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Formation of absolute frequency gaps in three-dimensional solid phononic crystals
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We report on the occurrence of absolute elastic band gaps in three-dimensional binary systems made up of
steel spheres in polyester, and examine how the width of such gaps depends on the geometry of the structure.
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Phononic crystals are composite materials with elastic costructures corresponding to a variety of crystal structures we
efficients which vary periodically in space. A most interest-learn how the geometry of the structure influences the for-
ing aspect of these materials arises from the possibility ofmation of frequency gaps. The calculations are carried out
frequency regions, known as absolute phononic band gapssing the on-shell layer-multiple-scattering formalism we
over which there can be no propagation of elastic waves imave developed for this purpo3&his formalism applies to
the crystal, whatever the direction of propagation; an interphononic crystals consisting of nonoverlapping spheres
esting phenomenon which promises applications as wellfluid or solid in a homogeneous host mediuffiuid or
(see, e.g., Ref. 1 and references thereibsolute spectral solid). The convergence of numerical calculations by this
gaps do not occur easily in three-dimensiof@dD) solid  method is determined by the cutoff values actually used in
phononic crystals. Elastic waves in a 3D solid phononicthe spherical-wave and plane-wave expansions involved. In
crystal have longitudinal and transverse components, anthe present work we required a relative accuracy better than
corresponding gaps must overlap, for any direction of propa©.01 in the determination of the edges of the frequency gaps.
gation, if an absolute gap is to appear. One may think thaThis was achieved in the most demanding cdtmge frac-
this is not likely in view of the different propagation veloci- tional volume occupied by the spherdsy considering an
ties of longitudinal and transverse waves. However, undeangular momentum cutoff,,,=8 and by including 149 2D
specific conditions, absolute gaps do occur in 3D solidreciprocal vectors.
phononic crystals. It has been established that periodic bi- To begin with, we consider a fcc crystal of steel spheres in
nary composites consisting of nonoverlapping high-densitypolyester with a fractional volume occupied by the spheres
spheres in a low-density host matefiahs well as three- f=18.4%. Figure (a) shows the frequency band structure of
component phononic crystals consisting of coated spherese elastic field in this crystal, normal to i901) surface,
inside an embedding mediuid, exhibit absolute phononic i.e., when the componeiit = (k,,ky) of the reduced wave
gaps. In this paper we further investigate the physics of theector, within the corresponding surface Brillouin zone
formation of absolute gaps in phononic crystals, and show ifSB2), is equal to zero. The thin solid lines in Figal are
particular that the crystal structure plays an important role irlongitudinal bands and the thick solid lines are transverse
the formation of these gaps. bands; these couple, respectively, with longitudinal and

We conside(this is a good example of a phononic crystal transverse elastic waves incident normally 0i®@1) slab of
consisting of high-density spheres in a low-density hast
infinite 3D array of nonoverlapping steel spheresgg (
=7800 kg/mi, c=5940 m/sec, and=3200 m/sec), of
radius S, arranged periodically in a polyester matriyp (
=1220 kg/mi, ¢,=2490 m/sec, and,=1180 m/sec), ne-
glecting losses in both constituent materials. The infinite

crystal is viewed as a sequence of planes of spheres perpen- 2r =n T
dicular to thez axis. The spheres of a plangy( plane are i T 1
arranged on a 2D lattice defined by the primitive vectars 1 T ]
anda,. The (n+ 1)th plane along the axis is obtained from B (@) T (b)
the nth plane by a primitive translatioa; = (asy,asy,as,), oK1 —

so thatd=a,;, is the distance between successive planes. For 0.0 M L
example, a square lattice, obtained with=a,(1,0,0), a,
=20(0,1,0), generates a variety of 3D lattices depending on i 1 The phononic frequency band structure of a fcc crystal
the choice ofas. Puttinga;=a,(0,0,1) gives a simple cubic o steel spheres in polyester, with-18.4%. (a) Frequency bands
(so crystal,a3=ao(1/2,1/2,1/2) gives a base-centered-cubiCnormal to the (001) surface. The thithick) solid lines refer to
(bco crystal, ag=a,(1/2,1/25/2/2) gives a face-centered- longitudinal (transvers bands and the dotted lines refer to deaf
cubic (fcc) crystal, a;=(0,0d) with d#ay gives a simple bands.(b) Projection of the frequency band structure on the sym-
tetragonal(st) crystal, etc. By comparing the phononic band metry lines of the SBZ of the (001) surface.
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the material. The dotted lines are deaf bands which do not
couple with waves incident normally on the sldbr a clari-
fication of what is meant by longitudinal, transverse, and
deaf bands in phononic crystals, see Sec. VIl of Rgflts
seen that, in the frequency range froom,/c;=2.32 to

way/c,=3.23, there are no propagating modes of the elastic 2F T 7
field in the crystal along thg001] direction. This relatively r I 1
wide frequency gap exists throughout the SBZ, and its edges LF T .
vary little with k ; this is seen in Fig. (b), which shows the r @ T (b)

projection of the frequency band structure of the elastic field 00 o ' 0'5 ! T — M —
in the given crystal on the symmetry lines of the SBZ of its ’ Edi r

