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Screening and electronic correlations in quantum wires in strong magnetic fields:
Filling factor dependence
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The screening of the Coulomb interaction in quantum wires, subjected to strong perpendicular magnetic
fields, is assessed for integer filling factors: 3 and low temperatures. Correlations due to bulk screening are
rather weak whereas those due to screening at the edges are very strong and smoothen considerably the energy
dispersion. The group velocity at the Fermi edgékg,) can be one order of magnitude larger than the Hartree
velocityvg'(kpy). The exchange-correlation contributio@c(kp) to vy(kg) is proved to be nonsingular and for
sufficiently strong magnetic fieldsS‘(kF) is proportional t0v;'(kpy) with a proportionality constant that
depends onv. The dispersion relation, obtained in the screened Hartree-Fock approximation, is in line with the
observed strong suppression of the spin splitting #er1 and helps explain the observed destruction or
absence of some quantum Hall states. #er2 the effectivegZ;p factor is constant whereas for=1(3) varies
strongly across the channel. In addition, the calculated activation energies agree well with those determined
experimentally.
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[. INTRODUCTION cedure of Ref. 9 did show how the singularity of the ex-
change energy could be avoided when correlations are taken
Though most of the recent theoretical work has focusednto account. Also, the results of Ref. 9 were obtained with-
on the edge-state properties in the quantum Hall rediifie, Out the assumptiony<1 common to standard perturbative
the influence of electron—electron interactions on the subc@lculations. _ .
band structure of quantum wird©W) in the presence of All the works mentioned above, however, are valid only

L . _ for v=1, wherewv is the filling factor. As is well known
strong magnetic fields has been studied extensf\_/ély.'o ._though from studies of thg* factor of the two-dimensional
date we are aware of treatments of a Coulomb interactio

Blectron gas(2DEG 1213 the screening properties change
ithi H 6 H = . ’ ! :
within the Hartree;® the Hartree-FocR,and the screened substantially when a partially occupied Landau leyel )

Hartree-Fock approximation¢SHFA).*#%1° One important  pecomes fully occupied. Thus, it is of interest to assess the
conclusion of Ref. 8 is that electronic correlations ininfluence of the filling factor on the screening and many-
submicron-width channels strongly suppress the exchandsody effects in quantum wires as thoroughly as possible. We
splitting and smoothen the energy dispersion near the Fernpirovide such an assessment also because we are not aware of
edge, where the derivative of the exchange contribution diany pertinent treatment for quantum wires and because that
verges logarithmically. This is similar to the case of a threeOf Refs. 8,10 does not appear to be easily amenable to gen-
dimensional(3D) free electron gas. As is well known, the €ralization. In contrast, the treatment of Ref. 9 can be ex-
unphysical singularity of the Hartree-Fock energy can bd€nded to cases with a>1, v integer, albeit with some

traced back to the divergence of the Fourier transform of th@d(.jl_'ﬁgngémc;'i(\'/e with respect to the wavenumber. of the
bare Coulomb potential #e?/q? at q=0, and it can be re- ’ P ’

R X single-particle energy near the channel edge is the key pa-
moved by taking into account the screening effects of othefameter in self-consistent studies of the edge screening

electrons in the system. However, in a quantum wire subeffects®1° of the edge magnetoplasmoBMP)'! as it is
jected to a strong perpendicular magnetic field, it is aot related to experimental observations, efthough there was
priori clear how the singularity at the Fermi level caused bya certain progress in this respéét; it is worth studying the
exchange is canceled by the screening and what the propesubject further and obtaining results as explicit as possible.
ties of the screening field are. In a previous papee In this work we consider submicron channels of widlth
showed how this is brought about by means of approximatevith abrupt boundarie®btained by etching techniquethat
analytical and near-exact numerical calculations. The resultgrevent flattening of the edge states of the lower(Q,1)
for the energy dispersion curves were in agreement with execcupied Landau leveld_Ls).>*® For the assumed integral
perimental results. guantum Hall Effect(IQHE) states in such channels, since
The results of Ref. 8 are in reasonable agreement witlthe edge electrons of each occupied subband are very close
some experimental resuftthough they were obtained by an to the channel boundaries, the effect of the compressive
incomplete iteration procedure. Moreover, as discussed ioharge phasesuggested for the smooth boundaries can be
Ref. 8 the validity of some of the nonstandard approximaneglected.As a result, for samples with a parabolic confin-
tions made is not obvious forry~1, where ry ing potential, there is a simple relation between the integer
=e?/(elghw.). The improvement of the iteration procedure filling factor v of the QHE states and the corresponding mag-
of Ref. 9 led to results for the correlation energies that wereetic fieldsB,,, i.e.,B,v=const, as observed in some experi-
not much different than those of Ref. 8. Moreover, the pro-mental studies; cf. Ref. 7 for<4 and sample 1.
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The paper is organized as follows. In Secs. Il and Ill wechange and correlation contributiosf$ , to the single-

k, ,o
briefly present the formalism and obtain an approximate aNdsarticle energy of the same spin state Xis given by
lytical solution of the integral equation for the screened po-

tential, forv=1,2,3; we confirm it by presenting the corre- 1
sponding numerical solution. In Sec. IV we use the analytical sﬁka =TT > f dk; day, dayVe(k,—ky,qy,0y)
solution to calculate the correlation energies based on the 87

