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Fröhlich electron-phonon interaction Hamiltonian in a quantum dot quantum well
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The phonon modes of a quantum dot quantum well~QDQW! in the nonpolar dielectric surrounding medium
are deduced by using the dielectric continuum model. The confined longitudinal-optical~LO! phonon modes
both in the core material~LO1! and in the shell material~LO2!, interface optical~IO! and surface optical~SO!
phonon modes, as well as the corresponding Fro¨hlich electron-phonon interaction Hamiltonians are derived. A
proper eigenfunction for LO1 modes is adopted and a legitimate eigenfunction for LO2 modes is constructed
to describe the vibrating of the LO phonons. Numerical calculations are performed on a HgS/CdS QDQW, and
the results reveal that there are three branches of IO or SO phonon frequencies in the system. With increasing
quantum numberl, the frequencies of two branches approach those in the single HgS/CdS heterostructure and
the reason for this feature is explained. Biggerl and a thicker spherical shell make the potentials of IO or SO
phonon modes more localized at a certain interface or surface. The study also reveals that the electron-SO
phonon coupling is more significant.
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I. INTRODUCTION

Due to the great progress in semiconductor nanotech
ogy, various kinds of semiconductor heterostructures can
fabricated. Among these, a synthesized inhomogene
spherical quantum dot with a central core and many layer
shells called a quantum dot quantum well1–3 ~QDQW!,
formed by by using the wet chemical synthesis method,
field of great interest to many authors.4–9 It is well known
that the electron-phonon interaction is an important fac
influencing the physical properties of polar crystals such
the binding energy of impurities, carrier transportation, a
linear and nonlinear optical properties, especially in lo
dimensional quantum systems.10–13 Furthermore, the effec
of such an influence becomes stronger as the dimension
of the system reduces.14,15 Hence, a proper description o
polar optical phonon modes and the electron-phonon inte
tion Hamiltonian is necessary.

In much previous research on the electron-phonon in
action in a quantum dot~QD!, the bulk phonon modes wer
employed.15–17 In fact, in the low-dimensional quantum sy
tems, phonons in the polar crystals are confined, wh
makes the phonon modes more complicated than those in
bulk materials.18 After the pioneering works of Fuchs an
Kliewer19 and Licari and Evard,20 Wendler and Haupt21,22

presented a complete theory of long-wavelength opt
phonons and polar-type electron-phonon interaction for
confined systems within the framework of the standard
electric continuum~DC!. Thereafter, under DC approxima
tion, several authors made their contributions to the stud
the phonon modes in various quantum systems. Mori
Ando23 studied the phonon modes in a quantum well~QW!
0163-1829/2002/66~20!/205326~9!/$20.00 66 2053
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and provided the optical-phonon modes and electron-pho
interaction Hamiltonian. and Shao-hua Jun-jie24 derived the
free optical-phonon modes in the coupled QWs with fi
layers of heterostructures. Recently, Xieet al. studied the
phonon modes in a cylindrical quantum well wire~QWW! in
a infinite potential boundary condition12 and a finite potential
boundary condition.11 Klimin et al.25 determined the vibra-
tional modes of inertial polarization in the multilayer QWW
and QD. Li and Chen26 obtained the longitudinal-optica
~LO! phonon modes and two types of surface optical~SO!
phonon modes of a free-standing cylindrical QD. Kle
et al.27 and Rocaet al.28 derived the polar optical-phono
modes in a spherical QD. de la Cruzet al.29 dervied the
interface optical~IO! phonon modes in a GaAs/AlxGa12xAs
spherical QD, and the interface frequencies as a function
the Al alloy concentration were discussed. Within the fram
work of the DC model, Tkachet al.30 studied exciton-
phonon interaction in a QDQW, and the phonon modes w
obtained, but detailed discussions about the character
phonon modes in the system were missed. Even so, the
model had its limits in describing optical modes in Q
structures, and the region of validity of the approach is li
ited to the situation in which the phonon wavelengths
large enough as compared with the lattice constant.24,31–33It
has been proven that the LO and IO phonon modes obta
by the DC model are in good agreement with other calcu
tion approaches.33–35 Because of the simplicity and effi
ciency of DC models, especially for polaron effects,11,12 in
the present paper, we will use them to study the phon
modes and the electron-phonon interaction in a QDQW.

