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Aging and fluctuation-dissipation ratio for the dilute Ising model
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We consider the out-of-equilibrium, purely relaxational dynamics of a weakly diluted Ising model in the
aging regime at criticality. We derive at first order in aAe expansion the two-time response and correlation
functions for vanishing momenta. The long-time limit of the critical fluctuation-dissipation ratio is computed at
the same order in perturbation theory.
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According to universality hypothesis, critical phenome
can be described in terms of quantities that do not depen
the microscopic details of the systems, but only on glo
properties such as symmetries, dimensionality, etc. A qu
tion of theoretical and experimental interest is whether a
how this critical behavior is altered by introducing in th
systems a small amount of uncorrelated nonmagnetic im
rities leading to models with quenched disorder.

The static critical behavior of these systems is well und
stood thank to the Harris criterion.1 It states that the addition
of impurities to a system that undergoes a second-o
phase transition does not change the critical behavior if
specific-heat critical exponentap of the pure system is nega
tive. If ap is positive, the transition is altered.

For the very important class of the three-dimensio
O(M )-vector models it is known thatap,0 for M>2,2 and
the critical behavior is unchanged in the presence of w
quenched disorder. Instead, the specific-heat exponent o
three-dimensional Ising model is positive.2 Therefore the in-
troduction of a small amount of nonmagnetic impurities~di-
lution! leads to a new universality class@as confirmed by
renormalization group~RG! analyses, Monte Carlo simula
tions ~MCs!, and experiments, see Refs. 2 and 3 for a
view#, to which the weakly diluted random Ising mod
~RIM! belongs. The RIM is a lattice spin model with neare
neighbor interaction Hamiltonian~see Ref. 2 and reference
therein! HRIM52(^ i j &r ir j sisj , wheresi are the spins and
r i are uncorrelated quenched random variables such thar i
51 with probabilityc (0,c<1 being the spin concentratio
in the lattice!, r i50 with probability 12c. The coarse-
grained version of RIM is given by the random temperat
Landau-Ginzburg Hamiltonian~see Ref. 2 and the discussio
below!. The purely relaxational equilibrium dynamic
~model A of Ref. 4! of this new universality class is unde
intensive investigation.5–9 The dynamic critical exponentz
differs from the mean-field value already in the one-lo
approximation,5 at variance with the pure model. This exp
nent is known up to three-loop level in anAe ~Ref. 7! and in
fixed (d52,3) dimension8 expansion, and has a value
good agreement with several MCs.9

The out-of-equilibrium dynamics is less studied. The i
tial slip exponentu of the response function was determin
up to two-loop order10 and the response function only up
one-loop order, both for conservative and nonconserva
dynamics.11

In this work we take advantage of the studied short-ti
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scaling behavior of a critical relaxation process10,12 to inves-
tigate long-time dynamics in the aging regime. The rela
ation of the system from an out-of-equilibrium initial state
characterized by two different regimes: a transient one w
off-equilibrium evolution, for t,tR , and a stationary one
with equilibrium evolution of fluctuations fort.tR , where
tR is the relaxation time. In the former a dependence of
behavior of the system on the initial condition is expecte
while in the latter homogeneity of time and time revers
symmetry~at least in the absence of external fields! are re-
covered. Consider the system in a disordered state for
initial time t50, and quench it to a given temperatureT
>Tc , whereTc is the critical temperature. Callingfx(t) the
order parameter of the model, its response to an external
h applied at a times.0 and inx50 is given by the respons
function Rx(t,s)5d^fx(t)&/dh(s), where ^•••& stands for
the mean over stochastic dynamics. The two-time correla
functionCx(t,s)5^fx(t)f0(s)& is useful to describe the dy
namics of order-parameter fluctuations. When the sys
does not reach the equilibrium~i.e., tR5`) all the previous
functions will depend both ons ~the ‘‘age’’ of the system!
and t. This behavior is usually referred to as aging and w
first noted in glassy systems.13,14To characterize the distanc
from equilibrium of an aging system, evolving at a fixe
temperatureT, the fluctuation-dissipation ratio~FDR! is usu-
ally introduced,15

Xx~ t,s!5
T Rx~ t,s!

]sCx~ t,s!
. ~1!

When t,s@tR the fluctuation-dissipation theorem holds a
thusXx(t,s)51.

Recently16–23attention has been paid to the FDR, for no
equilibrium, nondisordered, and unfrustrated syste
quenched at their critical temperatureTc from an initial dis-
ordered state.24 The scaling form forRxÄ0 can be obtained by
using general RG arguments,12

TcRx50~ t,s!5AR~ t2s!a~ t/s!uFR~s/t !, ~2!

where a5(22h2z)/z. Moreover, local scale invarianc
predictsFR(v)51.23,25 For the correlation function the RG
analysis gives12

Cx50~ t,s!5ACs~ t2s!a~ t/s!uFC~s/t !, ~3!