SHFA and show how the divergence in the group velocity at - S Ui
the Fermi edge, due to exchange, is canceled by that due to X(n, k&M n" k) (n' ke [n k), ®)
correlations. In addition, we obtain new expressions for theyheren’ is the index of the occupied LLs. The sum over
Fermi edge slope of the exchange-correlation energies. Fumeans that, for a given screened potential, the energy correc-
ther, we obtain the single-particle energy by generalizing thgjon ¢, , results from the exchange between electrons of
gfna:ri;elfilﬁ)%ri?]agzcm\?ef' 8 for=1 to»=3. Concluding the givenn LL and those of the fillesh'=0,1,2. .., LLs. In

T Ref. 9 we treated only the=1 case and took=n’=0.
Based on the classical 2D-Poisson equation and the random-
phase approximatiofRPA), the potentialVS(k_ ,qy,q§) in

We consider a QW in th&—y plane, with the uncon- Ed. (5) obeys the integral equation

strained electron motion along the axig of the QW and a s ,
magnetic fieldB in the z direction. For a narrow QW of V(G- ay.dy)
width W~0.3 um, we assume that the confining potential

II. BASIC FORMULAS

8(qy+q!
V,, in the Hartree approximatiotf is parabolic, V _ Vool qy)+ % |4 VS( 9
y 2,,2 Lo . Y 3 qyl QXuqylaQy
=m*Q4y?/2, for |y|<W/2 and has an infinite height for q 8m°q
ly|>WI/2; m* is the effective mass. With the vector potential
A=(—By,0,0) the one-electron Hamiltonian, X > 21 dKyo F o g(Ng Kyo| €D
n, ,nﬁ o==*
2 ~ 2 _i
hoo Py MOt ey Py GomeSB XNg Ko = B (Mg Ko =A€Y Ng Keo), (6)
X ~ )
2me 2 2m 2 with vo=4m?elle, qP=ai+aZ, Fi,=(f,~fp)l(e,

has the following eigenvalues and eigenfunctions: —ep), andf, the Fermi-Dirac function. In the limit oWV
—oo Eqg. (6) can be reduced to the standard Lindhard

Eae=Enk o=ha(n+1/2)+h2k22M+ gousoBl2, (2) equatiqrﬁ The overall fieldV®(qy,qy,dy) can be decom-
X posed in the manner

(x,y|a)y=e"® (y—yo)| o)/ VL, 3 VE(ay,ay,ay) =vod(ay+ay)/a+Ve(ay,qy,qy).  (7)

with  w.=|e|B/m*, w=(0?+0%Y2 m=m*w?Q?  The first term is the bare Coulomb potential and corresponds

Yo(P,) = Prwe/ (M* @2), andL the length of the channel. In 0 the exchange energy. The second tevth, is caused by
Eq. (3) ®,(y—Yo(k,)) is the displaced harmonic oscillator the mducgd crslarges due to transitions betvyeen the states
function centered ayoxk, and|c) is the spin state vector and . This V¢ corresponds to the correlation energy and
satisfying (o] 0,) =6 For the calculation that follows Satisfies a modified integral equation obtained readily from
0'1172' . .
we need the matrix elements decsibing transitions betweeggégg; g‘ th%;‘grlowmg ‘(’)Vg]‘;iv'” ?eg*zcﬁgﬁesﬁae"azpﬁg(?n
h k " k'Y th ; oyB B=10T"~> Y. e _ -
the stategn k,) and|n’ k;); they are given by mation F;ylﬁmFa'ﬁz(ffI—f%)/(sa—sﬁ) with f2=111

<nrk>'(|eiq-r|nkx>: 5qx+k7,0(n,!/n! )1/277n7n’e7u/2 +exq(8a_EF)/kT)]'

XL:TH/(u)eiaqyk+|2/2, 4) I1l. SCREENED FIELD |NF:C(%_V5/RF§R INTEGER FILLING
where k. =k, £k}, a=wc/0, n=1(-ak +ig,)/\2, u For sufficiently strong magnetic fieldB, such thatl