The semiconductor materials usually used to synthe
QDQW’s are CdS/HgS, ZnSe/CdSe, CdS/PbS, etc.1–9 The
©2002 The American Physical Society26-1
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material with the smaller bulk band gap~such as HgS! is
embedded between a core and an outer shell of the mat
with a larger bulk band gap~such as CdS!, so the material
with a smaller bulk band gap acts as a well material for
electron and hole as well as the phonon in the polar crys

In this paper, we will consider a QDQW with a centr
core (r<r c) and a shell (r c,r<r s) in the nonpolar sur-
rounding medium (r .r s) with a dielectric constant«d . A
schematic view of our simplified model of the QDQW an
corresponding radial potential profile are given in Fig. 1. T
advantages of this work are that,~i! using the analogy
method in Refs. 11 and 12, the works of phonon modes
cylindrical QWW have been extended to QDQW system
~ii ! the orthonormal relation for the polarization vectors ha
been derived, and via the relation, the phonon field and
electron-phonon interaction have been quantized, which m
be useful for further work, such with polaron effects, bou
polaron effects and phonon scattering in the QDQW syste
and~iii ! from the discussions of the dispersion relations a
the potential distributions for the IO or SO phonon mod
the characters of IO or SO phonon modes have been d
mined, and the results may be helpful to study and und

FIG. 1. Schematic view of our model of the QDQW and cor
sponding potential profile.«1(v), «2(v) are the dielectric func-
tions of the core material and shell material, respectively.«d is the
dielectric constant of the nonpolar dielectric surrounding mediu
V0

e (V0
h) is the conduction-~valence-! band offset between the cor

and shell region, whileEg refers to the shell region semiconduct
band gap.
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stand the polaronic effect, electron scattering, etc., in
systems. The paper is organized as follows: in Sec. II, t
confined LO phonon modes both in the central core~LO1!
and in the shell region~LO2!, the IO and SO phonon mode
as well as the corresponding Fro¨hlich electron-phonon inter-
action Hamiltonians are deduced. In Sec. III, numerical c
culations on a HgS/CdS QDQW are performed, and the c
acters of the IO and SO phonon modes are discussed. In
last section, a brief summary about characters of the pho
modes and the applied range of this theory are discussed
specified.

II. THEORY

Under the DC approximation, and starting from the cla
sic electrostatics equations for free oscillation@r0(r )50#,
we have

«¹2f~r !50 ~1!

with

«~v!5«`1
«02«`

12v2/vTO
2

, ~2!

where «0 , «` are the static and high-frequency dielectr
constants, respectively, andvTO is the frequency of
transverse-optical phonon.

A. The confined LO phonon modes

There are two possible solutions for Eq.~1!: one is
«(v)50, and the other is¹2f(r )50. To the first solution,
via Eq. ~2! and a Lyddane-Sachs-Teller~LST! relation, one
can get

v25vTO
2 «0

«`
5vLO

2 , ~3!

which describes the confined bulk LO modes of frequen
v5vLO , wherevLO is the frequency of a LO phonon.

1. Confined LO1 modes in the core

The eigenfunctions for the confined LO1 mode inside
core region (r<r c) can be chosen as

f lmn
LO1~r !5H Cln j l S a ln

r c
r DYlm~u,w! r<r c ,

0 r .r c ,

~4!

where j l(x) is the spherical Bessel function of thel th order,
Ylm is the spherical harmonics, anda ln is the nth zero of
j l(x). It should be noted that, in the region outside the c
(r<r c), the eigenfunctions should be zero, which are
demands of the continuum of electric field and electric d
placement at the boundary.11,12,20

Using the same steps as in Ref. 11, we obtain the confi
LO1 phonon Hamiltonian as

-

.
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HLO15
1

2E F n* mS 11
8

3
pn* a

n* e
D 2

Ṗ* •Ṗ

1n* mvLO1
2 S 11

8

3
pn* a

n* e
D 2

P* •PGd3r , ~5!

wherem is the reduced mass of the ion pair,n* is the num-
ber of ion pairs per unit volume,a is the electronic polariz-
ability per ion pair, andP is the polarization vector.

