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Formation of absolute frequency gaps in three-dimensional solid phononic crystals
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We report on the occurrence of absolute elastic band gaps in three-dimensional binary systems made up of
steel spheres in polyester, and examine how the width of such gaps depends on the geometry of the structure.

DOI: 10.1103/PhysRevB.66.212301 PACS number~s!: 46.40.2f, 43.40.1s, 43.20.1g
co
st

o
ap
s
te

e

ni
a
pa
th
i-
de
li
b

sit

er

th

i

ta

it
rp

F

o

bic
-

nd

we
for-
out
e

res

is
in

. In
han
ps.

in
res
of

e

rse
nd

tal

af
m-
Phononic crystals are composite materials with elastic
efficients which vary periodically in space. A most intere
ing aspect of these materials arises from the possibility
frequency regions, known as absolute phononic band g
over which there can be no propagation of elastic wave
the crystal, whatever the direction of propagation; an in
esting phenomenon which promises applications as w
~see, e.g., Ref. 1 and references therein!. Absolute spectral
gaps do not occur easily in three-dimensional~3D! solid
phononic crystals. Elastic waves in a 3D solid phono
crystal have longitudinal and transverse components,
corresponding gaps must overlap, for any direction of pro
gation, if an absolute gap is to appear. One may think
this is not likely in view of the different propagation veloc
ties of longitudinal and transverse waves. However, un
specific conditions, absolute gaps do occur in 3D so
phononic crystals. It has been established that periodic
nary composites consisting of nonoverlapping high-den
spheres in a low-density host material,2 as well as three-
component phononic crystals consisting of coated sph
inside an embedding medium,3,4 exhibit absolute phononic
gaps. In this paper we further investigate the physics of
formation of absolute gaps in phononic crystals, and show
particular that the crystal structure plays an important role
the formation of these gaps.

We consider~this is a good example of a phononic crys
consisting of high-density spheres in a low-density host! an
infinite 3D array of nonoverlapping steel spheres (rs
57800 kg/m3, csl55940 m/sec, andcst53200 m/sec), of
radius S, arranged periodically in a polyester matrix (r
51220 kg/m3, cl52490 m/sec, andct51180 m/sec), ne-
glecting losses in both constituent materials. The infin
crystal is viewed as a sequence of planes of spheres pe
dicular to thez axis. The spheres of a plane (xy plane! are
arranged on a 2D lattice defined by the primitive vectorsa1
anda2. The (n11)th plane along thez axis is obtained from
the nth plane by a primitive translationa35(a3x ,a3y ,a3z),
so thatd5a3z is the distance between successive planes.
example, a square lattice, obtained witha15a0(1,0,0), a2
5a0(0,1,0), generates a variety of 3D lattices depending
the choice ofa3. Puttinga35a0(0,0,1) gives a simple cubic
~sc! crystal,a35a0(1/2,1/2,1/2) gives a base-centered-cu
~bcc! crystal, a35a0(1/2,1/2,A2/2) gives a face-centered
cubic ~fcc! crystal, a35(0,0,d) with dÞa0 gives a simple
tetragonal~st! crystal, etc. By comparing the phononic ba
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structures corresponding to a variety of crystal structures
learn how the geometry of the structure influences the
mation of frequency gaps. The calculations are carried
using the on-shell layer-multiple-scattering formalism w
have developed for this purpose.5 This formalism applies to
phononic crystals consisting of nonoverlapping sphe
~fluid or solid! in a homogeneous host medium~fluid or
solid!. The convergence of numerical calculations by th
method is determined by the cutoff values actually used
the spherical-wave and plane-wave expansions involved
the present work we required a relative accuracy better t
0.01 in the determination of the edges of the frequency ga
This was achieved in the most demanding cases~large frac-
tional volume occupied by the spheres! by considering an
angular momentum cutoffl max58 and by including 149 2D
reciprocal vectors.

To begin with, we consider a fcc crystal of steel spheres
polyester with a fractional volume occupied by the sphe
f 518.4%. Figure 1~a! shows the frequency band structure
the elastic field in this crystal, normal to its~001! surface,
i.e., when the componentki5(kx ,ky) of the reduced wave
vector, within the corresponding surface Brillouin zon
~SBZ!, is equal to zero. The thin solid lines in Fig. 1~a! are
longitudinal bands and the thick solid lines are transve
bands; these couple, respectively, with longitudinal a
transverse elastic waves incident normally on a~001! slab of