=[a%g;+0q7]1%/2, and |=(h/m*®)"? is the magnetic >vg(Kg,), a simplied integral equation can be obtained by
length, andLEf”,(u) the Laguerre polynomial. Due to mo- considering only the intra-level and adjancent-level transi-
mentum conservatiok, and k. should satisfy the relation tons in Eq.(6). ForT=0 K anda~1 we obtain

gx+k_=0. In they direction the factor exp{u/2) means

that transitions occur mainly in the long-wavelength region. s =2 5 g O(a. T

This can be used to simplify the discussion of the screenedc”(qx'qy’qy) 473 (G.0y)| 0P (Gx.ay)

field V*(qy,dy,9y). The phase shift factor in the matrix el-

ement(4) results from the overlap between the two displaced X[Ps,(0,9')coskg,(dy+0,)
Fock stated? It leads to the oscillations of the screened field Lo~
in momentum space. With the help of the SHE& the ex- —P,,(0,9")sinaqy+qy)]
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+ f day, Ve, (0, Gy, ay) P (dy.qy,)

X (A1 /1*)[ P,(d,01) coske,(dy—dy, ) oo \\
v;* 2000 =

—P.(q,a)sinagy—qy)1|; 8)

herej/=Y|. v1= —Fn/ﬁszﬁ—1/[v§A(kFV)ﬁ],~<Ii(ax y)
=(l/q)exp(—g%4), sinck)=sin(X)/x, and Pg,(q,q’) is a
polynomial associated with intra-level transitions; its form
depends onw. The other polynomialP,,=p,,Q-, with

QtZ(Q§iqu)’/)/wﬁ|Ul, is associated with adjacent-level  FiG. 1. The numerical solutiosolid curve and the analytic
transitions. When the=0 LL is occupied, the nonzero co- one(dashed curvegiven by Eq.(10), pertinent to sample 1 of Ref.
efficients Fy, ; in Eq. (6) are Fgo,F7o, andFg; with o 7, with v=1Kg, = 15r,=0.85, 0 = /25, andg,=1/150. The two
=1(x1) for v=1(2). Accordingly, we haveP.,=p,,=v solutions are nearly identical. In the long-wavelength region the
in Eq. (8). For v=3, the coupling coefficients needed to be solution tends to diverge.

considered ard; o,Fg1,F31,F1,,Foo.Fiq. The first four

coupling coeficients relate to adjacent—l~evel tranfiltions. They Ve, (0y. 0y .a;) = 0P (0 ,ay><1>("dx ,a§)[~chCC' +Ks,S5

give pay=2+2Q,Q;, with QQ/=(1-4%/i)(1-4 %), i L

=2,4. The last two coupling coeficients lead pay=2 +kse,Q-(ay)sind gy +ay)], (10
+Q,Q,; the termx=2 comes from then=0 spin-up and , ~ o~ ~ ~, ,
spin-down LLs, and the second term from the 1 spin-up  Where cc’ stands for cokg,qycosks,qy and ss' for

LL. Notice that, for the same spin state, the intra-level tran-Sinkg,4,Sinkg,q, . The coefficients,, ks, , andksc, can be
sitions within then=1 LL are slightly weaker than those obtained by using the mode-match technique of Ref. 9. The
within then=0 LL. We expand this point further in Sec. IV results are given in Appendix A, for=1,2, and B forv

and show that it is this small difference between these two=3.

kind of transitions that leads to a considerable difference The numerical solution of Ed8) is obtained by using the
between the Fermi-edge group velociti®§°(kp3) and weight_ed iterati_ve method of Ref. 9. I.n Fig. 1 we plot the
v3°(kpl)- numerical solution of Eq(8) as well as its anallytlc one, Eq.

In deriving Eq.(8) we used the relatioh (10), for sample 1 of Ref. 7, ie.,v=10,=1/10kg,
=1/150r,=0.85, and()=w/25. As shown, the two solu-
tions are nearly indistinquishable. Notice that in the long-

fm dk, Foe (a2~ i@ +a)ke (g  wavelength regiong—0, the screened fields tend to diverge
—w ’ and this would invalidate the use of the normal iterative

method. Figure 2 shows the two solutions with=2.q,
A slightly different result would be obtained if we used the = 1/kg,=1/10.67,=0.85, and=w/12.5. From this figure

approximationFo o~ — 2mé(k2,— k2,)/#2 on the lefthand we can see that even in the regioncgf- 1k, , where the
side of Eq.(9). The physical meaning of this approximation

is that, atT=0 K, the intra-level transitions take place only 20
at the edges of the channel whereas the fact is that all elec 104
tronsnearthe edges contribute to the screening of the poten- o