Via the Green’s first identity, it is easy to get the orth
normal relation for the polarization vectorsPlmn

LO1 ,

E Pl 8m8n8
LO1*

•Plmn
LO1d3r5

1

16p2E ¹f l 8m8n8
LO1

•¹f lmn
LO1d3r

52
1

16p2E f l 8m8n8
LO1 ¹2f lmn

LO1d3r

5
uClnu2a ln

2 r c

32p2
j l 11
2 ~a ln!d l 8 ldm8mdn8n .

~6!

If we chooseCln to be

Cln5F 1

n* m S n* e

11
8

3
pn* aD 2

16p2

a ln
2 r cj l 11~a ln!2G 1/2

, ~7!

then Plmn
LO1 may form an orthonormal and complete set. W

introduce creation and annihilation operatorsalmn
† and almn

to express the polarization vectorP and the standard Hamil
tonianHLO1:

PÄ(
lmn

S \

vLO1
D 1/2

@almn
† 1almn#Plmn

LO1 , ~8!

ṖÄÀi(
lmn

~\vLO1!1/2@almn
† 2almn#Plmn

LO1 , ~9!

HLO15(
lmn

\vLO1@almn
† almn1 1

2 #. ~10!

The operators for the LO1 phonon of thelmn satisfy the
commutation relation for bosons. The eigenfunction of
LO1 phonon modesf(r ) could be expanded in terms of th
normal modes, so the Fro¨hlich Hamiltonian between the
electron and LO1 phonon is obtained as

He2LO152efLO1~r !

52(
lmn

FG ln
LO1 j l S a ln

r c
r DYlm~u,w!almn

† 1H.c.G ,
~11!

where
20532
e

uG ln
LO1u25

1

n* mvLO1 S n* e

11
8

3
pn* aD 2

16p2e2\

a ln
2 r cj l 11

2 ~a ln!

5
4pe2\vLO1

a ln
2 r cj l 11

2 ~a ln!
S 1

«1`
2

1

«10
D . ~12!

2. Confined LO2 modes in the shell region

The potential for the LO2 phonon modes in the shell
gion (r c<r<r s) can be chosen as

f lmn
LO2~r !5H BlnTl S aln

r c
r DYlm~u,w! r c<r<r s ,

0 otherwise,

~13!

where

Tl S aln

r c
r D5 j l S aln

r c
r D1blnnl S aln

r c
r D , ~14!

and nl(x) is the spherical Neumann function of orderl.
Tl(alnr /r c) satisfies the boundary conditions atr 5r c and r
5r s . They are

Tl S aln

r c
r D U

r 5r c

5 j l~aln!1blnnl~aln!50,

Tl S aln

r c
r D U

r 5r s

5 j l S aln

r c
r sD1blnnl S aln

r c
r sD50, ~15!

so aln andbln can be solved using Eq.~15!. n in the radial
function Tl(alnr /r c) denotes the number of zeros within th
range ofr c<r<r s . By using the spherical Bessel equatio
it can be proved thatTl(alnr /r c) and Tl(almr /r c) are or-
thogonalized in the shell region~refer to the appendix!.