FIG. 1. The phononic frequency band structure of a fcc crys
of steel spheres in polyester, withf 518.4%. ~a! Frequency bands
normal to the (001) surface. The thin~thick! solid lines refer to
longitudinal ~transverse! bands and the dotted lines refer to de
bands.~b! Projection of the frequency band structure on the sy
metry lines of the SBZ of the (001) surface.
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the material. The dotted lines are deaf bands which do
couple with waves incident normally on the slab~for a clari-
fication of what is meant by longitudinal, transverse, a
deaf bands in phononic crystals, see Sec. VII of Ref. 5!. It is
seen that, in the frequency range fromva0 /cl52.32 to
va0 /cl53.23, there are no propagating modes of the ela
field in the crystal along the@001# direction. This relatively
wide frequency gap exists throughout the SBZ, and its ed
vary little with ki ; this is seen in Fig. 1~b!, which shows the
projection of the frequency band structure of the elastic fi
in the given crystal on the symmetry lines of the SBZ of
~001! surface. The shaded regions define the frequency ba
of the elastic field: at any one frequency within a shad
region, for a givenki , there exists at least one propagati
elastic mode in the infinite crystal. The blank areas cor
spond to frequency gaps. We note that knowing the mo
corresponding tok5(ki ,kz) with ki within the irreducible
part of the SBZ—a triangle with vertices atḠ @ki5(0,0)#, X̄

@ki5(p/a0,0)#, andM̄ @ki5(p/a0 ,p/a0)#— andkz in the
region: 0<kz<p/d is sufficient for a complete descriptio
of all the modes in the infinite crystal. The modes cor
sponding to the remaining of the reducedk space are ob-
tained through symmetry. As can be seen from Fig. 1~b!, for
the phononic crystal under consideration one obtains an
solute frequency gap extending fromva0 /cl52.32 to
va0 /cl53.13. We verified that this is indeed so by calcul
ing the projection of the band structure at a sufficient num
of ki points in the SBZ. The bottom of the absolute gap
determined by the frequency band structure at theḠ point,
and its top by the frequency band structure at theM̄ point.

As shown in Fig. 1~a!, the long-wavelength limit
(v→0) is represented by the linear segments of the dis
sion curves, which correspond to the longitudinal~nondegen-
erate! and transverse~doubly degenerate! modes of propaga
tion of the elastic field in an effective homogeneous mediu
It is worth noting that the slopes of these curves give eff
tive propagation velocities in the composite medium,c̄l

52045 m/sec andc̄t51019 m/sec, which are in very goo
agreement with the results,c̄l52064 m/sec and c̄t
51030 m/sec, of the effective-medium approximation.6 In
an effective-medium picture of the phononic crystal, o
would have only these continuum bands, extending over
frequencies. A periodic distribution ofweakscattering cen-
ters would alter this picture only by folding the bands on
the first Brillouin zone and by opening up small gaps, t
so-called Bragg gaps, at the Brillouin-zone boundaries. E
dently the absolute frequency gap in Fig. 1 is not a Bra
gap. In reality, apart from the above-mentioned continu
bands, there are also bands originating from resonant el
modes of the individual spheres: resonant states on neig
spheres couple weakly with each other, resulting in co
sponding relatively narrow bands. We know, in fact, that
elastic field about a single steel sphere in polyester exhib
sharp dipole resonance, the so-called rigid body resonan7

near the frequency region of the gap shown in Fig. 1. T
points to the physical origin of this gap: it opens up as
result of hybridization between the narrow bands originat
21230
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from the rigid-body-resonance modes of the individu
spheres and the continuum bands corresponding to prop
tion in an effective homogeneous medium. For a fcc crys
the large coordination number and the highly symmetric
rangement of neighbors around a given sphere imply a r
tively isotropic and homogeneous distribution of the elas
field associated with the above-mentioned resonance ba
This, in turn, facilitates their interaction and their hybridiz
tion with modes of the elastic field corresponding to prop
gation in a homogeneous effective medium. For the sa
reason, strong hybridization and, consequently, large g
are expected in the case of other compact structures: hex
nal close-packed~hcp!, bcc or sc structures.2 As a measure of
compactness we adopt the maximum value off, to be de-
noted by f max, that is possible in the given structure~of
nonoverlapping spheres!. To clarify the above, in Fig. 2 we
present band-structure results for a st crystal of steel sph
in polyester, with f 518.4% andd5a0A2/2. This crystal,
obtained from the previously studied fcc crystal by a sim
shift of every second~001! plane bya0(1/2,1/2,0), is less
compact~it has f max526.2% compared tof max574% for the
fcc!. We see that the hybridization-induced gap forki50 is
very narrow@Fig. 2~a!# and that, as result of its variation wit
ki , no absolute gap exists in this case@Fig. 2~b!#.

