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Possible symmetries of the superconducting order parameter in a hexagonal ferromagnet
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We study the order-parameter symmetry in a hexagonal crystal with coexisting superconductivity and fer-
romagnetism. An experimental example is provided by carbon-based materials, such as graphite-sulfur com-
posites, in which an evidence of such coexistence has been recently discovered. The presence of a nonzero
magnetization in the normal phase brings about considerable changes in the symmetry classification of super-
conducting states compared to the nonmagnetic case.
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The recent discoveries of superconductivity coexistingxU(1), whereS,, is the magnetic space group which is a
with ferromagnetism in transition element compounds suctgroup of symmetry operations leaving both the crystal lattice
as ZrZn (Ref. 1) and UGe (Ref. 2 have called for a revi- (the microscopic charge densitgnd the magnetization den-
sion of our views on the interplay of the two phenomenasity M invariant'? For example, if there is a crystal point-
Symmetry considerations can help us to identify the possiblgroup rotationR, which transformsvl to —M then the com-
order parameters, even if the microscopic mechanism ohined operatiorKR will be an element ofS,, because the
pairing is not firmly established, which is often the case fortime reversal restores the origiridl not affecting the lattice
the systems with strong electron correlations. The standargymmetry. We assume that the spin-orbit coupling is suffi-
group-theoretical classification of the superconducting stategienﬂy strong so that the space-group elements act on the
in crystals (for a review, see Ref.)4s not applicable if the ool and spin coordinates simultaneously. As shown in
normal state is ferromagnetic. In Ref. 5, the symmetry anaIyRef_ 13, the symmetry analysis should be modified in the

sis was extended to cover the magnetic case, and also a “Oagnetic case due to the fact that the operakiéhis anti-
plete classification of the superconducting states in a cubic

- Unitary.
ferromagnet such as ZrZnwas done. The orthorhombic o .
symmetry, which is appropriate for Ugewas studied in The crystal structure of graphite is described by layers of

Ref 6 honeycomb lattices of carbon atoms, the precise arrangement

Very recently, a strong evidence was found of supercon9f the _Iayers along the axis being not important for our
ductivity apparently coexisting with ferromagnetism in analysis. We make the usual assumption that the subgroup of

yet another class of materials, namely, graphite_su|fwtranslations(which are replaced by magnetic translations in

composite5 (see also Ref.)8 The superconducting and fer- our casg does not affect the momentum dependence of the

romagnetic behavior in highly oriented pyrolitic graphite was'd€" parameter. Therefore, the space group in the paramag-
petic phase can be replaced by the hexagonal point group

superconductivity is associated with the graphite planesPsn=DeXCi, whereC;={E,I} (we assume that the space

whose symmetry is hexagonal. In this article, we study thd/UP contains the inversion operatioh The groupDs is
possible pairing symmetries and the related nodal structuréd€nerated by the rotatior@, about thez axis by an angle
of the superconducting gap in a hexagonal ferromagnet, thu@/3» @nd the rotation€,, about thex axis by an angler. In
complementing the analysis in Refs. 5 and 6. The details of® ferromagnetic phase, there are three possibilities for the
the electronic spectrum of graphithe nature of ferromag- €Sy direction of magnetizatioM can be along the axis,
netic and superconducting correlations, and also the fact th&fie x axis, or thea axis, wherea=(/3/2,1/2,0). Here we
its single layer has semimetallic properties with some pecustudy only the first possibility; the other cases can be treated
liar physics related to thHtdo not influence our results. We in a similar fashion. IfM is along thez axis then the sym-
assume that a well-defined Fermi surface exists, and that thgetry of the crystal is described by the magnetic group
standard BCS-Gor’kov phenomenology is applicable, i.e.Ps(Cs) X C;, which is generated bff) the rotationCg,, (i)
the origin of superconductivity is the Cooper pairing of fer- the operationK C,, which combine the rotation€,, with
mionic quasiparticles with opposite momenta, so that the orthe time reversal, andii) the inversionl. The subgroup in
der parameter is an anomalous average of the pair-creatigrarenthese@he unitary subgrougncorporates all symmetry
operator. elements which are not multiplied by the antiunitary opera-
The starting point of the group-theoretical analysis is thetion KC,,, i.e.,Dg(Cg) = Cg+KC,y X Cq. [If M is along the
symmetry groug of the normal state, which is defined as a x or a axes then the symmetry is described by the magnetic
group of transformations which leave the system Hamil-groupD,(C,) X C;, whereD,(C,)=C,+KC,,XC,.]
tonian invariant. In nonmagnetic superconductors, time re- In the presence of spin-orbit coupling, spin is not a good
versal symmetry is not broken, agd= SXK X U(1), where  quantum number and is replaced by pseudospin. The free
Sis the space group of the cryst#l,is time reversal opera- electron HamiltonianHy in the normal state isH
tion, and U(1) is the gauge group. In contrast, in magnetic= Ek[e+(k)cl+ck++s_(k)cl_ck_], where €. (k) are the
crystals time-reversal symmetry is broken, agd=S,, energy spectra for the pseudospin-up and pseudospin-down
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sheets of the Fermi surface. The transformation properties of TABLE I. The character table and the examples of the basis
the single-electron statéls, + ) and|k, — ) with respect to the  functions for the odd irreducible corepresentations of the magnetic
magnetic symmetry elements are the same as those of ti#@int groupDg(Ce). The overall phases of the basis functions are
spin eigenstates|k,1) and |k,|), which means that chosen so thaCo,f(k)="fr(k). o=exp(2ri/3) and\, are ar-
C6zCE,¢C€zlze:iW/GCEGZk,i , (KC2x)()\CE,¢)(KC2x)_1 bitrary real constants.

