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Possible symmetries of the superconducting order parameter in a hexagonal ferromagnet

K. V. Samokhin
Department of Physics, Brock University, St. Catharines, Ontario, Canada L2S 3A1

~Received 20 August 2002; published 31 December 2002!

We study the order-parameter symmetry in a hexagonal crystal with coexisting superconductivity and fer-
romagnetism. An experimental example is provided by carbon-based materials, such as graphite-sulfur com-
posites, in which an evidence of such coexistence has been recently discovered. The presence of a nonzero
magnetization in the normal phase brings about considerable changes in the symmetry classification of super-
conducting states compared to the nonmagnetic case.
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The recent discoveries of superconductivity coexist
with ferromagnetism in transition element compounds s
as ZrZn2 ~Ref. 1! and UGe2 ~Ref. 2! have called for a revi-
sion of our views on the interplay of the two phenomen
Symmetry considerations can help us to identify the poss
order parameters, even if the microscopic mechanism
pairing is not firmly established, which is often the case
the systems with strong electron correlations. The stand
group-theoretical classification of the superconducting st
in crystals3 ~for a review, see Ref. 4! is not applicable if the
normal state is ferromagnetic. In Ref. 5, the symmetry ana
sis was extended to cover the magnetic case, and also a
plete classification of the superconducting states in a cu
ferromagnet such as ZrZn2 was done. The orthorhombi
symmetry, which is appropriate for UGe2, was studied in
Ref. 6.

Very recently, a strong evidence was found of superc
ductivity apparently coexisting with ferromagnetism
yet another class of materials, namely, graphite-su
composites7 ~see also Ref. 8!. The superconducting and fe
romagnetic behavior in highly oriented pyrolitic graphite w
reported in Ref. 9. The experimental data suggest that
superconductivity is associated with the graphite plan
whose symmetry is hexagonal. In this article, we study
possible pairing symmetries and the related nodal struct
of the superconducting gap in a hexagonal ferromagnet,
complementing the analysis in Refs. 5 and 6. The detail
the electronic spectrum of graphite,10 the nature of ferromag
netic and superconducting correlations, and also the fact
its single layer has semimetallic properties with some pe
liar physics related to that11 do not influence our results. W
assume that a well-defined Fermi surface exists, and tha
standard BCS-Gor’kov phenomenology is applicable, i
the origin of superconductivity is the Cooper pairing of fe
mionic quasiparticles with opposite momenta, so that the
der parameter is an anomalous average of the pair-crea
operator.

The starting point of the group-theoretical analysis is
symmetry groupG of the normal state, which is defined as
group of transformations which leave the system Ham
tonian invariant. In nonmagnetic superconductors, time
versal symmetry is not broken, andG5S3K3U(1), where
S is the space group of the crystal,K is time reversal opera
tion, and U(1) is the gauge group. In contrast, in magne
crystals time-reversal symmetry is broken, andG5SM
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3U(1), whereSM is the magnetic space group which is
group of symmetry operations leaving both the crystal latt
~the microscopic charge density! and the magnetization den
sity M invariant.12 For example, if there is a crystal poin
group rotationR, which transformsM to 2M then the com-
bined operationKR will be an element ofSM because the
time reversal restores the originalM not affecting the lattice
symmetry. We assume that the spin-orbit coupling is su
ciently strong so that the space-group elements act on
orbital and spin coordinates simultaneously. As shown
Ref. 13, the symmetry analysis should be modified in
magnetic case due to the fact that the operationKR is anti-
unitary.

The crystal structure of graphite is described by layers
honeycomb lattices of carbon atoms, the precise arrangem
of the layers along thez axis being not important for ou
analysis. We make the usual assumption that the subgrou
translations~which are replaced by magnetic translations
our case! does not affect the momentum dependence of
order parameter. Therefore, the space group in the param
netic phase can be replaced by the hexagonal point gr
D6h5D63Ci , whereCi5$E,I % ~we assume that the spac
group contains the inversion operationI ). The groupD6 is
generated by the rotationsC6z about thez axis by an angle
p/3, and the rotationsC2x about thex axis by an anglep. In
the ferromagnetic phase, there are three possibilities for
easy direction of magnetization:M can be along thez axis,
the x axis, or thea axis, whereâ5(A3/2,1/2,0). Here we
study only the first possibility; the other cases can be trea
in a similar fashion. IfM is along thez axis then the sym-
metry of the crystal is described by the magnetic gro
D6(C6)3Ci , which is generated by~i! the rotationsC6z , ~ii !
the operationsKC2x which combine the rotationsC2x with
the time reversal, and~iii ! the inversionI. The subgroup in
parentheses~the unitary subgroup! incorporates all symmetry
elements which are not multiplied by the antiunitary ope
tion KC2x , i.e.,D6(C6)5C61KC2x3C6. @If M is along the
x or a axes then the symmetry is described by the magn
groupD2(C2)3Ci , whereD2(C2)5C21KC2z3C2.#

