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Screening and electronic correlations in quantum wires in strong magnetic fields:
Filling factor dependence

Zhongxi Zhang† and P. Vasilopoulos*
Department of Physics, Concordia University, 1455 de Maisonneuve Ouest, Montre´al, Québec, H3G 1M8, Canada

~Received 3 July 2002; published 27 November 2002!

The screening of the Coulomb interaction in quantum wires, subjected to strong perpendicular magnetic
fields, is assessed for integer filling factorsn<3 and low temperatures. Correlations due to bulk screening are
rather weak whereas those due to screening at the edges are very strong and smoothen considerably the energy
dispersion. The group velocity at the Fermi edgevg(kFn) can be one order of magnitude larger than the Hartree
velocity vg

H(kFn). The exchange-correlation contributionvg
ec(kF) to vg(kF) is proved to be nonsingular and for

sufficiently strong magnetic fieldsvg
ec(kF) is proportional tovg

H(kFn) with a proportionality constant that
depends onn. The dispersion relation, obtained in the screened Hartree-Fock approximation, is in line with the
observed strong suppression of the spin splitting forn51 and helps explain the observed destruction or
absence of some quantum Hall states. Forn52 the effectivegop* factor is constant whereas forn51(3) varies
strongly across the channel. In addition, the calculated activation energies agree well with those determined
experimentally.

DOI: 10.1103/PhysRevB.66.205322 PACS number~s!: 72.20.2i, 72.30.1q, 73.20.Mf
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I. INTRODUCTION

Though most of the recent theoretical work has focu
on the edge-state properties in the quantum Hall regime1–4

the influence of electron–electron interactions on the s
band structure of quantum wires~QW! in the presence o
strong magnetic fields has been studied extensively.4–8 To
date we are aware of treatments of a Coulomb interac
within the Hartree,1,6 the Hartree-Fock,5 and the screened
Hartree-Fock approximations~SHFA!.12,8,10 One important
conclusion of Ref. 8 is that electronic correlations
submicron-width channels strongly suppress the excha
splitting and smoothen the energy dispersion near the Fe
edge, where the derivative of the exchange contribution
verges logarithmically. This is similar to the case of a thre
dimensional~3D! free electron gas. As is well known, th
unphysical singularity of the Hartree-Fock energy can
traced back to the divergence of the Fourier transform of
bare Coulomb potential 4pe2/q2 at q50, and it can be re-
moved by taking into account the screening effects of ot
electrons in the system. However, in a quantum wire s
jected to a strong perpendicular magnetic field, it is noa
priori clear how the singularity at the Fermi level caused
exchange is canceled by the screening and what the pro
ties of the screening field are. In a previous paper9 we
showed how this is brought about by means of approxim
analytical and near-exact numerical calculations. The res
for the energy dispersion curves were in agreement with
perimental results.7

The results of Ref. 8 are in reasonable agreement w
some experimental results7 though they were obtained by a
incomplete iteration procedure. Moreover, as discussed
Ref. 8 the validity of some of the nonstandard approxim
tions made is not obvious forr 0;1, where r 0
5e2/(e l 0\vc). The improvement of the iteration procedu
of Ref. 9 led to results for the correlation energies that w
not much different than those of Ref. 8. Moreover, the p
0163-1829/2002/66~20!/205322~9!/$20.00 66 2053
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cedure of Ref. 9 did show how the singularity of the e
change energy could be avoided when correlations are ta
into account. Also, the results of Ref. 9 were obtained wi
out the assumptionr 0!1 common to standard perturbativ
calculations.

All the works mentioned above, however, are valid on
for n51, wheren is the filling factor. As is well known
though from studies of theg* factor of the two-dimensiona
electron gas~2DEG!,12,13 the screening properties chang
substantially when a partially occupied Landau level~LL !
becomes fully occupied. Thus, it is of interest to assess
influence of the filling factor on the screening and man
body effects in quantum wires as thoroughly as possible.
provide such an assessment also because we are not aw
any pertinent treatment for quantum wires and because
of Refs. 8,10 does not appear to be easily amenable to
eralization. In contrast, the treatment of Ref. 9 can be
tended to cases with an.1, n integer, albeit with some
additional work.

The derivative, with respect to the wavenumber, of t
single-particle energy near the channel edge is the key
rameter in self-consistent studies of the edge screen
effects,8,10 of the edge magnetoplasmons~EMP!11 as it is
related to experimental observations, etc.7 Though there was
a certain progress in this respect,3,8–11it is worth studying the
subject further and obtaining results as explicit as possib

