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Aging and fluctuation-dissipation ratio for the dilute Ising model
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We consider the out-of-equilibrium, purely relaxational dynamics of a weakly diluted Ising model in the
aging regime at criticality. We derive at first order iny& expansion the two-time response and correlation
functions for vanishing momenta. The long-time limit of the critical fluctuation-dissipation ratio is computed at
the same order in perturbation theory.
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According to universality hypothesis, critical phenomenascaling behavior of a critical relaxation procks€to inves-
can be described in terms of quantities that do not depend digate long-time dynamics in the aging regime. The relax-
the microscopic details of the systems, but only on globahtion of the system from an out-of-equilibrium initial state is
properties such as symmetries, dimensionality, etc. A queszharacterized by two different regimes: a transient one with
tion of theoretical and experimental interest is whether anaff-equilibrium evolution, fort<tg, and a stationary one
how this critical behavior is altered by introducing in the with equilibrium evolution of fluctuations for>tg, where
systems a small amount of uncorrelated nonmagnetic imptty, is the relaxation time. In the former a dependence of the
rities leading to models with quenched disorder. behavior of the system on the initial condition is expected,
The static critical behavior of these systems is well underwhile in the latter homogeneity of time and time reversal
stood thank to the Harris criteridrit states that the addition symmetry(at least in the absence of external figldse re-
of impurities to a system that undergoes a second-ordetovered. Consider the system in a disordered state for the
phase transition does not change the critical behavior if thénitial time t=0, and quench it to a given temperatufe
specific-heat critical exponent, of the pure system is nega- =T, whereT, is the critical temperature. Calling,(t) the
tive. If a, is positive, the transition is altered. order parameter of the model, its response to an external field
For the very important class of the three-dimensionalh applied at a tims>0 and inx=0 is given by the response
O(M)-vector models it is known that,<0 for M=22and  function Ry(t,s)=&(p(t))/Sh(s), where(---) stands for
the critical behavior is unchanged in the presence of weakhe mean over stochastic dynamics. The two-time correlation
quenched disorder. Instead, the specific-heat exponent of thignction C,(t,s) = ( ¢,(t) do(S)) is useful to describe the dy-
three-dimensional Ising model is positi?@herefore the in-  namics of order-parameter fluctuations. When the system
troduction of a small amount of nonmagnetic impurities  does not reach the equilibriuthe., tg=2) all the previous
lution) leads to a new universality clagas confirmed by functions will depend both os (the “age” of the system
renormalization grougRG) analyses, Monte Carlo simula- andt. This behavior is usually referred to as aging and was
tions (MCs), and experiments, see Refs. 2 and 3 for a refirst noted in glassy system$*To characterize the distance
view], to which the weakly diluted random Ising model from equilibrium of an aging system, evolving at a fixed
(RIM) belongs. The RIM is a lattice spin model with nearest-temperaturdf, the fluctuation-dissipation rati¢DR) is usu-
neighbor interaction Hamiltoniatsee Ref. 2 and references ally introduced!®
therein Hgym=—Zj)pip; SiSj, wheres; are the spins and
p; are uncorrelated quenched random variables suchpthat T R(t,s)
=1 with probabilityc (0O<<c=<1 being the spin concentration X(1,8)= 3sCy(t,8) "
in the latticg, p;=0 with probability 1-c. The coarse- ) o
grained version of RIM is given by the random temperatureWhe”taS>tR the fluctuation-dissipation theorem holds and
Landau-Ginzburg Hamiltoniatsee Ref. 2 and the discussion thusX(t,s) N %3 . _
below. The purely relaxational equilibrium dynamics Recently°~**attention has been paid to the FDR, for non-
(model A of Ref. 4 of this new universality class is under €quilibrium, —nondisordered, and unfrustrated —systems
intensive investigatiofi-® The dynamic critical exponer ~ duenched at their critical temperatuFe from an initial dis-
differs from the mean-field value already in the one-loopordered staté’ The scaling form foR,—o can be obtained by
approximatior?, at variance with the pure model. This expo- USing general RG argumerits,
nent is known up to three-loop level in afe (Ref. 7 and in
fixed (d=2,3) dimensiofi expansion, and has a value in TeRyo(t,5) = Ar(t—8)%(t/s) "F(slt), 2
good agreement with several M&s. where a=(2— »—2)/z. Moreover, local scale invariance
The out-of-equilibrium dynamics is less studied. The ini- predictsF(v)=1.2>2?° For the correlation function the RG
tial slip exponent of the response function was determined analysis give
up to two-loop ordéf’ and the response function only up to

