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Algebra of observables in the Calogero model and in the Chern-Simons matrix model
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The algebra of observables of anN-body Calogero model is represented on theSN-symmetric subspace of
the positive-definite Fock space. We discuss some general properties of the algebra and construct four different
realizations of the dynamical symmetry algebra of the Calogero model. Using the fact that the minimal algebra
of observables is common to the Calogero model and the finite Chern-Simons~CS! matrix model, we extend
our analysis to the CS matrix model. We point out the algebraic similarities and distinctions of these models.
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I. INTRODUCTION

The Calogero model1 is a completely integrable mode2

that describes a system ofN interacting particles in one di
mension. Even though the interaction is highly nontrivi
one can construct the needed constants of motion, fin
spectrum and expressions for the wave functions. Surp
ingly, the model and its various generalizations have b
found relevant to a host of problems in physics~and math-
ematics!. It was long realized that for three special values
the interaction parametern51/2,1,2 the model was closel
related to the random matrix theory3 of the three Wigner-
Dyson ensembles: orthogonal, unitary and symplectic,
spectively. The particles subject to the Calogero dynam
obey fractional statistics,4 and this motivated investigation
of the connection between the Chern-Simons based any
physics in the fractional quantum Hall effect and the Calo
ero model.5 The collective-field theory approach proved us
ful in constructing solitonic solutions,6 and in establishing
relations to thed51 string theory.7 Recently, the interest in
the Calogero model has been renewed. It was proposed8 that
the supersymmetric extension of the model could provid
microscopic description of the extremal Reissner-Nordstr¨m
black hole. The supersymmetric extensions of the Calog
model themselves were analyzed in detail.9 Many more ap-
plications of the model have been found, whih have inten
fied the research of the model intrinsic properties.

Investigations of the algebraic properties of the Calog
model in terms of theSN-extended Heisenberg algebra10 de-
fined a basic algebraic setup for further research. Florea
et al.11 showed that the dynamical symmetry algebra of
two-body Calogero model was a polynomial generalizat
of the SU~2! algebra. The three-body problem was al
treated,12 and the dynamical algebra of the polynomial ty
and the action of its generators on the orthonormal b
were obtained. It was shown that in the two-body case
polynomial SU~2! algebra could be linearized, but an attem
to generalize this result to theN-body case led to (N21)
linear SU~2! subalgebras that operated only on subsets of
degenerate eigenspace.13 The general construction of the dy
namical symmetry algebra was given in Ref. 14. Also,
bosonic realization of a nonlinear symmetry algebra desc
ing the structure of degenerate energy levels of the Calog
model was obtained.15 In this paper we give a more detaile
analysis of the algebra of observables of the Calogero mo
0163-1829/2002/66~20!/205313~17!/$20.00 66 2053
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discuss the spin representation of the algebra, and pres
realization of the dynamical symmetry algebra.

The construction of the algebra of symmetric one-parti
operators for the Calogero model16 resulted in an infinite-
dimensional Lie algebra, independent of the particle num
and the constant of interaction. This algebra was interpre
as the algebra of observables for a system of identical
ticles on the line. The problem with a fixed number of pa
ticles N, which we discuss here, can be viewed as an ir
ducible representation of the aforementioned algebra. In R
17 it was claimed that this infinite-dimensional Lie algeb
was common to the matrix model. We argue that althou
this is true, the actual models are different, as can be s
from the the algebraic structure obtained for a fixed num
of particlesN.

The renewed interest in the matrix model came from
connection with the non-commutative field theory. Name
following the Susskind conjecture18 that the noncommutative
Chern-Simons~CS! theory provides an effective descriptio
of a quantum Hall effect, Polychronakos proposed19 a finite
matrix version of the model. He claimed that this matr
model was in fact equivalent to the Calogero model. W
analyzed the algebra of observables acting on the phys
Fock space of that model,20 and observed that the minima
algebra of observables was identical with that of the Cal
ero model, although the complete algebraic stuctures are
ferent. We identified the states in thel th tower of the CS
matrix model Fock space with the states in the physical F
space of the Calogero model with the interaction param
n5 l 11. Also, we described quasiparticle and quasih
states in the both models in terms of Schur functions. Us
a coherent-state representation, the wave functions for
Chern-Simons matrix model proposed by Polychrona
were constructed and compared with the Laughlin one21

The same authors also studied the spectrum of the mode
identified the orthogonal set of states.22

Taking into consideration all relations between the Calo
ero model, the matrix model and the QH physics, we f
that a more detail algebraic analysis is in order. In this pa
we analyze the complete algebra of observables of the
matrix model and confirm by explicit construction that th
models in question have different algebraic structures.

The paper is organized as follows. In Sec. II we revie
basic steps in the construction of theSN-extended Heisen-
berg algebra of the Calogero model represented on
©2002 The American Physical Society13-1
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SN-symmetric subspace of the positive-definite Fock spa
In Sec. III we construct the minimal algebra of observabl
AN and discuss its general properties. We establish a m
ping to the Heisenberg algebra and this gives us a natu
orthogonal basis for the model. In the following section w
consider the larger algebraBN and show that its spin repre
sentation gives an irreducible representation of the alge
constructed in Ref. 16. In Sec. V we present four differe
realizations of the dynamical symmetry algebra describ
the structure of the degenerate eigenspace in detail.
analysis of the algebra of obervables is extended to the fi
CS matrix model in Sec. VI, and in the last section we co
pare the algebraic structure of the two models. Finally, in
appendixes we confirm our findings by explicit calculation

II. THE CALOGERO MODEL ON THE SYMMETRIC
FOCK SPACE

The Hamiltonian of the~rational! Calogero model de-
scribesN identical particles~bosons! interacting through an
inverse square interaction subject to a common confin
harmonic force:

H52
\2

2m (
i 51

N
]2

]xi
2

1
mv2

2 (
i 51

N

xi
2

1
n~n21!\2

2m (
iÞ j

N
1

~xi2xj !
2

. ~1!

In the following we set\, the mass of particlesm and the
frequency of harmonic oscillatorsv equal to 1. The dimen-
sionless constantn is the coupling constant andN is the
number of particles. The ground-state wave function is, up
normalization,

c0~x1 , . . . ,xN!5u~x1 , . . . ,xN!expS 2
1

2 (
i 51

N

xi
2D , ~2!

where

u~x1 , . . . ,xN!5)
i , j

N

uxi2xj un, ~3!

with the ground-state energyE05N@11(N21)n#/2.
The Dunkl operators23

Di5] i1n (
j , j Þ i

N
1

xi2xj
~12Ki j !

are the basic building blocks of the Calogero model crea
and annihilation operators.10 The elementary generatorsKi j
of the symmetry groupSN exchange the labelsi and j:

Ki j xj5xiKi j , Ki j 5K ji , ~Ki j !
251,

Ki j K jl 5K jl Kil 5Kil Ki j for iÞ j , iÞ l , j Þ l ,

and we chooseKi j u0&5u0&. Now we can introduce the cre
ation and annihilation operators:
20531
e.
,
p-
al,
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o

n

ai
†5

1

A2
~2Di1xi !, ai5

1

A2
~Di1xi !, ~4!

where the operatorai annihilates the vacuum. Using th
well-known properties of the Dunkl operators

@Di ,D j #50, Ki j D j5DiKi j ,

@Di ,xj #5d i j S 11n(
k51

N

KikD 2nKi j ,

one can easily check that the commutators of the crea
and annihilation operators~4! are

@ai ,aj #5@ai
† ,aj

†#50,

@ai ,aj
†#5S 11n(

k51

N

KikD d i j 2nKi j . ~5!

After performing a similarity transformation on the Hami
tonian ~1!, we obtain the reduced Hamiltonian

H85u21Hu5
1

2 (
i 51

N

$ai ,ai
†%5(

i 51

N

ai
†ai1E0 , ~6!

acting on the space of symmetric functions. We restrict
Fock space$a1

†n1
•••aN

†nNu0&% to theSN-symmetric subspace
Fsymm, whereN5( i 51

N ai
†ai acts as the total number oper

tor. In the following we demand that all states should ha
positive norm, i.e.,n.21/N.24 Next, we introduce the col-
lective SN-symmetric operators

Bn5(
i 51

N

ai
n , n50,1, . . . ,N, ~7!

whereB0 is the constantN multiplied by the identity opera-
tor, andB1 represents the center-of-mass operator. The c
pleteFsymm can be described as$B1

†n1B2
†n2

•••BN
†nNu0&%. We

wish to construct the operatorsXk
† such that@B1 ,Xk

†#50 for
everyk greater than 1, in order to separate the center-of-m
coordinate. The general solution of this equation is descri
by any symmetric monomial polynomialml(ā1 , . . . ,āN)
5(ā1

l1ā2
l2
•••āN

lN , whereāi5ai2B1 /N, and the sum goes
over all distinct permutations of (l1 ,l2 , . . . ,lN). The mul-
tiset (l1 ,l2 , . . . ,lN) denotes any partition ofN such that
( i 51

N l i5N andl1>l2>•••>lN>0. The ‘‘shifted’’ opera-

tors āi and āi
† satisfy the following commutation relations:

@ āi ,ā j #5@ āi
† ,ā j

†#50,

@ āi ,ā j
†#5S 11n(

k51

N

KikD d i j 2nKi j 2
1

N
. ~8!