tial. Mathematically, this approximation would result in a <o

small phase-shift facta @9+ %2 on the right-hand side of 20+
Eq. (9).1° Using Eq.(9) will lead to results that are more =~ g
accurate and closer to the experimental ones. 104
The right-hand side of Eq@8), proportional to the total
induced charge density, consists of two terms. The first terrr
results from the unperturbed charge distribution. It consists
of even and odd modes, pertinent to intra-level screening.
and the sinc mode pertinent to inter-level screening. The sec
ond term is a further correction caused by the density changt
in the unperturbed electron distribution. If it can be written in
a form similar to the first one, then E() can be solved in FIG. 2. As in Fig. 1 withv=2kg,=10.6Q=w/12.5, anda,
an easier way. To confirm this we attempt an approximate=1/kg,=1/10.6. There are visible but small differences between
analytic solution to Eq(8) in the form the two solutions.

=50,
6
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FIG. 3. The same as in Fig. 1 with=3Kkgr;3=8.66()=3w/25,

andq,=2. The two solutions are nearly identical. FIG. 4. Exchange energidash—dotted curye given by Eq.

(12), and the exchange-correlation enefgglid curve for sample 1

accuracy of the analytic approximation is worst, we still haveOf Ref. ! with v= L Thg difference beth_een the two curves s the
ood agreement between the two solutions. Figure 3 ShoWcsorrelatlon correction given by E@l1). It is very strong near the

9 ' edge of the channel and rather weak near its center. The dashed

that forq,=2 the two solutions are, again, nearly identical. curve, given by Eq(2), shows the electron energy without many-
The general agreement between the two solutions, as indipdy effects.

cated above and further specified in the appendices, validates

Eq. (10) and the approximations made in obtaining the coef-exchange-correlation correction is much flatter than that of
- ~ ~ the exchange. This means that the singularity of the ex-
ficientsk,, ,Ks,, andkg, .

change is cancelled by that of the correlation. To show this

more clearly we consider the Fermi-edge slopes of the
IV. EXCHANGE-CORRELATION ENERGY, exchange-correlation,

ITS FERMI-EDGE SLOPE
A v=12 vgike,) =+ fegix,ghﬁkh
Based on Eqgs(5), (7), and (10) we decompose the )

exchange-correlation correctiaf§$ ; into lore|  —, vaoK ; (ko) K (ko)
= 0 Ko(KZ4) - ——
2m 1+ vaK, (ko)
o2 | [ G, vaok (koK - V<T<o)1
xel@rakae X R /q2q'2 (1) L vagk (ko) Jlg
and ~v Ak, ) v. (13
- o In deriving Eq.(13) the contribution from the other edge,
€0k 1= ~ Vol +(V)f dayA_/9?; (120 e, theng”kXd"li_- .- term in Eq.(11), has been neglected.

o - Making use of Eq(A4), cf. Appendix A, and neglecting the
here vo=vo/l4m®, A_=A(q,=k.), A(Q)=qe 972, smallinfluence of the sample parameters on the Fermi-edge
Ii(V):(fEFVJrRXd’R_if(;:(’RFvi’Rx)dT(_), and K,k cc ngc;up velocit; led to the final reSL_JIt of Eq(lS) with

vy (Kr,) =1Q%kg, /w. Notice that the first term in the square

I > ~ Y brackets of Eq(13) results from the exchange energy, while
€0k, ,~1~ 80k 1@Ndegk —1~80k 1- the other terms result from the correlation energy. Fer2

Our calculations show that correlations due to bulkthe factor 17 in (13) is due to the fact that the total screened
screening are weak whereas those due to screening at thderaction results from both spin-up and spin-down elec-
edges are strong. For example, as shown in Fig. 4 for samplgons whereas the exchange-correlation correction results
1 of Ref. 7 with =1, correlations in the middle of the from the exchange of electrons having the same spin. Also,
channel change the exchange-corrected energy by about 108 @ given QW sample with fixed widthV, we haveke;
whereas near the channel edges they change it by about 90‘9/"okf:~2/\/E and vSAng2)=2vSA(kF1), which gives vg{»
as they bring the energy from0.55 to—0.05. Thisis due to  =1Kkg;)~v(v=2Keg,).
the fact that, at temperatufie=0 K, the intra-level screen-
ing, the main part of the total screening, comes mainly from B.»=3
transitions near the Fermi edge. Therefore, we obtain a To see the many-body effects on the 3 QHE state, we
strong correlation near the Fermi edge and a weak one at thmlculate the exchange-correlation correction to the energy of
channel center. Also, in Fig. 4, the Fermi-edge slope of thehe occupiedif=1,0=1) LL. In this case Eq(5) leads to