In order to further clarify the physical origin of a hybrid
ization gap we refer to Fig. 3. There we show schematica
by dotted lines, two unhybridized bands, along the direct
k5(0,0,kz): a flat longitudinal band, originating from
weakly interacting rigid-body-resonance modes of the inc
sions, and the band corresponding to the longitudinal d
placement field in the homogeneous effective medium t
one would obtain in the absence of interaction with the re
nance modes. Because an interaction between them doe
ist, one obtains the hybridized bands represented by the s
lines in Fig. 3. The bands denoted by 1 are the longitudi
bands shown in Fig. 1~a!; in their case the hybridization is
strong and a wide gap opens up. The bands denoted by 2
the longitudinal bands shown in Fig. 2~a!; in their case the
hybridization is weaker and the corresponding gap is m
smaller. We note that the hybridization we have describe
analogous to the well knowns-d hybridization in the energy-
band structure of transition metals;8 it also occurs in metall-
odielectric photonic crystals.9 Of course hybridization occurs

FIG. 2. The same as in Fig. 1, but for a st crystal of steel sphe
in polyester withd5a0A2/2 andf 518.4%.
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between transverse bands@see Figs. 1~a! and 2~a!#; there the
shape of the hybridized bands is indeed more complica
because of the greater number of unhybridized bands
volved in their generation.

In Fig. 4 we show the ratio of the gap width to its respe
tive midgap frequency,DvG /v̄G , against the volume frac
tion f occupied by the spheres, for a variety of lattices hav
the same interplane distanced5a0A2/2. They are defined by
the primitive vectorsa15a0(1,0,0), a25a0(0,1,0), anda3

5a0(a,b,A2/2); we also put (a,b)5(0.5,0.5)~fcc lattice!,
(a,b)5(0.5,0.25), (a,b)5(0.5,0), (a,b)5(0.25,0.25),
(a,b)5(0.25,0), and (a,b)5(0,0) ~st lattice!. It is seen
that the widest absolute gaps are obtained for the most c
pact structure of the family~the fcc structure!, with progres-
sively narrower gaps as we go to less compact struct
~corresponding to smaller values off max). It is worth noting
that the maximum value ofDvG /v̄G for a given structure
does not occur atf 5 f max. This can be understood as fo

FIG. 3. Schematic representation of a hybridization-induc
gap. The dotted lines show the~hypothetical! unhybridized bands.
The solid lines 1 and 2 show the~actual! hybridized longitudinal
bands shown in Figs. 1~a! and 2~a!, respectively.

FIG. 4. Absolute frequency gaps in phononic crystals of st
spheres, centered at the sites of various Bravais lattices specifie
the primitive vectors a15a0(1,0,0), a25a0(0,1,0), and a3

5a0(a,b,A2/2), in a polyester matrix.~a! a50.5, b50.5 ~fcc
lattice!. ~b! a50.5, b50.25. ~c! a50.5, b50. ~d! a50.25, b
50.25 ~e! a50.25, b50. The dotted lines~normal on the ab-
scissa! indicate the values off max corresponding to these structure
For a5b50 ~st lattice, f max526.2%) no absolute gap appears.
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lows. The opening of the hybridization gap is favored by
increasedf, but at the same time it is compromised by t
widening of the resonance bands which is also favored by
increased value off.

We have also looked at the variation of the width of t
absolute gap withd, in the case of tetragonal symmetry. O
results~see Fig. 5! again show that the widest gaps are o
tained for the sc structure (d5a0), which is the most com-
pact of all tetragonal structures, and become narrower as
go to less compact structures for bothd.a0 andd,a0.

The above arguments do not imply that structures with

same f max will have identical DvG /v̄G versus f curves.
These curves depend on the specific geometry of the st
ture to some degree, but on the whole we expect structure
the same compactness to have more or less the s
DvG /v̄G versusf curves.

In all the structures considered so far we have one sph
per primitive cell. We have also looked at two structures w
two ~identical! spheres per primitive cell: the hcp and di
mond structures. The hcp is a compact structure withf max
574%, equal to that of the fcc. Not surprisingly, we find th
DvG /v̄G as a function off is the same in this case~within
1%) with that of the fcc case@Fig. 4~a!#. By the same token
in the diamond structure, not a compact structure (f max

534%), we find small absolute gaps forf .15%. DvG /v̄G
as a function off lies in this case between Fig. 4~d! ( f max
536.6%) and curve Fig. 4~e! ( f max531.2%), and has a
maximum value, equal to 0.09, atf 527%.

Finally, in our calculations the scatterers were spheres
single material. Coating the spheres may shift a hybridizat
gap toward a desired frequency region,3,4 but the width of the
gap should depend on the geometry of the structure in m
the same way as in the examples considered here. It is
likely that the arguments we have presented here relating
width of hybridization gaps to the compactness of 3D str
tures will apply to 2D systems as well.10,11

R.S. was supported by the State Foundation~IKY ! of
Greece.
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FIG. 5. Absolute frequency gaps in phononic crystals of st
spheres, centered at the sites of various tetragonal lattices spe
by the primitive vectorsa15a0(1,0,0), a25a0(0,1,0), anda3

5d(0,0,1), in a polyester matrix.~a! d5a0 ~sc lattice!. ~b! d
51.15a0. ~c! d50.85a0. The dotted lines~normal on the abscissa!
indicate the values off max corresponding to these structures.
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