In this work we consider submicron channels of widthW
with abrupt boundaries~obtained by etching techniques! that
prevent flattening of the edge states of the lower (n50,1)
occupied Landau levels~LLs!.3,4,6 For the assumed integra
quantum Hall Effect~IQHE! states in such channels, sinc
the edge electrons of each occupied subband are very c
to the channel boundaries, the effect of the compress
charge phase3 suggested for the smooth boundaries can
neglected.4 As a result, for samples with a parabolic confi
ing potential, there is a simple relation between the inte
filling factor n of the QHE states and the corresponding ma
netic fieldsBn , i.e.,Bnn5const, as observed in some expe
mental studies; cf. Ref. 7 forn<4 and sample 1.
©2002 The American Physical Society22-1
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The paper is organized as follows. In Secs. II and III
briefly present the formalism and obtain an approximate a
lytical solution of the integral equation for the screened p
tential, for n51,2,3; we confirm it by presenting the corr
sponding numerical solution. In Sec. IV we use the analyt
solution to calculate the correlation energies based on
SHFA and show how the divergence in the group velocity
the Fermi edge, due to exchange, is canceled by that du
correlations. In addition, we obtain new expressions for
Fermi edge slope of the exchange-correlation energies.
ther, we obtain the single-particle energy by generalizing
mean-field approach of Ref. 8 forn51 to n<3. Concluding
remarks follow in Sec. V.

II. BASIC FORMULAS

We consider a QW in thex2y plane, with the uncon-
strained electron motion along the axis~x! of the QW and a
magnetic fieldB in the z direction. For a narrow QW of
width W;0.3 mm, we assume that the confining potent
Vy , in the Hartree approximation,7,8 is parabolic, Vy
5m* V2y2/2, for uyu<W/2 and has an infinite height fo
uyu.W/2; m* is the effective mass. With the vector potent
AW 5(2By,0,0) the one-electron Hamiltonian,

h05
py

2

2m*
1

m* ṽ2

2
@y2y0~px!#

21
px

2

2m̃
1

g0mBSzB

2
, ~1!

has the following eigenvalues and eigenfunctions:

«as[«n,kx ,s5\ṽ~n11/2!1\2kx
2/2m̃1g0mBsB/2, ~2!

^x,yua&5eikxxFn~y2y0!us&/AL, ~3!

with vc5ueuB/m* , ṽ5(vc
21V2)1/2, m̃5m* ṽ2/V2,

y0(px)5pxvc /(m* ṽ2), andL the length of the channel. In
Eq. ~3! Fn„y2y0(kx)… is the displaced harmonic oscillato
function centered aty0}kx and us& is the spin state vecto
satisfying ^s1us2&5ds1s2

. For the calculation that follows
we need the matrix elements decsibing transitions betw
the statesun,kx& and un8,kx8&; they are given by5,8

^n8kx8ue
iq•runkx&5dqx1k2,0~n8!/n! !1/2hn2n8e2u/2

3Ln8
n2n8~u!eiaqyk1 l 2/2, ~4!

where k65kx6kx8 , a5vc /ṽ, h5 l (2ak21 iqy)/A2, u

5@a2qx
21qy

2# l 2/2, and l 5(\/m* ṽ)1/2 is the magnetic

length, andLn8
n2n8(u) the Laguerre polynomial. Due to mo

mentum conservationkx and kx8 should satisfy the relation
qx1k250. In the y direction the factor exp(2u/2) means
that transitions occur mainly in the long-wavelength regio
This can be used to simplify the discussion of the scree
field Vs(qx ,qy ,qy8). The phase shift factor in the matrix e
ement~4! results from the overlap between the two displac
Fock states.14 It leads to the oscillations of the screened fie
in momentum space. With the help of the SHFA,12,8 the ex-
20532
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change and correlation contribution«n,kx ,s
ec to the single-

particle energy of the same spin state is given by

«n,kx ,s
ec '2

1

8p3 (
n8

E dkx8 dqy dqy8V
s~kx2kx8 ,qy ,qy8!

3~n,kxueiqyyun8,kx8!~n8,kx8ue
iqy8yun,kx!, ~5!

wheren8 is the index of the occupied LLs. The sum overn8
means that, for a given screened potential, the energy co
tion «n,kx ,s

ec results from the exchange between electrons

the givenn LL and those of the filledn850,1,2. . . , LLs. In
Ref. 9 we treated only then51 case and tookn5n850.
Based on the classical 2D-Poisson equation and the rand
phase approximation~RPA!, the potentialVs(k2 ,qy ,qy8) in
Eq. ~5! obeys the integral equation

Vs~qx ,qy ,qy8!

5
v0 d~qy1qy8!

q
1

v0

8p3q
E dqy1 Vs~qx ,qy1 ,qy8!

3 (
na ,nb

(
s561

E dkxa Fa,b
s ~na ,kxaueiqy1yu

3nb ,kxa2qx!~nb ,kxa2qxue2 iqyyuna ,kxa!, ~6!

with v054p2e2/e, q25qx
21qy

2 , Fa,b
s 5( f a2 f b)/(«a

2«b), and f a the Fermi-Dirac function. In the limit ofW
→` Eq. ~6! can be reduced to the standard Lindha
equation.9 The overall fieldVs(qx ,qy ,qy8) can be decom-
posed in the manner

Vs~qx ,qy ,qy8!5v0d~qy1qy8!/q1Vc
s~qx ,qy ,qy8!. ~7!