+Ks,88 +Ksc, (G5 —0y0y)sincg, +ay). For v=2 we have
X
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e% ,1:8§,Ck1,1+8$§<2,1, (14) resppnding to these two screened f_ields should satisfy the
X X X relationpy 1<po o, wherep, ,(n=0,1) is the charge density
where 8i,cklx,1 is the exchange-correlation correction due tocaused by the intra-level transitions within thth LL. This

charge exchange within the€ 1,0=1) LL and 5%, that IS true because our previous resel= 2+Q,Q5 in Sec. Il

1Kk,,1 . L .
. X hows that transitions within the=1 LL are slightly weaker
due to charge exchange between this LL and the lowest ONE .1 those within tha=0 LL.1 That is, the screening “ef-

(n=0,0=1). Using V§=v_05(qy+q)’,)/q+V§3 we further ficiency” in then=1 LL is lower than that in then=0 LL.
decompose each of them into two parts denoted~belo~w by th?his is because in the later case=(0) the electrons are
superscriptscoi and exi, i=1,2. WithQ >=Qz(ax=K-)  centered ay=y,(k,;) (i=1,2) whereas in the former case

the results are (n=1) they are centered at=y,(k,;)*=|. Therefore, the
magnitude of the diagonal matrix element of E4) for n
8(1:?k1>(,l: — 20l 7(3)[ j dq, da, =0 is larger than that fon=1. Furthermore, we can predict
that for largern the magnitude of Eq4), actually the over-

lap of the two Fock states centered at different places in
phase space, will exhibit an oscillatory behavior when the
distance of the two electron centers is increased. The ampli-
8?;(1,1: _v_o| +(,,)f dayj\_QZ_Z/aZ_, (16)  tude of the o_scillation can be approximated as the overcross
X of the two displaced Planck-Bohr-Sommerf¢RPBS bands
o that represent the two displaced Fock stafes.
82&2‘1: - 7(3)j f day day el @y ayk,/2 The many-bod_y eﬁe_cts on j[he=_1,a= 1LL _of _sample 2 _
x of Ref. 7 are not investigated in this work. This is because in
- R P S S e this QW sample the bare confining potentgl aroundw/2
X (—k-+igy)(—k-+igy)KsA-A/gZg", is complicated and invalidates the assumptions used in this
170  work.

xel@raki2k X R’ Q_,Q,/G2q'2, (15

2 - ~ o~ V. SINGLE-PARTICLE ENERGY, FERMI-EDGE GROUP
TN U] [ S C ENERGY, |

The Fermi-edge group velocity can be obtained from Egs. In line with the local-density approximation, as applied to
(14) to (18). Actually Eqgs.(16) and (18) show that near the quantum wire§, we assume that the single-particle energy
Fermi edge the total exchange correction has a divergeman be obtained approximately by solving the Schrodinger
slope v§(Kes) = (ao/2)v " (kea) Ko(KG/4)[k —o- This singu-  equation with HamiltonianH=h"+Ve(y), where the
larity is exactly cancelled by the Fermi-edge slope of the€xchange-correlation potential is

correlation correction to then=1,0=1) LL. To see this, we ec oc

calculatev {™(krs) andv§*(Kes). The results are $%(kes) VedY) =&, 2, enk, o0 |YISWI2. (20

g g
=0 and For the regiorly|>W/2 we takeVeg(y)=0. In strong mag-

P netic fieldsVe(y) is small compared té® and the corre-
% Ik UgA(sz)ﬂ sponding eigenvalue can be obtained by
2

T
vg()l( Kx—Kr3) =7 &Tkxgl,kx,l K—Keg ™~
Enk, o= &nk .ot {([VecV)]). (21
X[ =K, —K_+1+ >

s aghi+32 k. |! In Figs. 5a)-5(c) we plot the single-particle energies, given
by Eq.(21), for the parameters of sample 1 of Ref. 7 and
(19 =1,2,3, respectively. They agree well with the experimen-
with ¢, and x.. given in Appendix C. With the help of Eq. tally observed results of Ref. 7. The parameters for Fd~g) 5
(A4) we obtain a nonsingular slope at the Fermi edge. Foare 7{)~0.65 meV, W~0.30 um, B=B;=10 T, andk
sample 1 of Ref. 7, this nonsingular slope, which is also the=kg,=15.8 As the correlation correction strongly suppresses
overall exchange-correlation  slope, is USC(]ZFS) the e_xchange-induceq spin-splitting, the quasi-Fermi level of
~3.2/*(ke3) and agrees very well with the numerical result the filled (n=0,T) LL is above the bottom of the empty (