Similar to the process for LO1, we obtained the followin
orthogonal relation of polarization vectorPlmn

LO2 :

E Pl 8m8n8
LO2*

•Plmn
LO2d3r

5
1

16p2E ¹f l 8m8n8
LO2

•¹f lmn
LO2d3r

52
1

16p2E f l 8m8n8
LO2 ¹2f lmn

LO2d3r

5
aln

2 uBlnu2

32p2r c
2 H r 3FTl S aln

r c
r D 2

2Tl 21S aln

r c
r DTl 11S aln

r c
r D G J

r c

r s

d l 8 ldm8mdn8n

5
aln

2 uBlnu2r c

32p2
@Tl 21~aln!Tl 11~aln!
6-3
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2g3Tl 21~galn!Tl 11~galn!#d l 8 ldm8mdn8n ,

~16!

where

g5r s /r c . ~17!

We let

uBlnu25
16p2

n* maln
2 r c S n* e

11
8

3
pn* aD 2

@Tl 21~aln!Tl 11~aln!

2g3Tl 21~galn!Tl 11~galn!#21, ~18!

soPlmn
LO2 forms an orthonormal and complete set, which co

be used to expressHLO2 andHe-LO2 as the following

HLO25(
lmn

\vLO2@blmn
† blmn1 1

2 #, ~19!

He-LO252efLO2~r !

52(
lmn

FG ln
LO2Tl S aln

r c
r DYlm~u,w!blmn

† 1H.c.G
~20!

with

uG ln
LO2u25

4pe2\vLO2

aln
2 r c

@Tl 21~aln!Tl 11~aln!

2g3Tl 21~galn!Tl 11~galn!#21S 1

«2`
2

1

«20
D ,

~21!

whereblmn
† andblmn are the Bose creation and annihilatio

operations for the LO2 phonon of thelmn mode.

B. The IO and SO phonon modes

The second possible solution of electrostatic Eq.~1! is
Laplace equation, and it will give the interface phonon a
surface phonon modes. Following Eq.~5!, we get the Hamil-
tonian for the IO phonon or the SO phonon11,12

H IO, SO5
1

2E S n* mH 1

n* e@11~am/e2!~v0
22v2!#

J 2

Ṗ* •Ṗ

1n* mv2H 1

n* e@11~am/e2!~v0
22v2!#

J 2

3P* •PD d3r . ~22!

It is understood that IO and SO phonon modes belong to
whole system,25,30especially, in the QDQW system in whic
the shell width is relatively thin, so the IO and SO modes
coupled on each interface or surface. For the IO and
20532
d

d

e

e
O

phonon modes, under the spherical coordinate, the solu
of Laplace equation is written as

f lm
IO,SO~r !

55
S 1

r s
g2 l2

1

r c
g l DAlr

lYlm~u,w! r<r c ,

F S 1

r s
g2 lAl2b2 l 21Dl D r l

r c,r<r s,

1S 1

r s
g2 lDl2b lAl D r 2 l 21GYlm~u,w!

S 1

r s
g2 l2

1

r c
g l DDlr

2 l 21Ylm~u,w! r .r s ,

~23!
whereg is defined in Eq.~17! and b5r c•r s , in which the
continuity of the eigenfunction atr 5r c , r s has been taken
into consideration.

Other than the LO phonon, the dielectric functions«(v)
of the IO or SO phonons do not equal and zero, they
given by Eq.~2! and the LST relations

«1~v!5«1`

v22vLO1
2

v22vTO1
2

, «2~v!5«2`

v22vLO2
2

v22vTO2
2

.

~24!

The boundary conditions atr 5r c and r s imply

«1~v!
]f1lm

]r U r 5r c
5«2~v!

]f2lm

]r U
r 5r c

, ~25!

«2~v!
]f2lm

]r U r 5r s
5«d

]f3lm

]r U
r 5r s

. ~26!

Substituting Eq.~23! into Eqs. ~25! and ~26!, we get the
following linear homogeneous equations forAl andDl :

S 1

r s
g2 l2

1

r c
g l D lr c

l 21Al«1~v!

5S 1

r s
g2 lAl2b2 l 21Dl D lr c

l 21«2~v!

2S 1

r s
g2 lDl2b lAl D ~ l 11!r c

2 l 22«2~v!,

~27!