(001 surface. The shaded regions define the frequency bands
of the elastic field: at any one frequency within a shaded F|G. 2. The same as in Fig. 1, but for a st crystal of steel spheres
region, for a giverk, there exists at least one propagatingin polyester withd=a,2/2 andf =18.4%.

elastic mode in the infinite crystal. The blank areas corre-

spond to frequency gaps. We note that knowing the mOdeﬁ‘om the rigid-body-resonance modes of the individual

corresponding tde= (k) k;) with kj within the irreducible g ares and the continuum bands corresponding to propaga-
part of the SBZ—a triangle with vertices Bit{ k= (0,0)], X tion in an effective homogeneous medium. For a fcc crystal,
[kj=(7/a,,0)], andM [k = (m/ag,m/ao)]— andk, in the  the large coordination number and the highly symmetric ar-
region: Osk,</d is sufficient for a complete description rangement of neighbors around a given sphere imply a rela-
of all the modes in the infinite crystal. The modes corre-tively isotropic and homogeneous distribution of the elastic
sponding to the remaining of the reduckdspace are ob- field associated with the above-mentioned resonance bands.
tained through symmetry. As can be seen from Fi),ffor  This, in turn, facilitates their interaction and their hybridiza-
the phononic crystal under consideration one obtains an atlion with modes of the elastic field corresponding to propa-
solute frequency gap extending fromay/c,=2.32 to gation in a homogeneous effective medium. For the same
way/c;=3.13. We verified that this is indeed so by calculat-reason, strong hybridization and, consequently, large gaps
ing the projection of the band structure at a sufficient numbegre expected in the case of other compact structures: hexago-
of k; points in the SBZ. The bottom of the absolute gap ishal close-packethcp), bee or sc structuresAs a measure of

determined by the frequency band structure atfthpoint, ~ compactness we adopt the maximum valuef,do be de-

. . noted byf, . that is possible in the given structufef
and its top by the frequency band structure at¥heoint. max : S
As shrc))wr): in Figq. m)y the Iong-wavelengﬁl limit nonoverlapping sphergsTo clarify the above, in Fig. 2 we

(w—0) is represented by the linear segments of the dispe'[_)resent band-structure results for a st crystal of steel spheres

sion curves, which correspond to the longitudire@ndegen- n p(_)lyester, W'thf_l8.'4% andd_—ao\/ilz. This crystgl,
eratd and transversédoubly degeneratenodes of propaga- ob_talned from the previously studied fcc crystal by.a simple
tion of the elastic field in an effective homogeneous mediumfShlft of every seconc(OO](,)) plane bya0(1/2,1/2,%), is less
It is worth noting that the slopes of these curves give e1"fec-compaCt(It hast ma= 26'2@ gompargd tma= 74% for the

. . e . . — fcc). We see that the hybridization-induced gap kg0 is
tive propagation velocities in the composite mediup, very narrow Fig. 2(@)] and that, as result of its variation with

=2045 m/sec an(d:t: 1019 m/SEﬁ, which are in very g_OOd k” , nNo absolute gap exists in this Cdgeg Z(b)]

agreement with the resultsc,=2064 m/sec and c; In order to further clarify the physical origin of a hybrid-
=1030 m/sec, of the effective-medium approximafiom ization gap we refer to Fig. 3. There we show schematically,
an effective-medium picture of the phononic crystal, oneby dotted lines, two unhybridized bands, along the direction
would have only these continuum bands, extending over ak=(0,0k,): a flat longitudinal band, originating from
frequencies. A periodic distribution afeakscattering cen- weakly interacting rigid-body-resonance modes of the inclu-
ters would alter this picture only by folding the bands ontosions, and the band corresponding to the longitudinal dis-
the first Brillouin zone and by opening up small gaps, theplacement field in the homogeneous effective medium that
so-called Bragg gaps, at the Brillouin-zone boundaries. Evione would obtain in the absence of interaction with the reso-
dently the absolute frequency gap in Fig. 1 is not a Bragghance modes. Because an interaction between them does ex-
gap. In reality, apart from the above-mentioned continuunist, one obtains the hybridized bands represented by the solid
bands, there are also bands originating from resonant elastimes in Fig. 3. The bands denoted by 1 are the longitudinal
modes of the individual spheres: resonant states on neighbbands shown in Fig. (&); in their case the hybridization is
spheres couple weakly with each other, resulting in correstrong and a wide gap opens up. The bands denoted by 2 are
sponding relatively narrow bands. We know, in fact, that thethe longitudinal bands shown in Fig(a; in their case the
elastic field about a single steel sphere in polyester exhibits hybridization is weaker and the corresponding gap is much
sharp dipole resonance, the so-called rigid body resonancesmaller. We note that the hybridization we have described is
near the frequency region of the gap shown in Fig. 1. Thisanalogous to the well knowstd hybridization in the energy-
points to the physical origin of this gap: it opens up as aband structure of transition metdlst also occurs in metall-
result of hybridization between the narrow bands originatingodielectric photonic crystafsOf course hybridization occurs
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d/r FIG. 5. Absolute frequency gaps in phononic crystals of steel

