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SO(5) superconductor in a Zeeman magnetic field: Phase diagram and thermodynamic properties
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In this paper we present calculations of the(SGguantum rotor theory of higfix, superconductivity in a
Zeeman magnetic field. We use the spherical approach for five-component quantum rotors in a three-
dimensional lattice to obtain formulas for the critical lines, free energy, entropy, specific heat, and present
temperature dependences of these quantities for different values of the magnetic field. Our results are in
qualitative agreement with relevant experiments on Higlouprates.
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I. INTRODUCTION sistivity, etc. Therefore, a proper theory of high-supercon-
ductors must be able to explain the magnetic properties of
The S@5) theory of highT. superconductivity, unifying these materials. Since the 8D model in the presence of a
antiferromagnetism and superconductivity, was proposed tinite chemical potential and a finite Zeeman magnetic field
combine S@B) antiferromagneti¢AF) staggered magnetiza- has exact SU(2XU(1) symmetry, the Zeeman magnetic
tion with superconductingSC) two-component 1) real field can be introduced, and the &Dtheory can be tested in
paring field into a new order parameteFhe smallest sym- any doping levef?
metry group meeting this requirements is the(SQ@roup. It The aim of this paper is to study influence of the Zeeman
contains the SE) group of spin rotation and the(ll) gauge  magnetic field within the S@G) theory. The results obtained
group of “charge rotation” as subgroups along with addi- (e.g., specific heatan be therfqualitatively) compared with
tional, the so-called #” operators rotating the AF to SC the relevant experiments and test the basic principles of the
state and vice versa. In the 8Dtheory ordered phases arise SQ(5) theory.
once S@5) symmetry is spontaneously broken: with GD The outline of the reminder of the paper is as follows. In
symmetry breaking the AF phase arises, while fot)bym-  Sec. Il we introduce the quantum &) Hamiltonian in the
metry breaking the SC phase appears. Consequently, AF a@geman magnetic field and find the corresponding Lagrang-
SC order parameters are grouped into five component vedan of the NLQrM. In Sec. Il we establish the phase dia-
tors called “superspin,” the direction of which is related to gram of the system in an applied magnetic field. Section IV
the competition between AF and SC states and the kinetits devoted to the study of magnetic dependence of various
energy of the system is that of a @D quantum rigid rotor. thermodynamic functions: free energy, entropy, and the spe-
The low-energy dynamics is determined in terms of thecific heat. Finally, in Sec. V we summarize the conclusions to
Goldstone modes and their interactions specified by thée drawn from our work.
SO5) symmetry.
Although, the S@b) theory was originally proposed in the || HAMILTONIAN AND THE EFFECTIVE LAGRANGIAN
context of an effective quantum nonlineas model o _
(NLQoM) description of the S(®) rotor model, its predic- We start from the low-energy Hamiltonian of superspins
tions were tested also within microscopic modeisCalcu- i placed in the discrete three-dimensiof@D) SC (3DSQ
lations based on the NL&M showed that the features of the lattice in the Zeeman magnetic fieBlalong they axis. The
phase diagram deduced from the (Stheory agree qualita- Sites are numbered by indicésand j running from 1 to
tively with the global topology of the observed phase dia-N—the total number of sites. The superspin components,
grams of highT, superconductors.Magnetic correlation labeled by u and v=1,...,5 refer to AF [nff
functions within the SC) theory were investigated, show- =(n,,nz,ny);] and SC[niSCZ(nl,ns)i] order parameters,
ing that the theory predicts a scenario for the evolution ofrespectively. The superspin components are mutually com-
magnetic behavior, which is qualitatively consistent with muting variablesand their values are restricted by the rigid
experiments. Furthermore, the study of the quantum critical rotator constrainhi2= 1. The S@5) Hamiltonian
point scenario within the concept of the &Pgroup showed
that the scaling of the contribution to the electrical resistivity 1
due to spin fluctuations displayed a linear resistivity depen- H= 2u 4 2
dence on temperature for increasing quantum fluctuations,
which is a hallmark example of anomalous properties of cu- 24 15
prate materials® Finally, thermodynamic properties of the _BZ L _ZMZ Li @
SQ(5) model were studied, where entropy and specific heat
were calculated and compared with experimental findihgs. consists of three parts: the kinetic energy of the rofatsere
Many experimentally observed properties of hiph€u-  uis an analog of the moment of inertjantersite interaction
prates show a strong dependence on the magnetic field, e.@nergy (with J;; being the stiffness in the charge and spin
entropy, specific heat, magnetic susceptibility, electrical rechannel, and S@5) symmetry breaking partincluding the