The simplest choice of the (N21) operators commuting
with the center-of-mass operator is
3-2
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An5(
i 51

N

āi
n5(

i 51

N S ai2
B1

N D n

, n52, . . . ,N. ~9!

Another possible choice ish̄n5(dist.āi 1
•••āi n

describing

one-quasihole states,25 spanning$h̄2
†
•••h̄N

† %u0&. The sym-
metric Fock spaceFsymm is now $B1

†n1A2
†n2

•••AN
†nNu0&% and

after removing the center-of-mass operator it
$A2

†n2
•••AN

†nN%u0&. We have reduced the problem to the (N
21) Jacobi-type operators. The norm of the st
^0uAnAn

†u0& can be calculated recursively. We present res
up to n54:

^0uA2A2
†u0&52~N21!~11Nn!,

^0uA3A3
†u0&53

~N21!~N22!

N
~11Nn!~21Nn!,

^0uA4A4
†u0&54

~N21!

N2
~11Nn!@6~N223N13!

1Nn~5N2218N118!1N2n2~N22!

3~N23!#. ~10!

We see from Eq.~10! that for the positive-definite Fock
space n is larger than 21/N. Two different states

A2
†n2

•••AN
†nNu0& and A

2
†n28

•••A
N

†nN8 u0& with the same energy
(( ini5( ini8) are not orthogonal. The total number opera
on Fsymm splits into

N †5N5N11N̄,

N 1
†5N15

1

N
B1

†B1 ,

N̄†5N̄[(
k52

N

kNk . ~11!

Note thatNk are the number operators ofAk
† but not ofAk .

Namely, @Nk ,Al
†#5dklAk

† , and Nk(•••Ak
†nk

•••u0&)
5nk(•••Ak

†nk
•••u0&) for every k larger than 1, but

N k
†ÞNk . If Nk were Hermitian, then the eigenstat

A2
†n2

•••AN
†nNu0& would be orthogonal, and vice versa.

III. THE AN ALGEBRA AND BOSONIC REALIZATION

Next, we discuss theAN algebra of the collective
SN-invariant operatorsAk defined in Eq.~9! and acting on
Fsymm. It is convenient to add two additional operators,A0
5N•1 andA150. We easily see that

@Ai ,Aj #5@Ai
† ,Aj

†#50,

@Ai ,@Aj ,X†##5†Aj ,@Ai ,X†#‡, ; i , j , any X†. ~12!
20531
e
ts

r

The second relation in Eq.~12! is a consequence of the Ja
cobi identity. The commutator

@Am ,An
†#5mnS (

i 51

N

āi
†(n21)āi

(m21)2
1

N
An21

† Am21D
1 (

k52

min(m,n)

ck~m,n!S) ā†D n2kS) āD m2k

~13!

is anSN symmetric and normally ordered operator. We ha
separated thec1 coefficient because it determines the stru
ture of the algebra of observables. The coefficientsck(m,n)
depend also on the precise index structure~as can be seen in
the k51 case!, and the symbolical expression ()O)k de-
notes a product of operatorsOi of the total orderk in āi(āi

†).
Hence, the structure of theAN(n) algebra is of the following
type:

†Ai 1
,†Ai 2

, . . . ,@Ai j
,Aj

†#‡•••‡5( S) AD I 2 j

, ~14!

whereI 5(a51
j i a>2 j , and similarly for the hermitian con

jugate case. Generally,j successive commutators o
Ai 1

, . . . ,Ai j
with Aj

† , form a homogeneous polynomia

(()A) I 2 j in ai of order I 2 j with coefficients independen
of n. Therefore, we stress that the algebraic relations~14! are
common to all sets of operators$Ak ,Ak

†%, with k
52,3, . . . ,N, satisfying

@Ai ,Aj #5@Ai
† ,Aj

†#50, @Ni ,Aj
†#5d i j Aj

† . ~15!

Two different sets of operators satisfying the same alge
~14! differ only in the generalized vacuum conditions, s
below. So, we denote the common algebra of the ope
tors $Ak ,Ak

†% by AN , and its representation for a give
n.21/N by AN(n).

The termAI 2 j on the right-hand side~rhs! of Eq. ~14!
appears with the coefficient ()ai a) j !. There are (N

2N21)
2N linearly independent relations~14!. Specially, we find

~16!

and more generally

~17!

Relations~16! and ~17! can be proved using induction an
Jacobi identities. Note that anyAn , n.N, can be algebra-
ically expressed in terms ofAm , m<N, see Appendix A.
3-3
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Hence, theAN algebra expressed in terms of 2(N21) alge-
braically independent operators, is closed, finite, and of
polynomial type.

For general N, the AN(n) algebra of the collective
SN-symmetric operators~9! completely determines the actio
of Ak on any state:

AkA2
†n2

•••AN
†nNu0&5( S) A†D N2k

u0&, k<N. ~18!

In order to calculate the precise form of the rhs of Eq.~18!,
we apply the hermitian conjugate relation Eq.~14! on the lhs
of Eq. ~18! shifting the operatorAk to the right, at least by
one place. We repeat this iteratively as long as the numbe
A†’s on the right fromAk is larger or equal to the indexk.
For k.(ni , we calculate the finite set of relations, so-call
generalized vacuum conditions, directly from Eqs.~9! and
~8!. We show that theminimal set of generalized vacuum
conditions needed to completely define the representatio
the algebra~14! on the Fock space is

A2A2
†u0&52~N21!~11nN!u0&,

A3A3
†u0&53~N21!~N22!~11nN!~21nN!/Nu0&,

A3A3
†2u0&53~N22!~21nN!

3@2~N21!~11nN!118#/Nu0&. ~19!

Namely, the operatorsA2 , A3, and Hermitian conjugate
play a distinguished role in the algebra, as all other opera
An , An

† for n>4 can be expressed as successive comm
tors ~14!, using onlyA2 , A3 ,and their Hermitian conjugates
Therefore, one can derive all other generalized vacuum c
ditions using Eqs.~14! and ~19!.

Note that the action ofAiAj
† ~andNi) on the symmetric

Fock subspace can be written as an infinite, normally orde
expansion

AiAj
†5 (

k50

` S) A†D k1 j S) AD k1 i

; i , j . ~20!

Applied to a monomial state of the finite orderN in Fsymm,
only the finite number of terms in Eq.~20! will contribute.
For theN53 case, we provide explicit calculations in Ap
pendix B, demonstrating the main features of theAN(n) al-
gebra.

There is a useful~and orthogonal! basis for the problem a
hand. We define the operatorsÃi , i 52, . . . ,N, satisfying
the vacuum conditionÃi u0&50 and

ÃiA2
†n2

•••Ai
†ni

•••AN
†nNu0&5niA2

†n2
•••Ai

†(ni21)
•••AN

†nNu0&,
~21!

for all n2 , . . . ,nNPN0. As a consequence of@Ai
† ,Aj

†#50,
we immediately find

@Ãi ,Ãj #50, @Ãi ,Aj
†#5d i j , i , j 52, . . . ,N. ~22!

We define a dual Fock space as a set of sta

^0uÃ2
n2
•••ÃN

nN , niPN0, such that
20531
e

of

of

rs
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^0uÃ
2
n28
•••Ã

N

nN8 A2
†n2

•••AN
†nNu0&5)

i
ni !dnini8

. ~23!

Although the operatorsÃi and Ai
† are not Hermitian conju-

gates, the second equation in~22! induces a new scalar prod
uct with respect to which the statesA2

†n2
•••AN

†nNu0& are or-

thogonal tô 0uÃ2
n2
•••ÃN

nN , according to Eq.~21!. Generally,

the operatorsÃi can be written in the form

Ãi5Ai1 (
k52

` S) A†D kS) AD k1 i

. ~24!

We give an example for theN53 case in Appendix B. Then
we define the number operatorsNi and the transition numbe
operatorsNi , j as

Ni , j5Ai
†Ãj , Ni5Ni ,i5Ai

†Ãi , N15
1

N
B1

†B1 ,

@Ni , j ,Ak
†#5d jkAi

† , @Ni , j ,Ãk#52d ikÃj ,

@Ni , j ,Nk,l #5d jkNi ,l2d i l Nk, j . ~25!

One can define a new Hermitian conjugation operation (* ) in
the following way:

Ni , j* 5Nj ,i , ~Ak
†!* 5Ãk , ~Ãk!* 5Ak

† , B1* 5B1
† ,

i , j ,k52, . . . ,N.

This realization of the algebra of observables provides
orthogonal basis in the dual Fock space and leads to a sim
realization of the dynamical symmetry algebra.

We point out that if the set of operators$Ak ,Ak
†% satisfies

relations ~15!, then there exists the mappingAi5 f (bi ,bi
†)

from the ordinary Bose oscillators$bi ,bi
†% to $Ak ,Ak

†%. If
there are no null-norm vectors in the$A% Fock space, there
exists the inverse mappingbi5 f 21(Ak ,Ak

†). It has been
found in Ref. 25 that the full Fock space$a1

†n1 , . . . ,aN
†nNu0&%

for n.21/N does not contain any additional null-norm
states when compared with the$b% Fock space. AsFsymm is a
subspace of the full Fock space, it also does not contain
additional null-norm states, soFsymm is isomorphic to the$b%
Fock space, and the mappingf is invertible for n.21/N.
The pointn521/N is a critical point of the algebra and
description of the system near this point is given in Ref.

