF critical
point. We then obtain

Seff'Seff
G 1(

i
E

t
H w

2
v̂ i@v i~ t !#21

u

6
v̂ i~ t !@v i~ t !#3J ,

~14!

which is identical to the effective action for the soft sp
RFIM,14 with the local velocities here playing the role o
the local magnetizations in the RFIM. The generic behav
at long time and length scales is therefore identical to t
of the RFIM. To perform the coarse-graining transformatio
as usual we integrate out modes in the wave vector s
L/b,q,L (b.1), rescale coordinates asx5bx8 and
t5bzt8, and choose the rescaling of the fields so t
the quadratic part of the action is unchanged at the crit
point (x2150). This requires z52 and yields umn8
5b[ 2(m1n)12]d/212numn .

If d.8, all umn other than those yielding quadratic term
in the action renormalize to zero and become irrelevan
large scales, indicating that the MF line for the onset of
21420
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vertical jump in thev̄2F curve ~wherex2150 andwÞ0)
remains critical.17 The MF scaling exponents are exact in th
case.

For d,8 we need to distinguish two cases, depending
whetherw8;b42d/2w is initially finite or zero. A bare action
with x2150 andwÞ0 at the onset lineFc(h) corresponds
to the hysteretic regionh.hc . In this case the RG analysi
carried out by Dahmen and Sethna for the RFIM shows t
w flows to`, suggesting a sharp jump onset in the hystere
loop for h.hc . A bare action withx2150 andw50 cor-
responds to the critical point of interest here. If the barew is
zero, we must consider higher order terms. In particular
find that u8;b62du, while all the higher order respons
functions are irrelevant ford562e. So dc56 is the upper
critical dimension and ford.6 the critical exponents nea
(Fc ,hc) are given by MF theory. Below six dimensions,u is
relevant. Corrections to the critical exponents were co
puted in 62e dimensions in Ref. 14, the results are summ
rized in Table I.

Many open questions remain. First the RG calculat
near (Fc ,hc) described here applies forh,hc .14 More
work is needed to extend it abovehc , as well as for a proper
understanding of the noise in this region. Secondly,
would like to study the finite range viscoelastic model for
general value oft.
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APPENDIX A: MEAN-FIELD SCALING

Here we derive the scaling behavior near the MF criti
point. It is convenient to rewrite the mean velocity as

v̄5
n~g!

11h
~A1!

by introducing the functionn(g),

n~g!5E
0

2g

dh r~h!
h

lnS 2g1h

2g2hD , ~A2!

with r(h) the normalized distribution of pinning strength
The MF critical points,h5hc , F5Fc , and v̄5vc are the
points where the mean velocity curve has an infinite slo
The conditions for the critical point easily are expressed
terms n(g) by differentiating both sides of Eq.~A1! with
respect tog, to obtain

S ] v̄
]F

D
h

→`⇒n8~g!5
11h

h
, ~A3!
1-4
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S ]2v̄

]F2D
h

→`⇒n9~g!50, ~A4!

where the prime denotes a derivative with respect tog.
To determine the critical lineFc(h) where the slope of

the (v̄,F) curve diverges, we solve Eqs.~A1!, ~A3!, and
~A4! for h nearhc . By expanding both sides of Eq.~A1! in
dgc(h)5gc(h)2gc and dh5h2hc , and using that
n9(gc)50, we obtain dgc(h);6@22dh/hc

2nc-#1/2, with
nc-5n-(gc),0. We then usedFc(h)5dgc(h)2vcdh

2hcd v̄c2dhd v̄c , expand both sides of Eq.~A1!, and elimi-
natedgc(h) between the two equations, to obtain

dFc~h!52
vc

11hc
dh6

2

3hc
2~11hc!

F22

nc-
G 1/2

~dh!3/2.

~A5!

Note that the critical lineFc(h) is rotated as compared to th
critical line in the magnetic system. To obtain the scali
function, we now write v̄(F,h)5 v̄(Fc ,hc)1d v̄ in Eq.
~A1!, expand around the critical point, and eliminatedg in
favor of d v̄, dh, anddF. Retaining only terms up to cubi
in the deviations from the critical point, we obtain a cub
equation ford v̄, given by

hc
4nc-

3!~11hc!
~d v̄ !31

1

11hc
dhd v̄1

vc

11hc
dh1dF50.

~A6!