LELE = ;J Jijn;-n;=V(n;)

m<v
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Zeeman magnetic field acting in the AF segtdrhe quanti-
ties Lf*"=n,ip,i—n,ip, are generators of the Lie $§)
algebra(related to the total charge, spin, and so-called
operatory) and p.i are linear momenta given by

Pui= %0

i

(NP ]=06,,. v

Furthermore, we assume th{=J(R;—R;) is nonvanish-
ing for the nearest neighbors and its Fourier transform

Jo=py & IR)e 3
is simply J,=Je(k), where
€4=COSQy+ €0sq, + C0sq, (4)

is the structure factor for the 3D SC lattite.
The last three parts of the Hamiltonian provide (50

symmetry breaking terms. In the result of their interplay, the
system favors either the “easy plane” in the SC spac

(ny,ns), or an “easy sphere” in the AF space4,ns,n,).

Two of the three terms influence directly the AF order pa-

rameter:

w
V(n)=B2 L¥=7 2 (nf+n3i+ng)-BX LY,

(5

wherew is the anisotropy constanB is the Zeeman mag-

netic field, andL?* is they component of the spin vector.
Positive values ofv andB favor the AF state. The remaining
term acts on the SC sector and contains the total charge

whose expectation value yields the doping | the thermodynamic limitll— =), the method of steepest

operator L*°,

concentration and the chemical potentiallmeasured from
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1 ngc\? [ dnae)?
E(n)=§{2 U(—O,,T +ul—— —dup®ngc
_ any ang o 2
+4|u,u(En5—Enl)—uB (n3+n;g

) an, Ny
+2|uB(Fn4—Fn2)—E Jijni-n;

. (7)

2,2, 2
_Wzi (n%+n3;+ng;)

The problem can be solved exactly in terms of the spherical
model’* We note that the superspin rigidity constraim (
=1) implies that a weaker condition also holds, namely,

N

1
— 2_
N ;1 nF=1.

®

Therefore, the superspin componeniér) satisfying the
quantum periodic boundary conditian(8)=n;(0) will be
treated ascontinuousvariables, i.e.,—oo<n;(7)<eo, but
constrained on averadgdue to Eq.(8)]. The constraint can
be implemented using the Diracs function 6&(x)
= [T*[d\/27]e™, which introduces the Lagrange multi-

eDlier \(7) adding an additional quadratic tergim n; fields)

to the Lagrangiar(7). Consequently, the partition function
reads

N
Z:J ﬁ e N(ﬁ(}\), (9)
where the functionp(\) is defined as
B 1
¢(>\)=—Jodr>\(7)—ﬁlnf1i1 [Dn;]
B
Xexr{—z fo dr(n®\(7)—£[n])|. (20

descent is exact and the saddle poifit) =\, satisfies the

half-filling), the positive value of which favors the SC state. condition

We express the partition functiah=Tre #" using the
functional integral in the Matsubara “imaginary timef
formulatiorf (0<r<1/kgT=p, with T being the tempera-
ture). Explicitly,

Dp;
Z:f H [Dni]f 1_,[ [%}6(1_ni2)5(ni'pi)

o [Va |

:f I1 [Dni]ﬁ(l—nf)ex;{—foﬁdfﬁ(n)),

d
ip(r)-d—Tn(rHH(n,p)

(6)

with £ being the Lagrangian:

Sp(N)

mh:xfo- (17)

At the antiferromagnetic and superconducting phase transi-
tion boundaries the corresponding order susceptibilities be-
come infinite(see Ref. 8 which implies for the Lagrange
multipliers

1 w uB?
No' = k=0t 5+ 5

1
ASC=Z o+ 2uu?,

. 12

for the AF and SC critical lines, respectively.
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Ill. PHASE DIAGRAM

Providing the spherical conditio8) with values of the
Lagrange multipliers12) one can finally arrive at the ex-
pression for the critical lines separating A6t SO and QD
(quantum disordergdstates:
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cosk§D+(§) cos}{gB_(g)}
+ ’ +
A(¢) C(é)
r FIG. 1. T-x-B phase diagram fonJ=3 andw/J=1.
B
cosh EB+(§)
t— (13 : : : . .
C(§) bally phase separates in two different spatial regions with
where different charge densities, but the same free energy. As a
result, the added charges only change the proportion of the
2N o—JE—W 20— JE mixture of the two phases, but not the free energy, which
A=N—7— CO=\—F(— implies infinite compressibilitydefined asdx/du).

