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Internal localized eigenmodes on spin discrete breathers in antiferromagnetic chains
with on-site easy-axis anisotropy
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We investigate internal localized eigenmodes of the linearized equation around spin discrete breathers in
one-dimensional antiferromagnets with on-site easy-axis anisotropy. The threshold of occurrence of the internal
localized eigenmodes has a typical structure in the parameter space depending on the frequency of the spin
discrete breather. We also performed molecular-dynamics simulation in order to show the validity of our linear
analysis.
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Discrete breather@DB's) are the time-periodic and spa- dynamics simulation will also be presented.
tially localized excitations on the nonlinear lattice with trans-  Let us consider an antiferromagnetic chain Mdfspins
lational invariancé;? which are also called intrinsic localized with the Hamiltoniah®
modes in the literaturd.The existence ofnlé?B’s was math-
ematically proved in the anticontinuous limiBoth the dis- B 2.2
creteness and the nonlinearity play a crucial role in the exis- H= ZJEn: SheShe1™ Dzn: (Sp)%, (1)
tence of DB’s. The spatial discreteness is quite common in
nature, particularly in condensed-matter physics. Recentlyvhere positiveJ and D are the exchange constant and the
the experimental realization of a DB was performed in an-Single-ion anisotropy constant, respectively. Hence, the anti-
isotropic antiferromagnetsand Josephson-junction laddérs. ferromagnetic ordering and aligning wigrdirection of each

In magnetic systems, both the spin-spin exchange intera@pin are energetically more favorable in the ground state.
tion and the on-site spin anisotropy are intrinsically nonlin-  For a nondissipative chain of classical spins, the equation
ear, so that it is quite natural to predict the existence of DB'sof motion for the spin at thath site is
Since the dissipation of spin waves in magnetic materials is
usually weak compared with that of lattice vibrations in crys- d_Sh =5 xHe'f @)
tals, the spin-lattice model has obvious advantages over lat- dt no
tice vibrational models from the experimental points of view. gt _

Lai and Sievers have extensively studied the DB's of spinvhere the effective fieltH,” can be obtained from
wave, namely spin DB’s, for various situations of R
antiferromagnet$.The spin DB’s have also been recently Hﬁff=—Van=—ZJ(&_1+ Sh+1)+2DSfz. 3
studied in ferromagnetic latticés. .

The DB can play a role of the scattering center affectingHere z is the unit vector along the positivedirection. By
energy transport by scattering, absorbing, or radiatingisings, =(S}=iSY)/S, the nonlinear equation of motion for
phonons. The scattering properties of the DB are closely res” can be obtained in the following:
lated to the structure of the eigenmodes of the linearized

equation around the DB itseif}2which will be calledinter- ds’

nal localized eigenmode$LE’s). In particular, it was shown th= —239(S5_+Sh.)Se —(sp_ 1+, 1)SA]
that the perfect transmission occurs at the ILE threshold,

where the ILE should appear to be tangent to the phonon +2DS<s, . 4)
band edge with the zero wave number in the angular fre-

quency versus the system parameter spateHowever, If we assume a solution of the fors; =s,e”'“! and

when the ILE’s on DB's penetrate the phonon band, the wellzntiferromagnetic spin ordering, the stationary spin DB can

directly applied to the spin-lattice model considering the
analogy between the lattice vibratigphonon and the rota- ~
tion of spin(magnon or spin wave ﬁanZ(—l)n{C( Vi-si_ i+ \/1—S§+1)5n

In this paper, we present the existence of the ILE’s on spin
DB’s using the linearized equation of spin DB’s in one-
dimensional1D) antiferromagnets with on-site easy-axis an- +[C(sq-1+Sn+1) +sp]V1- Sﬁ} : (5
isotropy. The thresholds of the ILE's show some special _
structure in parameter space. The comparison between thehere4a=#/2DS and C=J/D. In this paper we consider
prediction from linear analyses and the results of molecularenly a single nonmoving spin DB. The familiar dispersion
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relation of the extended spin-wave modedw=
+ (14 2C)?—4C?coska, can also be obtained from Eq.