()

one-loop order, both for conservative and nonconservative Cy—o(t,5)=Acs(t—s)3(t/s)F(slt), 3
dynamicst?t
In this work we take advantage of the studied short-time 3sCyo(t,8)=A,c(t—9)2(t/S)F ,c(slt), (4)
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with the samed anda as in Eq.(2). The functionsFc(v), The effect of a macroscopic initial conditiopqy(x)
F,c(v), and Fg(v) are universal, provided one fixes the = ¢(x,t=0) may be taken into account by averaging over

nonuniversal, normalization constarg, Ac, andA,c to  the initial configuration with a weighe ™ "ol¢ol 12.10\yhere
haveF;(0)=0. Obviously,A,c andF ,c(v) may be derived
from Ac andF(v). B 4. 70 )
It has been argued that the limit Hol@ol= | d™* = [@o(x)—a(x)]" (12)
AR Ar This specifies an initial stata(x) with short-range correla-
Xy slTltll_TcXX o(t,8)= Ac Ac(l-0) (3 tions proportional tory L. In this way, all response and cor-

relation functions may be obtained as averages on the func-

is a novel universal quantity of nonequilibrium critical tional weight eX[{)—Slp[(p,'(;]—Ho[(po]}. In the analysis of
dynamics:®2° static critical behavior, the average over the quenched disor-
In a recent work we evaluatedX;_, at criticality for  der y is usually performed by means of the replica tricik.
O(M)-vector models up to the second order in thexpan-  instead we are interested in dynamic processes it is simpler
sion, finding values in very good agreement with two- andto perform directly the average at the beginning of the
three- dimensional numerical simulations for the Isingcalculation?®
model*®2°We also confirmed the validity of the scaling laws
(2) and (4) up to the same order in perturbation theory. A ~ ~
different model of relaxatioimodel C of Ref. 4 has also f [dy]IP(y)exn—S,[e.e]) =exp—S[e.¢]) (12
been studied®
The extension of this kind of investigation to disorderedWith the y-independent actidfl (with vgow),
systems is very interesting because, besides giving a check
of the expected scaling laws, it predicts a new universal dy-
namical quantitythe long-time limit of the FDRthat could
be measured in MCs and could be used to identify a univer-

S[¢,5]=f ddx[ f:dtZD[ﬁtWrQ(fo—A)so—Q:P]

sality class, as in the case of other universal quantities. n &f 4o 03— 0%, fmdf 2
The time evolution of a scalar field(x,t) under a purely 3 ¢’ 2 | ), TF®
dissipative relaxation dynamidsnodel A of Ref. 4 is de-
scribed by the stochastic Langevin equation, (13
ML o] The perturbative expansion is performed in terms of the
drp(X,1)= _Q&p(x 0 +£&(x,1), (6)  two fourth-order couplinggy andv, and using the propa-

gators of the free theory with an initial condition &t 0,
where () is the kinetic coefficient£(x,t) a zero-mean sto- (¢(q,s)¢(—q,t))o= Ro(t S) and <cp(q S)e(—a,t))o

chastic Gaussian noise with correlations =Cq(t,s).* It has also been shown thaf * is irrelevant(in
o ) ) RG sens)a for large times behavid? From the technical
(E(x, )X, 17))=206(x—x") o(t—t"), (7)  point, the breaking of time homogeneity gives rise to some

problems in the renormalization procedure in terms of one-

particle irreducible correlation functiorisee Ref. 12so all

the computations are done in terms of connected functions.
In this field-theoretical approach the calculation are sim-

and H,[ ¢] the static Landau-Ginzburg Hamiltonian with
random temperature,

Hl/,[go]=j d9x %((9¢)2+%[r0+ P(x) ]2+ %gocp“}. pler in momentum space. The response and correlation func-
’ ®) tions forq=0 are expected to scale as their analog in real
space, Eqs(2), (3), and(4). As a consequence, the ratio
Here (x) is a spatially uncorrelated random field with
Gaussian distribution, Ry=o(t,S)

Xy=o(t,8)= m (14

1 W2
P(y)= —\/4— EXF{ ~awl (9)  is also an universal quantity. In Ref. 21 a heuristic argument
mw is given to show that X;_,=AX;_, [where Xj_,

Dynamical correlation functions, generated by Langevin=liMs_.limq_.X;—o(t,s)].

equation(6) and averaged over the noige can be obtained To compute the one-loop contributions to the response
by the field-theoretical actiof, function, we have to evaluate the two Feynman diagrams
depicted in Fig. 1. In the following we report the expressions

s¢[¢,7p]:f dt d’x

~d@ ~O0Hy o] ~ ~ of all the diagrams only at criticalityrg=0 in dimensional
@EJFQ(P 50 —oQo|, regularization and for vanishing external momentum, since

(10) we are only interested in that limit, and since expressions for
B nonzeroq are long and not very illuminating. The bare re-
where ¢(X,t) is the response field. sponse function is thus given fwe assumé>s)
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FIG. 2. Feynman diagram contributing to the one-loop correla-
tion function that does not have an analog in the response.

~ 6e ~ o~y 6e
90=9" =4/ 537 0(e), vo=v"="/g3+0(e).