In our case of interest, namely, in theAN(n) algebra, we
have started with positive-norm states, i.e.,n.21/N, so
there exists a real mappingf and its inversef 21. In general,
one can write the infinite series as

An5( S) bi
†ni D kS) bj

nj D k1n

,

( ini5k, ( jn j5k1n,
3-4
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bn5( S) A†D kS) AD k1n

, ~26!

and then calculate the coefficients. There is freedom in m
ping Eq.~26!, which appears in the subspaces spanned by
monomials ()A†)N̄ @or ()b†)N̄] of the same orderN̄. A
simple and natural choice of fixing these boundary con
tions is

A2
†n2u0&5A^0uA2

n2A2
†n2u0&

n2!
b2

†n2u0&,

A3
†n3u0&;( S) b2

†b3
†D n3

u0&,

A

AN
†nNu0&;( S) b2

†
•••bN

† D nN

u0&, ~27!

and generally,

A2
†n2A3

†n3
•••AN

†nNu0&

;( b2
†n2( S) b2

†b3
†D n3

•••S) b2
†
•••bN

† D nN

u0&.

~28!

Only after fixing this freedom, one can determine the coe
cients in Eq.~26! in a unique way. For theN53 case, we
present results for the first few coefficients in Eq.~26!, up to
k1n<5, for the operatorsA2 and A3 in Appendix B. The
states in the$A% Fock space are not orthogonal. However, t
monomial states)bi

†ni/Ani ! u0& in the $b% Fock space are
orthogonal, so when we expressbi5 f 21(Ak ,Ak

†), we obtain
natural orthogonal states in the$A% Fock space, labeled b
(n2 , . . . ,nN), i.e., by free oscillator quantum numbers. D
generate, orthogonal energy eigenstates of levelN are then
defined byN5( ini .

IV. THE BN„n… ALGEBRA AND SPIN REPRESENTATION

One can construct the larger closedBN(n) algebra con-
taining AN(n) as a subalgebra. This larger algebra appe
naturally when one calculates the commutators between
operatorsAi and Aj

† , defined in Eq.~9!. We discussed this
algebra in Ref. 14; here we repeat the main results for c
pleteness and present an alternative construction of the a
bra.

One can defineSN-symmetric operatorsB̄n,m :

B̄n,m5(
i 51

N

āi
†nāi

m5B̄m,n
† , n,mPN0 . ~29!

The operatorsB̄n,m can be represented in the symmetric Fo
space:
20531
p-
he

i-

-

rs
he

-
e-

B̄n,mA2
†n2

•••AN
†nNu0&[B̄n,mS) A†D N

u0&

5( S) A†D N1n2m

u0&.

There are 1/2(N14)(N21) algebraically independen
B̄n,m operators contained in the algebraBN(n), namely,
2(N21) operatorsB̄n,05An

† for n52,3, . . . ,N and their

Hermitian conjugates, andN(N21)/2 operatorsB̄n,m for
n,m>1,n1m<N. One can express the operatorsB̄n,m for
n1m.N in terms of the algebraically independent operat
B̄n,m with n1m<N, see Appendix A. This is a consequen
of Cayley-Hamilton theorem. Generally,

B̄1,15N̄, @B1 ,B̄n,m#50, @B̄1,1,B̄n,m#5~n2m!B̄n,m ,

@ āi ,B̄n,m#5nF āi
†(n21)āi

m2
1

N
B̄n21,mG . ~30!

In the case ofN free harmonic osillators withn50, we
find the generalBN(0)-algebra relation

@B̄m8,m ,B̄n,n8#5 (
k51

min(n,m)

bk~m,n!S 1

ND kH @~N21!k11#

3B̄m81n2k,m1n82k2B̄m8,m2kB̄n2k,n8

1 (
s51

min(n2k,m2k)

bs~m2k,n2k!

3B̄m81n2k2s,m1n82k2sS 12
1

ND sJ
2$m8↔n,n8↔m%, ~31!

where

bk~m,n!5
m!n!

k! ~m2k!! ~n2k!!
.

For nÞ0, the structure of theBN(n) algebra becomes
more complicated. New polynomial terms of the for
()aB̄na ,ma

) with (ana<n1m821, (ama<n81m21 ap-
pear on the rhs of the commutation relation~31!. The corre-
sponding coefficients are polynomial inn, vanishing whenn
goes to zero. The coefficients of the leading terms@k51 in
Eq. ~31!# do not depend onn, i.e., they are the same for an
n. For example, for arbitraryN andn, we find

@A2 ,An
†#52nB̄n21,11nS N21

N DAn22
† ~n211nN!

1nn (
i 51

n22

~An222 i
† Ai

†2An22
† !, ~32!

It is known that forN→` andn50 the corresponding alge
bra isW11` , so it would be interesting to see what kind
3-5
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deformation theB`(n) algebra~for nontrivial n) represents.
Some investigation in this direction has already been do
see Ref. 27.

Alternatively, theBN(n) algebra can be constructed b
grouping the generators into su~1,1!-spin multiplets. Note
that the operators

J15 1
2 A2

† , J25 1
2 A2 , J05 1

8 @A2 ,A2
†# ~33!

generate the sl~2! algebra. The complete set of generato
spanning theBN(n) algebra is given by (N21) nondegener-
ate spin multiplets withs51,3/2,2, . . . ,N/2. The unique
generator with spins and projectionsz is defined as

~34!

Its Hermitian conjugate is simplyJs,sz

† 5Js,2sz
. One can

show that by proving relation~17!

by induction and using Jacobi identities. The action of e
ments of the sl~2! algebra on the generatorJs,sz

is defined in
the following way:

@J2 ,Js,sz
#5A~s1sz!~s2sz11!Js,sz21 ,

@J1 ,Js,sz
#52A~s2sz!~s1sz11!Js,sz11 ,

@J0 ,Js,sz
#5szJs,sz

. ~35!

Let us write down the first few spin multiplets for anyN in
terms ofB̄i , j operators:
s51, N>2,

J1,15A2A2
†52A2J15J1,21

† ,

J1,052B̄1,11~N21!~11Nn!54J0 , ~36!

s5 3
2 , N>3,

J3/2,3/25A6A3
†5J3/2,23/2

† , J3/2,1/253A2B̄2,15J3/2,21/2
† ,

~37!

s52, N>4,

J2,252A6A4
†5J2,22

† ,

J2,152A6H 2B̄3,11F3S N21

N D1n~2N23!GA2
†J 5J2,21

† ,
20531
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J2,05A2H 6B̄2,21B̄1,1F12S N21

N D1n~7N212!G1~N21!

3~11Nn!F3S N21

N D1n~2N23!G J . ~38!

The algebra of the operatorsJs,sz
is finite, closed and of

general form,

@Js1 ,s1z
,Js2 ,s2z

#5( S) JD
S,s1z1s2z

, ~39!

where us1z1s2zu<S<s11s221. Using the definition~35!
and relation~36!, one can easily obtain commutation rel
tions involving operators of thes51 spin multiplet,

@J1,0,Js,sz
#54szJs,sz

,

@J1,61 ,Js,sz
#57A8~s7sz!~s6sz11!Js,sz61 . ~40!

For arbitraryN, the algebra ofs53/2 operators is

@J3/2,1/2,J3/2,3/2#5
9

A2
J2,22

9A3

N
J1,1

2 ,

@J3/2,21/2,J3/2,3/2#5
9

A2
J2,12

9A2

N
J1,1J1,0

19A6J1,1F2
2

N
1n~22N!G ,

@J3/2,23/2,J3/2,3/2#5
9

A2
J2,02

27

N
J1,1J1,2129S 6

N
1

N

2
n D J1,0

1a,

@J3/2,21/2,J3/2,1/2#5
9

A2
J2,01

9

N
J1,1J1,212

18

N
J1,0

2

118J1,0F 1

N
1S 3

4
N14D G1b,

where the constantsa andb are

a519~N21!~11Nn!FN11

N
1S N

2
21D nG ,

b5218~N21!~11Nn!

3F2
1

2
1

3

2N
1N1S N22

11

4
N2

1

2D nG .
For N53, the B3(n) algebra ~including s51 and s

53/2 spin-mutiplets! is in full agreement with Ref. 12. The
exact correspondence betweenYs and J defined in Ref. 12
and our operatorsJs,sz

is

Y152A2J1,1, Y3/252J3/2,
3
2

, Y1/2522A3J3/2,1/2,
3-6
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J5 1
4 ~J1,022!, Jy

25 1
16 ~J1,022!22 1

8 J1,1J1,21 . ~41!

This representation of the algebra of observables can
viewed as a generalization of the polynomial algebras
N52 ~Ref. 11! andN53 ~Refs. 12 and 28! to the generalN.