]sCx50~ t,s!5A]C~ t2s!a~ t/s!uF]C~s/t !, ~4!
©2002 The American Physical Society07-1
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with the sameu and a as in Eq.~2!. The functionsFC(v),
F]C(v), and FR(v) are universal, provided one fixes th
nonuniversal, normalization constantsAR , AC , and A]C to
haveFi(0)50. Obviously,A]C andF]C(v) may be derived
from AC andFC(v).

It has been argued that the limit

Xx50
` 5 lim

s→`

lim
t→`

Xx50~ t,s!5
AR

A]C
5

AR

AC~12u!
~5!

is a novel universal quantity of nonequilibrium critic
dynamics.18,20

In a recent work22 we evaluatedXx50
` at criticality for

O(M )-vector models up to the second order in thee expan-
sion, finding values in very good agreement with two- a
three- dimensional numerical simulations for the Isi
model.18,20We also confirmed the validity of the scaling law
~2! and ~4! up to the same order in perturbation theory.
different model of relaxation~model C of Ref. 4! has also
been studied.26

The extension of this kind of investigation to disorder
systems is very interesting because, besides giving a c
of the expected scaling laws, it predicts a new universal
namical quantity~the long-time limit of the FDR! that could
be measured in MCs and could be used to identify a univ
sality class, as in the case of other universal quantities.

The time evolution of a scalar fieldw(x,t) under a purely
dissipative relaxation dynamics~model A of Ref. 4! is de-
scribed by the stochastic Langevin equation,

] tw~x,t !52V
dHc@w#

dw~x,t !
1j~x,t !, ~6!

whereV is the kinetic coefficient,j(x,t) a zero-mean sto
chastic Gaussian noise with correlations

^j~x,t !j~x8,t8!&52Vd~x2x8!d~ t2t8!, ~7!

and Hc@w# the static Landau-Ginzburg Hamiltonian wit
random temperature,2

Hc@w#5E ddxF1

2
~]w!21

1

2
@r 01c~x!#w21

1

4!
g0w4G .

~8!

Here c(x) is a spatially uncorrelated random field wi
Gaussian distribution,

P~c!5
1

A4pw
expF2

c2

4wG . ~9!

Dynamical correlation functions, generated by Lange
equation~6! and averaged over the noisej, can be obtained
by the field-theoretical action,27

Sc@w,w̃#5E dt ddxF w̃]w

]t
1Vw̃

dHc@w#

dw
2w̃Vw̃ G ,

~10!

wherew̃(x,t) is the response field.
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The effect of a macroscopic initial conditionw0(x)
5w(x,t50) may be taken into account by averaging ov
the initial configuration with a weighte2H0[w0] ,12,10 where

H0@w0#5E ddx
t0

2
@w0~x!2a~x!#2. ~11!

This specifies an initial statea(x) with short-range correla-
tions proportional tot0

21. In this way, all response and co
relation functions may be obtained as averages on the fu
tional weight exp$2Sc@w,w̃#2H0@w0#%. In the analysis of
static critical behavior, the average over the quenched di
der c is usually performed by means of the replica trick.2 If
instead we are interested in dynamic processes it is sim
to perform directly the average at the beginning of t
calculation,28

E @dc#P~c!exp~2Sc@w,w̃# !5exp~2S@w,w̃# ! ~12!

with the c-independent action10 ~with v0}w),

S@w,w̃#5E ddxH E
0

`

dtw̃@] tw1V~r 02D!w2Vw̃#

1
Vg0

3 E
0

`

dtw̃w32
V2v0

2 S E
0

`

dtw̃w D 2J .

~13!

The perturbative expansion is performed in terms of
two fourth-order couplingsg0 and v0 and using the propa
gators of the free theory with an initial condition att50,

^w̃(q,s)w(2q,t)&05Rq
0(t,s) and ^w(q,s)w(2q,t)&0

5Cq
0(t,s).12 It has also been shown thatt0

21 is irrelevant~in
RG sense! for large times behavior.12 From the technical
point, the breaking of time homogeneity gives rise to so
problems in the renormalization procedure in terms of o
particle irreducible correlation functions~see Ref. 12! so all
the computations are done in terms of connected functio

In this field-theoretical approach the calculation are si
pler in momentum space. The response and correlation fu
tions for q50 are expected to scale as their analog in r
space, Eqs.~2!, ~3!, and~4!. As a consequence, the ratio21

Xq50~ t,s!5
VRq50~ t,s!

]sCq50~ t,s!
~14!

is also an universal quantity. In Ref. 21 a heuristic argum
is given to show that Xx50

` 5Xq50
` @where Xq50

`

5 lims→`limt→`Xq50(t,s)].
To compute the one-loop contributions to the respo

function, we have to evaluate the two Feynman diagra
depicted in Fig. 1. In the following we report the expressio
of all the diagrams only at criticality (r 050 in dimensional
regularization! and for vanishing external momentum, sin
we are only interested in that limit, and since expressions
nonzeroq are long and not very illuminating. The bare r
sponse function is thus given by~we assumet.s)
7-2



se
t

f

in
W

e
e

.

nc-
1,

ith a
is

ding
e

in

re

la-

BRIEF REPORTS PHYSICAL REVIEW B66, 212407 ~2002!
RB~ t,s!512
1

2
g0~a!1v0~b!1O~g0

2 ,v0
2 ,g0v0!, ~15!

where we setV51 to lighten the notation.
The diagram~a! in Fig. 1 contributes also the respon

function of nondisordered models, and it has been compu
in Ref. 21, obtaining

~a!52Nd

1

4
ln

t

s
1O~e!. ~16!

whereNd52/@G(d/2)(4p)d/2#. For diagram~b! we find

~b!5E
0

`

dt8dt9E ddp

~2p!dR0
0~ t,t8!Rp

0~ t8,t9!R0
0~ t9,s!