The first term is the bare Coulomb potential and correspo
to the exchange energy. The second term,Vc

s , is caused by
the induced charges due to transitions between the stata
and b. This Vc

s corresponds to the correlation energy a
satisfies a modified integral equation obtained readily fr
Eq. ~6!. In the following we will neglect the small Zeema
energy (g0mBB/2uB510T'0.01\vc) and make the approxi
mation Fa,b

61 'Fa,b[( f a
02 f b

0)/(«a2«b) with f a
051/@1

1exp„(«a2EF)/kT…#.

III. SCREENED FIELD IN A QW FOR INTEGER FILLING
FACTORS

For sufficiently strong magnetic fieldsB, such thatṽ l
@vg

H(kFn), a simplied integral equation can be obtained
considering only the intra-level and adjancent-level tran
tions in Eq.~6!. For T50 K anda'1 we obtain

Vcn
s ~qx ,qy ,qy8!5

v0v1

4p3
F~ q̃x ,q̃y!Fv0F~ q̃x ,q̃y8!

3@Psn~ q̃,q̃8!cosk̃Fn~ q̃y1q̃y8!

2Pan
2 ~ q̃,q̃8!sinc~ q̃y1q̃y8!#
2-2
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1E dq̃y1
Vcn

s ~qx ,qy1
,qy8!F~ q̃x ,q̃y1

!

3~ q̃1 / l 2!@Psn~ q̃,q̃1!cosk̃Fn~ q̃y2q̃y1
!

2Pan
1 ~ q̃,q̃1!sinc~ q̃y2q̃y1

!#G ; ~8!

here Ỹ5Yl, v152m̃/\2kFn'21/@vg
HA(kFn)\#, F(q̃x ,q̃y)

5( l /q̃)exp(2q̃2/4), sinc(x)5sin(x)/x, and Psn(q̃,q̃8) is a
polynomial associated with intra-level transitions; its for
depends onn. The other polynomialPan

6 5panQ6 , with

Q65(q̃x
26q̃yq̃y8)/ṽ\ lv1, is associated with adjacent-lev

transitions. When then50 LL is occupied, the nonzero co
efficients Fa,b

s in Eq. ~6! are F0,0
s ,F1,0

s , and F0,1
s with s

51(61) for n51(2). Accordingly, we havePsn5pan5n
in Eq. ~8!. For n53, the coupling coefficients needed to b
considered areF1,0

6 ,F0,1
6 ,F2,1

1 ,F1,2
1 ,F0,0

6 ,F1,1
1 . The first four

coupling coeficients relate to adjacent-level transitions. T
give pa35212Q4Q48 , with QiQi85(12q̃2/ i )(12q̃82/ i ), i
52,4. The last two coupling coeficients lead tops352
1Q2Q28 ; the term}2 comes from then50 spin-up and
spin-down LLs, and the second term from then51 spin-up
LL. Notice that, for the same spin state, the intra-level tra
sitions within then51 LL are slightly weaker than thos
within then50 LL. We expand this point further in Sec. IV
and show that it is this small difference between these
kind of transitions that leads to a considerable differen
between the Fermi-edge group velocitiesvg

ec(kF3) and
vg

ec(kF1).
In deriving Eq.~8! we used the relation9

E
2`

`

dkxa F0,0e
2 i (q̃y1q̃y8)( k̃xa2q̃x/2)'v1ei (q̃y1q̃y8) k̃F. ~9!

A slightly different result would be obtained if we used th
approximationF0,0'22m̃d(kxa

2 2kF1
2 )/\2 on the left-hand

side of Eq.~9!. The physical meaning of this approximatio
is that, atT50 K, the intra-level transitions take place on
at the edges of the channel whereas the fact is that all e
tronsnear the edges contribute to the screening of the pot
tial. Mathematically, this approximation would result in

small phase-shift factoreiq̃x(q̃y1q̃y8)/2 on the right-hand side o
Eq. ~9!.15 Using Eq. ~9! will lead to results that are mor
accurate and closer to the experimental ones.

The right-hand side of Eq.~8!, proportional to the total
induced charge density, consists of two terms. The first t
results from the unperturbed charge distribution. It cons
of even and odd modes, pertinent to intra-level screen
and the sinc mode pertinent to inter-level screening. The
ond term is a further correction caused by the density cha
in the unperturbed electron distribution. If it can be written
a form similar to the first one, then Eq.~8! can be solved in
an easier way. To confirm this we attempt an approxim
analytic solution to Eq.~8! in the form
20532
y

-

o
e

c-
-

m
ts
g,
c-
ge

te

Vcn
s ~qx ,qy ,qy8!5v0F~ q̃x ,q̃y!F~ q̃x ,q̃y8!@ k̃cncc81 k̃snss8

1 k̃scnQ2~ q̃y8!sinc~ q̃y1q̃y8!#, ~10!

where cc8 stands for cosk̃Fnq̃ycosk̃Fnq̃y8 and ss8 for

sink̃Fnq̃ysink̃Fnq̃y8 . The coefficientsk̃cn ,k̃sn , andk̃scn can be
obtained by using the mode-match technique of Ref. 9. T
results are given in Appendix A, forn51,2, and B forn
53.

