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Internal localized eigenmodes on spin discrete breathers in antiferromagnetic chains
with on-site easy-axis anisotropy
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We investigate internal localized eigenmodes of the linearized equation around spin discrete breathers in
one-dimensional antiferromagnets with on-site easy-axis anisotropy. The threshold of occurrence of the internal
localized eigenmodes has a typical structure in the parameter space depending on the frequency of the spin
discrete breather. We also performed molecular-dynamics simulation in order to show the validity of our linear
analysis.
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Discrete breathers~DB’s! are the time-periodic and spa
tially localized excitations on the nonlinear lattice with tran
lational invariance,1,2 which are also called intrinsic localize
modes in the literature.3 The existence of DB’s was math
ematically proved in the anticontinuous limit.4 Both the dis-
creteness and the nonlinearity play a crucial role in the e
tence of DB’s. The spatial discreteness is quite common
nature, particularly in condensed-matter physics. Rece
the experimental realization of a DB was performed in a
isotropic antiferromagnets5 and Josephson-junction ladders6

In magnetic systems, both the spin-spin exchange inte
tion and the on-site spin anisotropy are intrinsically nonl
ear, so that it is quite natural to predict the existence of DB
Since the dissipation of spin waves in magnetic material
usually weak compared with that of lattice vibrations in cry
tals, the spin-lattice model has obvious advantages over
tice vibrational models from the experimental points of vie
Lai and Sievers have extensively studied the DB’s of s
wave, namely spin DB’s, for various situations
antiferromagnets.7 The spin DB’s have also been recent
studied in ferromagnetic lattices.8

The DB can play a role of the scattering center affect
energy transport by scattering, absorbing, or radiat
phonons. The scattering properties of the DB are closely
lated to the structure of the eigenmodes of the lineari
equation around the DB itself,9–12 which will be calledinter-
nal localized eigenmodes~ILE’s!. In particular, it was shown
that the perfect transmission occurs at the ILE thresh
where the ILE should appear to be tangent to the pho
band edge with the zero wave number in the angular
quency versus the system parameter space.10,11 However,
when the ILE’s on DB’s penetrate the phonon band, the w
known Fano resonances are obtained.12 These results can b
directly applied to the spin-lattice model considering t
analogy between the lattice vibration~phonon! and the rota-
tion of spin ~magnon or spin wave!.

In this paper, we present the existence of the ILE’s on s
DB’s using the linearized equation of spin DB’s in on
dimensional~1D! antiferromagnets with on-site easy-axis a
isotropy. The thresholds of the ILE’s show some spec
structure in parameter space. The comparison between
prediction from linear analyses and the results of molecu
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dynamics simulation will also be presented.
Let us consider an antiferromagnetic chain ofN spins

with the Hamiltonian13

H52J(
n

Sn•Sn112D(
n

~Sn
z!2, ~1!

where positiveJ and D are the exchange constant and t
single-ion anisotropy constant, respectively. Hence, the a
ferromagnetic ordering and aligning withz direction of each
spin are energetically more favorable in the ground state

For a nondissipative chain of classical spins, the equa
of motion for the spin at thenth site is

dSn

dt
5Sn3Hn

e f f , ~2!

where the effective fieldHn
e f f can be obtained from

Hn
e f f52“Sn

H522J~Sn211Sn11!12DSn
zẑ. ~3!

Here ẑ is the unit vector along the positivez direction. By
usingsn

65(Sn
x6 iSn

y)/S, the nonlinear equation of motion fo
sn

1 can be obtained in the following:

i\
dsn

1

dt
522JS@~sn21

z 1sn11
z !sn

12~sn21
1 1sn11

1 !sn
z#

12DSsn
zsn

1 . ~4!

If we assume a solution of the formsn
15sne2 ivt and

antiferromagnetic spin ordering, the stationary spin DB c
be numerically obtained by using the following equation:

\̃vsn5~21!nHCS A12sn21
2 1A12sn11

2 D sn

1@C~sn211sn11!1sn#A12sn
2J , ~5!

where \̃5\/2DS and C5J/D. In this paper we conside
only a single nonmoving spin DB. The familiar dispersio
©2002 The American Physical Society08-1
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relation of the extended spin-wave modes,\̃v5
6A(112C)224C2cos2ka, can also be obtained from Eq
~5! by putting

S s2n

s2n11
D 5S f 0e2ikna

f 1eik(2n11)aD , ~6!

wherea is the lattice spacing, andu f 0u, u f 1u!1. The linear-
ized equation of Eq.~4! near the spin DB forjn(t)5sn

1(t)
2sne2 ivbt is given by

i \̃ j̇n5~21!n$C@~An211An11!jn2sn„Bn21Re~jn21!

1Bn11Re~jn11!…1An~jn211jn11!2Bn~sn21

1sn11!Re~jn!#1Anjn2snBnRe~jn!%2\̃vbjn ,

~7!

where An5A12sn
2, Bn5sn/(2A12sn

2), and Re(j) is the
real part of j. The above Floquet~or linear! equation is
written in the formdjW /dt5MjW . By diagonalizing the matrix
M, the eigenmodes for small perturbation of spin DB’s a
obtained. Let us note that there exist two important sys
parameters, the relative strength of the exchange interac
C (5J/D), and the frequency of spin DB,vb .