2ho— 2ho—Jé—w IV. THERMODYNAMIC FUNCTION
B_(¢)= 0—5—2 , D_(&= 2homdEmw o C FUNCTIONS
a u
A. Free energy
2ho—J¢ 26— JE—W
Bi(O)=\—5—+2u Di@=\—7(7—+

81
The free energy is defined as=—(BN) tInz

B!

(14) written

7

=(B)"1¢(\y). Using the formula(10), it can be explicitly

andio=X5" (A5 for the AF(SC) line. For convenience, in

order to perform momentum integration over the 3D Bril- == AR A+ F1(B)H+F(B)+Fy(D)+F(Dy),

louin zone, we have introduced the density of states (18
1 where the function
p(E)=1 2 A&~ e(a)] (15
N (B
(for the explicit formula, see Ref.)8 Fi(E)= /_BJ P(§)d§|n( 2 Sln’{gﬂ(f)ﬂ (19
Regions of AF and SC phases are separated by the first- o
order transition ling(for w=u;) given by the condition of ,
equality of free energies of both states, which reads and A(§), B_(§), B.(§), D_(§), andD . () are defined
by formulas(14).
82
)\SC:)\QF:%Lé:E'FT. (16)

B. Entropy

It is instructive to present the phase diagram as a function The entropy is defined &8=kgB%5f/dp. Using the for-
of a physically measured quantity—the charge concentratiofula (18) we obtain
x instead of the chemical potential. In the &Dtheory, the

charge concentration can be deduced from the free energy: S(B)=F,(A)+F,(B_)+F,(B,)+F,(D_)+F,D,),
20
1 df 1 dp(ng) (29

(L= = ) 1
x=(L™) 2du 28 du (7 where the function

The temperature-charge concentration phase diagram is K
depicted in Fig. 1. Here, the AF to SC transition line splits E.(5)= _Bfw d ( = cot}{
into a region of constant chemical potential, where AF and 2(5) 2 %p(g) ¢ A=)
SC states coexigfmixed region M. This behavior can be
explained by a two-phase mixture with different densities at —21nl 2 sin éﬁ(g) )
the first-order phase transition. In this case the system glo- 27 '

B

21
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3.0 netic fields. The critical temperature is depressed for higher
fields, which is in agreement with experimental findings.
2.5 Only the size of the finite jump occurring at the critical point
seems to be independent Bf (for Y-123 the jump of the
20 specific heat in the critical temperature is absent because of
= flux lattice melting; see Refs. 15 and)1&onsequently, the
R 15 1 Zeeman magnetic field does not influence the value of the
i 1 critical exponentae=0. In high temperatures theé(T) de-
. pendence saturates.
—————— B/J=0.2
0.5 ———— B/J=04
-~ — B/J=05 V. FINAL REMARKS
0.0

In conclusion, we have considered the influence of the
Zeeman magnetic field in the $8) theory of highT, super-
ke, T/ conductivity proposed by Zhang. Experimentally, in high-
FIG. 2. Temperature dependence of the specific heat for variou%uprates the Ze_emgin magnetic field can be reall_zed by ap-
magnetic fields, foud=3 andw/J=1. pIymg a magnetic field parallel to thab p!anes. Usmg thg
nonlinear quantuna- model and the spherical approximation
we have found explicit expressions for the critical lines and

various thermodynamic functiori&ee energy, entropy, and

00 01 02 03 04 05 06

C. Specific heat

The specific heat at constant volume is defined as specific heat The results obtained are in qualitative agree-
) ment with experimentally observed features of higheu-
C= —kB/J’z&—(,Bf)= —kg32 prates. The maximum of the specific heat is depressed and
982 shifted towards lower temperature in higher magnetic fields.

However, it should be stressed that the case of the Zeeman

of e d\ field considered in the present paper neglects the orbital ef-
X 2%+B5_,82+'8@ : (22) fects, which are important in highz cuprates, when the
magnetic field is applied perpendicularly to thk planes.
The temperature dependence of the specific heat in various
magnetic field is depicted in Fig. 2. For low temperatures
C(T) is independent ofB and can be approximated by ACKNOWLEDGMENT
C(T)~T?3. For higher temperatures the dependence becomes This work was supported by Polish State Committee for
roughly linear with higher values dE(T) for higher mag-  Scientific Research Grant No. 2PO3B04922.
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