The numerical solution of Eq.~8! is obtained by using the
weighted iterative method of Ref. 9. In Fig. 1 we plot th
numerical solution of Eq.~8! as well as its analytic one, Eq
~10!, for sample 1 of Ref. 7, i.e.,n51,q̃x51/10k̃F1
51/150,r 050.85, andV5v/25. As shown, the two solu
tions are nearly indistinquishable. Notice that in the lon
wavelength region,q̃→0, the screened fields tend to diverg
and this would invalidate the use of the normal iterati
method. Figure 2 shows the two solutions withn52,q̃x

51/k̃F251/10.6,r 050.85, andV5v/12.5. From this figure
we can see that even in the region ofq̃x;1/k̃Fn , where the

FIG. 1. The numerical solution~solid curve! and the analytic
one~dashed curve! given by Eq.~10!, pertinent to sample 1 of Ref

7, with n51,k̃F1515,r 050.85, V5v/25, andq̃x51/150. The two
solutions are nearly identical. In the long-wavelength region
solution tends to diverge.

FIG. 2. As in Fig. 1 withn52,k̃F2510.6,V5v/12.5, andq̃x

51/k̃F251/10.6. There are visible but small differences betwe
the two solutions.
2-3
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accuracy of the analytic approximation is worst, we still ha
good agreement between the two solutions. Figure 3 sh
that for q̃x52 the two solutions are, again, nearly identic
The general agreement between the two solutions, as
cated above and further specified in the appendices, valid
Eq. ~10! and the approximations made in obtaining the co
ficients k̃cn ,k̃sn , and k̃scn .

IV. EXCHANGE-CORRELATION ENERGY,
ITS FERMI-EDGE SLOPE

A. nÄ1,2

Based on Eqs.~5!, ~7!, and ~10! we decompose the
exchange-correlation correction«0,kx,1

ec into

«0,kx,1
co '22v̄0I 2~n!E E dq̃y dq̃y8

3ei (q̃y1q̃y8) k̃1/2KnL̃2L̃28 /q̃2
2 q̃28

2 ~11!

and

«0,kx,1
ex 52 v̄0I 1~n!E dq̃y L̃2 /q̃2

2 ; ~12!

here v̄05v0 / l4p3, L̃25L̃(q̃x5 k̃2), L̃(q̃)5q̃e2q̃2
/2,

I 6(n)5(*0
k̃Fn1 k̃xdk̃26*0

6( k̃Fn2 k̃x)dk̃2), and Kn5 k̃cncc8

1 k̃snss81 k̃scn(q̃x
22q̃yq̃y8)sinc(q̃y1q̃y8). For n52 we have

«0,kx ,21
co '«0,kx,1

co and«0,kx ,21
ex '«0,kx,1

ex .

Our calculations show that correlations due to bu
screening are weak whereas those due to screening a
edges are strong. For example, as shown in Fig. 4 for sam
1 of Ref. 7 with n51, correlations in the middle of the
channel change the exchange-corrected energy by about
whereas near the channel edges they change it by about
as they bring the energy from20.55 to20.05. This is due to
the fact that, at temperatureT50 K, the intra-level screen
ing, the main part of the total screening, comes mainly fr
transitions near the Fermi edge. Therefore, we obtai
strong correlation near the Fermi edge and a weak one a
channel center. Also, in Fig. 4, the Fermi-edge slope of

FIG. 3. The same as in Fig. 1 withn53,k̃F358.66,V53v/25,

and q̃x52. The two solutions are nearly identical.
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exchange-correlation correction is much flatter than tha
the exchange. This means that the singularity of the
change is cancelled by that of the correlation. To show t
more clearly we consider the Fermi-edge slopes of
exchange-correlation,

vg
ec~kFn!5

l

\

]

] k̃x

«0,kx ,s
ec ukx→kFn

5
l ṽr 0

2p FK0~ k̃0
2/4!2

na0K1~ k̃0!K̃1,n~ k̃0!

11na0K̃1,n~ k̃0!

2
na0K2~ k̃0!K̃2,n~ k̃0!

11na0K̃2,n~ k̃0!
GU

k̃0→0

'vg
HA~kFn!/n. ~13!

In deriving Eq. ~13! the contribution from the other edge

i.e., the*0
k̃Fn1 k̃xdk̃2••• term in Eq.~11!, has been neglected

Making use of Eq.~A4!, cf. Appendix A, and neglecting the
small influence of the sample parameters on the Fermi-e
group velocity9 led to the final result of Eq.~13! with
vg

HA(kFn)5 lV2k̃Fn /ṽ. Notice that the first term in the squar
brackets of Eq.~13! results from the exchange energy, whi
the other terms result from the correlation energy. Forn52
the factor 1/n in ~13! is due to the fact that the total screen
interaction results from both spin-up and spin-down el
trons whereas the exchange-correlation correction res
from the exchange of electrons having the same spin. A
for a given QW sample with fixed widthW, we havekF1
5kF2 /A2 and vg

HA(kF2)52vg
HA(kF1), which gives vg

ec(n
51,k̃F1)'vg

ec(n52,k̃F2).

