
s

nd

PHYSICAL REVIEW B 66, 212504 ~2002!
SO„5… superconductor in a Zeeman magnetic field: Phase diagram and thermodynamic propertie
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In this paper we present calculations of the SO~5! quantum rotor theory of high-Tc superconductivity in a
Zeeman magnetic field. We use the spherical approach for five-component quantum rotors in a three-
dimensional lattice to obtain formulas for the critical lines, free energy, entropy, specific heat, and present
temperature dependences of these quantities for different values of the magnetic field. Our results are in
qualitative agreement with relevant experiments on high-Tc cuprates.
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I. INTRODUCTION

The SO~5! theory of high-Tc superconductivity, unifying
antiferromagnetism and superconductivity, was propose
combine SO~3! antiferromagnetic~AF! staggered magnetiza
tion with superconducting~SC! two-component U~1! real
paring field into a new order parameter.1 The smallest sym-
metry group meeting this requirements is the SO~5! group. It
contains the SO~3! group of spin rotation and the U~1! gauge
group of ‘‘charge rotation’’ as subgroups along with add
tional, the so-called ‘‘p ’’ operators rotating the AF to SC
state and vice versa. In the SO~5! theory ordered phases aris
once SO~5! symmetry is spontaneously broken: with SO~3!
symmetry breaking the AF phase arises, while for U~1! sym-
metry breaking the SC phase appears. Consequently, AF
SC order parameters are grouped into five component
tors called ‘‘superspin,’’ the direction of which is related
the competition between AF and SC states and the kin
energy of the system is that of a SO~5! quantum rigid rotor.
The low-energy dynamics is determined in terms of
Goldstone modes and their interactions specified by
SO~5! symmetry.

Although, the SO~5! theory was originally proposed in th
context of an effective quantum nonlinears model
(NLQsM) description of the SO~5! rotor model, its predic-
tions were tested also within microscopic models.2–7 Calcu-
lations based on the NLQsM showed that the features of th
phase diagram deduced from the SO~5! theory agree qualita
tively with the global topology of the observed phase d
grams of high-Tc superconductors.8 Magnetic correlation
functions within the SO~5! theory were investigated, show
ing that the theory predicts a scenario for the evolution
magnetic behavior, which is qualitatively consistent w
experiments.9 Furthermore, the study of the quantum critic
point scenario within the concept of the SO~5! group showed
that the scaling of the contribution to the electrical resistiv
due to spin fluctuations displayed a linear resistivity dep
dence on temperature for increasing quantum fluctuatio
which is a hallmark example of anomalous properties of
prate materials.10 Finally, thermodynamic properties of th
SO~5! model were studied, where entropy and specific h
were calculated and compared with experimental finding11

Many experimentally observed properties of high-Tc cu-
prates show a strong dependence on the magnetic field,
entropy, specific heat, magnetic susceptibility, electrical
0163-1829/2002/66~21!/212504~4!/$20.00 66 2125
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sistivity, etc. Therefore, a proper theory of high-Tc supercon-
ductors must be able to explain the magnetic properties
these materials. Since the SO~5! model in the presence of
finite chemical potential and a finite Zeeman magnetic fi
has exact SU(2)3U(1) symmetry, the Zeeman magnet
field can be introduced, and the SO~5! theory can be tested in
any doping level.12

The aim of this paper is to study influence of the Zeem
magnetic field within the SO~5! theory. The results obtaine
~e.g., specific heat! can be then~qualitatively! compared with
the relevant experiments and test the basic principles of
SO~5! theory.

The outline of the reminder of the paper is as follows.
Sec. II we introduce the quantum SO~5! Hamiltonian in the
Zeeman magnetic field and find the corresponding Lagra
ian of the NLQsM. In Sec. III we establish the phase dia
gram of the system in an applied magnetic field. Section
is devoted to the study of magnetic dependence of vari
thermodynamic functions: free energy, entropy, and the s
cific heat. Finally, in Sec. V we summarize the conclusions
be drawn from our work.

II. HAMILTONIAN AND THE EFFECTIVE LAGRANGIAN

We start from the low-energy Hamiltonian of superspi
ni placed in the discrete three-dimensional~3D! SC ~3DSC!
lattice in the Zeeman magnetic fieldB along they axis. The
sites are numbered by indicesi and j running from 1 to
N—the total number of sites. The superspin compone
labeled by m and n51, . . . ,5, refer to AF @ni

AF

5(n2 ,n3 ,n4) i # and SC@ni
SC5(n1 ,n5) i # order parameters

respectively. The superspin components are mutually c
muting variables1 and their values are restricted by the rig
rotator constraintni

251. The SO~5! Hamiltonian

H5
1

2u (
i

(
m,n

Li
mnLi

mn2(
i , j

Ji j ni•nj2V~ni !

