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Conductance fluctuations and distribution at the metal-insulator transition induced by an electric
field in a disordered chain
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A simple Kronig-Penney model for one-dimensional~1D! mesoscopic systems withd peak potentials is used
to study numerically the influence of a constant electric field on the conductance fluctuations and distribution
at the metal-insulator transition. We use the Levy laws to investigate the statistical properties of the eigenstates.
We found at this transition that the conductance probability distribution has a system-size independent shape
with large fluctuations in good agreement with previous works in 2D and 3D systems.
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I. INTRODUCTION

During the last two decades several works have been
voted to understanding transport properties in mesosc
systems.1–9 Experiments performed on such systems show
that the conductanceg is not a self-averaged quantity,4 but
that it fluctuates with the Fermi energy, chemical potent
and sample size. In the metallic regime both experimenta3–5

and theoretical6–9 studies indicated that the conductan
fluctuations are of order ofe2/h, and are universal~called
universal conductance fluctuations!.

In the localized~insulating! regime, the conductance ex
hibits strong fluctuations which tend to diverge for large s
tem sizes.10,11At the critical point of the metal-insulator tran
sition ~MIT !, large fluctuations were predicted analytica
for d521« («!1),12,13 but not found numerically by Mar-
kos and Kramer in two-dimensional~2D! and 3D
systems.14,15They concluded that the large conductance fl
tuations are not the general feature of the metal-insul
transition. It was also found that the variance of log(g) is of
order of its mean value, and that the standard deviationg
is also;^g&.16

Since the conductance does not obey the central l
theorem,2 it is necessary to investigate not only the first tw
moments but the whole probability distribution. Numeric
results in 2D and 3D disordered systems showed that
conductance is normally distributed in a metallic regim
while for strongly localized systems~insulating regime! a
log-normal distribution was found.17 The correct form of the
probability distribution at the transition is not well known. I
such a regime, it was proven that the conductance distr
tion is independent of the microscopic details of the mo
~determined by the distribution of the disorder!, of the sys-
tem size, and of the position of the critical point which sep
rates the metallic and localized regimes in the phase spac
external parameters~energy and disorder!. The universality
of the conductance distribution was studied and confirm
for 2D and 3D models,14,15 while the system-size invarianc
of P(g) at the critical points of the MIT was confirmed fo
3D and 4D systems.18,19 It was also found that the critica
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distribution depends on the dimension16 and the symmetry of
the system,16,18 as well as on the boundary conditions.20

The electric field was shown to delocalize the electro
states in 1D disordered systems~where all the states ar
localized!.21,22 In a previous work, we studied the transitio
from the localized to weakly localized states, and show
that the Anderson transition may occur for strong fields23

However, the position of this transition was not found f
these systems.

The aim of this work is to find the Anderson transitio
region and test the size independence of the probability
tribution of the conductance in disordered mesoscopic ch
under an applied electric field. For this end we use Le
statistics.24

II. MODEL DESCRIPTION

We consider a Kronig-Penney model applied to a 1D s
tem of equally spaced potentialV(x) with random strengths
under a constant electric fieldF. The corresponding Schro
dinger equation can be read

H 2
d2

dx2
1(

n
bnd~x2n!2eFxJ C~x!5EC~x!. ~1!

HereC(x) is the single-particle wave function atx, bn is the
potential strength of thenth site, andE is the single-particle
energy in units of\2/2m, with m the electronic effective
mass. The electronic chargee and the lattice parametera are
taken here for simplicity to be unity. The chain length
identical to the number of scatterers (L5N). The two ends
of the system are assumed to be connected ohmically to i
leads~where the electron moves freely! and maintained at a
constant potential differenceV5FL. The potential strength
bn is uniformly distributed between2W/2 andW/2 (W be-
ing the degree of disorder!.

The exact solution of Eq.~1! is Airy-function-like. In or-
der to reduce the computational time consumption, we
the so-called ladder approximation which is valid only f
weak fieldsFa,E.21,22 For stronger fields, we use the mu
tistep function approximation,25 which is very accurate, and
use plane waves instead of Airy functions. This approxim
©2002 The American Physical Society01-1
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tion consists of subdividing each step intom steps, so that
the conditionFa/m,E is satisfied.

The second-order differential equation~1! can be mapped
by means the Poincare´ map representation21

Cn115Fcos~kn11!1
kn sin~kn11!

kn11 sin~kn!
cos~kn!

1bn

sin~kn11!

kn11
GCn2

kn sin~kn11!

kn11 sin~kn!
Cn21 , ~2!

where Cn is the value of the wave function at siten and
kn5AE1Fn is the electron wave number at the siten. The
solution of Eq.~2! is carried out iteratively by taking the tw
initial wave functions at sites 1 and 2:C15exp(2ik) and
C25exp(22ik). Here we consider an electron having a wa
numberk incident at siteN13 from the right~by taking the
chain lengthL5N, i.e., N11 scatterers!. The transmission
coefficient~T! reads

T5
k0

kL

u12exp~22ikL!u2

uCN122CN13 exp~2 ikL!u2
~3!

wherek05AE andkL5AE1FN.
The dimensionless four-probe conductance (g5G/e2/h)

can be obtained from the transmision coefficientT via the
Landauer formula for 1D systems,26

g5
2T

12T
, ~4!

where the factor 2 arises from the two possible states of
electron spin.