TheBN(n) represents an irreducible representation of
infinite-dimensional Lie algebraG of all possible strings of
consecutive commutators@Bi n

,†Bi n21
, . . . @Bi 2

,Bi 1
# . . . # in-

troduced in Ref. 16. TheG algebra depends neither on th
particle numberN nor on the constant of interactionn. The
elements of the algebraG fall into spin multiplets. There is a
unique spin multiplet with a maximal spinsmax5(m1n)/2,
no spin multiplet with spins5smax21, and many spin mul-
tiplets with s,smax21. On the other hand, we have start
with a fixed numberN of Calogero particles~oscillators! and
an arbitraryn.21/N. Then we have defined a finite close
algebraBN(n) of operatorsB̄m,n , with m1n<N. We have
shown ~see Appendix A! that all operatorsB̄m,n , with m

1n>N can be expressed in terms ofB̄m,n with m1n<N.
These operators have a unique su~1,1! decomposition into
unique spin multiplets with spins51,3/2, . . . ,N/2. Degen-
erate spin multiplets in the approach of Isakov and Leinaa16

are just composites of lower-spin multiplets in our picture

V. DYNAMICAL SYMMETRY OF THE CALOGERO
MODEL

The dynamical symmetry algebraCN(n) of the Calogero
model is defined as maximal algebra commuting with
Hamiltonian ~6!, on the restricted Fock spaceFsymm. The
generators of theCN(n) algebra act among the degenera
states with a fixed energyE5N1E0 , N a non-negative in-
teger. Starting from any of the degenerate states with en
E, all other states can be reached by applying the genera
of the algebra. Degeneracy appears forN>2. The vacuum
u0& and the first excited stateB1

†u0& are nondegenerate. Fo
N52, the degenerate states areB1

†2u0&, A2
†u0&; for N53,

the degenerate states areB1
†3u0&, B1

†A2
†u0& and A3

†u0&, etc.
The number of degenerate states of levelN is given by par-
titions N1 , . . . ,Nk of N such thatN5(kkNk . The genera-
tors of the algebraCN(n) can be chosen in different ways
and in the following we present four different sets of gene
tors.

Set 1. Let us choose 1/2(N14)(N21) algebraically in-
dependent generatorsXi , j ( i 1 j <N) in the following way:

Xi , j5B̄i , j S B1

AN
D ( i 2 j )

, Xj ,i5Xi , j
† 5B̄j ,iS B1

†

AN
D ( i 2 j )

, i> j .

~42!

For example,

Xi ,05Ai
†S B1

AN
D i

, X0,i5AiS B1
†

AN
D i

,

@Xi ,0 ,Xj ,0#5@X0,i ,X0,j #50, Xi ,i
† 5Xi ,i5B̄i ,i . ~43!
20531
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The generatorsXi ,i are Hermitian but they do not commut
becauseB̄i ,i ’s do not commute even forn50.14 On the other
hand, the number operatorsNk ~11! commute but are no
Hermitian because the statesA2

†n2
•••AN

†nNu0& are not mutu-
ally orthogonal. Generally,

@N1 ,Xi , j #52~ i 2 j !Xi , j , @N̄,Xi , j #5~ i 2 j !Xi , j ,

@H,Xi , j #5@N,Xi , j #50, for all i , j . ~44!

The general structure of the commutation relations foi
> j , k> l is

@Xi , j ,Xk,l #5@B̄i , j ,B̄k,l #S B1

AN
D ( i 2 j )1(k2 l )

5( F)
a

Xna ,maG , ~45!

and for i . j , k, l ,

@Xi , j ,Xk,l #5( F)
a

Xna ,ma
gna ,ma

~N1!G
1Xi , jXk,l f i jkl ~N1!, ~46!

with the restriction 0<(ma< j 1 l 21, 0<(na< i 1k21,
and similarly for Hermitian conjugate relations. The fun
tions f andg are generally rational functions ofN1, with the
finite action on all states. One can show that fori> j ,

S B1

AN
D iS B1

†

AN
D j

5S B1

AN
D ( i 2 j )

~N111!•••~N11 j !

5~N1111 i 2 j !•••~N11 i !S B1

AN
D ( i 2 j )

and

S B1
†

AN
D j S B1

AN
D i

5N1~N121!•••~N12 j 11!S B1

AN
D ( i 2 j )

5S B1

AN
D ( i 2 j )

~N12 i 1 j !•••~N12 i 11!,

and similarly fori , j . Now it is easy to see that

F S B1

AN
D i

,S B1
†

AN
D j G5 (

k51

min(i , j )

bk~ i , j !S B1
†

AN
D ( j 2k)S B1

AN
D ( i 2k)

.

~47!

TheCN(n) algebra is intrinsically polynomial. ForN52, the
C2(n)-Calogero algebra is the SU~2!-polynomial ~cubic!
algebra,11 i.e., @X2,0,X0,2#5P3(N1 ,N̄). In this case, the
C2(n) algebra can be linearized to the ordinary SU~2! algebra
owing to the fact that there are two independent, uncoup
oscillatorsB1 andA2, which can be mapped to two ordinar
Bose oscillators.29 The SU~2! generators are
3-7
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J15
1

4A~N121!~N̄1112n!
B1

†2A2 ,

J25A2
†B1

2
1

4A~N121!~N̄1112n!
5~J1!†,

J05
1

16S 1

~N121!
B1

†2B1
22

4

~N̄2112n!
A2

†A2D
5

1

4
~N12N̄!, ~48!

satisfying @J1 ,J2#52J0 , @J0 ,J6#56J6 . The genera-
torsJ1 andJ2 are hermitian conjugates to each other and
this respect differ from the construction done in Ref. 13. F
N53, theC3(n) algebra in Eqs.~45! and~46! is the same as
in Ref. 12. One can easily find the exact corresponde
using Eq.~41!.

Set 2. We can construct a new set of generators of
dynamicalCN(n) algebra in terms of the operatorsJs,sz

. For
generalN, we define

X̃s,sz
5Js,szS B1

AN
D 2sz

for sz>0,

X̃s,sz
5Js,szS B1

†

AN
D 22sz

for sz,0. ~49!

The operatorsX̃s,sz
satisfy a similar algebraic relation as th

generators of the preceding realization, Eqs.~45! and ~46!:

@X̃s,sz
,X̃s8,s

z8
#5@Js,sz

,Js8,s
z8
#S B1

AN
D 2(sz1sz8)

5( S) X̃D
S,sz1s

z8
, sz ,sz8>0, ~50!

whereusz1sz8u<S<s1s821, and forsz>0, sz8,0:

@X̃s,sz
,X̃s8,s

z8
#5( F)

a
X̃sa,s

z
ag̃sa,s

z
a~N1!G

1X̃s,sz
X̃s8,s

z8
f̃ s,sz ,s8,s

z8
~N1!, ~51!

with the restriction(sz
a5sz1sz8 , (sa<s1s821, and simi-

larly for Hermitian conjugate relations. The functionsf̃ and
g̃ are generally rational functions ofN1, with the finite ac-
tion on all states. For generalN, we present several typica
commutators that demonstrate the general structure give
Eqs.~50! and ~51!,

@X̃1,0,X̃s,sz
#54szX̃s,sz

,

@X̃1,1,X̃s,sz
#52A8~s2sz!~s1sz11!X̃s,sz11 , sz>0,
20531
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@X̃1,21 ,X̃s,sz
#51A8~s1sz!~s2sz11!X̃s,sz21~N122sz

12!~N122sz11!2
2sz

N122sz
X̃1,21X̃s,sz

3S 21
2sz21

N122sz21D , sz.0. ~52!

This construction can be viewed as a generalization of
polynomial algebras forN52 ~Ref. 11! andN53 ~Ref. 12!
to the generalN, using theBN(n) algebra.

Set 3. Here we introduce a new set of generators of
dynamicalCN(n) algebra which obey very simple relation
and possess interesting properties. The dynamical alg
can be defined through the set ofN2 generators in terms o
the transition number operators~25!

Yi , j5Ni , j S B1

AN
D i 2 j

for i> j

Yi , j5Ni , j S B1
†

AN
D j 2 i

for i< j ,

Yi ,i5Ni , ~53!

where 1< i , j <N. The diagonal generatorsYi ,i mutually
commute and are Hermitian with respect to* ~not †), be-
cause the basis is now orthogonal, Eq.~21!, in the dual Fock
space~23!. Note that

Yi ,1Y1,j5H Yi , j~N111!•••~N11 j !, i> j

~N111!•••~N11 j !Yi , j , i< j .
~54!

Hence,Yi , j generators can be written in terms of 2N21 Y1,i
generators and their Hermitian conjugates. We find

@N1 ,Yi , j #52~ i 2 j !Yi , j , @N̄,Yi , j #5~ i 2 j !Yi , j ,

@H,Yi , j #5@N,Yi , j #50, @Yi ,1 ,Yj ,1#5@Y1,i ,Y1,j #50 ; i , j ,

@Yi ,1 ,Y1,j #5@Ni , j2d i j N1#B1
i 21B1

†( j 21)

1Ni ,1N1,j@B1
i 21 ,B1

†( j 21)#

52d i j N1gii ~N1!1Yi ,1Y1,j f i j ~N1!, i . j ,

~55!

with f and g being some rational functions ofN1. The dy-
namical symmetry algebraCN(n) is expressed in a much
simpler way through the above$Yi , j% generators than
through the$Xi , j% or $X̃s,ss

% generators, but in all three case
is still of the polynomial type.

The CN(n) algebras are equivalent~isomorphic! for all n
parameters larger than21/N. Also, they are equivalent~iso-
morphic! to the dynamical symmetry algebraCN of the
HamiltonianH25H82E05(k51

N kbk
†bk , wherebk’s satisfy

the standard bosonic commutation relation, withb1

5B1 /AN. The generators of the corresponding symme
algebra are
3-8
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Zi , j5H bi
†bj~b1! i 2 j , i . j

bi
†bj~b1

†! j 2 i , i , j

bi
†bi , i 5 j

~56!

and @H2 ,Zi , j #50. They act among degenerate states w
fixed energyE5N, NPN0, of the HamiltonianH2. The
commutation relations forZi , j ’s are the same as those fo
Yi , j ’s, see Eqs.~55!. This motivated us to look for a bosoni
realization of the dynamical symmetry algebra.