Without the exchange interaction, i.e.J50, the resonance
frequency of a local nonlinear oscillator is limited tovm

51/\̃ since the nonlinearity of the individual system is so
In the casevb /vm.1, spin DB’s cannot exist in the sma
coupling limit (J→0), so that we obtain two distinct region
for vb such asvb /vm.1 and vb /vm,1. In the former
case (vb /vm.1), the spin DB’s can exist only above th
certain critical value ofC, which can be explained by con
sidering a new on-site potential modified by the neighbor
sites. For simplicity, let us consider just three spins, nam
ones on the sites21, 0, and 1, where the site 0 correspon
to the center of the spin DB. In the weak-coupling limit, t
dynamics of the neighboring spins at the sites61 can be
described by simple harmonic oscillation with a small amp
tudee, assuming the spin DB solution. From Eq.~5!, we can
obtain the following equation for the frequency of the sp
precession at the site 0:

\̃vs052Cs0A12e21~2Ce1s0!A12s0
2. ~8!

Consideringe!s0<1 in the weak-coupling limit, the abov
equation can be approximated tov/vm'2C1A12s0

2, so
that the new maximum frequency of local nonlinear oscil
tors, namelyvm8 , is given byvm(2C11), which means tha
the possible maximum frequency of a spin DB also increa
under the coupling with the neighboring spins. Actually, th
relation exactly coincides with thek5p/2 band edge of the
spin wave as shown in Fig. 1 in the weak-coupling lim
Taking into account the instability caused by the resona
between DB’s and phonons,1 we should exclude the overlap
ping region between spin DB and the spin-wave band, so
finally the border of the existence of spin DB’s is given
the k50 band edge,vm8 /vm5A114C. The inset of Fig. 1
shows the amplitude of the spin oscillation at the central
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of spin DB as a function ofC for a given frequency of spin
DB vb , where the criteria mentioned above can be also c
firmed numerically. In other words, the frequencies of sp
DB’s are always located below the spin-wave band, which
nothing new in the sense of general criteria for the existe
of a DB. We would like to mention, however, that this lea
to somewhat interesting consequences that a spin DB
pears above some critical coupling strength and disappea
the anticontinuous limit with the frequency of a spin D
fixed.14 The mathematical proof for the existence of DB
was performed in this limit.4

Since Eq.~7! is Hamiltonian,M is symplectic, which im-
plies that ifl is an eigenvalue, thenl* , 1/l, and 1/l* are
also eigenvalues. The linear stability of the DB solution
quires that no eigenvalue must be outside unit circle. Fr
both conditions, all eigenvalues are on the unit circle.2 Figure
2 shows the evolution of the eigenvalues of the Floquet m
trix M on unit circle~the anglef of the eigenvalueeif) as a
function of C for severalvb’s. For all calculations we take
\̃51. The anglef has a simple relationship with the angul
frequencyv throughf52pv/vb @mod(2p)#.15 The con-
tinuous part of the Floquet spectrum corresponds to a s
wave band, whilef50 represents the spin DB itself. Th

FIG. 1. The band structure of spin waves as a function ofC. The
inset represents the amplitude of the spin oscillation at the cen
site of spin DB as a function ofC for a given frequency of spin DB
vb , which is numerically obtained by using Eq.~5!. From the upper
part, they correspond tovb /vm50.8, 0.9, 1.0, 1.1, and 1.2, respe
tively.

FIG. 2. Floquet spectrum obtained numerically for~a! vb /vm

50.8, ~b! vb /vm51.0, and~c! vb /vm51.2. See the left tick la-
bels for ~a! and the right tick labels for both~b! and ~c!.
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eigenmodes detached from the bottom of the band are
served to be the ones that are localized. These are IL
mentioned above. The ILE’s belong to either symmetric
antisymmetric eigenmodes with respect to their reflect
symmetry to the center of a spin DB. While forvb /vm
,1, two ILE’s appear simultaneously atC50 @Fig. 2~a!#,
for vb /vm.1 at first the symmetric ILE appears at a certa
value ofC and then the antisymmetric one appears at lar
C @Fig. 2~c!#. We call the former as case I and the latter
case II.

Figure 3 shows the threshold of the ILE’s as a function
vb , where the dashed vertical linevb /vm51, at which two
spin-wave bands collide each other as shown in Fig. 2~b!,
divides the parameter space into two regions for the thre
olds of ILE’s ~i.e., cases I and II!. The solid line represent
the border of the existence of spin DB’s described byC
5@(vb /vm)221#/4 ~the spin-wave band edge withk50 in
Fig. 1!, below which the spin DB’s cannot exist. It is me
tioned that the threshold of the symmetric ILE~the filled
squares! looks like a straight line, and that of the antisym
metric one~the open squares! shows the power-law depen
dence, namely,C}vb

0.72 as shown in the inset of Fig. 3. Thi
threshold behavior was also observed in the case of Kl
Gordon ~KG! chain with f4 ~double-well! on-site potential
described byV(x)5(x422x2)/4,16 wherevb52/3, at which
two neighboring phonon band edges withk50 collide each
other, plays a similar role asvb /vm51 in our antiferromag-
net. However, this frequency does not correspond to
maximum frequency of the local soft nonlinear oscillat
which is vm51 in a f4 KG chain. It should also be note
that in other KG chains with Morse„V(x)5@12exp
(2x)#2/2… or cubic @V(x)5x2/22x3/3# on-site potential this
is not the case, where for allvb(,vm51) the cubic and the
Morse potentials correspond only to cases I and II, resp
tively. This has not been understood yet.