==iztele ., andic) 1" '=cl, .. Here\ isanarbi- |-

E Cez fr(k)
trary ¢ number(note that the combined operati¢tiC,, is
antilineay. The transformation properties of the supercon—Au 1 1 ) 3k2 g
ducting order parameter can be derived using the mean-fiefs 1 -1 A1(Ky iK™+ N o(ky—iky)
approximation for the pairing Hamiltonian Eu 1 —o” kyFikx
2E,, 1 —w ky— ik
1 = 1 w* kz(kyfikx)2
Hur=3 2 2 [AapckcliptHel. Q) 26, 1 o kol k)2

From the anticommutation relations fa, , we see that antiunitary orbital symmetry elements on scalar functions

A, (k) andA__(k) are odd functions ok, but A, (k) , i >

=+—+A—+(—k) does not have a definite parity. : f(kl IS d‘ffl'”ed as followsRf(k)=f(R™*k), and KRf(k)
The order-parameter matrix can be cast in a more familiar™ I~ (R !‘)' ) i ,

form A(K) = (i go,)d(K) + (io,)do(k), where d(k)=—d The basis functions of the corepresentations in Table |

(—k) andd(K) =dq(— k) are the pseudospin-triplet and the vanish on some'l?nes or planes in _the mo_mer)tum space. Al-
pseudospin-singlet components, respectifelly.is conve- though the specific form of the basis function is r_10t. imposed
. . ) ) A A by symmetry[for example, anyf-(k) can be multiplied by
nient to introduce an orthogonal basis of unit vecerse,, . . 2 55 N6
~ ) ) an arbitrary real function ok;, ki+ky, (kyxiky)®, etc],
& in the pseudospin space, such tagfM and use the fol- e position of the zeros ik space is independent of the
lowing representation of the vector order paramet#k)  cpoice off, (k). It can be checked that the zeros of the basis
=e.d_(k)+e_d, (k) +eds(k), where e.=(e*i€)/\2  functions from Table | are all required by symmetry, and on
and d,=(d,;+id,)/\2=A__/y2, d_=(d;—id,)/\2  the other hand, there are no other symmetry-imposed zeros
=—A, .12, d;=(A, _+A_,)/2. Also, do=(A,_ of the basis functions.
—A_,)/2. From Eqg.(1), we obtain the transformation rules  All corepresentations oDg(Cs) are one dimensional,
for the order parameters under the magnetic group operdherefore, the order parameter can be represented as
tions:
Cord. (k)= (Colk), dr(k)=in-e.fr (kK +in.e_fr (k)+nzesfr (k). (4)
Thus, the order parameter has three components »_,
Cezdg(k)=d3(nglk), and 5, which enter the Ginzburg-LanddGL) free energy
and can be dependent, in general. It is obvious from Eqs.
Kszdi(k)Zdi(Cz_xlk), (2) and(4) that the orbital symmetries af, , d_, andds,
which are described by the corepresentatibns I'_, and
—_qx~l I'5, respectively, should all be different. In Table II, we list
KCauds(k) d3(Cack), @ the combinations of the orbital corepresentations which
and give rise to the same symmetdy of the vectord. For
example, the vectord(k)=i7_e,fg (K)+i7n, e fig (K)

— -1 ~
Ce20o(k) =do(Cg k), + nsesszzgk) transforms according to the corepresentation
2
- E,y,-