B. nÄ3

To see the many-body effects on then53 QHE state, we
calculate the exchange-correlation correction to the energ
the occupied (n51,s51) LL. In this case Eq.~5! leads to

FIG. 4. Exchange energy~dash–dotted curve!, given by Eq.
~12!, and the exchange-correlation energy~solid curve! for sample 1
of Ref. 7 withn51. The difference between the two curves is t
correlation correction given by Eq.~11!. It is very strong near the
edge of the channel and rather weak near its center. The da
curve, given by Eq.~2!, shows the electron energy without man
body effects.
2-4
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«1,kx,1
ec 5«1,kx,1

ec1 1«1,kx,1
ec2 , ~14!

where «1,kx,1
ec1 is the exchange-correlation correction due

charge exchange within the (n51,s51) LL and «1,kx,1
ec2 that

due to charge exchange between this LL and the lowest
(n50,s51). Using V3

s5v0d(qy1qy8)/q1Vc3
s we further

decompose each of them into two parts denoted below by
superscriptscoi and exi, i 51,2. With Q225Q2(q̃x5 k̃2)
the results are

«1,kx,1
co1 522v̄0I 2~3!E E dq̃y dq̃y8

3ei (q̃y1q̃y8) k̃1/2K3L̃2L̃28 Q22Q228 /q̃2
2 q̃28

2 , ~15!

«1,kx,1
ex1 52 v̄0I 1~n!E dq̃yL̃2Q22

2 /q̃2
2 , ~16!

«1,kx,1
co2 52 v̄0I 2~3!E E dq̃y dq̃y ei (q̃y1q̃y8) k̃1/2

3~2 k̃21 i q̃y!~2 k̃21 i q̃y8!K3L̃2L̃28 /q̃2
2 q̃28

2,

~17!

«1,kx,1
ex2 52~ v̄0/2!I 1~n!E dq̃y L̃2 . ~18!

The Fermi-edge group velocity can be obtained from E
~14! to ~18!. Actually Eqs.~16! and ~18! show that near the
Fermi edge the total exchange correction has a diverg
slope vg

ex( k̃F3)5(a0/2)vg
HA( k̃F3)K0( k̃0

2/4)u k̃0→0. This singu-
larity is exactly cancelled by the Fermi-edge slope of
correlation correction to the (n51,s51) LL. To see this, we
calculatevg

co1(kF3) andvg
co2(kF3). The results arevg

co2(kF3)
50 and

vg
co1~kx→kF3!5

l̃

\

]

] k̃x

«1,kx,1
co1 u k̃x→ k̃F3

'vg
HA~kF3!

a0

2

3F2K12K2111 (
i 5c,s

z i

a0D i213/2

K6

k6
G ,

~19!

with z i and k6 given in Appendix C. With the help of Eq
~A4! we obtain a nonsingular slope at the Fermi edge.
sample 1 of Ref. 7, this nonsingular slope, which is also
overall exchange-correlation slope, is vg

ec( k̃F3)

'3.2vg
HA( k̃F3) and agrees very well with the numerical res

vg
ec53.6vg

HA( k̃F3) obtained from Eq.~14!. Based on the rela

tionship vg
HA( k̃F1)5vg

HA( k̃F2)/25vg
HA( k̃F3)/3 . . . , wehave

vg
ec(kF3).vg

ec(kF1). This means that the nonsingular part
the correlation correction forn53 is larger than that forn
51. As the screened fieldVcn

s weakens the bare Coulom
field, it follows that a strong nonsingular part ofVc

s entails a
weak screened fielduVc

su, that is, uVc3
s u should be smaller

thanuVc1
s u. In other words, the induced charge densities c
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responding to these two screened fields should satisfy
relationr1,1,r0,0, wherern,n(n50,1) is the charge density
caused by the intra-level transitions within thenth LL. This
is true because our previous resultPs3521Q2Q28 in Sec. III
shows that transitions within then51 LL are slightly weaker
than those within then50 LL.16 That is, the screening ‘‘ef-
ficiency’’ in the n51 LL is lower than that in then50 LL.
This is because in the later case (n50) the electrons are
centered aty5y0(kxi) ( i 51,2) whereas in the former cas
(n51) they are centered aty5y0(kxi)6 l . Therefore, the
magnitude of the diagonal matrix element of Eq.~4! for n
50 is larger than that forn51. Furthermore, we can predic
that for largern the magnitude of Eq.~4!, actually the over-
lap of the two Fock states centered at different places
phase space, will exhibit an oscillatory behavior when
distance of the two electron centers is increased. The am
tude of the oscillation can be approximated as the overc
of the two displaced Planck-Bohr-Sommerfeld~PBS! bands
that represent the two displaced Fock states.17

The many-body effects on then51,s51 LL of sample 2
of Ref. 7 are not investigated in this work. This is because
this QW sample the bare confining potentialVy aroundW/2
is complicated and invalidates the assumptions used in
work.

V. SINGLE-PARTICLE ENERGY, FERMI-EDGE GROUP
VELOCITY

In line with the local-density approximation, as applied
quantum wires,8 we assume that the single-particle ener
can be obtained approximately by solving the Schrodin
equation with HamiltonianH5h01VEC(y), where the
exchange-correlation potential is

VEC~y!'«n,y/ l 2,s
ec

5«n,kx ,s
ec , uyu<W/2. ~20!