~ : =0,]) LL and thev=1 plateau is absent in sample 1. When
ec_ HA
vg = 3.6v"(kes) obtained from Eq(14). Based on the réla- o magnetic field is decreasedie-B,/2=5 T in Fig. 5b),

ti(e)nship UgAe(~kF1):Ugé(’RFZ)/ZZUSA(’RFB)/B ..., wehave  the (1=0,/&|) LLs are fully occupied and there is a big
vy (Krg) >vo(ke1). This means that the nonsingular part of gan (~%%) between the filech=0 LL and the emptyn

the correlation correction for=3 is larger than that fow =1 LL. Consequently, #=2 QHE state exists in this QW
=1. As the screened field;, weakens the bare Coulomb sample. Forr=3 we reach the same conclusion as for
field, it follows that a strong nonsingular part ¢ entails a =1 Therefore, electronic correlations suppress the gap be-
weak screened fielfVg|, that is,|Vgs| should be smaller tween the up and down spin sublevels for 1 or »=3 and
than|V%,|. In other words, the induced charge densities cor-destroythe quantum Hall plateatijn contrast, they cannot

i K
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FIG. 5. Single-particle energieE, k »=enk, o+ (enk, o) VS
k, for filling factors v=1,2,3 and the parameters of sample 1 of ~ FIG. 7. The effective g factogg, vs k, for sample 1 of Ref. 7

Ref. 7. The curves fow=1,2 are shifted downward by 1/2 and and filling factor»=1in (a) and»=3 in (b). The bare g factor of
those forv=3 by 3/2. GaAs is|gg|=0.44.

close thesizablegap forv=2 and this plateau is observéd. lation vg(kp,,)—v'g"(kFV)oc(d/dy)<|VEC(y)|)>O confirms
Figure 6 gives another conclusion for sample 2 with1, that in these two submicron channels the overall exchange-
A0 =(0.46-0.2) meV, W~0.33um, B=B;~7.3 T, and correlation correction has no contribution to the flattening of
k==K, =15. As the correlation is not strong enough to sup-the outmost edge state, although the exchange-induced spin-
press the exchange-induced spin-splitting, there is an activ&Plitting is strongly suppressed by the correlations.

tion gap AEgf ~0.0131w.=1.5 K) between the occupied Finally, we calculate the effective g-factor using the ex-
n=0,] and the emptyn=0,] LLs. This is very close to the Pression

experimental observatiémEpﬁl K. Then ar=1 plateau
develops. Forv=2 we have the same conclusion as for
sample 1. , ~ .

The dispersions in Figs. 5 and 6 also give us the single?® 2 functlor: of kxn' We call the g-factor gyp(k,)
particle group velocity at the Fermi edge. For example, we™ Jopl Yo(K«)] “optical” because it is related to the spin
have vg(kF1)~6-9vg(kF1),9 vg(sz)%&lvgi(sz)’ and  SPlitting between states with the sa_kye It differs from g,
vg(k,:3)~2.21)g'(k,:3) for sample 1: for sample 2 the results deduced from the activated behavior of the conductance. As

i L
arev (ke ~ 100 H(ke)? ando (ke ~4.10H(ke) . The re- shown in Fig. 7, forv odd, gg, varies strongly across the
vg(krd) ~100g(ke) vg(ke) vg(ke2) channel, i.e., from center to edge. Foeven, e.g.p=2, we

ggpz(En,kx,—l_En,kx,l)/MBB, (22

05 haveg§p=|go|, provided the Zeeman splitting has a negli-
Efio ol gible effect on the coefficierfty, ;.
0 ,
05 VI. CONCLUDING REMARKS
n=0, 1 We investigated the screened Coulomb fields in submi-
-1 cron QWs and their effects on the subband structure within

5

k I
X

10

15

the SHFA-RPA approximation. In strong magnetic fields the
integral equation for the screened potential can be simplified

FIG. 6. Same as in Fig. 5 with parameters pertinent to sample _@y considering onIy_ the intra-level and adjacent-level screen-
of Ref. 7. In contrast with sample 1, when exchange-correlationsng- Th? later contributes a sm'aII part to the screened poten-
are taken into account an energy gap appears between thedfilled tial, while the former tends to diverge in the long-range limit.

=1 sublevel and the empty=—1 sublevel; this leads to the

=1 QHE state.