S 1

r s
g2 l2

1

r c
g l D ~2 l 21!r s

2 l 22Dl«d

5S 1

r s
g2 lAl2b2 l 21Dl D lr s

l 21«2~v!

2S 1

r s
g2 lDl2b lAl D ~ l 11!r s

2 l 22«2~v!.

~28!
6-4
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To obtain the nonzero solutions forAl andDl , the following secular equation should be satisfied.

U S 1

r s
g2 l2

1

r c
g l D lr c

l 21«1

2@g2 l 21lr c
l 221b l~ l 11!r c

2 l 22#«2

Fb2 l 21lr c
l 211

1

r s
g2 l~ l 11!r c

2 l 22G«2

F 1

r s
g2 l l r s

l 211b l~ l 11!r s
2 l 22G«2

@2b2 l 21lr s
l 212g2 l~ l 11!r s

2 l 23#«2

1S 1

r s
g2 l2

1

r c
g l D ~ l 11!r s

2 l 22«d

U50. ~29!
O

ol
Equation~29! gives the dispersion relations for IO and S
phonons. Substituting Eq.~24! into Eq. ~29!, above the fre-
quencies of the IO and SO phonons can be derived by s
ing the sixth-order equation forv. Whenv is worked out, it
is easy to get the values of«1(v) and «2(v) via Eq. ~24!.
Through Eq.~27! or ~28!, the relation ofAl and Dl can be
o

20532
v-

expressed as

Dl5 f l~v!Al , ~30!

where
f l~v!52
~g2 l 212g l !lr c

l 22«12g2 l 21lr c
l 22«22b l~ l 11!r c

2 l 22«2

b2 l 21lr c
l 21«21g2 l 21~ l 11!r c

2 l 23«2

~31!

or

f l~v!52
g2 l l r s

l 22«21b l~ l 11!r s
2 l 22«2

2b2 l 21lr s
l 21«22g2 l~ l 11!r s

2 l 23«21~g2 l2g l 11!~ l 11!r s
2 l 23«d

. ~32!
Using the formula~30!, the potential functions~23! of the IO
and SO phonons can be rewritten as

f lm
IO,SO~r !

55
Al S 1

r s
g2 l2

1

r c
g l D r lYlm~u,w! r<r c ,

AlF S 1

r s
g2 l2b2 l 21f l~v! D r l

r c,r<r s,

1S 1

r s
g2 l f l~v!2b l D r 2 l 21Ylm~u,w!

Al S 1

r s
g2 l2

1

r c
g l D f l~v!r 2 l 21Ylm~u,w!, r .r s .

~33!

The polarization fields for the IO and SO phonon modes
the QDQW are expressed as

Plm
IO,SO5Al

12«~v!

4p
¹f lm

IO,SO~r !. ~34!

The orthogonal relation forPlm
IO,SO is derived by
f

E Pl 8m8
IO,SO*

•Plm
IO,SOd3r

5
~12«1!2

16p2 E
V1

¹f1l 8m8
* •¹f1lmd3r

1
~12«2!2

16p2 E
V2

¹f2l 8m8
* •¹f2lmd3r

5
~12«1!2

16p2 E
S1

f1l 8m8

]f1lm

]n
da

1
~12«2!2

16p2 E
S11S2

f2l 8m8

]f2lm

]n
da

5
uAl u2

16p2 H ~12«1!2l S ~g2 l 212g l !2r c
2l 21

1~12«2!2H l F 1

r s
g2 l2b2 l 21f l~v!G2

3~g2l 1121!r c
2l 112~ l 11!