Set 4. Finally, we present the bosonic realization of t
CN(n) algebra in terms of$J i

6 ,J i
0%, i 52, . . . ,N genera-

tors, which represent a generalization of Eq.~48!:

J i
15

1

Ai ~N121!•••~N12 i 11!
b1

†ibi ,

J i
25bi

†b1
i 1

Ai ~N121!•••~N12 i 11!
5~J i

1!†,

J i
05

1

2 S N1

i
2bi

†bi D . ~57!

One can express the generators$J i
6 ,J i

0% in terms of
$Ak ,Ak

†%, using the expression for mapping, Eq.~26!, for any
n.21/N. The coefficients in the expansion depend on
parametern. The generators~57! satisfy the following new
algebra for everyi , j 52, . . . ,N:

@J i
0 ,J j

6#56
1

2 S j

i
1d i j DJ j

6 ,

J i
1J j

22SAN1~N12 i 1 j !

N11 j DJ j
2J i

15d i j S N1

i D ,

J i
1J j

12AN12 i

N12 j
J j

1J i
150, @J i

0 ,J j
0#50. ~58!

Note that the generatorsJ i
1 and J i

2 are Hermitian conju-
gate to each other, and that relations~58! do not depend on
n. TheCN algebra contains (N21) ordinary SU~2! subalge-
bras. Different SU~2! subalgebras are connected in a nonl
ear way, namely, relations~58! have nonlinear~algebraic in
N1) deformations. We demonstrate these features by
simpleN53 example:

SU~2!:@J 2
0 ,J 2

6#56J 2
6 , @J 2

1 ,J 2
2#52J 2

0 ,

SU~2!:@J 3
0 ,J 3

6#56J 3
6 , @J 3

1 ,J 3
2#52J 3

0 ,

@J 2
0 ,J 3

6#56 3
4 J 3

6 , @J 3
0 ,J 2

6#56 1
3 J 2

6 ,

J 2
1J 3

22
AN1~N111!

N113
J 3

2J 2
150,

J 2
1J 3

12AN122

N123
J 3

1J 2
150.
20531
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The states with fixed energyE5N are given by
) i 51

N bi
†ni/Ani ! u0& with ( i 51

N ini5N. These states are ortho
normal and build an irreducible representation~irrep! of the
symmetry algebraCN .

The dimension of the irrep on the states with fixed ene
N of the CN algebra can be obtained recursively inN:

D~N,N!5 (
i 50

[N/N]

D~N2Ni,N21!.

For example, forN51, D(N,1)51, i.e., for a single oscil-
lator, there is no degeneracy; forN52, D(N,2)5@N/2#
11, N>0; for N53,

D~N,3!5 (
i 50

[N/3] FN23i

2 G1FN3 G11.

More specifically, forN56n1 i , for some integern and i
50, . . . ,5:

D~6n1 i ,3!5~3n1 i !~n11! for i 51, . . . ,5,

D~6n,3!53n~n11!11.

Note that the dynamical symmetry algebra of the Ham
tonianH15(k51

N bk
†bk is SU(N). The corresponding genera

tors arebi
†bj , and@H1 ,bi

†bj #50 for all i and j. The degen-
erate states are) i 51

N bi
†ni/Ani ! u0& with ( ini5N. They form

a totally symmetric irrep of SU(N) described by the Young
diagram withN-boxes

~Ref. 28!. The states of the same Fock spa
$) ibi

†ni/Ani ! u0&% are differently arranged. With respect t
H1, degenerate states are organized into the SU(N) symmet-
ric irrep’s. However, in respect toH2, degenerate states buil
the N-irrep of theCN algebra. In this sense, one can~for-
mally! say that the nonlinear algebraCN of the Hamiltonian
H2 is related to the boson realization of the SU(N) algebra
describing the dynamical symmetry of the HamiltonianH1.

VI. THE CHERN-SIMONS MATRIX MODEL

A. Introduction—The physical Fock space

The Chern-Simons~CS! matrix model was obtained from
the noncommutativeU(1) Chern-Simons theory, and it wa
conjectured that it described the quantum Hall fluid.18 The
regularized version of the model, introduced in Ref. 19,
related to the Calogero model.19,20,22In Ref. 20 it was shown
that the minimal algebraAN of the observables was identica
in the CS matrix theory and in the Calogero model. Usi
the results obtained in sections herebefore, we discuss
algebraic structure of the finite CS matrix theory in detail

Let us start from the action proposed in Ref. 19:
3-9
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S5E dt
B

2
Tr$«ab~Ẋa1 i @A0 ,Xa# !Xb12uA02vXa

2%

1C†~ i Ċ2A0C!. ~59!

Here,A0 andXa , a51,2, areN3N Hermitian matrices and
C is a complexN-vector. The eigenvalues of the matricesXa
represent the coordinates of electrons andA0 is a gauge field.
We choose the gaugeA050 and impose the equation o
motion for A0 as a constraint:

2 iB@X1 ,X2#1CC†5Bu. ~60!

The trace part of Eq.~2! givesC†C5NBu. Notice that the
commutators have so far been classical matrix commuta
After quantization, the matrix elements ofXa and the com-
ponents ofC become operators satisfying the followin
commutation relations:

@C i ,C j
†#5d i j ,

@~X1! i j ,~X2!kl#5
i

B
d i l d jk . ~61!

It is convenient to introduce the operatorA5AB/2(X1
1 iX2) and its Hermitian conjugateA† obeying the following
commutation relations:

@~A! i j ,~A†!kl#5d i l d jk ,

@~A! i j ,~A!kl#5@~A†! i j ,~A†!kl#50. ~62!

Then, one can write the Hamiltonian of the model at hand

H5vS N2

2
1Tr~A†A! D5vS N2

2
1NAD , ~63!

NA being the total number operator associated withA’s.
Upon quantization, the constraints~60! become the genera
tors of unitary transformations of bothXa andC. The trace
part of the constraint~60! demands that~the lhs being the
number operator forC ’s! Bu[ l be quantized to an intege
The traceless part of the constraint~60! demands that the
wave function be invariant under SU(N) transformations,
under whichA transforms in the adjoint andC in the funda-
mental representation. Note that asA transforms in the re-
ducible representation (N221)11, with the singlet B1
5Tr A, one can introduce a pure adjoint representation
(Ā) i j 5(A) i j 2d i j B1 /N. This slightly modifies the commuta
tor ~62!, and completely decouplesB1 from the Fock space
Physically, this corresponds to the separation of the cen
of-mass coordinate as it has been done for the Calog
model. However, for the sake of simplicity, this will not b
done in this section. So, one has to remember that when
compare the results for the Calogero model with those
the CS matrix model, it is always up to the separation of
center-of mass.

Energy eigenstates will be SU(N) singlets, and explicit
expressions for the wave functions were written in Ref. 3
20531
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uF&5)
i 51

N

~TrA†i !ciC†l u0&, ~64!

where C†[« i 1 . . . i NC i 1
† (C†A†) i 2

•••(C†A†N21) i N
, and

(A) i j u0&5C i u0&50.
The system containsN21N oscillators coupled byN2

21 constraint equations in the traceless part of Eq.~60!.
Effectively, we can describe the system wihN11 indepen-
dent oscillators. Therefore, the physical Fock space that c
sists of all SU(N)-invariant states can be spanned byN11
algebraically independent operators:

Bn
†[TrA†n with n51,2, . . . ,N, ~65!

andC†. Again, the operatorsBk
† for k.N can be expressed

as a homogeneous polynomial of total orderk in
$B1

† , . . . ,BN
† %, with constant coefficients which are commo

to all operatorsA†, see Appendix C. We use the same let
to denote observables in both models. In the CS ma
model,Bn5TrAn and in the Calogero model,Bn5( iai

n , but
from the context it is clear whatBn represent. Since

TrAkC†l u0&[BkC
†l u0&50 ; k,; l , ~66!

the stateC†l u0&[u0,l & can be interpreted as a ground state
vacuum with respect to all operatorsBk . Note that the
vacuum is not normalized to 1, i.e.,^0,l u0,l &Þ1. The whole
physical Fock space can be decomposed into towers~mod-
ules! built on the ground states with differentl:

Fphys
CS 5(

l 50

`

Fphys
CS ~ l !5(

l 50

` H) Bk
†nku0,l &J .

In Ref. 20 it was shown that the states in thel th tower of the
Chern-Simons matrix model Fock space were identical to
states of the Calogero model with the interaction param
n5 l 11.

B. The AN algebra, bosonic realization, and dynamical
symmetry

Using @Ai j ,Bn
†#5n(A†n21) i j , we find a general expres

sion for the commutators between observables:

@Bm ,Bn
†#5n (

r 50

m21

Tr~ArA†n21Am2r 21!

5m(
s50

n21

Tr~A†sAm21A†n2s21!. ~67!

One can normally order the rhs of Eq.~67! using the recur-
rent relation

Tr~ArA†n21Am21!5Tr~Ar 21A†n21Am!

1 (
s50

n22

Tr~Ar 21A†s!Tr~A†n2s22Am21!.