One important feature of our approach is that it is free from
the usual limitationr,<1 of perturbative treatments. With

205322-6



SCREENING AND ELECTRONIC CORRELATIONS IN . .. PHYSICAL REVIEW B6, 205322 (2002

some extrg work it can be gpplied .to situations described by — () vag 1 r XA
v=4 provided the magnetic field is strong enough and thek;,(q,,q,,q9,)= = —|1- =
. : . T VYT 14 wagK. , 1+ urgh | 1+ 2urpA’

dimensionless Fermi wavenumbay, is large enough. o=+ 0 0
We calculated the exchange-correlation corrections to the (A1)

energy of the highest occupied LLs. Since the intra-levelyng

screening, the main part of the total screening, takes place

near the Fermi edge, the correlation energy near the channel

edge is much stronger than that at the channel center and Keer(Ox ,ay’ar):_

strongly suppresses the exchange-induced spin-splitting. Y
Near the Fermi edge the exchange correction has a posi- I

tive and logarithmically divergent slope with respeckio It Here~A:qe’q~’2/2,+ (=) corresponds toi=c(s), ao

is cancelled exactly by the divergent part of the correlation=r(w/Q)?%/ (7kg,), and X is a fitting factor forv=1,2.

correction to the same LL. The overall Fermi-edge groupComparing the analytical solution, given by E¢k0), (A1),

velocity, vEke,), is caused by the nonsingular part of the and (A2), with the numerical one, we obtain a 86990%

correlation that is related to the intra-level screened potentiagreement wittK=1, depending on the value of,. A bet-

This Fermi-edge group velocity is proportional to the Hartreeter agreement can be obtained if we taki

velocity v f(k,) with the proportionality constant depending = (2/m)arctar(q); cosh(t2(3q,)?). An obvious impact of

on v. For »=3 the correlatiorsS% , can be further decom- this fitting factor is that we should taKesc,|5 .o—0 for
K.

posed in two parts: one part corresponds to charge exchangwer-level screening. Notice that in the smallregion, the
within the same LL i=1,0=1) and the other one to charge sinc mode only accounts for a small part of the total field.
exchange between this LL and the adjacent one@Qo  The factorA in Eq. (Al) means thaX has nearly no effect
=1). The latter is relatively small and has zero slope at theon the intra-level screening in both the short and long wave-
Fermi edge. The overall Fermi-edge exchange-correlatiofength limits. Becaus& jumps from zero to one within 0.1

slope fory=3 is much larger than that for=1, because the G <0.5, the region wher& has the stronger influence is

induced charge density for=3 s relatively smaller thand q,~0.1. Our numerical computations confirm that the fitting

’ factor can effectively reduce the error of the analytic solution
around this region in which its accuracy is worst if we take

XVrO

S E—— (A2)
m(1+2vrgA)

that for v=1 and this results in the relatively weak fiel
V.

Further, we obtained the single-particle energy in th
mean-field-theory spirit of the LDA. Compared to the effec-

tive confining potential the impact of the exchange- The expression foK.. , in Eq. (A1) is important for un-

correlation correction is relative small and the single-particlederStand'ng the Fermi-edge slope of the exchange-

energies are approximately obtained by Ezf). Our calcu-  correlation. WithC,(q,) = 1+ cos Xg,q, we havé
lation accounts well for the experimentally obseriettong

suppression of the exchange-induced spin-splitting pertinent -~

to integral quantum Hall effect stateg€1, and v=3). K. (0x ZJ
Near the channel edge the single-particle group velocity has

= dg,AC,(q,)
—gX(1+vroA)

its minimum valuepgm, for ky,—Kkg,. The valuevgjn is larger = dg,A2C,(qy)
H . . _ - y vty
thanv(kg,); this means that in the two narrow QWs of Ref. =K. (gy) — rovf = o (A3)
7 the exchange-correlation does not contribute to the flatten- —=Q7(1+vroh)
ing of the edge state. The results of E21) also lead to the - -
spatially inhomogeneous effective g-factgf®(k,), which K. () ~[e%*Ko(q2/4)/2+ Ko(Zkeay) Je~ %2, (A4)
varies in the range of 3—-28.0-50 for »=1(3), from cen-
ter to edge. where Ky(x) is the modified Bessel function. Also, for the
confined potential used in this work the dimensionless wave-
ACKNOWLEDGMENTS number iske, = W/2!\v.