One of the reasons why we choose this magnetic lat
for our investigation is that experimentally the generation
a spin DB was reported in the quasi-1D biaxial antiferrom

FIG. 3. The threshold of occurrences of symmetric~the filled
squares! and antisymmetric~the open squares! ILE’s as a function
of the frequency of the spin DB obtained from numerically calc
lating Floquet spectra for variousvb /vm . Spin DB’s cannot exist
in the region under the solid line~see the text for details!. In the
inset, we replot the threshold of the antisymmetric ILE’s~the open
squares! in log-log scale, which clearly shows power-law depe
dence.
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net (C2H5NH3)2CuCl4 ~Ref. 5!, like the system studied in
this paper. By microwave absorption experiment, the p
corresponding to the spin DB was observed in the spin-w
gap. The absorption spectrum measured in the experime
proportional to the imaginary part of the dynamic magne
susceptibility, which can be calculated using the Ku
expression.5

A~v!}E
0

`

dt^M y~ t1t8!M y~ t8!& t8e
ivt, ~9!

whereM y(t)5(nsn
y(t) and ^A& t8 is the time average of the

variableA. We calculateM y(t) using MD simulations with
103 spins starting from the solution of a spin DB obtain
from Eq. ~5! under the random amplitude noise.17 Figure 4
clearly shows that an absorption peak, which is several
ders of magnitude smaller than the spin DB peak, exists
tween the spin DB and the spin-wave band. Without no
we can obtain only the spin DB peak. Although the abso
tion power of this ILE is so tiny compared with that of th
spin DB, it should not be ignored in comparison with that
the spin-wave band. It is worth noting that only the symm
ric ILE can be observed in the absorption spectrum since
antisymmetric ILE disappears when the summation(nsn

y(t)
is performed. Figure 5 shows that the frequency of the sy
metric ILE calculated using MD simulation is well fitted b
the prediction of the linear theory in the region of smallC. It
is remarked that in the experiment of Ref. 5, somewhat br
spectrum of a spin DB was observed since many spin D
with different frequencies were excited simultaneously.
order to observe the ILE’s studied in this paper, more i
proved experimental status will be needed, for example
single spin DB excitation, the suppression of volume a
surface modes, better resolution in the absorption power,
so on. We also note that in general the antiferromagn
ordering can persist only above some critical value ofC,
roughly speaking, of the order of 1. Even though it does
seem to be easy to find out experimentally the transit

-

FIG. 4. The power spectrum ofM y(t) with vb /vm50.8 and
C50.3. This is calculated using MD simulation with 103 spi
during 256Tb (Tb52p/vb) under the random noise with the inten
sity D51025 ~Ref. 14!. ‘‘ ! ’’ indicates the symmetric ILE, above
which the spin-wave excitations are shown. The vertical das
lines represent the upper and the lower spin-wave band edges
tained from the dispersion relation.
8-3
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from case I to II in this system, due to this reason, it is s
possible to observe the ILE’s themselves for higher value
C.

In our previous work on discrete nonlinear Schro¨dinger
~DNLS! equation10 we already noted that the DNLS equatio
is the nontrivial simplest system for studying scattering pr
lems or ILE’s. However, it has only a single parameter sin
the change of the breather frequencyvb can be compensate

FIG. 5. The frequency of the symmetric ILE given by the Fl
quet spectrum in Fig. 2~a! ~the solid curve! and by the power spec
trum of M y(t) using MD simulation~the filled square!.
a-
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by scalingV→V/vb andC→C/vb , whereV andC are the
frequencies of the small perturbation and the linear coup
strength, respectively. We would like to point out that the 1
antiferromagnet with easy-axis anisotropy provides a go
intermediate example with two spin-wave bands~or scatter-
ing channels! and two parameters (C and vb) between the
case of DNLS equation with two phonon bands and o
parameter (C/vb), and that of the KG chain with an infinite
number of phonon bands and two parameters.

In summary, we have investigated the characteristics
the possibility of experimental observation of the ILE’s
1D antiferromagnets with easy-axis anisotropy using b
linear analyses and MD simulations. The structure of
thresholds of the ILE’s strongly depends on the frequency
a spin DB. Forvb /vm,1, the ILE’s appear atC50 simul-
taneously, while forvb /vm.1 the symmetric ILE occurs a
first at a certain value ofC and then the antisymmetric on
appears at a larger value ofC. It is shown that the frequency
of the ILE’s calculated using MD simulation is well fitted b
the prediction of the linear theory. We hope that these IL
will be observed in experiments.
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