~68!
3-10
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With the formal mapping Tr(ArA†sAk)→( iai
rai

†sai
k , rela-

tion ~67! goes to the relation valid for the observables in t
Calogero model. Also, the recurrent relation~68! has its
counterpart in the Calogero model withn51, with the same
formal mapping. The minimal algebraAN including only
observables of the typeBn andBn

† , defined by the following
relations~including the corresponding Hermitian conjuga
relations!:

†Bi 1
,[Bi 2

,† . . . ,@Bi n
,Bn

†# . . . ‡‡5n! )
a51

n

i aBI 2n , ~69!

whereI 5(a51
n i a and i 1 , . . . ,i n , n51,2, . . . ,N. The iden-

tical successive commutators relations~69! hold for the ob-
servables acting on theSN-symmetric Fock space of th
Calogero model, see Eq.~14!, the only difference being tha
in the Calogero model we have separated the center-of-m
motion. Theminimal set of generalized vacuum condition
needed to completely define the representation of the alg
~69! on the Fock space is

B2B2
†u0,l &52N~N1 lN2 l !u0,l &,

B3B3
†u0,l &53N@N2111 l ~N21!~2N21!

1 l 2~N21!~N22!#u0,l &5yu0,l &,

B3B3
†2u0,l &554$~ l 11!B1

†B2
†1@N1~N22!l

1y/27#B3
†%u0,l &. ~70!

The generalized vacuum conditions for the CS matrix mo
~70! are the same as those for the Calogero model with
interaction parametern5 l 11.20

Using the results obtained in the Calogero model, we
construct a mapping from free Bose oscillators$bi ,bi

†% to
$Bi ,Bi

†%. However, the coefficients in the expansion

Bn
†5(

k
S) b†D n1kS) bD k

depend onl, i.e., they are not the same for all towers in t
physical Fock space. On the other hand, we can constru
mapping that includes theC operator and its bosonic conte
part c0:

Bn
†5(

k,l
S) b†D n1k

co
†lc0

l S) bD k

,

C†5(
k,l

S) b†D k

co
†l 11c0

l S) bD k

,

where

@bi ,bj
†#5d i j , @c0 ,c0

†#51, @bi ,c0
†#50.

The inverse mapping is given similarly as

bn
†5(

k,l
S) B†D n1k

C†lCl S) BD k

,

20531
ss

ra

l
e

n

t a

c0
†5(

k,l
S) B†D k

C†l 11Cl S) BD k

.

As in the case of the Calogero model, these mappings are
unique, but there exist a simple and natural choice of
boundary condition, see Eqs.~27! and ~28!. The mapping to
bosons provides a natural orthogonal basis.

In order to describe the dynamical symmetry of the C
matrix model, we can use the same relations as those
tained for the Calogero model. The generators of the sy
metry algebra obtained from the Calogero model act withi
fixed tower of states inFphys

CS . However, one can introduce a
additional generator acting between different towers in or
to describe the larger dynamical symmetry connecting
degenerate states in the CS matrix model.

C. TheB N
CS algebra

The problem of finding the underlying algebra of obse
ables in the CS matrix model is more complicated than in
Calogero model. An additional problem is that in the C
matrix model there are more invariants of a given order. F
example, let us consider the set of six observables of
fourth order $Tr(A†2A2),Tr(AA†2A),Tr(A†A2A†),
Tr(A2A†2),Tr(A†AA†A),Tr(AA†AA†)%. After performing
the normal ordering~see Appendix C!, we find that there are
two independent, normally ordered invarian
$Tr(A†2A2),Ai j

† Akl
† AjkAli % for N>4. ~For N53 there is only

one independent invariant of that order.! In the Calogero
model, for N>4, there is only one invariant of the fourt
order(ai

†2ai
2 . Hence, we cannot describe theB N

CS algebra in
terms of the generatorsBm,n5Tr(A†mAn) in a way analo-
gous to the procedure in the Calogero model.

There are two approaches to the construction of algebr
observables in the CS matrix model. Generally, these
approaches result in different algebra, although in the Ca
ero model they produce the same algebra. The first one
write all possible invariants inA† andA, and then to reduce
them to the normally ordered ones. The main point is t
this set of normally ordered invariants coincides with the
of all invariants in twoN3N matricesX andY of which the
matrix elements arec numbers. The problem thus reduces
finding the minimal number of algebraically independent
variants of twoN3N matrices. This was solved explicitly
for N52,3 by Sibirsky31 and for generalN by Donkin.32 One
starts with the finite set of the algebraically independent
variants, for example, forN53 with $B1,B2,B3,B1

†,B2
† ,B3

†,
Tr(A†A),Tr(A†2A),Tr(A†A2),Tr(A†2A2),:Tr(A†2A2A†A):%,
and calculates all possible commutators between them.
results are invariant operators that can be expressed gene
in terms of polynomials in algebraically independent inva
ants. Note that the basic set of independent invariants is
unique and can be chosen in different ways. However, e
invariant can be uniquely expressed in terms of a given b
set of algebraically independent invariants. Generally, o
can express the commutator between any two observable
a polynomial in terms of basic generators. This approac
under investigation and will be reported separately.
3-11
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The second approach is a generalization of our const
tion of the AN algebra. Namely, we start with a minima
number of generators$B1 ,B2 , . . . ,B1

† ,B2
† , . . . % describing

the complete physical Fock space, and try to close the a
bra under the Lie bracket~commutator! with a minimal num-
ber of additional generators. For finiteN, the algebra is finite
and generally contains less generators compared with
first approach. Since the result of the Lie commutator of t
generators is a polynomial in the basic generators, we
the algebra of this type finite polynomial Lie algebra.

For N52, theB2 algebras for the Calogero model and t
CS matrix model are equivalent, but forN>3 they differ. We
demonstrate this by theN53 example. We start the con
struction of theB 3

CS algebra with$B1 ,B2 ,B3 ,B1
† ,B2 ,†B3

†%
and four additional generatorsO1,1, O1,2, O2,1, O2,2 defined
as

@Bi ,Bj
†#5 i j Oi 21,j 21 , i , j 52,3.

The operators$B2 ,B2
† ,O1,1% build the su~1,1! algebra. This

algebra is a subalgebra of every polynomial Lie alge
B N

CS. The operatorO1,1 ~the total number operator! satisfies
the following relation:

@O1,1,Oi , j #5~ i 2 j !Oi , j .

The B 3
CS algebra is defined by two types of commutati

relations:

@Bi ,Oj ,k#5 i j Oj 21,k1 i 21 , @Bi
† ,Oj ,k#5 ikOi 1 j 21,k21

~71!

and

@Oi 11,j 11 ,Ok11,l 11#5~ jk2 i l !Oi 1k11,j 1 l 11 , i , j ,l ,k50,1.
~72!

The latter commutator~72! follows from the former~71! and
the Jacobi identities.

It is important to note that the invariant of the sixth ord
Tr(A†2A2A†A) does not participate in the above algeb
This means that although the above algebraB 3

CS is the mini-
mal algebra, closed under commutation, it is not complet
the sense that we do not know the commutator between
two observables. The second important point is that
above algebraB 3

CS applies equally well to the three-bod
Calogero model. The only difference is that the invaria
O2,2 in the Calogero model can be expressed in terms of
lower invariants, see Appendix A. However, when we redu
the set of generators forB 3

Cal to nine, using the identity for
O2,2, we obtain a different algebra with different commut
tion relations. The above construction can be generalized
any finite N. The generators are of the formBn , Bm

† ,
@Bn ,Bm

† #, †Bk ,@Bn ,Bm
† #‡, etc. The number of generators

finite, with an upper limit of 2N2 generators. Of course, th
lower limit of the number of generators is the number
generators ofB N

Cal in the Calogero model—1/2(N14)(N
21). Using Jacobi identities, the commutator of any tw
generators can be expressed as a combination of succe
commutators. Some of them are generators of the alge
20531
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and the others can be expressed as polynomials of gen
tors. Here we give some simple, general results:

@Bi n21
, . . . ,@Bi ,Bn

†#•••#

S )
a51

n21

i aD n!

5
@BI 82n12 ,B2

†#

2~ I 82n12!
, I 85 (

a51

n21

i a ,

Tr~A†rAA†s1A†sAA†r !5Tr~A†r 1sA1AA†r 1s!. ~73!

The authors of Ref. 17 considered the infinite s
of all successive commutators of the typ
@gi 1

,†gi 2
, . . . ,@gi n

,gi n11
#•••#, wheregi is eitherBi or Bi

† , i

natural number. This set was closed under commutat
which followed from the Jacobi identities, and all generato
were ‘‘mirror’’ symmetric. However, they did not know how
the algebraG looked like explicitly, and gave a step-by-ste
construction. As their main results, they presented a Ta
with numbers of linearly independent invariants of a giv
type (n,m), but they completely omitted the discussion
nonlinear identities between invariants that are crucial for
finite number of degrees of freedom. The conclusion of R
17 was that the algebrasG for the Calogero model and for th
matrix model were the same. Although this is true, the act
models are different, as can be seen from the algebraic s
ture obtained for a fixed number of particlesN.

VII. CONCLUSION

The minimal algebraAN of invariant operatorsAi defined
by the successive commutation relation and the general
vacuum conditions completely define the action of the ope
tors Ai on the states in the physical Fock space. The gen
structure of theAN algebra can be viewed as a generalizat
of triple operator algebras33 to the (N11)-tuple operator al-
gebra. ForN52, the A2(n) algebra is just†A2 ,@A2 ,A2

†#‡
58A2 for a single oscillatorA25(a12a2)2/2 describing the
relative motion in the two-body problem.