For the regionuyu.W/2 we takeVEC(y)50. In strong mag-
netic fieldsVEC(y) is small compared toh0 and the corre-
sponding eigenvalue can be obtained by

En,kx ,s5«n,kx ,s1^uVEC~y!u&. ~21!

In Figs. 5~a!–5~c! we plot the single-particle energies, give
by Eq. ~21!, for the parameters of sample 1 of Ref. 7 andn
51,2,3, respectively. They agree well with the experime
tally observed results of Ref. 7. The parameters for Fig. 5~a!

are \V'0.65 meV, W'0.30mm, B5B1510 T, and k̃F

5 k̃F1515.8 As the correlation correction strongly suppress
the exchange-induced spin-splitting, the quasi-Fermi leve
the filled (n50,↑) LL is above the bottom of the empty (n
50,↓) LL and then51 plateau is absent in sample 1. Whe
the magnetic field is decreased toB5B1/255 T in Fig. 5~b!,
the (n50,↑& ↓) LLs are fully occupied and there is a bi
gap (;\ṽ) between the filledn50 LL and the emptyn
51 LL. Consequently, an52 QHE state exists in this QW
sample. Forn53 we reach the same conclusion as forn
51. Therefore, electronic correlations suppress the gap
tween the up and down spin sublevels forn51 or n53 and
destroythe quantum Hall plateau;1 in contrast, they canno
2-5
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close thesizablegap forn52 and this plateau is observed7

Figure 6 gives another conclusion for sample 2 withn51,
\V5(0.4660.2) meV, W'0.33mm, B5B1'7.3 T, and
k̃F5 k̃F1515. As the correlation is not strong enough to su
press the exchange-induced spin-splitting, there is an ac
tion gap (DEF↓'0.013\vc51.5 K) between the occupie
n50,↑ and the emptyn50,↓ LLs. This is very close to the
experimental observation7 DEF↓'1 K. Then an51 plateau
develops. Forn52 we have the same conclusion as f
sample 1.

The dispersions in Figs. 5 and 6 also give us the sing
particle group velocity at the Fermi edge. For example,
have vg(kF1)'6.9vg

H(kF1),
9 vg(kF2)'3.1vg

H(kF2), and
vg(kF3)'2.2vg

H(kF3) for sample 1; for sample 2 the resul
arevg(kF1)'10vg

H(kF1)
9 andvg(kF2)'4.1vg

H(kF2). The re-

FIG. 5. Single-particle energies,En,kx ,s5«n,kx ,s1^«n,kx ,s
ec & vs

k̃x for filling factors n51,2,3 and the parameters of sample 1
Ref. 7. The curves forn51,2 are shifted downward by 1/2 an
those forn53 by 3/2.

FIG. 6. Same as in Fig. 5 with parameters pertinent to samp
of Ref. 7. In contrast with sample 1, when exchange-correlati
are taken into account an energy gap appears between the fills
51 sublevel and the emptys521 sublevel; this leads to then
51 QHE state.
20532
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lation vg(kFn)2vg
H(kFn)}(d/dy)^uVEC(y)u&.0 confirms

that in these two submicron channels the overall exchan
correlation correction has no contribution to the flattening
the outmost edge state, although the exchange-induced
splitting is strongly suppressed by the correlations.

Finally, we calculate the effective g-factor using the e
pression

gop* 5~En,kx ,212En,kx,1!/mBB, ~22!

as a function of k̃x . We call the g-factor gop* (kx)
5gop* @yo(kx)# ‘‘optical’’ because it is related to the spin
splitting between states with the samekx . It differs fromgac

7

deduced from the activated behavior of the conductance
shown in Fig. 7, forn odd, gop* varies strongly across th
channel, i.e., from center to edge. Forn even, e.g.,n52, we
havegop* 5ug0u, provided the Zeeman splitting has a neg
gible effect on the coefficientFa,b

s .

VI. CONCLUDING REMARKS

We investigated the screened Coulomb fields in sub
cron QWs and their effects on the subband structure wit
the SHFA-RPA approximation. In strong magnetic fields t
integral equation for the screened potential can be simpli
by considering only the intra-level and adjacent-level scre
ing. The later contributes a small part to the screened po
tial, while the former tends to diverge in the long-range lim
One important feature of our approach is that it is free fro
the usual limitationr 0!1 of perturbative treatments. With

f

2
s

FIG. 7. The effective g factorgop* vs k̃x for sample 1 of Ref. 7
and filling factorn51 in ~a! andn53 in ~b!. The bare g factor of
GaAs isug0u50.44.
2-6
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some extra work it can be applied to situations described
n>4 provided the magnetic field is strong enough and
dimensionless Fermi wavenumberk̃Fn is large enough.

We calculated the exchange-correlation corrections to
energy of the highest occupied LLs. Since the intra-le
screening, the main part of the total screening, takes p
near the Fermi edge, the correlation energy near the cha
edge is much stronger than that at the channel center
strongly suppresses the exchange-induced spin-splitting.