We define a rotation from (F,h) to new scaling variables
(F8,h), with F85F1@vc /(11hc)#h. In terms of the new
variables Eq.~A6! becomes

~d v̄ !31
6

hc
4nc-

dhd v̄1
6~11hc!

hc
4nc-

dF850, ~A7!

whose solution is given by Eq.~6!, with G6(x) the smallest
real root of the cubic equation

G 6
3 6

6

hc
3nc-

G61
6~11hc!

hc
4nc-

x50. ~A8!

The scaling function satisfiesG6(0)5const andG6(x@1)
;x1/3.

APPENDIX B: EVALUATION OF THE LINEAR
RESPONSE

The linear response functionu1,1 is obtained by perturbing
the system with ad-function pulse of strengthe.0 at time
t1 and evaluating the response^u̇(t)& l ,c at time t.t1,

u1,1~ t,t1!5
]^u̇~ t !& l ,c

]e~ t1!
, ~B1!

where u(t) is obtained by solving Eq.~12! for e(t,t1)
5ed(t2t1) @to simplify the notation, we drop the subscri
21420
0 on the local fieldv0 in Eq. ~12!#. The other local respons
and correlation functions can be evaluated by similar me
ods.

As shown in Fig. 3, the perturbation has two effects:
yields a discontinuous jump of the displacement at timet1
and it causes a shift in the ‘‘jump time’’tJ where the dis-
placement jumps between neighboring wells of the perio
pinning potential. Without loss of generality we assumetJ
<t1<tJ1T, whereT is the period defined in Eq.~5! and tJ
is the jump time of the unperturbed solution.

For t>t1, the perturbed solution can be written as

u~ t,t1 ;tJ!5Q~ t2t1!uunp~ t1dtJ ;tJ!, ~B2!

whereuunp(t;tJ) is the unperturbed solution, given by

uunp~ t;tJ!5 (
n50

`

Q~ tJ1~n11!T2t !Q~ t2tJ2nT!

3Fn1
12e2l(t2tJ2nT)

12e2lT G , ~B3!

with l5h/(11h). The shift in the jump timedtJ is deter-
mined by requiringu(tJ2dtJ ,t1 ;tJ)50, with the result

dtJ52
1

l
ln~12eae2l(tJ1T2t1)!, ~B4!

if tJ>t12T1te , with te5(1/l)ln(11ea), anddtJ50 oth-
erwise, witha5h(elT21)/(11h).

The local response is obtained by averaging over a u
form distribution of jump times, as well as over the distrib
tion r(h) of pinning strengths. The average over jump tim
of the perturbed velocity is given by

FIG. 3. Time evolution of the displacementu(t). Both the un-
perturbed~dashed! and perturbed~solid line! solutions are shown.
The perturbed solution is obtained by applying ad-function pulse at
time t1, with tJ<t1<tJ1T.
1-5
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^u̇& tJ
5E

t12T

t12T1tedt1
T

]

]t
@Q~ t2t1!uunp~ t;tJ!#

1E
t12T1te

t1 dt1
T

]

]t
@Q~ t2t1!uunp~ t1dtJ ;tJ!#.

~B5!

Carrying out the integrals,18 differentiating the response wit
respect toe, and evaluating the result ate50, we obtain the
mean local linear response functionx l(t2t1)5u1,1(t,t1),
with

x l~ t !5d~ t !
h

11h
1Q~ t !K hl

~11h!T (
n50

`

Q~ t2nT!Q~~n

11!T2t !e2l(t2nT)F S nT2t1
1

lTD ~elT21!21G L ,

~B6!

where the bracketŝ•••& denote the average overr(h). For
t>0, the response consists of the sum of ad-function con-
tribution and a periodic function. The frequency depend
local response is given by

x̃ l~v!5E
0

`

dteivtx l~ t !,

5
h

11h
1K 1

T (
s

gs

z2 i ~v2vs!
L , ~B7!
.

B

lo

21420
t

where the limit z→0 is intended,vs52ps/T, with s an
integer, and

gs52
hlelT

11h

~12e2lT!2

lT

ivs

~ ivs2l!2
. ~B8!

For a small frequency, we can carry out the summation o
s and find

x̃ l~v!'u1,1
stat1 iva, ~B9!

with

u1,1
stat5

hn8~g!

11h
, ~B10!

and

a52
h

11h K 1

l
1

1

2l2T
~elT2e2lT!

2
2

l3T2
~elT21!~12e2lT!L . ~B11!
v.
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