3F 1

r s
g2 l f l~v!2b l G2

~g22l 2121!r c
22l 21J D

3d l 8 ldm8m . ~35!
6-5
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To chooseAl as

uAl u225
1

2pv2 S S 1

«12«10
2

1

«12«1`
D 21

l ~g2 l 21

2g l !2r c
2l 211H l Fg2 l

r s
2b2 l 21f l~v!G2

~g2l 11

21!r c
2l 112~ l 11!F 1

r s
g2 l f l~v!2b l G2

~g22l 21

21!r c
22l 21J S 1

«22«20
2

1

«22«2`
D 21D . ~36!

can makePlm
IO,SO form an orthonormal and complete se

Similarly we have the Hamiltonian operator for the IO a
SO phonons as

HIO,SO5(
lm

\v@clm
† clm1 1

2 #, ~37!

whereclm
† andclm are creation and annihilation operators f

IO and SO phonons of the (l ,m)th modes. They satisfy the
commutative rules for bosons. The Fro¨hlich Hamiltonian de-
scribing the interaction between the electron and the IO
SO phonon is written as

He-IO,SO52(
lm

G l
IO,SO~r !@Ylm~u,w!clm1H.c.#, ~38!

where the electron-IO or- SO phonon radial coupling fun
tion is

G l
IO,SO~r !

5Nl35
S 1

r s
g2 l2

1

r c
g l D r l r<r c ,

F S 1

r s
g2 l2b2 l 21f l~v! D r l

1S 1

r s
g2 l f l~v!2b l D r 2 l 21G r c,r<r s ,

S 1

r s
g2 l2

1

r c
g l D f l~v!r 2 l 21 r .r s

~39!

with

TABLE I. The material parameters~Ref. 30! (m0 is the bare
electron mass!.

Material m* /m0 \vLO (meV) «0 «`

CdS 0.2 57.2 9.1 5.5
HgS 0.036 27.8 18.2 11.36
H20 1 1.78 1.78
20532
d

-

uNl u25uAl u2
e2\

v

52pe2\vS S 1

«12«10
2

1

«12«1`
D 21

3 l ~g2 l 212g l !2r c
2l 21

1H l Fg2 l

r s
2b2 l 21f l~v!G2

~g2l 1121!r c
2l 11

2~ l 11!F 1

r s
g2 l f l~v!2b l G2

~g22l 2121!r c
22l 21J

3S 1

«22«20
2

1

«22«2`
D 21D 21

. ~40!

So the total Hamiltonian of the free phonon field in
QDQW should include the two confined bulk LO modes, a
the IO and SO mixing phonon modes, i.e.,

H tot ph5HLO11HLO21HIO,SO, ~41!

and the total Fro¨hlich electron-phonon interaction shou
also include three terms

He-ph5He-LO11He-LO21He-IO,SO, ~42!

in which HLO1 , HLO2, and HIO,SO, and He-LO1 , He-LO2,
andHe-IO,SO are given by EqS.~10!, ~19!, and~37!, and~11!,
~20!, and~38! respectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

In order to see more clearly the characters of the pho
modes, numerical calculations on a HgS/CdS QDQW
performed. Due to the simplicity of the electron-LO phon
coupling functions, which are just the oscillating and atten
ating functions for spherical Bessel and Neumann functio
in the discussions following, we will only focus on the di
persion relations and the electron-phonon interaction fu
tionsG l

IO,SO(r ) for IO and SO phonon modes in the system
The material parameters are listed in Table I.

FIG. 2. Dispersion curves of the IO and SO phonon modes
the QDQW with thicknesses 2.35 nm/4.35 nm/`.
6-6



on
o

es
SO
re

ic

a
an
fr
d

a
fr
ic
ti
3

an
e
g.

fre-
ce,
2 is
er

-

/

.

and
ith

1

hen

at
kes
at
ig.

ig.