In the presence of spin-orbit coupling, spin is not a go
quantum number and is replaced by pseudospin. The
electron Hamiltonian H0 in the normal state isH0

5(k@e1(k)ck1
† ck11e2(k)ck2

† ck2#, where e6(k) are the
energy spectra for the pseudospin-up and pseudospin-d
©2002 The American Physical Society09-1
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sheets of the Fermi surface. The transformation propertie
the single-electron statesuk,1& anduk,2& with respect to the
magnetic symmetry elements are the same as those o
spin eigenstatesuk,↑& and uk,↓&, which means that
C6zck,6

† C6z
215e7 ip/6cC6zk,6

† , (KC2x)(lck,6
† )(KC2x)

21

56 il* c2C2xk,6
† , andIck,6

† I 215c2k,6
† . Here,l is an arbi-

trary c number~note that the combined operationKC2x is
antilinear!. The transformation properties of the superco
ducting order parameter can be derived using the mean-
approximation for the pairing Hamiltonian

HMF5
1

2 (
k

(
a,b56

@Dab~k!cka
† c2k,b

† 1H.c.#. ~1!

From the anticommutation relations forcka , we see that
D11(k) and D22(k) are odd functions ofk, but D12(k)
52D21(2k) does not have a definite parity.

The order-parameter matrix can be cast in a more fam
form D(k)5( i ss2)d(k)1( is2)d0(k), where d(k)52d
(2k) andd0(k)5d0(2k) are the pseudospin-triplet and th
pseudospin-singlet components, respectively.4 It is conve-
nient to introduce an orthogonal basis of unit vectorsê1 , ê2 ,
ê3 in the pseudospin space, such thatê3iM and use the fol-
lowing representation of the vector order parameter:d(k)
5ê1d2(k)1ê2d1(k)1ê3d3(k), where ê65(ê16 i ê2)/A2
and d15(d11 id2)/A25D22 /A2, d25(d12 id2)/A2
52D11 /A2, d35(D121D21)/2. Also, d05(D12

2D21)/2. From Eq.~1!, we obtain the transformation rule
for the order parameters under the magnetic group op
tions:

C6zd6~k!5e6 ip/3d6~C6z
21k!,

C6zd3~k!5d3~C6z
21k!,

KC2xd6~k!5d6* ~C2x
21k!,

KC2xd3~k!52d3* ~C2x
21k!, ~2!

and

C6zd0~k!5d0~C6z
21k!,

KC2xd0~k!5d0* ~C2x
21k!. ~3!

Because of the inversion symmetry, the triplet and the sin
order parameters can be considered separately.

Triplet order parameter. The superconducting order pa
rameter transforms according to one of the irreducible rep
sentationsG of the normal-state symmetry groupG. In our
case,G contains the antiunitary operationKC2x , and the
standard symmetry analysis should be modified: instead
usual representations, one should use corepresentatio
the magnetic point groupD6(C6), which can be derived
from one-dimensional representations of the unitary s
group C6.13 The results for odd corepresentationsG are
listed in Table I. Note that the action of the unitary a
21250
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antiunitary orbital symmetry elements on scalar functio
f (k) is defined as follows:R f(k)5 f (R21k), and KR f(k)
5 f * (2R21k).

The basis functions of the corepresentations in Tabl
vanish on some lines or planes in the momentum space.
though the specific form of the basis function is not impos
by symmetry@for example, anyf G(k) can be multiplied by
an arbitrary real function ofkz

2 , kx
21ky

2 , (ky6 ikx)
6, etc.#,

the position of the zeros ink space is independent of th
choice off G(k). It can be checked that the zeros of the ba
functions from Table I are all required by symmetry, and
the other hand, there are no other symmetry-imposed z
of the basis functions.

All corepresentations ofD6(C6) are one dimensional
therefore, the order parameter can be represented as

dG~k!5 ih2ê1 f G2
~k!1 ih1ê2 f G1

~k!1h3ê3f G3
~k!. ~4!

Thus, the order parameter has three componentsh1 , h2 ,
andh3, which enter the Ginzburg-Landau~GL! free energy
and can ber dependent, in general. It is obvious from Eq
~2! and ~4! that the orbital symmetries ofd1 , d2 , andd3,
which are described by the corepresentationsG1 , G2 , and
G3, respectively, should all be different. In Table II, we li
the combinations of the orbital corepresentations wh
give rise to the same symmetryG of the vector d. For
example, the vectord(k)5 ih2ê1 f Bu

(k)1 ih1ê2 f 1E1u
(k)

1h3ê3f 2E2u
(k) transforms according to the corepresentat

2E2u .