We have constructed an orthogonal basisÃi in the dual
Fock space. The operatorsÃi and Aj

† are conjugate to each
other with respect to the new scalar product that they ind
on the dual Fock space. This construction differs from
construction proposed in Ref. 13 where conjugated opera
with different indices do not commute. Furthermore, we ha
shown that there exists a mapping from ordinary Bose os
lators to operatorsAk ,Ak

† , and its inverse, and in this wa
we have obtained a natural orthogonal basis for the symm
ric Fock space.

Since this algebraic structure is identical in the Calog
model with that in the CS matrix model, all above-mention
results aplly equally to both models.

It has been shown20,22 that the states in thel th tower of
the CS matrix model Fock space are equivalent to the st
in the physical Fock space of the Calogero model with
interaction parametern5 l 11. Therefore, in order to de
scribe the dynamical symmetry of the CS matrix model,
can use the same relations as those obtained for the Calo
model.

The authors of Ref. 17 claim that the infinite algebraG,
3-12
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analyzed in their paper, is common to both, the Calog
model and the CS matrix model. In fact, this algebra is co
mon to all systems of infinitely many identical particle
However, the analysis of the finite CS matrix model pr
posed in Ref. 19 requires finite algebras of observables.
have shown that owing to the trace identities between
servables for finiteN, the effective, minimal, finiteBN alge-
bras of observables for the Calogero model and the CS
trix model are quite different. TheB N

CS algebra contains more
algebraically independent observables thanB N

Cal. Also, in the
CS matrix model one has to be careful when constructing
B N

CS algebra. There are two different methods of construct
the algebra and they lead to different results, as we h
demonstrated by theN53 example. Moreover, for the
Calogero model,B N

Cal can be connected toW algebras,
whereas for the CS matrix model it is unclear whetherB N

CS

represents a generalization of theW algebra.
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APPENDIX A

It is known34,35 that the sum of powersBn5( i 51
N ai

n for
n.N can be expressed in terms ofBk , 1<k<N in the form
Bn5(()B)n. In sections herebefore, we have claimed t
there exist similar relations for the elements of the algeb
AN(n) andBN(n) of the form

An5( S) AD n

, n.N, ~A1!

and more generally,

B̄n,m5( S) B̄na ,ma
D , n1m.N, ~A2!

where(na<n, (ma<m. Here we give a method for calcu
lating the coefficients in the identities~A1! and ~A2!.

For fixedN, let us denote

An5 (
i 51

N21

āi
n1~2 !nS (

i 51

N21

āi D n

, ~A3!

whereā1 , . . . ,āN21 are independent operators. Since the
operators mutually commute, we treat the above identity
an identity in the ring of polynomials in real variablesai
PR. In order to calculate the coefficients in Eq.~A1!, we
construct a set of linear equations inserting some po
(a1 ,a2 , . . . ,aN21) in Eq. ~A1!. For example, the point
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gives An511kn1(2)n(11k)n for An in Eq. ~A3!. For N
52, one easily finds

A2k5
1

2k21
A2

k , A2k1150, k.1.

We also list some results forN53:

A45 1
2 A2

2 , A55 5
6 A2A3 , A65 1

4 A2
31 1

3 A3
2 ,

and forN54

A55 5
6 A2A3 ,

A65 3
4 A2A42 1

8 A2
31 1

3 A3
2 ,

A75 7
12 A3A41 7

24 A2
2A3 .

To calculate the coefficients in Eq.~A2!, we proceed in
two steps. First, we find the coefficients in the followin
relation:

B̄n,m5( :) B̄na ,ma
:, ~A4!

where(na5n, (ma5m, and :O: denotes normal ordering
of the operatorO, āi

† on left andā j on the right. Since by
definition :aiaj

†
ª:aj

†ai :, we consider the identity~A4! as an
identity in the ring of polynomials in two sets of commutin
real variables. Then we construct a set of linear equati
inserting some points in relations~A2! and ~A4!. For ex-
ample, for points $ā1

† , . . . ,āN21
† %5$1,k,0, . . . ,0% and

$ā1 , . . . ,āN21%5$ l ,0, . . .,0,1% the corresponding invariant
are

B̄n,m5 l 1~2 !m1n~11k!n~11 l !m, m.0 ; n,

An
†511kn1~2 !n~11k!n ; n,

An511 l n1~2 !n~11k!n ; n.

For theN52 case, we find

B̄n,m50 for n1m5odd,

B̄2k,2l5
1

2k1 l 21
A2

†kA2
l , B̄2k11,2l 115

1

2k1 l 21
A2

†kB̄1,1A2
l .

We also have a set of relations forN53:

B̄3,15
1
3 A2

†B̄1,1,

B̄2,25
1
3 :B̄1,1

2 :1 1
6 A2

†A2 ,

B̄4,15
1
3 A3

†B̄1,11
1
2 A2

†B̄2,1,

B̄3,25
7

12 A3
†A21 3

4 A2
†B̄1,22

1
2 :B̄2,1B̄1,1:.

In the four-particle case, the expressions forB̄4,1 andB̄3,2 are
the same as in the three-particle case, and we present re
for B5,1, B̄4,2 and B̄3,3:
3-13
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B̄5,15
1
3 A3

†B̄2,11
1
2 A2

†B3,1,

B̄4,25
1
4 A4

†A22 1
8 A2

†2A21 1
2 A2

†B̄2,21
1
3 A3

†B̄1,2,

B̄3,352 1
24 A3

†A31 3
4 :B̄2,2B̄1,1:2 1

8 :B̄1,1
3 :1 3

8 :B̄2,1B̄1,2:.

Note that identities forB̄n,m transform into identities for
An1m after identificationāi

†5āi .
In the second step we express the normally ordered p

ucts in terms of the elements of theB̄N(n) algebra:

:) B̄na ,ma
:5( S) B̄n

a8 ,m
a8 D ,

( na8<na , ( ma8<ma , ~A5!

using the commutation relations~8!. We present few ex-
amples:

:B̄1,1
2
ªB̄1,1~B̄1,1211Nn!,

:B̄2,1B̄1,1ªB̄2,1~B̄1,1211Nn!,

:B̄2,1B̄1,2ªB̄2,1B̄1,22~12Nn!S B̄2,22
1

N
A2

†A2D ,

:B̄2,2B̄1,1ªB̄2,2~B̄1,1221Nn!2nA2
†A2 ,

:B̄1,1
3
ªB̄1,1~B̄1,1211Nn!~B̄1,12212Nn22n!

2n~A2
†A21NB̄2,2!.

Finally, we have

B̄2,25
1
3 B̄1,1

2 2 1
3 B̄1,1~12Nn!1 1

6 A2
†A2 , N<3,

B̄3,25
7

12 A3
†A21 3

4 A2
†B̄1,22

1
2 B̄2,1B̄1,11

1
2 B̄2,1~12Nn!, N<4,

B̄3,352 1
24 A3

†A32 1
8 B̄1,1~B̄1,1211Nn!~B̄1,12212Nn22n!

1 3
4 B̄2,2B̄1,11

3
8 B̄2,1B̄1,22

5
4 B̄2,2~

3
2 2Nn!

1A2
†A2S 3

8N
2n D , N<5.

APPENDIX B

In this appendix we perform some explicit calculations
the A3(n) algebra. The minimal set of relations that defi
the A3 algebra of operators$A2 ,A3 ,A2

† ,A3
† ,N̄% is

†Ai@A2 ,A2
†#‡54iAi ,

†A3 ,@A3 ,A2
†#‡53A2

2 ,

@Ai ,†A2 ,@A3 ,A3
†#‡#56iAiA2 , i 52,3,
20531
d-

r

@A2 ,†A2 ,@A2 ,A3
†#‡#548A3 ,

@A3 ,†A3 ,@A3 ,A3
†#‡#554A3

22 9
2 A2

3 . ~B1!

For a given representation with fixed parametern, we also
need generalized vacuum conditions:

A2u0&5A3u0&5A2A3
†u0&5A3A2

†u0&5A3A2
†2u0&50,

A2A2
†u0&54~113n!u0&, A3A3

†u0&52~113n!~213n!u0&,

A3A2
†A3

†u0&52~213n!~413n!A2
†u0&,

A3A3
†2u0&52~213n!~1116n!A3

†u0&. ~B2!

The algebra~B1!, with the vacuum conditions~B2!, has a
unique representation onFsymm. Using Eqs.~B1! and ~B2!
one finds the action of the operatorsA2 andA3 on any state
in the Fock space:

A2un2 ,n3&53S n3

2 D un212,n322&14n2~3n31n213n!

3un221,n3&,

A3un2 ,n3&52Fn3~213n!~113n13n2!19S n3

2 D
3~213n1n2!127S n3

3 D
16n3S n2

2 D G un2 ,n321&148S n2

3 D un223,n311&

2
81

2 S n3

3 D un213,n323&. ~B3!

The ketun2 ,n3& denotes the stateA2
†n2A3

†n3u0&.
Here we demonstrate how to construct an orthogonal

sis in the dual Fock space defined by~23!. We write the
general expression~24!, up tok1n<5:

Ã25g2A21g22A2
†A2

21g23A3
†A2A31•••

Ã35g3A31g32A2
†A2A31•••, ~B4!

with unknown coefficientsg. To calculate five unknown co
efficients in Eq.~B4!, we need the following relations:

A2A2
†u0&54~113n!u0&,

A3A3
†u0&52~113n!~213n!u0&,

A2A2
†2u0&58~213n!A2

†u0&,

A2A2
†A3

†u0&54~413n!A3
†u0&,

A3A2
†A3

†u0&52~213n!~413n!A2
†u0&. ~B5!