2B(
i

L i
2422m(

i
L i

15 ~1!

consists of three parts: the kinetic energy of the rotors~where
u is an analog of the moment of inertia!, intersite interaction
energy~with Ji j being the stiffness in the charge and sp
channel!, and SO~5! symmetry breaking part~including the
©2002 The American Physical Society04-1
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Zeeman magnetic field acting in the AF sector!. The quanti-
ties Li

mn5nm i pn i2nn i pm i are generators of the Lie SO~5!
algebra~related to the total charge, spin, and so-called ‘‘p ’’
operators1! andpm i are linear momenta given by

pm i5 i
]

]nm i
,

@nm ,pn#5 idmn . ~2!

Furthermore, we assume thatJi j [J(Ri2Rj ) is nonvanish-
ing for the nearest neighbors and its Fourier transform

Jq5
1

N (
Ri

J~Ri !e
2 iRi•q ~3!

is simply Jq5Je(k), where

eq5cosqx1cosqy1cosqz ~4!

is the structure factor for the 3D SC lattice.13

The last three parts of the Hamiltonian provide SO~5!
symmetry breaking terms. In the result of their interplay,
system favors either the ‘‘easy plane’’ in the SC spa
(n1 ,n5), or an ‘‘easy sphere’’ in the AF space (n2 ,n3 ,n4).
Two of the three terms influence directly the AF order p
rameter:

V~ni !2B(
i

L i
245

w

2 (
i

~n2i
2 1n3i

2 1n4i
2 !2B(

i
L i

24,

~5!

wherew is the anisotropy constant,B is the Zeeman mag
netic field, andLi

24 is the y component of the spin vecto
Positive values ofw andB favor the AF state. The remainin
term acts on the SC sector and contains the total ch
operator Li

15, whose expectation value yields the dopi
concentration and the chemical potentialm ~measured from
half-filling!, the positive value of which favors the SC sta

We express the partition functionZ5Tr e2bH using the
functional integral in the Matsubara ‘‘imaginary time’’t
formulation8 (0<t<1/kBT[b, with T being the tempera
ture!. Explicitly,

Z5E )
i

@Dni #E )
i

FDpi

2p Gd~12ni
2!d~ni•pi !

3expH 2E
0

b

dtF ip~t!•
d

dt
n~t!1H~n,p!G J

5E )
i

@Dni #d~12ni
2!expS 2E

0

b

dtL~n! D , ~6!

with L being the Lagrangian:
21250
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L~n!5
1

2 F(
i

uS ]nSC

]t D 2

1uS ]nAF

]t D 2

24um2nSC
2

14iumS ]n1

]t
n52

]n5

]t
n1D2uB2~n2

21n4
2!

12iuBS ]n2

]t
n42

]n4

]t
n2D2( Ji j ni•nj

2w(
i

~n2i
2 1n3i

2 1n4i
2 !G . ~7!

The problem can be solved exactly in terms of the spher
model.14 We note that the superspin rigidity constraint (ni

2

51) implies that a weaker condition also holds, namely,

1

N (
i 51

N

ni
251. ~8!

Therefore, the superspin componentsni(t) satisfying the
quantum periodic boundary conditionni(b)5ni(0) will be
treated ascontinuousvariables, i.e.,2`,ni(t),`, but
constrained on average@due to Eq.~8!#. The constraint can
be implemented using the Diracd function d(x)
5*2`

1`@dl/2p#eilx, which introduces the Lagrange mult
plier l(t) adding an additional quadratic term~in ni fields!
to the Lagrangian~7!. Consequently, the partition functio
reads

Z5E F dl

2p i Ge2Nf(l), ~9!

where the functionf(l) is defined as

f~l!52E
0

b

dtl~t!2
1

N
ln E )

i
@Dni #

3expF2(
i
E

0

b

dt„ni
2l~t!2L@n#…G . ~10!

In the thermodynamic limit (N→`), the method of steepes
descent is exact and the saddle pointl(t)5l0 satisfies the
condition

df~l!

dl~t!
ul5l0

50. ~11!

At the antiferromagnetic and superconducting phase tra
tion boundaries the corresponding order susceptibilities
come infinite~see Ref. 8!, which implies for the Lagrange
multipliers

l0
AF5

1

2
Jk501

w

2
1

uB2

2
,

l0
SC5

1

2
Jk5012um2, ~12!

for the AF and SC critical lines, respectively.
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III. PHASE DIAGRAM

Providing the spherical condition~8! with values of the
Lagrange multipliers~12! one can finally arrive at the ex
pression for the critical lines separating AF~or SC! and QD
~quantum disordered! states:

15
1

2uE2`

`

r~j!djH coshFb2 A~j!G
A~j!

1

coshFb2 D2~j!G
A~j!

1

coshFb2 D1~j!G
A~j!

1

coshFb2 B2~j!G
C~j!