KCa,do(k)=d5 (C3,1K). ) “

Because of the inversion symmetry, the triplet and the singlett0 tﬁ/;Bs;IrEn!sTanfrts gff t(r)1reblttr?l lg?ﬁzr;se;::logﬁzéo[r;ngndlng
order parameters can be considered separately. y y P P g

Triplet order parameter The superconducting order pa- @]

rameter transforms according to one of the irreducible reprep [fr (K), Fr (K), fr(K)]
sentationd” of the normal-state symmetry growp In our * 3
case,G contains the antiunitary operatiddC,,, and the A, (PEqy *Eqy,AY)
standard symmetry analysis should be modified: instead d, (PEyy ,*Epy,By)
usual representations, one should use corepresentations &, (A4 %Eqy rEqy)
the magnetic point groug(Cg), which can be derived 2g,, (*Euy A, 2E )
from one-dimensional representations of the unitary sublg,, (By,2E 1y, 'Eoy)
group Ce.™® The results for odd corepresentatiohsare 2k, (*E,, By 2Eyy)

listed in Table I. Note that the action of the unitary and
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The transformations of the pseudospin veaamder the TABLE lll. The character table and the examples of the basis
magnetic symmetry elements can be interpreted as oper#nctions for the even irreducible corepresentations of the magnetic
tions acting ony= (7. ,7_,73)". Namely, for a corepre- Point groupDg(Ce). For all I', KCpfr(kK)=fr(k), and\,, are
sentationl’, Cq,7(r)= xr[Ce,]7(r), whereyy is the char- ~ arbitrary real constants.
acter ofCg, from Table I. Also, because of our choice of the

overall phases of the basis functidisge the caption to Table E Cez fr(k)
I) and the presence of the factaren the right-hand side of 1 1 1
Egs.(4), KCpm(r)= 7" (r). Note that there are no symme- By 1 -1 Kol A (K, + iky) 3+ MoKy — iky) %]
try operations that transform, say, to »_, etc., which has g, 1 —w* K, (K, +iK,)
profound consequences for the GL theory of ferromagneticzElg 1 Cw» K (ky—ik )
superconductors. Indeed, the GL free energy contains all_ ° 1 o (Zk ik )Xz
combinations of the order-parameter components and thg_>° 1 w (ky+ikx)2

y X

spatial gradients that are invariant under the transformations_2?
from G. The fact that the only change that occurstonder

the magnetic symmetry operations is the multiplication by &ne other sheet remains fully gapped. For Zgesymmetry,
phase factor, which is the same for all three componentgere are no symmetry-imposed gap zeros.

means that there are more invariant terms allowed in the GL | the discussion above, we implicitly assumed that all

functional for a_ferromagnetic superconductor than for it?three components off have comparable magnitude. More
nonferromagnetic counterpart. The general form of the unireg)istic scenario is that the conditions for the appearance of
form terms in the free-energy density is superconductivity are more favorable on one of the sheets of
the Fermi surface, so that only one component of the order
. , parameter, sag_ on the pseudospin-up sheet, is dominant.
F:ij:Z:s Ay ()7 7]j+ijk|2:,3 Bij st 2 mems - (9) Then, thed . component is induced by the interband inter-
actions of the formcf, ¢’y ¢ _c v —, which are ex-
whereA;; is a real symmetric matrix, and the matikis ~ Pected to be small if the spin-orbit coupling is wekese
symmetric with respect to—] andk«I, and satisfies the mtgracuons van_|sh at zero spin-orbit coupling becausg _of the
following condition: B;; =By,;; . The critical temperature SPin conservation Also, if the exchange band splitting
T. is defined as the temperature, at which one of the eiger@reatly exceeds the superconducting energy scale, which is
values ofA changes sign. AT>T,, A is positive definite, Of the order of T, then the inter-band interactions
and7, =7_=7,=0. BelowT,, all three components of  Ci+C. _Ck—C_is . responsible for thel; component are
are nonzero, in general. In addition to E§), the GL func-  negligibly small. While this is the case in materials such as
tional contains a variety of the gradient terms. All this canZrZn, and UGg, it is not clear whether it is also true for the
lead to a rich phase diagram, which we shall not discusgraphite-based ferromagnets. If tthgcomponent can indeed
here. Let us just note Eq5) is formally equivalent to a be neglected, then the conditions for the presence of the gap
model of a three-band superconductor with three scalar ord€i€ros become less restrictive, so that, as seen from Tables |
parameters of the same symmetry. and Il, the energy gap always has either line and/or point
An important consequence of the above results is that theodes on both sheets of the Fermi surface.
gap in the spectrum of Bogoliubov quasiparticles goes to Singlet order parameterSimilar to thed; component of
zero at some points or lines at the Fermi surface. The excithe triplet pairing, the singlet pairing can only be realized if
tation spectrum can be obtained by diagonalizing the Hamilthe exchange band splitting is less than the superconducting
tonian H=Hy+Hyr. The quasiparticle energi(k) van- T, (Chandrasekhar-Clogston limi* This limit can be

ishes at somé if the following condition is satisfied: slightly exceeded if to consider the possibility of the Cooper
pairs having a nonzero momentutharkin-Ovchinnikov-