Next, we apply Eqs.~B4! to the states in the Fock space, a
using Eq.~B5! we obtain
3-14
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Ã25
1

4~113n!
A22

1

16~113n!2~213n!
A2

†A2
2

2
3

8~113n!2~213n!~413n!
A3

†A3A21•••,

Ã35
1

2~113n!~213n!
A3

2
3

8~113n!2~213n!~413n!
A2

†A2A31•••.

Next, we calculate the coefficients in the expressions~26!,
up to k1n<5, thus finding the mapping from the Bose o
cillators $bi ,bi

†% to the operators$Ai ,Ai
†%, and vice versa.

We write the general expression

A25 f 2b21 f 22b2
†b2

21 f 23b3
†b2b31•••

A35 f 3b31 f 32b2
†b2b31•••, ~B6!

with unknown coefficientsf. Inserting the expansion~B6!
into Eqs.~B5! and solving forf ’s, we obtain

A252A113nb212~A213n2A113n!b2
†b2

2

12~A413n2A113n!b3
†b2b31•••,

A35A2~113n!~213n!b31@A2~413n!~213n!

2A2~113n!~213n!#b2
†b2b31•••, ~B7!
on
T

-
of

20531
and similarly for Hermitian conjugates.
The norms in the$A2

†n2A3
†n3u0&% Fock space are positive i

n.21/3 @see Eq.~10!#, and we look for inverse mapping
The general expressions are

b25 f 28A21 f 228 A2
†A2

21 f 238 A3
†A2A31•••

b35 f 38A31 f 328 A2
†A2A31•••. ~B8!

Inserting these relations into

bibj
†u0&5d i j u0&, bibi

†bj
†u0&5~11d i j !bj

†u0&,

and solving for unknown coefficients, we find

b25
A2

2A113n
1

A2
†A2

2

8~113n!3/2SA113n

213n
21D

1
A3

†A2A3

4~113n!3/2~213n!
SA113n

413n
21D 1•••,

b35
A3

A2~113n!~213n!

1
A2

†A2A3

4A2~113n!3~213n!
SA113n

413n
21D 1•••.

~B9!

After determining the mapping, we are in a position
construct the orthogonal states. The first few of these st
are as follows:
b2
†u0&5

1

2A113n
A2

†u0&, b3
†u0&5

1

A2~113n!~213n!
A3

†u0&, b2
†2u0&5

1

4A~113n!~213n!
A2

†2u0&,

b2
†b3

†u0&5
1

2A2~113n!~213n!~413n!
A2

†A3
†u0&, b2

†3u0&5
1

8A3~113n!~213n!~11n!
A2

†3u0&,

b3
†2u0&5a„212~11n!A3

†2u0&1A2
†3u0&…,

a21512A2~11n!~113n!~213n!@~11n!~213n!~1116n!22#. ~B10!
e-
APPENDIX C

We propose a method for constructing algebraic relati
between observables in the Chern-Simons matrix model.
starting point is the Cayley-Hamilton theorem. For aN3N
matrix A, it expressesAN as a linear function of lower pow
ers ofA, with coefficients which are symmetric functions
eigenvalues ofA:

AN5e1AN212e2AN221•••~2 !N21eN•1, ~C1!
s
he

whereer is the r th elementary symmetric function34 of ei-
genvalues ofA. The trace of Eq.~C1! can be written in the
following form:

pN5(
i 51

N

~2 ! i 21eipN2 i , ~C2!

wherepr is the r th power sum34 of eigenvalues ofA. Using
Eqs. ~C1! and ~C2! we can generate algebraic relations b
tween observables for fixedN. We will demonstrate the
method for theN52 andN53 cases.
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For N52, the Cayley-Hamilton theorem gives

A25~Tr A!A2detA•15B1A2detA•1, ~C3!

and the trace of Eq.~C3! gives

B25B1
222detA. ~C4!

First, we generate some algebraic relations expressing
observableBn , defined in Eq.~65!, for n>3, using onlyB1
and B2. One multiplies Eq.~C3! by A, takes a trace and
expresses detA using Eq.~C4!, to obtain

B35 3
2 B2B12 1

2 B1
3 . ~C5!

The expression forB4 is obtained along the same lines, b
we also have to use the relation~C5!,

B45 1
2 B2

21B2B1
22 1

2 B1
4 . ~C6!

Recursively, we can generete all algebraic relations expr
ing Bn , n>3, using onlyB1 and B2. Of course, when we
put B150, we obtain results valid forAj operators in the
Calogero model~see Appendix A!.

For theN53, case we present a few relations obtain
along the same lines. The Cayley-Hamilton theorem give

A35~TrA!A21 1
2 @TrA22~TrA!2#A1detA•1, ~C7!

and from the trace of Eq.~C5! we obtain

detA5 1
3 B32 1

2 B1B21 1
6 B1

3 . ~C8!

Using Eqs.~C7! and ~C8! one easily obtains

B45 1
2 B2

22B2B1
21 4

3 B3B11 1
6 B1

4 ,

B55 5
6 B2B31 5

6 B3B1
22 5

6 B2B1
31 1

6 B1
5 ,

B65 1
4 B2

31 1
3 B3

21B3B2B11 1
3 B3B1

32 3
4 B2

2B1
22 1

4 B2B1
4

1 1
12 B1

6 . ~C9!

Next, we turn to the elements of the algebraB N
CS. These

observables are all of the type Tr(A†n1Am1
•••A†nkAmk),

where mi ,niP$1,2, . . . ,(N21)%, and k,N. They are not
all algebraically indepedent, and in the following we give
method for constructing the relations between them.

We are dealing with matrices whose matrix elements
operators, so we have to take care of ordering. It is impor
to observe that the relations between normally ordered
variants are identical to relations between invariants in t
N3N matrices whose matrix elements arec numbers. There-
fore, our first step is to reduce observables to normally
dered ones. For example,

Tr~AA†n!5Tr~A†nA!1 (
s50

n21

TrA†sTrA†n2s21,

Tr~AA†AA†!5:Tr~AA†AA†!:13NTr~A†A!1N3,

Tr~A†AA†A!5:Tr~A†AA†A!:1Tr~A†A!,
20531
he

s-

d

e
nt
-

o

r-

Tr~A2A†2!5Tr~A†2A2!13NTr~A†A!12TrA†TrA

1N~N211!,

Tr~AA†2A!5Tr~A†2A2!1TrA†TrA1NTr~A†A!,

Tr~A†A2A†!5Tr~A†2A2!1TrA†TrA1NTr~A†A!,

Tr~A†2AA†!5Tr~A†3A!1NTrA†2,

Tr~A†AA†2!5Tr~A†3A!1NTrA†21~TrA†!2. ~C10!

Now, we can construct the relations connecting normally
derd observables starting from the expressions forBk
[Tr(Ak). For example, in theN53 case, we use the firs
relation in Eq.~C9! to write

:Tr~A†1A!4
ª

1
2 :@Tr~A†1A!2#2:2:Tr~A†1A!2::@Tr~A†

1A!#2:1 4
3 :Tr~A†1A!3Tr~A†1A!:

1 1
6 :@Tr~A†1A!#:4. ~C11!

This relation gives us an identity expressing observables
order (3,1) as functions of observables of lower order.
observable of order (m,n) is any observable of the typ
Tr(AA†

•••A•••) with m A† and n A matrices in the trace
We take :Tr(A†3A1A2A†A1AA†A21AA†3): on the lhs of
Eq. ~C11! and we pick up all terms of the same order inA†

andA on the rhs Thus, we obtain the following result:

Tr~A†3A!5 1
2 TrA†2Tr~A†A!2 1

2 TrA†2TrA†TrA

2 1
2 ~TrA†!2Tr~A†A!1 1

6 ~TrA†!3TrA

1TrA†Tr~A†2A!1 1
3 TrA†3TrA. ~C12!

Using Eq. ~C12! and relations given in Eq.~C10! we can
express all observables of order (3,1) as functions of obs
ables of lower order. From relation~C11! we also obtain a
relation for observables of order (2,2)—we simply pick t
terms of order (2,2) on both sides of Eq.~C11!:

2Tr~A†2A2!1:Tr~A†AA†A!

ª:@Tr~A†A!#2:1 1
2 TrA†2TrA222TrA†Tr~A†A!TrA

2 1
2 TrA†2~TrA!22 1

2 ~TrA†!2TrA21 1
2 ~TrA†!2~TrA!2

12Tr~A†2A!TrA12TrA†Tr~A†A2!.

To obtain all relations among the invariants, one uses
Cayley-Hamilton theorem for matrixC5A†1lA. For k
.N we can write TrCk as a polynomial in TrC, . . . ,TrCN,
and project terms withln, n51,2, . . . ,(k21). We start
with k5N11 and construct algebraicaly independent inva
ants, step by step, by going to higherk.

For completeness, we give some results forN52 case:
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Tr~A†2A!5 1
2 TrA†2TrA1TrA†Tr~A†A!2 1

2 ~TrA†!2TrA,

Tr~A†2A2!5 1
2 TrA†2TrA21TrA†Tr~A†A!TrA

2 1
2 ~TrA†!2~TrA!2,
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