(19

FIG. 1. Feynman diagrams contributing to the one-loop re-Finally we get
sponse function. Wavy-normal lines represaﬂt whereascg is

drawn as a normal line. The dotted line is a non-lacdike vertex. 1 \/&
1+ oA —
R(t,s)=1 >\ 53

1
Ra(t,8)=1—500(@) +vo(b)+0(95,v6,Gov0), (19)

where we sef) =1 to lighten the notation.

t
Ing —In(t—s)—ve

+0O(e), (20

which is fully compatible with the expected scaling fof&)
with the well-known exponentg?!

The diagram(a) in Fig. 1 contributes also the response 1 [6e 1 [6e
function of nondisordered models, and it has been computed a=—5\ gzt 0le), O=5\z3+0(e), (2

in Ref. 21, obtaining

andFr(x)=1+0(e), while

1t
(a)= —NdZIn§+O(e). (16) 1 [6e

whereNy=2/[T'(d/2)(47)%?]. For diagram(b) we find

(b)—fmdt’dt”f d’p RO(t,t ROt t"RS(L",s)

1 1

There are five diagrams contributing to the correlation func-
tion. Four of them are obtained from the ones in Fig. 1,
changing one of the two external response propagators with a
correlation line(see Ref. 22 for a detailed explanation of this
correspondenge We call these four diagramsy{), (a,),

— 1 (t—s)2-92, (17) (bq), and (,). The sum &,) +(a,) was computed in Ref.

(4m)¥2 1—di22—d/2

21 leading to

Inserting the expression fdr) and (b) in Eq. (15 and ex- Ng t
panding(b) up to the first order ire, one obtains (a1) +(az) =~ 55| In_+2 |+ O(e). (23
_ 1t T2 The sum ;) +(b,) is instead
Re(t,8)=1+Qoglns —= | —+In(t—s)+ ¥
5 cle (611 (b= Ngl'(d/2)
+0(€%,€Qp,€00,05.,02,9000), (18) ! 27 (1—df2)(2—d/2)(3—d/2)

X[t37d/2+537d/2— (t_s)3fd/2]. (24)

where go=Nygo and vo=Nqv,. The dimensional pole of
this expressiorii.e., its singular part foe—0) can be can- The octopus diagram in Fig 2 does not have a corresponding
celed out by the multiplicative renormalizatiogs—>Z*¢, one contributing to the response function. It has the value

o—>72Y%%p [thus R(t,s)=Z Y%Z Rg(t,s) and C(t,s)

=771Cx(t,5)], Q—=(Z/2)Y20, Z=1+0(92,v2,9000), (0)= Ngl'(d/2)
With'®7Z=1+25 o/ e+ O(G2 52,307 0)- (1-d2)(2~di2)(3-d72)
The critical response function is then obtained by setting (t—s)3 924 (t+g)3- 92
the renormalized couplings at their fixed point values. We X —3-di2_g3-di2}
remind that the stable fixed point of the RIM is of ordés 2
and note (see, e.g., Ref.)2 due to the degeneracy of the (25

one-loopg functions. The nontrivial fixed point values at the ) o o
first nonvanishing ordefi.e., two loop$ are (see, e.g., Refs. Collecting together these contributions and expanding in

10 and 7

powers ofe we find, atO(e?,e0q,€v0.92,02,dov0),
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Co(t,5) = 25— S[(a)+ (@) ]+ ol (by) + () + (©)]

2s N
— — —vYgS+S
e Ye

%o
=2s+ 2 S

t ~
In§+2) +vy

(t—=9s)In(t—s) (t+s)In(t+s)
- 2 - 2

This expression is renormalized as already dondRft,s).
At the nontrivial fixed point for couplings we have

(26)

ct,s) . /6e|t 5 |

> =S +§ a n§+ —YE— n(t—S)
S0 2
2s Mprs)| TOCE) @)
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and the universal regular scaling function
1 /6€ 1
53

1+§

1—x
In——

1+1
1+x

Fc(X):1+ X

5 +0O(e).

(29
Note that at variance with the pure mod&f? the function
Fc(x) receives a contribution already at one-loop order
which should be observable in MCs.
Using Eq.(5) the FDR is

¥ 1 1 [6e o
403~z \'5g" Ol

which, fore=1 leads toX;_,~0.416, andy,_,~0.381 for
e€=2. It would be interesting to see if this one-loop result is
in as good agreement with MCs as in the case of the pure
model(cf. Refs. 21 and 22 To this order it is not even clear
whether or not randomness really changes in a sensible way

(30

which is again compatible with the expected scaling formthe limit of the FDR. Two-loop computations and MCs could

[cf. Eq. (3)] with the same exponents of E(®1), the non-
universal amplitude

Ac . 1 [6e
- =1+ 5552~ ve)+0(e), (28)

clarify this point.
For completeness, we report also the FDR for finite times,
Xlo(ts) W1 [6¢

-7 2 V53

1 t—s
1+ =Ih—

hbws +0(e).

(31)
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