1

coshFb2 B1~j!G
C~j!

J , ~13!

where

A~j!5A2l02Jj2w

u
, C~j!5A2l02Jj

u
,

B2~j!5A2l02Jj

u
22m, D2~j!5A2l02Jj2w

u
2B,

B1~j!5A2l02Jj

u
12m, D1~j!5A2l02Jj2w

u
1B,

~14!

andl05l0
AF (l0

SC) for the AF~SC! line. For convenience, in
order to perform momentum integration over the 3D Br
louin zone, we have introduced the density of states

r~j!5
1

N (
q

d@j2e~q!# ~15!

~for the explicit formula, see Ref. 8!.
Regions of AF and SC phases are separated by the

order transition line~for m5mc) given by the condition of
equality of free energies of both states, which reads

l0
SC5l0

AF⇒mc
25

w

4u
1

B2

4
. ~16!

It is instructive to present the phase diagram as a func
of a physically measured quantity—the charge concentra
x instead of the chemical potential. In the SO~5! theory, the
charge concentration can be deduced from the free ener

x5^L15&52
1

2

d f

dm
52

1

2b

df~l0!

dm
. ~17!

The temperature-charge concentration phase diagra
depicted in Fig. 1. Here, the AF to SC transition line spl
into a region of constant chemical potential, where AF a
SC states coexist~mixed region M!. This behavior can be
explained by a two-phase mixture with different densities
the first-order phase transition. In this case the system
21250
st-
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bally phase separates in two different spatial regions w
different charge densities, but the same free energy. A
result, the added charges only change the proportion of
mixture of the two phases, but not the free energy, wh
implies infinite compressibility~defined asdx/dm).

IV. THERMODYNAMIC FUNCTIONS

A. Free energy

The free energy is defined asf 52(bN)21 ln Z
5(b)21f(l0). Using the formula~10!, it can be explicitly
written

f 52l1F1~A!1F1~B2!1F1~B1!1F1~D2!1F1~D1!,
~18!

where the function

F1~J!5
1

bE2`

`

r~j!dj lnH 2 sinhFb2 J~j!G J ~19!

and A(j), B2(j), B1(j), D2(j), and D1(j) are defined
by formulas~14!.

B. Entropy

The entropy is defined asS5kBb2] f /]b. Using the for-
mula ~18! we obtain

S~b!5F2~A!1F2~B2!1F2~B1!1F2~D2!1F2~D1!,
~20!

where the function

F2~J!5
kB

2 E
2`

`

r~j!djS bJ~j!cothFb2 J~j!G
22 lnH 2 sinhFb2 J~j!G J D . ~21!

FIG. 1. T-x-B phase diagram foruJ53 andw/J51.
4-3



io
re
y
m

her
s.
nt

e of

the

the

ap-

n
nd

e-

and
ds.
man
l ef-

for

io

BRIEF REPORTS PHYSICAL REVIEW B66, 212504 ~2002!
C. Specific heat

The specific heat at constant volume is defined as

C52kBb2
]2

]b2
~b f !52kBb2

3H 2
] f

]b
1b

]2f

]b2
1b

dl

db F ]2f

]l2

dl

db
12

]2f

]l]bG J . ~22!

The temperature dependence of the specific heat in var
magnetic field is depicted in Fig. 2. For low temperatu
C(T) is independent ofB and can be approximated b
C(T);T3. For higher temperatures the dependence beco
roughly linear with higher values ofC(T) for higher mag-

FIG. 2. Temperature dependence of the specific heat for var
magnetic fields, foruJ53 andw/J51.
e

e

21250
us
s
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netic fields. The critical temperature is depressed for hig
fields, which is in agreement with experimental finding
Only the size of the finite jump occurring at the critical poi
seems to be independent ofB ~for Y-123 the jump of the
specific heat in the critical temperature is absent becaus
flux lattice melting; see Refs. 15 and 16!. Consequently, the
Zeeman magnetic field does not influence the value of
critical exponenta50. In high temperatures theC(T) de-
pendence saturates.

V. FINAL REMARKS

In conclusion, we have considered the influence of
Zeeman magnetic field in the SO~5! theory of high-Tc super-
conductivity proposed by Zhang. Experimentally, in high-Tc
cuprates the Zeeman magnetic field can be realized by
plying a magnetic field parallel to theab planes. Using the
nonlinear quantums model and the spherical approximatio
we have found explicit expressions for the critical lines a
various thermodynamic functions~free energy, entropy, and
specific heat!. The results obtained are in qualitative agre
ment with experimentally observed features of high-Tc cu-
prates. The maximum of the specific heat is depressed
shifted towards lower temperature in higher magnetic fiel
However, it should be stressed that the case of the Zee
field considered in the present paper neglects the orbita
fects, which are important in high-Tc cuprates, when the
magnetic field is applied perpendicularly to theab planes.
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