III. RESULTS AND DISCUSSION

In this section we discuss numerical results of the cond
tance fluctuations and distribution at the transition regime
a previous work,23 we showed that the true metal-insulat
transition does not occur atE'V as believed from the re
sults of Mato and Caro,27 but this regime can be obtained fo
stronger fields~this point corresponds to a transition
power-law localized states!. In order to obtain the probabilty
distribution of the conductance, we build a statistical e
semble of 104 samples which differ only in the realization o
the disorder. The electric field has been shown to deloca
the electronic states in 1D disordered systems where
wave function becomes power-law decaying,21,22 while for
sufficiently large field strengths the eigenstates beco
extended.23 The metal-insulator transition regime in this sy
tem is unknown. In the absence of a field, the conducta
exhibits large fluctuations signature of strong localizatio
When the field increases, these fluctuations decrease, ind
ing a metallic regime.

In Fig. 1, we show the variance of Ln(g) as a function of
the applied voltage~for large field strengthsF>1). The con-
ductance fluctuations have peaks due to the Stark la
localization.28 BeyondF53 the fluctuations decrease lea
ing to the metallic regime. To understand the behavior of
conductance fluctuations for different values of the appl
21220
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electric field, we investigate the conductance distribut
P(g) for different values of the field. All these distribution
show long power-law tails decreasing for large values of
conductanceg. Therefore, we use the Levy statisticsLm(Z)
of index m which decrease asZ2(11m) for large values of
Z.24 We found that the conductance distributionP(g) be-
haves asg2(11m) for large values ofg. The exponentm is
then calculated from the log-log plot ofP(g) for large values
of g, which is linear with a slope equal to2(11m). In Fig.
2, we show the indexm as a function of the applied field
strength. The exponentm starts to increase when the fie
strength increases with a minimum forF53. ForF.1 ~cor-
responding to a peak in Fig. 1!, the exponentm is still less
than 2, corresponding to the localized regime. When
field increases above 1, the exponentm becomes greate
than 2, indicating the normal law of the distribution. Th
surprising decrease of the exponentm nearF53 is expected
to be a Stark localization28 with a competing metallic behav
ior.

Now let us check the nature of the regime at the minim
of Fig. 1 (F53). In Fig. 3, we show the probabilty distribu
tion of Ln(g) @Fig. 3~a!# and g@Fig. 3~b!# for different sizes
of the system (L5500, 700, 800, and 900! and for F53.

FIG. 1. Variance of Ln(g) vs applied electric field forL5500,
E50.4, andW50.25.

FIG. 2. The indexm as a function of the applied electric field fo
the same parameters as in Fig. 1.
1-2
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The conductance distribution seems to be neither normal
log-normal. The size independence of the conductance
tribution is in agreement with the observed one for 2D a
3D systems.14–16,19This behavior is not observed in the m
tallic and insulating regime~see Fig. 4! where the conduc-
tance distribution depends on the size of the system.
long tail of the distribution in Fig. 3~a! is representative for
large fluctuations in good agreement with the results
Shapiro12 and Shapiro and Cohen13 for the metal-insulator
transition. The distribution ofg in Fig. 3~b! has a similar
shape, as found recently in the crossover region betw
metallic and insulating regime in disordered quasi-o
dimensional wires.29 For an electric-field strength corre
sponding to the peak in Fig. 1 atF.1, the conductance
distribution has a size-dependent form~not shown!. All these
arguments lead us to conclude that a MIT regime occur
F53 for E50.4 andW50.25. We can also observe that th
regime is characterized by very large conductances^g&.58
@Fig. 3~b!#. This was not observed in the metallic regime f
large fields where the mean conductance is much sm
^g&.0.4.23 This is probably due to the competition betwe

FIG. 3. ~a! Probability distribution of Ln(g) for F53, E
50.4, andW50.25 and different system sizes (L5500, 700, 800,
and 900! compared with a Gaussian with the same mean and v
ance~dashed curve!. ~b! Distribution of g for the same parameter
as in ~a!.
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the ‘‘accelerating’’ effect of the field and the destructive i
terferences within Stark localization.28 In Table I we present
a mean value of logg and its variance. We note clearly tha
Var@ ln(g)# is not of the order of ln(g) which is typical for
the localized states as found for 3D and 4D systems.16 This
shows that in our system the extended states dominates
to an electric field. We can also see thatP(g) has a hole at
small g, in agreement with the analytical result in the«
expansion12,13 and with the numerical results for 2D~Ref.
30! and 3D systems.19,31

IV. CONCLUSION

We have used the Kronig-Penney model in a simple
disordered system in the presence of an electric field to
termine the metal-insulator transition and examine the c
ductance fluctuations and the size independence of its di
bution at this transition. To find this transition, we have us
stable Levy laws.24 We found this transition to be the resu
of the competition between the field-induced localizati
~Stark! and the field-induced delocalization. These effe
make the transition not easy to determine. However,
point atF53 seems to correspond to this transition. Inde
the results for the conductance distribution are in good ag
ment with the previous works in 2D and 3D systems
other models14,15 for metal-insulator transition~the field in-
creases the effective dimension of the wave function!. It is
important to study the universality of the conductance dis

ri-

FIG. 4. Distribution of2Ln(g) in the insulting regime forF
50, E55, and W52, and different system sizes (L5500, 600,
and 800! from left to right compared with a Gaussian with the sam
mean and variance~dashed curves!.

TABLE I. Mean conductancêLn(g)& and its variance for dif-
ferent system sizesL and for the same parameters as in Fig. 3~a!.

L ^Ln(g)& Var@Ln(g)#

500 3.9557 0.20548
600 3.9314 0.20474
700 3.9596 0.21149
800 3.9632 0.21717
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BRIEF REPORTS PHYSICAL REVIEW B66, 212201 ~2002!
bution at the transition in a system of finite width potentia
where the conductance fluctuations are less importan
comparison to the present model,23 and to find the critical
points of the transition in the~energy-disorder electric field!
phase space and for different kinds of disorder. These p
lems will be the subject of a forthcoming paper.
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