TABLE I. The character table and the examples of the ba
functions for the odd irreducible corepresentations of the magn
point groupD6(C6). The overall phases of the basis functions a
chosen so thatKC2xf G(k)5 f G(k). v5exp(2pi/3) andl1,2 are ar-
bitrary real constants.

G E C6z f G(k)

Au 1 1 kz

Bu 1 21 l1(ky1 ikx)
31l2(ky2 ikx)

3

1E1u 1 2v* ky1 ikx
2E1u 1 2v ky2 ikx
1E2u 1 v* kz(ky2 ikx)

2

2E2u 1 v kz(ky1 ikx)
2

TABLE II. The sets of orbital corepresentations correspond
to the same symmetry of the triplet order parameterdG(k) @see Eq.
~4!#.

G @ f G1
(k), f G2

(k), f G3
(k)#

Au (2E1u ,1E1u ,Au)
Bu (2E2u ,1E2u ,Bu)
1E1u (Au ,2E2u ,1E1u)
2E1u (1E2u ,Au ,2E1u)
1E2u (Bu ,2E1u ,1E2u)
2E2u (1E1u ,Bu ,2E2u)
9-2
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The transformations of the pseudospin vectord under the
magnetic symmetry elements can be interpreted as op
tions acting onh5(h1 ,h2 ,h3)T. Namely, for a corepre-
sentationG, C6zh(r)5xG@C6z#h(r), wherexG is the char-
acter ofC6z from Table I. Also, because of our choice of th
overall phases of the basis functions~see the caption to Tabl
I! and the presence of the factorsi on the right-hand side o
Eqs.~4!, KC2xh(r)5h* (r). Note that there are no symme
try operations that transform, say,h1 to h2 , etc., which has
profound consequences for the GL theory of ferromagn
superconductors. Indeed, the GL free energy contains
combinations of the order-parameter components and
spatial gradients that are invariant under the transformat
from G. The fact that the only change that occurs toh under
the magnetic symmetry operations is the multiplication b
phase factor, which is the same for all three compone
means that there are more invariant terms allowed in the
functional for a ferromagnetic superconductor than for
nonferromagnetic counterpart. The general form of the u
form terms in the free-energy density is

F5 (
i j 56,3

Ai j ~T!h i* h j1 (
i jkl 56,3

Bi j ,klh i* h j* hkh l , ~5!

where Ai j is a real symmetric matrix, and the matrixB is
symmetric with respect toi↔ j and k↔ l , and satisfies the
following condition: Bi j ,kl5Bkl,i j . The critical temperature
Tc is defined as the temperature, at which one of the eig
values ofA changes sign. AtT.Tc , A is positive definite,
andh15h25h350. BelowTc , all three components ofh
are nonzero, in general. In addition to Eq.~5!, the GL func-
tional contains a variety of the gradient terms. All this c
lead to a rich phase diagram, which we shall not disc
here. Let us just note Eq.~5! is formally equivalent to a
model of a three-band superconductor with three scalar o
parameters of the same symmetry.

An important consequence of the above results is that
gap in the spectrum of Bogoliubov quasiparticles goes
zero at some points or lines at the Fermi surface. The e
tation spectrum can be obtained by diagonalizing the Ham
tonian H5H01HMF . The quasiparticle energyE(k) van-
ishes at somek if the following condition is satisfied:

e1
2 e2

2 12e1
2 ud1u212e2

2 ud2u212e1e2ud3u2

1u2d1d21d3
2u250. ~6!

Thus, the condition for the gap zeros on the pseudospin
sheet of the Fermi surface@at e1(k)50], is that d2(k)
5d3(k)50, i.e., f G2

(k)5 f G3
(k)50. For the gap zeros on

the pseudospin-down sheet@at e2(k)50], we must have
d1(k)5d3(k)50, i.e., f G1

(k)5 f G3
(k)50. Using Tables I

and II, we see that if the symmetry ofd corresponds to the
corepresentationsBu , 1E2u , or 2E2u , then all three orbital
basis functions have zeros on the linekx5ky50, so that the
energy gap vanishes at the poles of both sheets of the F
surface. On the contrary, for the1E1u and 2E1u symmetries,
the gap goes to zero at the poles of one of the sheets, w
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the other sheet remains fully gapped. For theAu symmetry,
there are no symmetry-imposed gap zeros.