This work was supported by the Canadian NSERC Grant AppeNDIX B: APPROXIMATE ANALYTIC SOLUTION
No. OGP0121756. FOR v=3

The coefficientsk s, Kss, andkses appearing in Eq(10)
are assumed to have the foerjél—azlj J=2,4i
=c,S;)

Following the approach of Ref. 9 we obtain the values of
the various coefficients appearing in E&0) by substituting
this trial solution into Eq(8) and equating the coefficients of

each mode on both sides of E@). The results are as fol- - ,
lows: Kess=Ked 1+Q4Q4], (B2)

APPENDIX A: APPROXIMATE ANALYTIC SOLUTION
FOR v=1,2

Kig=2K;+ kiy Q2+ Kiy' Q5+ Kiyy Q2Q5 (B1)

205322-7
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where kCS(aX ;ay !a),/) ' I(i (ax :ay !a),/) ’

kiy(ax aay ,a)’,) '

PHYSICAL REVIEW B66, 205322 (2002

(16) and (18 give the exchange contributior[T\y

Ky (dx .Gy dy), andkiyy(0y.ay,0,) can be determined by =A(0ay)]
using the approach in Appendix A. After a straightforward

but tedious derivation we obtain€c:+;i=s:.—;)

* aODl(ax vay)DZ(X3 ax ,a}',)

|
ex| — exl ex2 ~
Ug|kxakF3—ﬁ 7 (eTk 1t e DIk, ~Kes
X

ki = - (83) -~
1+ ag[2k++ yi(ke—Aj)] rol ~ . ~
0 i Aj =5 Ko(k2/4)—2 . day Ay (1-092/2) i
D1(Gx,0y) =[1+2ro[ 1+ QFJAT Y, (B4) ko0
. Y H T2 |~
0% B 3 2Xar o[ 1+ Q41A @5 = 5 vg(Kea)Ko(kg/4) [, -0, (C1
2 31qxrqy = - L
1+4ro[1+QalA which is the same form as®(k,—ke,) for »=1,2. The
_ Fermi edge group velocity:°(k,— kgz) can be readily cal-
k; 2ag(k=—A) ki=yik (B6)  culated from Eq(17); the rgsult is
Iy 1+a0(K+ 2A|1+A|2) Yikis '
~ o~ -~ I 9
. F oD (0, 0y) D2(X3,0x . Gy) ®) v (ke—Kez) = —ﬁTs‘i"ki,lle;sz
WY T T  ag[ N (ke — Ajy) + ke — 2811+ A, X
2aq(K—Aip) 0 [ g
e A e = | dgydgy=—=,"(Ks3
kiy'_wkiyy’—)‘ iKiyy’ (B8) T "a,q)
where —Ke3)sinZkes0ysinZkez0, ~0. (C2)
_ o o 5 With the help of Eq.(15) as well as the following relations
K:(qx)=f day(A/g®)Dy1(0x,qy)Ca(ay), (B9  (i=ci+,i=s1—;);
("R —)O):— (K+ Il) (C3)
Ail(qx):j dquDl(QXiqy)C3(qy)/2, (BlO) [ 2Ai1+ Ai2+ 1/C¥0’
~ e~ o~ ~ ni(k HO)QM (C4)
Aip(0y)= J da,a’ADy(ay,a,)Cs(ay)/4.  (B1) e 2apk-+1
X3=1—exp(—q?) is the fitting factor forv=3. o e @
ki(k_—0)~ky, (k_—0)/2 T Tacho T3 (C5)
APPENDIX C: NONSINGULARITY OF THE GROUP
ec(T, -,
VELOCITY Vglkes) (2+ Yi)(Ki_ZAi2+Ail)+2(Ail_Ai2):a_ly (Co)
To investigate the nonsingularity of the group velocity
v§°(~kF3), we calculate the Fermi edge slopes xﬁxkxyl, (Ni+ 1) (ke —Aj)=—N(L2a0+Aq), (C?
ek 1, andsfs. 5, with respect tdk,, as follows. Equations we have, to ordex?,
co(k k ) _i col |~ ~
—Kr) T F €1k, Uk —kes
X
—2rlw @ Ay A,
~ r I (3)f da, doj=> = '(qy+qy)k+’2Q 2Q",[kescc’ +kesss' ]
m IKx k_—0 qy y
rol _ _
=ﬁi=§23 ()i (0) 74 (K + T2 1) +2Kiyyr (0) 731 (K s + 2T 21+ T 1 5) ]
. H Of g Ki
vg(Kea) o [ K, —K_ +1+I§c‘,s—aOA e (C9

k_—0
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Here

roy=- [ CdG8,(1x cos &3, =05,
0

1(® o en o~ o~
T.o= zfo doyaiA (1 cos KeXy)~0.5,  (C9)

PHYSICAL REVIEW B6, 205322 (2002

7= (24 7) ke~ 2801 (L+ y) +yilip, 7= (N+ Dk
—Aji(N\+2)+ 445, and  {=A— A+ Vagt ag(Ajy
+1/2a,)%. Therefore the total group velocity, including
ng(k;:g,), IS

< EEEY

i=c,s

vg(Keg)=~ vy sz (C10

a0A|2+ 3/2
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