FRÖHLICH ELECTRON-PHONON INTERACTION . . . PHYSICAL REVIEW B66, 205326 ~2002!
In Fig. 2, the dispersion relations of IO and SO phon
modes are depicted. Contrary to the case of a QWW
QW,23,24,31–35in which the IO and SO phonon frequenci
were the continuum functions of wave vector, the IO and
phonon frequencies in the QDQW systems are the disc
spectra for quantum numberl. For a certainl, there have only
three branches of IO or SO phonon frequencies, wh
means that Eq.~29! just has three solutions forv. It should
be noted that the frequencies of two branches of modes 1
2 are between the longitudinal-optical phonon frequency
the transverse-optical phonon frequency of HgS, and the
quency of the last branch of mode 3 is between those of C
Detailed calculations reveal that, with the increase ofl, the
frequencies of mode 1 and mode 3 approach 25.13 meV
49.46 meV, respectively. These two values are just the
quency values of IO phonons in a single HgS/CdS spher
heterostructure, and they can be computed by the equa
«1(v)/«2(v)52121/l .29 The features of modes 1 and
are explained as follows: with increasingl, the potential
functions of IO or SO phonon modes became sharper
sharper, and they tend to be localized at a certain interfac
surface, which can be seen obviously when comparing Fi

FIG. 3. The coupling functionsG1
IO,SO(r ) as a function ofr for

the QDQW with the same size as that in Fig. 2.

FIG. 4. The coupling functionsG3
IO,SO(r ) versus r for the

QDQW with the same size as that in Fig. 2.
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with Fig. 4, so the dispersion frequencies approach the
quency value of single CdS/HgS heterostructures. Hen
modes 1 and 3 can be treated as interface modes. Mode
mainly localized at surface which is more obvious for larg
l, and it can be seen clearly in Fig. 4 and Fig. 6 below.

In Fig. 3, whenl 51, the electron-IO or -SO phonon cou
pling functionsG l

IO,SO(r ), as a function ofr, are plotted, and
the thicknesses of the CdS/HgS/H2O system are 2.35 nm
4.35 nm/̀ . With the same structure as that in Fig. 3, forl
53, G l

IO,SO(r ), as a function ofr, is presented in Fig. 4
From Fig. 3, it can be observed that, whenl 51, the distri-
butions of IO or SO phonon potentials on each interface
surface are comparatively average. Comparing Fig. 3 w
Fig. 4, we observe, whenl increases from 1 to 3, modes
and 3 tend to be localized at the interfacer 52.35 nm, while
mode 2 tends to be localized at the surface. In Fig. 5, w
the thicknesses of the system are 2.35 nm/9.4 nm/`, we have
drawn the curves ofG l

IO,SO(r ) versusr for l 51. Comparing
the potentials in Fig. 3 with those in Fig. 5, it is found th
the increasing of thickness of the spherical shell also ma
the distributions of phonon potentials tend to be localized
a certain interface or surface. The observation in Fig. 3–F
5 is easy to be understood. The biggerl and larger shell

FIG. 5. The coupling functionsG1
IO,SO(r ) versus r for the

QDQW with thicknesses 2.35 nm/9.4 nm/`.

FIG. 6. Absolute valuesuG l
IO,SO(r )u as functions of quantum

numberl for the QDQW system with same structure as that in F
2.
6-7
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width r s make the potentials of IO or SO phonons mo
decoupled on each interface or surface, and in the limit
case ofl and r s→`, each IO or SO phonon mode is com
pletely decoupled. The results may be helpful to study a
comprehend the polaron effect, electron scattering, etc
the systems.

In Fig. 6, we show the absolute valuesuG l
IO,SO(r )u as a

function of quantum numberl for the same structure as i
Fig. 3. Via the analysis in Fig. 3–Fig. 5, we have choser
52.35 nm for modes 1 and 3, andr 54.35 nm for mode 2.
From the figure, it can be seen that the functionsuG l

IO,SO(r )u
are monotonic attenuating functions whenl>2, and the sur-
face mode 2 plays an important role in the electron-IO a
SO interaction. -So, in the case of weak coupling, it is co
venient to use perturbation method to investigate the
laronic effect in the QDQW system, which is our sequen
research project.