Near the Fermi edge the exchange correction has a p
tive and logarithmically divergent slope with respect tok̃x . It
is cancelled exactly by the divergent part of the correlat
correction to the same LL. The overall Fermi-edge gro
velocity, vg

ec( k̃Fn), is caused by the nonsingular part of th
correlation that is related to the intra-level screened poten
This Fermi-edge group velocity is proportional to the Hartr
velocity vg

H( k̃Fn) with the proportionality constant dependin
on n. For n53 the correlation«1,k̃x ,1

co can be further decom

posed in two parts: one part corresponds to charge exch
within the same LL (n51,s51) and the other one to charg
exchange between this LL and the adjacent one (n50,s
51). The latter is relatively small and has zero slope at
Fermi edge. The overall Fermi-edge exchange-correla
slope forn53 is much larger than that forn51, because the
induced charge density forn53 is relatively smaller than
that for n51 and this results in the relatively weak fiel
uVc3

s u.
Further, we obtained the single-particle energy in

mean-field-theory spirit of the LDA. Compared to the effe
tive confining potential the impact of the exchang
correlation correction is relative small and the single-parti
energies are approximately obtained by Eq.~21!. Our calcu-
lation accounts well for the experimentally observed7 strong
suppression of the exchange-induced spin-splitting pertin
to integral quantum Hall effect states (n51, and n53).
Near the channel edge the single-particle group velocity
its minimum value,vg

m , for kx→kFn . The valuevg
m is larger

thanvg
H(kFn); this means that in the two narrow QWs of Re

7 the exchange-correlation does not contribute to the flat
ing of the edge state. The results of Eq.~21! also lead to the
spatially inhomogeneous effective g-factor,g

*
op(kx), which

varies in the range of 3–25~10–50! for n51(3), from cen-
ter to edge.
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APPENDIX A: APPROXIMATE ANALYTIC SOLUTION
FOR nÄ1,2

Following the approach of Ref. 9 we obtain the values
the various coefficients appearing in Eq.~10! by substituting
this trial solution into Eq.~8! and equating the coefficients o
each mode on both sides of Eq.~8!. The results are as fol
lows:
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k̃in~ q̃x ,q̃y ,q̃y8!5
2~6 !na0

11na0K̃6,n

1

11nr 0L̃
F12

nr 0XL̃8

112nr 0L̃8
G

~A1!

and

k̃scn~ q̃x ,q̃y ,q̃y8!52
Xnr 0

p~112nr 0L̃ !
. ~A2!

Here L̃5q̃e2q̃2/2/2,1(2) corresponds to i 5c(s), a0

5r 0(ṽ/V)2/(p k̃Fn), and X is a fitting factor for n51,2.
Comparing the analytical solution, given by Eqs.~10!, ~A1!,
and ~A2!, with the numerical one, we obtain a 80%290%
agreement withX51, depending on the value ofqx . A bet-
ter agreement can be obtained if we takeX
5(2/p)arctan@(̃q)x

2 cosh(112(3q̃x)
2). An obvious impact of

this fitting factor is that we should takek̃scnu q̃x→0→0 for

inter-level screening. Notice that in the smallq̃ region, the
sinc mode only accounts for a small part of the total fie
The factorL̃ in Eq. ~A1! means thatX has nearly no effect
on the intra-level screening in both the short and long wa
length limits. BecauseX jumps from zero to one within 0.1
,q̃x,0.5, the region whereX has the stronger influence i
q̃x;0.1. Our numerical computations confirm that the fitti
factor can effectively reduce the error of the analytic solut
around this region in which its accuracy is worst if we ta
X51.

The expression forK̃6,n in Eq. ~A1! is important for un-
derstanding the Fermi-edge slope of the exchan
correlation. WithCn(q̃y)516 cos 2k̃Fnq̃y we have9

K̃6,n~ q̃x!5E
2`

` dq̃yL̃Cn~ q̃y!

q̃2~11nr 0L̃ !
,

5K6~ q̃x!2r 0nE
2`

` dq̃yL̃
2Cn~ q̃y!

q̃2~11nr 0L̃ !
, ~A3!

K6~ q̃x!'@eq̃x
2/4K0~ q̃x

2/4!/26K0~2k̃Fq̃x!#e
2q̃x

2/2, ~A4!

whereK0(x) is the modified Bessel function. Also, for th
confined potential used in this work the dimensionless wa
number isk̃Fn5W/2lAn.

APPENDIX B: APPROXIMATE ANALYTIC SOLUTION
FOR nÄ3

The coefficientsk̃c3 , k̃s3, andk̃sc3 appearing in Eq.~10!

are assumed to have the forms (Qj512q̃2/ j , j 52,4;i
5c,s;)

k̃i352ki1kiyQ21kiy8Q281kiyy8Q2Q28 ~B1!

k̃cs35kcs@11Q4Q48#, ~B2!
2-7
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where kcs(q̃x ,q̃y ,q̃y8), ki(q̃x ,q̃y ,q̃y8), kiy(q̃x ,q̃y ,q̃y8),

kiy8(q̃x ,q̃y ,q̃y8), andkiyy8(q̃x ,q̃y ,q̃y8) can be determined by
using the approach in Appendix A. After a straightforwa
but tedious derivation we obtain (i 5c:1; i 5s:2;)

ki52
6a0D1~ q̃x ,q̃y!D2~X3 ,q̃x ,q̃y8!