(5) by putting
Son foezikna
) :( ik(2n+1)a | » (6)

Son+1 fe

wherea is the lattice spacing, andy|, |f;|/<1. The linear-
ized equation of Eq(4) near the spin DB fog,(t) =s, (1) 10 existence of DB
—s,e 't is given by , , , ,
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FIG. 1. The band structure of spin waves as a functio@.dfhe
+ + + -
Br+ 1R &0+ 1)) T An(En-1 &nt 1) = Bnl(Sns inset represents the amplitude of the spin oscillation at the central
+5,,1)REED) ]+ Anén—S,BaREE —Frwpé,, site of spin DB as a function d for a given frequency of spin DB

wy , Which is numerically obtained by using E&). From the upper
(7)  part, they correspond t@y,/w,=0.8, 0.9, 1.0, 1.1, and 1.2, respec-

where A,= \/1—szn, Bn=sn/(2\/1—szn), and Ref) is the tvely.
real part of¢. The above Floguetor lineay equation is o onin DB as a function of for a given frequency of spin
written in the formdé/dt=M¢. By diagonalizing the matrix DB w,,, where the criteria mentioned above can be also con-
M, the eigenmodes for small perturbation of spin DB's arefirmed numerically. In other words, the frequencies of spin
obtained. Let us note that there exist two important systenmp’s are always located below the spin-wave band, which is
parameters, the relative strength of the exchange interactioRothing new in the sense of general criteria for the existence
C (=J/D), and the frequency of spin DEy, . of a DB. We would like to mention, however, that this leads
Without the exchange interaction, il=0, the resonance to somewhat interesting consequences that a spin DB ap-
frequency of a local nonlinear oscillator is limited ta,  pears above some critical coupling strength and disappears in
=1/# since the nonlinearity of the individual system is soft. the anticontinuous limit with the frequency of a spin DB
In the casew,/w,,>1, spin DB’s cannot exist in the small fixed* The mathematical proof for the existence of DB'’s
coupling limit (J—0), so that we obtain two distinct regions was performed in this limit.
for wy, such asw,/wy,>1 and w,/w,<1. In the former Since Eq.(7) is Hamiltonian,M is symplectic, which im-
case (,/wy>1), the spin DB’s can exist only above the plies that if\ is an eigenvalue, then*, 1/\, and 1A* are
certain critical value ofC, which can be explained by con- also eigenvalues. The linear stability of the DB solution re-
sidering a new on-site potential modified by the neighboringguires that no eigenvalue must be outside unit circle. From
sites. For simplicity, let us consider just three spins, namelyboth conditions, all eigenvalues are on the unit cifdiégure
ones on the sites 1, 0, and 1, where the site 0 corresponds2 shows the evolution of the eigenvalues of the Floquet ma-
to the center of the spin DB. In the weak-coupling limit, the trix M on unit circle(the angleg of the eigenvalue'?) as a
dynamics of the neighboring spins at the site¢ can be function of C for severalwy’s. For all calculations we take
described by simple harmonic oscillation with a small ampli-7 = 1. The anglep has a simple relationship with the angular
tudee, assuming the spin DB solution. From Ef), we can  frequencyw through ¢=2mw/w, [mod(2m)].*®> The con-
obtain the following equation for the frequency of the spintinuous part of the Floquet spectrum corresponds to a spin-

precession at the site 0: wave band, whilep=0 represents the spin DB itself. The
hwsg=2Csy\1— €+ (2Ce+5p) V1S5 (8) 6 T 4
4(C
Consideringe<sy=<1 in the weak-coupling limit, the above
equation can be approximated & wy,~2C+ \1-s2, so 4 case Il £
that the new maximum frequency of local nonlinear oscilla- .
12