In the discussion above, we implicitly assumed that
three components ofd have comparable magnitude. Mor
realistic scenario is that the conditions for the appearanc
superconductivity are more favorable on one of the sheet
the Fermi surface, so that only one component of the or
parameter, sayd2 on the pseudospin-up sheet, is domina
Then, thed1 component is induced by the interband inte
actions of the formck1

† c2k,1
† ck82c2k8,2 , which are ex-

pected to be small if the spin-orbit coupling is weak~these
interactions vanish at zero spin-orbit coupling because of
spin conservation!. Also, if the exchange band splittin
greatly exceeds the superconducting energy scale, whic
of the order of Tc then the inter-band interaction
ck1

† c2k,2
† ck82c2k8,1 responsible for thed3 component are

negligibly small. While this is the case in materials such
ZrZn2 and UGe2, it is not clear whether it is also true for th
graphite-based ferromagnets. If thed3 component can indeed
be neglected, then the conditions for the presence of the
zeros become less restrictive, so that, as seen from Tab
and II, the energy gap always has either line and/or po
nodes on both sheets of the Fermi surface.

Singlet order parameter. Similar to thed3 component of
the triplet pairing, the singlet pairing can only be realized
the exchange band splitting is less than the superconduc
Tc ~Chandrasekhar-Clogston limit!.14 This limit can be
slightly exceeded if to consider the possibility of the Coop
pairs having a nonzero momentum~Larkin-Ovchinnikov-
Fulde-Ferrell state!.15 The symmetry analysis can be don
similarly to the triplet case. The only difference is that the
is only one order-parameter component, and the symmet
described by even corepresentations ofD6(C6). We have

d0,G~k!5c f G~k!, ~7!

wherec is a quantity which enters the GL functional, an
f G(k) is the basis function for the corepresentationG, see
Table III. As mentioned above,f G(k) can be multiplied by an
arbitrary real function ofkz

2 , kx
21ky

2 , (ky6 ikx)
6, etc. Under

the action of the magnetic symmetry elements,C6zc(r)
5xG@C6z#c(r), wherexG is the character ofC6z from Table
III, and alsoKC2xc(r )5c* (r ).

The condition for the gap in the excitation energyE(k) to
vanish at somek is simply

TABLE III. The character table and the examples of the ba
functions for the even irreducible corepresentations of the magn
point groupD6(C6). For all G, KC2xf G(k)5 f G(k), and l1,2 are
arbitrary real constants.

G E C6z f G(k)

Ag 1 1 1
Bg 1 21 kz@l1(ky1 ikx)

31l2(ky2 ikx)
3#

1E1g 1 2v* kz(ky1 ikx)
2E1g 1 2v kz(ky2 ikx)
1E2g 1 v* (ky2 ikx)

2

2E2g 1 v (ky1 ikx)
2
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e1e21ud0u250, ~8!

therefore, the gap nodes appear simultaneously on
sheets of the Fermi surface where the basis functionf G(k)
has symmetry-imposed zeros. From Table III, we see tha
all order-parameter symmetries, except fromAg , the gap
goes to zero either on the equators or at the poles of b
Fermi surfaces.

The expressions for the basis functions of the corepre
tations ofD6(C6) given in Tables I and III are applicable
the Fermi surface is centered around theG point of the first
Brillouin zone. It is not the case in graphite, where the Fe
surface consists of small ‘‘sausagelike’’ pockets along the
vertical edges of the hexagonal Brillouin zone, i.e., along
lines k5C6z

n ks , where n50, . . . ,5, ks52K1/32K2/3

1kzêz , andK1 andK2 are the reciprocal lattice vectors.10 It
can be easily proved that for all odd and evenE corepresen-
tations, in addition to the zeros atkx5ky50, the basis func-
tions also vanish at the vertical edges of the Brillouin zo
becauseks and C3zks are equivalent points. Similarly, if a
basis function vanishes on the planekz50 then it should also
vanish at the horizontal surfaces of the Brillouin zone, i.e.
kz56p/c0, where c0 is the lattice constant of graphit
along thez axis.
e
P
-

l

e
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The presence of the gap nodes would manifest itsel
power-law temperature dependences of the thermodyna
and transport properties.4 For example, the electronic specifi
heat at low temperatures should beC(T)/T;T2 for the first-
order point nodes,C(T)/T;T for the line nodes or the
second-order point nodes, andC(T)/T;T2/3 for the third-
order point nodes.

To summarize, we have derived a complete symme
classification of the superconducting states in a hexago
ferromagnet, considering both the triplet and the singlet p
ing channels. We have discussed the nodal structure of
gap in the excitation spectrum, and also the modification
the Ginzburg-Landau theory for ferromagnetic supercondu
ors. So far, the only experimental system, to which our
sults might be applicable is the graphite-sulfur compos
studied in Ref. 7.
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