11a0@2k61g i~k62D i1!#
, ~B3!

D1~ q̃x ,q̃y!5†112r 0@11Q4
2#L̃‡

21, ~B4!

D2~X3 ,q̃x ,q̃y8!5F12
2X3r 0@11Q48#L̃8

114r 0@11Q48#L̃8
G , ~B5!

kiy5
22a0~k62D i1!

11a0~k622D i11D i2!
ki[g iki , ~B6!

kiyy85
7a0D1~ q̃x ,q̃y!D2~X3 ,q̃x ,q̃y8!

11a0@l i~k62D i1!1k622D i11D i2#
, ~B7!

kiy85
22a0~k62D i1!

112a0k6
kiyy8[l ikiyy8 , ~B8!

where

k6~ q̃x!5E dq̃y~L̃/q̃2!D1~ q̃x ,q̃y!C3~ q̃y!, ~B9!

D i1~ q̃x!5E dq̃yL̃D1~ q̃x ,q̃y!C3~ q̃y!/2, ~B10!

D i2~ q̃x!5E dq̃yq̃
2L̃D1~ q̃x ,q̃y!C3~ q̃y!/4. ~B11!

X3512exp(2q̃x
2) is the fitting factor forn53.

APPENDIX C: NONSINGULARITY OF THE GROUP
VELOCITY VG

ec
„ k̃F3…

To investigate the nonsingularity of the group veloc

vg
ec( k̃F3), we calculate the Fermi edge slopes of«1,kx,1

ex ,

«1,kx,1
co2 , and«1,kx,1

co1 , with respect tok̃x , as follows. Equations
20532
~16! and ~18! give the exchange contribution@L̃y

5L̃(0,q̃y)#

vg
exukx→kF3

5
l

\

]

] k̃x

~«1,kx,1
ex1 1«1,kx,1

ex2 !u k̃x→ k̃F3

5
r 0l ṽ

2p FK0~ k̃0
2/4!22E

0

`

dq̃y L̃y~12q̃y
2/2!G

k̃0→0

5
a0

2
vg

H~ k̃F3!K0~ k̃0
2/4!u k̃0→0 , ~C1!

which is the same form asvg
ex(kx→kFn) for n51,2. The

Fermi edge group velocityvg
co2(kx→kF3) can be readily cal-

culated from Eq.~17!; the result is

vg
co2~kx→kF3!5

l

\

]

] k̃x

«1,kx,1
co2 u k̃x→ k̃F3

5
r 0l ṽ

p E dq̃y dq̃y8
L̃yL̃y8

q̃yq̃y8
~ k̃s3

2 k̃c3!sin2k̃F3q̃ysin2k̃F3q̃y8'0. ~C2!

With the help of Eq.~15! as well as the following relations
( i 5c:1, i 5s:2;);

g i~ k̃2→0!52
2~k62D i1!

k622D i11D i211/a0
, ~C3!

l i~ k̃2→0!'
2a0~D i12k6!

2a0k611
, ~C4!

ki~ k̃2→0!'kiyy8~ k̃2→0!/2'7
a0

2a0D i213
, ~C5!

~21g i !~k622D i21D i1!12~D i12D i2!5
2g i

a0
, ~C6!

~l i11!~k62D i1!52l i~1/2a01D i1!, ~C7!

we have, to orderk i
0 ,
vg
co1~kx→kF3!5

l

\

]

] k̃x

«1,kx,1
co1 u k̃x→ k̃F3

'
22r 0l ṽ

p

]

] k̃x
U

k̃2→0

I 2~3!E
2`

`

dq̃y dq̃y8
L̃y

q̃y
2

L̃y8

q̃y8
2

ei (q̃y1q̃y8) k̃1/2Q22Q228 @ k̃c3cc81 k̃s3ss8#

5
r 0l ṽ

2p (
i 5c,s

~6 !@ki~0!h̄1i~K61G61!12kiyy8~0!h̄3i~K612G611G62!#

'vg
H~kF3!

a0

2 F2K12K2111 (
i 5c,s

z i

a0D i213/2

K6

k6
G

k̃2→0

. ~C8!
2-8
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Here

G61[2E
0

`

dq̃yL̃y~16 cos 2k̃Fq̃y!'20.5,

G62[
1

2E0

`

dq̃yq̃y
2L̃y~16 cos 2k̃Fl̃y!'0.5, ~C9!
B

.

p,

20532
h̄1i5(21g i)k622D i1(11g i)1g iD i2 , h̄3i5(l i11)k6

2D i1(l i12)1D i2, and z i5D i22D i111/a01a0(D i1

11/2a0)2. Therefore the total group velocity, includin
vg

ex(kF3), is

vg
ec~kF3!'vg

H~kF3!
a0

2 F11 (
i 5c,s

z i

a0D i213/2

K6

k6
G . ~C10!
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