tors, namelyw/,, is given byw,,(2C+ 1), which means that

the possible maximum frequency of a spin DB also increases 5
under the coupling with the neighboring spins. Actually, this

relation exactly coincides with thie= 77/2 band edge of the f
spin wave as shown in Fig. 1 in the weak-coupling limit. 0 : 0
Taking into account the instability caused by the resonance
between DB'’s and phonorsye should exclude the overlap-
ping region between spin DB and the spin-wave band, so that
finally the border of the existence of spin DB’s is given by  FiG. 2. Floquet spectrum obtained numerically fay w,/wp,
the k=0 band edgew,/wy=\1+4C. The inset of Fig. 1  =0.8, (b) wy/wy,=1.0, and(c) w,/wn,=1.2. See the left tick la-
shows the amplitude of the spin oscillation at the central sitéels for(a) and the right tick labels for bottb) and (c).
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FIG. 3. The threshold of occurrences of symmettlee filled FIG. 4. The power spectrum dfl¥(t) with w,/w,=0.8 and

squaresand antisymmetri¢the open squargdLE’s as a function ~ C=0.3. This is calculated using MD simulation with 103 spins
of the frequency of the spin DB obtained from numerically calcu-during 256, (T,=2%/w;,) under the random noise with the inten-
lating Floquet spectra for various, /w,,. Spin DB’s cannot exist sity D=10"° (Ref. 14. “«” indicates the symmetric ILE, above

in the region under the solid linesee the text for detailsin the which the spin-wave excitations are shown. The vertical dashed
inset, we replot the threshold of the antisymmetric ILEIse open lines represent the upper and the lower spin-wave band edges ob-
squarey in log-log scale, which clearly shows power-law depen- tained from the dispersion relation.

dence.

eigenmodes detached from the bottom of the band are o et (CZH5NH3)2C.UC|4 (Ref. 5, Iike.the system studied in
is paper. By microwave absorption experiment, the peak

served to be the ones that are localized. These are ILE . ) : .
mentioned above. The ILE's belong to either symmetric Orcorrespondlng to the spin DB was observed in the spin-wave

antisymmetric eigenmodes with respect to their reflectio ap. Th_e absorpt|or_1 spectrum Igasuredinine experiment is
symmetry to the center of a spin DB. While fas, /e proportional to the imaginary part of the dyn{;\mlc magnetic
<1, two ILE's appear simultaneously &=0 [Fig. 2(a)ir,] susceptibility, which can be calculated using the Kubo

for wp/w,,>1 at first the symmetric ILE appears at a certaineXpress'Oﬁ'
value of C and then the antisymmetric one appears at larger
C [Fig. 2(c)]. We call the former as case | and the latter as A(w)ocfwdt<My(t_l_t/)My(t/»t,eiwt (9)
case Il. 0 '