IV. SUMMARY

In the present paper, we have investigated phonon mo
in a QDQW with a central core and a layer of shell mater
in the nonpolar dielectric surrounding medium within the D
approximation. A proper eigenfunction for LO1 modes
adopted and a legitimate eigenfunction for LO2 modes
constructed. The orthogonal relations of the polarization v
tor for LO phonon modes and IO or SO phonon modes
obtained. The expressions of the confined LO and IO or
phonon modes, the dispersion relations of the IO a
SO phonons, operators for the phonon fields, and co
sponding Fro¨hlich electron-phonon interaction Hamiltonian
are also derived. Numeral computations on a HgS/C
QDQW are performed for the dispersion relations and
electron-phonon interaction functions for IO and SO phon
modes in the systems. The main results are the followin

~i! In the system, there exists three branches of IO or
phonon modes, and two frequencies of theirs are betw
vLO,HgS and vTO,HgS, and one is betweenvLO,CdS and
vTO,CdS. With increasing quantum numberl, the frequencies
of two modes approach that of the single HgS/CdS hete
structure, for the features of the phonon modes, and a
sonable explanation has been given.

~ii ! For the small quantum numberl and the thin thickness
of the spherical shellr s , the distributions of the IO and SO
phonon potential on each interface and surface are comp
tively average. With increasingl andr s , the distributions of
the potential tend to be localized at a certain interface
surface. Detailed study reveals that the electron-SO pho
coupling is more significant.

It is obvious that the theoretical scheme described in
paper applies to the QDQW systems with multiple sh
wells provided the conditions of long phonon wavelength
satisfied.31 We hope this paper will stimulate more theore
cal and experimental work, which could be helpful for t
study of the influence of phonons on physical properties
QDQW systems.
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APPENDIX

Now, we prove thatTl(alnr /r c) and Tl(almr /r c) are or-
thogonalized within the range ofr c<r<r s . Via the defini-
tion of Tl(alnr /r c), Eq. ~14!, it can be seen thatTl(alnr /r c)
andTl(almr /r c) satisfy the spherical Bessel equations

r 2
d2Tl~alnr /r c!

dr2
12r

dTl~alnr /r c!

dr

1Faln
2

r c
2

r 22 l ~ l 11!GTl~alnr /r c!50, ~A1!

r 2
d2Tl~almr /r c!

dr2
12r

dTl~almr /r c!

dr

1Falm
2

r c
2

r 22 l ~ l 11!GTl~almr /r c!50. ~A2!

Using Eq.~A1! 3Tl(almr /r c)2 Eq. ~A2! 3Tl(alnr /r c),
we get

r 2S aln
2

r c
2

2
alm

2

r c
2 D Tl~alnr /r c!Tl~almr /r c!

5r 2Fd2Tl~almr /r c!

dr2
Tl~alnr /r c!

2
d2Tl~alnr /r c!

dr2
Tl~almr /r c!G

12r FdTl~almr /r c!

dr
Tl~alnr /r c!

2
dTl~alnr /r c!

dr
Tl~almr /r c!G

5
d

dr H r 2FdTl~almr /r c!

dr
Tl~alnr /r c!

2
dTl~alnr /r c!

dr
Tl~almr /r c!G J . ~A3!

Integrating both sides of Eq.~A3! from r c to r s yields
6-8
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FRÖHLICH ELECTRON-PHONON INTERACTION . . . PHYSICAL REVIEW B66, 205326 ~2002!
S aln
2

r c
2

2
alm

2

r c
2 D E

r c

r s
r 2Tl~alnr /r c!Tl~almr /r c!dr

5H r 2FdTl~almr /r c!

dr
Tl~alnr /r c!

2
dTl~alnr /r c!

dr
Tl~almr /r c!G J

r c

r s

[0. ~A4!
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33H. Rücker, E. Molinari, and P. Lugli, Phys. Rev. B45, 6747

~1992!.
34Ph. Lambin, P. Senet, and A.A. Lucas, Phys. Rev. B44, 6416

~1991!.
35R. Enderlein, Phys. Rev. B43, 14 513~1991!.
6-9