Fulde-Ferrell state'® The symmetry analysis can be done
similarly to the triplet case. The only difference is that there
+|2d,d_+ d§|2= 0. (6) is only one order-parameter component, and the symmetry is
described by even corepresentation®gfCg). We have

Thus, the condition for the gap zeros on the pseudospin-up
sheet of the Fermi surfackat e, (k)=0], is that d_(k) dor(k)=¢fr(k), @)

=d3(k)=0, i.e., fr_(k)=fr (k)=0. For the gap zeros on \yherey is a quantity which enters the GL functional, and
the pseudospin-down shept e_(k)=0], we must have f(k) is the basis function for the corepresentation see
d.(k)=ds(k)=0, i.e., fr+(k)=fF3(k):0. Using Tables |  Table Ill. As mentioned abovéd(k) can be multiplied by an
and Il, we see that if the symmetry dfcorresponds to the arbitrary real function okZ, kZ+k7, (k,*ik,)®, etc. Under
corepresentationB,, 1E,,, or 2E,,, then all three orbital the action of the magnetic symmetry elemen®,y(r)
basis functions have zeros on the liknge=k,=0, so that the = xr[Ce,]¥(r), Wherexr is the character o€, from Table
energy gap vanishes at the poles of both sheets of the Ferri, and alsoKCp,(r) = * (r).

surface. On the contrary, for theée,, and 2E,, symmetries, The condition for the gap in the excitation enefggk) to
the gap goes to zero at the poles of one of the sheets, while@nish at somd is simply

€2 e? +2€2]d, |2+ 262 |d_|?+2€, e_|dg)?
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€. e_+]|do|?2=0, (8) The presence of the gap nodes would manifest itself in

i power-law temperature dependences of the thermodynamic
therefore, the gap nodes appear simultaneously on botinq transport propertiédzor example, the electronic specific

sheets of the Fermi surface where the basis functigk)  heat at low temperatures should ®€T)/T~ T2 for the first-
has symmetry-imposed zeros. From Table Ill, we see that fogrder point nodesC(T)/T~T for the line nodes or the

all order-parameter symmetries, except fréxg, the gap second-order point nodes, a®(T)/T~T?? for the third-
goes to zero either on the equators or at the poles of botbrder point nodes.

Fermi surfaces. To summarize, we have derived a complete symmetry
The expressions for the basis functions of the corepresertiassification of the superconducting states in a hexagonal
tations of Dg(Cg) given in Tables | and Il are applicable if ferromagnet, considering both the triplet and the singlet pair-
the Fermi surface is centered around th@oint of the first  ing channels. We have discussed the nodal structure of the
Brillouin zone. It is not the case in graphite, where the Fermigap in the excitation spectrum, and also the modifications to
surface consists of small “sausagelike” pockets along the sixhe Ginzburg-Landau theory for ferromagnetic superconduct-
vertical edges of the hexagonal Brillouin zone, i.e., along thers. So far, the only experimental system, to which our re-
lines k=Clks, where n=0,...,5 ks=2K,/3—K,/3 Sults might be applicable is the graphite-sulfur composite
+k,8,, andK, andK, are the reciprocal lattice vectoldlt ~ Studied in Ref. 7.
can be easily proved that for all odd and e\®norepresen- The author has greatly benefited from the numerous dis-
tations, in addition to the zeros kt=k,=0, the basis func- cussions with M. Walker about the symmetry of ferromag-
tions also vanish at the vertical edges of the Brillouin zonenetic superconductors. The author thanks B. Mitrovic for
becauseks and C3,kq are equivalent points. Similarly, if a useful comments and interest to this work, F. Razavi and M.
basis function vanishes on the plane=0 then it should also  Reedyk for the discussions of the experimental situation, and
vanish at the horizontal surfaces of the Brillouin zone, i.e., atlso Y. Kopelevich and S. Moehlecke for stimulating corre-
k,=*m/cy, wherecy is the lattice constant of graphite spondence. The financial support from Brock University is

along thez axis. gratefully acknowledged.
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