Figure 3 shows the threshold of the ILE’s as a function of
wy, where the dashed vertical ling,/o,=1, at whichtwo  whereMY(t)=Xs¥(t) and(A), is the time average of the
spin-wave bands collide each other as shown in Fi@),2 variable A. We calculateM?(t) using MD simulations with
divides the parameter space into two regions for the thresht03 spins starting from the solution of a spin DB obtained
olds of ILE’s (i.e., cases | and )l The solid line represents from Eq. (5) under the random amplitude noiSeFigure 4
the border of the existence of spin DB’s described ®y clearly shows that an absorption peak, which is several or-
=[(wp/wm)®—1]/4 (the spin-wave band edge wik=0 in  ders of magnitude smaller than the spin DB peak, exists be-
Fig. 1), below which the spin DB’s cannot exist. It is men- tween the spin DB and the spin-wave band. Without noise
tioned that the threshold of the symmetric Il(Ehe filled  we can obtain only the spin DB peak. Although the absorp-
squarep looks like a straight line, and that of the antisym- tion power of this ILE is so tiny compared with that of the
metric one(the open squargshows the power-law depen- spin DB, it should not be ignored in comparison with that of
dence, namely(:ocwg'72 as shown in the inset of Fig. 3. This the spin-wave band. It is worth noting that only the symmet-
threshold behavior was also observed in the case of Kleinric ILE can be observed in the absorption spectrum since the
Gordon (KG) chain with ¢* (double-wel) on-site potential antisymmetric ILE disappears when the summatiys)(t)
described by/(x) = (x*—2x?)/4,*® wherew,= 2/3, at which  is performed. Figure 5 shows that the frequency of the sym-
two neighboring phonon band edges witl 0 collide each  metric ILE calculated using MD simulation is well fitted by
other, plays a similar role as,/w,,= 1 in our antiferromag- the prediction of the linear theory in the region of sn@lllt
net. However, this frequency does not correspond to thés remarked that in the experiment of Ref. 5, somewhat broad
maximum frequency of the local soft nonlinear oscillator, spectrum of a spin DB was observed since many spin DB’s
which is w,=1 in a ¢* KG chain. It should also be noted with different frequencies were excited simultaneously. In
that in other KG chains with MorsgV(x)=[1—exp order to observe the ILE’s studied in this paper, more im-
(—x)%/2) or cubic[V(x)=x?/2—x3/3] on-site potential this proved experimental status will be needed, for example, a
is not the case, where for all,(<w,=1) the cubic and the single spin DB excitation, the suppression of volume and
Morse potentials correspond only to cases | and Il, respecsurface modes, better resolution in the absorption power, and
tively. This has not been understood yet. so on. We also note that in general the antiferromagnetic

One of the reasons why we choose this magnetic latticerdering can persist only above some critical valueGof
for our investigation is that experimentally the generation ofroughly speaking, of the order of 1. Even though it does not
a spin DB was reported in the quasi-1D biaxial antiferromag-seem to be easy to find out experimentally the transition
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FIG. 5. The frequency of the symmetric ILE given by the Flo-

quet spectrum in Fig.(2) (the solid curvg¢ and by the power spec-
trum of MY(t) using MD simulation(the filled squarg
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by scalingQ) — Q/w, andC— C/w},, whereQ) andC are the
frequencies of the small perturbation and the linear coupling
strength, respectively. We would like to point out that the 1D
antiferromagnet with easy-axis anisotropy provides a good
intermediate example with two spin-wave barids scatter-

ing channelsand two parametersq and wy,) between the
case of DNLS equation with two phonon bands and one
parameter C/ w}), and that of the KG chain with an infinite
number of phonon bands and two parameters.

In summary, we have investigated the characteristics and
the possibility of experimental observation of the ILE’s in
1D antiferromagnets with easy-axis anisotropy using both
linear analyses and MD simulations. The structure of the
thresholds of the ILE’s strongly depends on the frequency of
a spin DB. Forw,/w,<1, the ILE’s appear a€=0 simul-
taneously, while fow,/w,>1 the symmetric ILE occurs at

from case | to Il in this system, due to this reason, it is stillfirst at a certain value o€ and then the antisymmetric one
possible to observe the ILE’s themselves for higher values odppears at a larger value ©f It is shown that the frequency

C.
In our previous work on discrete nonlinear Satirger

of the ILE’s calculated using MD simulation is well fitted by
the prediction of the linear theory. We hope that these ILE’s

(DNLS) equatiori® we already noted that the DNLS equation will be observed in experiments.
is the nontrivial simplest system for studying scattering prob- We would like to thank Sergej Flach for a careful reading
lems or ILE’s. However, it has only a single parameter sinceof this manuscript and helpful comments. S.W. also thanks

the change of the breather frequengycan be compensated

Mikhail Fistul for helpful discussions.
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1At each time step of numerical integrations of E4), we add
random amplitude noiseB¢,, to the variabless,, where the
absolute values of,, are normalized to 1, anD represents the
strength of noiseT,/1024 (T,=2m/wy) is used as the time
interval for numerical integration.
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