spheres, centered at the sites of various tetragonal lattices specified
Oby the primitive vectorsa;=ag(1,0,0), a,=ay(0,1,0), andag
=d(0,0,1), in a polyester matrixt@ d=a, (sc lattice. (b) d
=1.15,. (c) d=0.85,. The dotted linegnormal on the abscissa
indicate the values of,,,, corresponding to these structures.

FIG. 3. Schematic representation of a hybridization-induce
gap. The dotted lines show tlihypothetical unhybridized bands.
The solid lines 1 and 2 show thactua) hybridized longitudinal
bands shown in Figs.(&) and Za), respectively.

between transverse bandee Figs. () and 2a)]; there the  lows. The opening of the hybridization gap is favored by an
shape of the hybridized bands is indeed more complicatethcreased, but at the same time it is compromised by the
because of the greater number of unhybridized bands inwidening of the resonance bands which is also favored by an
volved in their generation. increased value of

In Fig. 4 we show the ratio of the gap width to its respec- We have also looked at the variation of the width of the
tive m|dgap frequencyA wg /ZG, against the volume frac- absolute gap withd, in the case of tetragonal symmetry. Our
tion f occupied by the spheres, for a variety of lattices havingesults(see Fig. $ again show that the widest gaps are ob-
the same interplane distande-ay\/2/2. They are defined by tained for the sc structured&ag), which is the most com-
the primitive vectorsa; =aq(1,0,0), a,=a,(0,1,0), anda;  pact of all tetragonal structures, and become narrower as we
=ay(a,B, \/5/2); we also put &, 8) = (0.5,0.5)(fcc lattice), go to less compact structures for bath-a, andd<a,,.
(«,8)=(0.5,0.25), @,B)=(0.5,0), («,B)=(0.25,0.25), The above arguments do not imply that structures with the
(a,8)=(0.25,0), and &, B)=(0,0) (st lattice. It is seen  same f,, will have identical Awg/wg versusf curves.
that the widest absolute gaps are obtained for the most conThese curves depend on the specific geometry of the struc-
pact structure of the familjthe fcc structurg with progres-  tyre to some degree, but on the whole we expect structures of
sively narrower gaps as we go to less compact structurehe same compactness to have more or less the same
(corresponding to smaller values_bﬁax). It is worth noting Awe/wg Versusf curves.
that the maximum value cAwg/wg for a given structure In all the structures considered so far we have one sphere
does not occur af =f .. This can be understood as fol- per primitive cell. We have also looked at two structures with

two (identica) spheres per primitive cell: the hcp and dia-

T T T mond structures. The hcp is a compact structure withy,
| ©08 P —a =74%, equal to that of the fcc. Not surprisingly, we find that
g@ [ P . Awg/wg as a function of is the same in this cagavithin
<31 06 C 1%) with that of the fcc casiFig. 4(a)]. By the same token,
i 1 in the diamond structure, not a compact structufg,,{
041 ] =34%), we find small absolute gaps for 15%. Awg/wg
i as a function off lies in this case between Fig(d} (fax
02 T =36.6%) and curve Fig. (4) (fna—=31.2%), and has a
00 . maximum value, equal to 0.09, &&27%.

60 ' 30 _ Finally, in.our calc_ulations the scatterers were sph_er_es Qf a
f (%) single material. Coating the spheres may shift a hybridization
gap toward a desired frequency regitsthut the width of the
FIG. 4. Absolute frequency gaps in phononic crystals of steelyap should depend on the geometry of the structure in much
sphere;, _cgntered at the sites of various Bravais lattices specified e sgme way as in the examples considered here. It is also
the primitive vectors ,=a,(1,0,0), 8=2a0(0,1,0), and as |jkely that the arguments we have presented here relating the

=ay(a,8,1/2/2), in a polyester matrix(@ a=0.5, B=0.5 (fec  \idth of hybridization gaps to the compactness of 3D struc-
lattice). (b) «=0.5, B=0.25. (c) «=0.5, 8=0. (d) «=0.25, 8 tures will apply to 2D systems as wep1t

=0.25 (e) «=0.25, 8=0. The dotted linegnormal on the ab-
scissaindicate the values df,,, corresponding to these structures. R.S. was supported by the State Foundatit€y ) of

For a=B=0 (st lattice,f .= 26.2%) no absolute gap appears. Greece.
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