5
1

~4p!d/2

1

12d/2

1

22d/2
~ t2s!22d/2. ~17!

Inserting the expression for~a! and ~b! in Eq. ~15! and ex-
panding~b! up to the first order ine, one obtains

RB~ t,s!511g̃0

1

8
ln

t

s
2

ṽ0

2 F2

e
1 ln~ t2s!1gEG

1O~e2,eg̃0 ,e ṽ0 ,g̃0
2 ,ṽ0

2 ,g̃0ṽ0!, ~18!

where g̃05Ndg0 and ṽ05Ndv0. The dimensional pole o
this expression~i.e., its singular part fore→0) can be can-
celed out by the multiplicative renormalizationsw°Z1/2w,
w̃°Z̃1/2w̃ @thus R(t,s)5Z21/2Z̃21/2RB(t,s) and C(t,s)
5Z21CB(t,s)], V°(Z/Z̃)1/2V, Z511O(g̃0

2 ,ṽ0
2 ,g̃0ṽ0),

with10,7 Z̃5112ṽ0 /e1O(g̃0
2 ,ṽ0

2 ,g̃0ṽ0).
The critical response function is then obtained by sett

the renormalized couplings at their fixed point values.
remind that the stable fixed point of the RIM is of orderAe
and note ~see, e.g., Ref. 2!, due to the degeneracy of th
one-loopb functions. The nontrivial fixed point values at th
first nonvanishing order~i.e., two loops! are~see, e.g., Refs
10 and 7!

FIG. 1. Feynman diagrams contributing to the one-loop
sponse function. Wavy-normal lines representRq

0 , whereasCq
0 is

drawn as a normal line. The dotted line is a non-localv-like vertex.
21240
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e

g̃05g̃* 54A6e

53
1O~e!, ṽ05 ṽ* 5A6e

53
1O~e!.

~19!

Finally we get

R~ t,s!511
1

2
A6e

53F ln
t

s
2 ln~ t2s!2gEG1O~e!, ~20!

which is fully compatible with the expected scaling form~2!
with the well-known exponents7,11

a52
1

2
A6e

53
1O~e!, u5

1

2
A6e

53
1O~e!, ~21!

andFR(x)511O(e), while

AR512
1

2
A6e

53
gE1O~e!. ~22!

There are five diagrams contributing to the correlation fu
tion. Four of them are obtained from the ones in Fig.
changing one of the two external response propagators w
correlation line~see Ref. 22 for a detailed explanation of th
correspondence!. We call these four diagrams (a1), (a2),
(b1), and (b2). The sum (a1)1(a2) was computed in Ref.
21 leading to

~a1!1~a2!52
Nd

2
sS ln

t

s
12D1O~e!. ~23!

The sum (b1)1(b2) is instead

~b1!1~b2!5
NdG~d/2!

~12d/2!~22d/2!~32d/2!

3@ t32d/21s32d/22~ t2s!32d/2#. ~24!

The octopus diagram in Fig 2 does not have a correspon
one contributing to the response function. It has the valu

~c!5
NdG~d/2!

~12d/2!~22d/2!~32d/2!

3F ~ t2s!32d/21~ t1s!32d/2

2
2t32d/22s32d/2G .

~25!

Collecting together these contributions and expanding
powers ofe we find, atO(e2,eg̃0 ,e ṽ0 ,g̃0

2 ,ṽ0
2 ,g̃0ṽ0),

-

FIG. 2. Feynman diagram contributing to the one-loop corre
tion function that does not have an analog in the response.
7-3
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CB~ t,s!52s2
g0

2
@~a1!1~a2!#1v0@~b1!1~b2!1~c!#

52s1
g̃0

4
sS ln

t

s
12D1 ṽ0F2

2s

e
2gEs1s

1
~ t2s!ln~ t2s!

2
2

~ t1s!ln~ t1s!

2 G . ~26!

This expression is renormalized as already done forRB(t,s).
At the nontrivial fixed point for couplings we have

C~ t,s!

2
5sH 11

1

2
A6e

53F ln
t

s
132gE2 ln~ t2s!

1
t1s

2s
ln

t2s

t1sG J 1O~e!, ~27!

which is again compatible with the expected scaling fo
@cf. Eq. ~3!# with the same exponents of Eq.~21!, the non-
universal amplitude

AC

2
511

1

2
A6e

53
~22gE!1O~e!, ~28!
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