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The algebra of observables of &hkbody Calogero model is represented on Sesymmetric subspace of
the positive-definite Fock space. We discuss some general properties of the algebra and construct four different
realizations of the dynamical symmetry algebra of the Calogero model. Using the fact that the minimal algebra
of observables is common to the Calogero model and the finite Chern-Si@8hsnatrix model, we extend
our analysis to the CS matrix model. We point out the algebraic similarities and distinctions of these models.
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[. INTRODUCTION discuss the spin representation of the algebra, and present a
realization of the dynamical symmetry algebra.
The Calogero modelis a completely integrable model The construction of the algebra of symmetric one-particle

that describes a system bfinteracting particles in one di- operators for the Calogero modferesulted in an infinite-
mension. Even though the interaction is highly nontrivial, dimensional Lie algebra, independent of the particle number
one can construct the needed constants of motion, find and the constant of interaction. This algebra was interpreted
spectrum and expressions for the wave functions. Surprisas the algebra of observables for a system of identical par-
ingly, the model and its various generalizations have beeticles on the line. The problem with a fixed number of par-
found relevant to a host of problems in physiemd math- ticles N, which we discuss here, can be viewed as an irre-
ematicg. It was long realized that for three special values ofducible representation of the aforementioned algebra. In Ref.
the interaction parameter=1/2,1,2 the model was closely 17 it was claimed that this infinite-dimensional Lie algebra
related to the random matrix thedrpf the three Wigner- was common to the matrix model. We argue that although
Dyson ensembles: orthogonal, unitary and symplectic, rethis is true, the actual models are different, as can be seen
spectively. The particles subject to the Calogero dynamicérom the the algebraic structure obtained for a fixed number
obey fractional statistics,and this motivated investigations of particlesN.
of the connection between the Chern-Simons based anyonic The renewed interest in the matrix model came from the
physics in the fractional quantum Hall effect and the Calog-connection with the non-commutative field theory. Namely,
ero modef The collective-field theory approach proved use-following the Susskind conjectutéthat the noncommutative
ful in constructing solitonic solution$and in establishing Chern-SimongCS) theory provides an effective description
relations to thed=1 string theory. Recently, the interest in of a quantum Hall effect, Polychronakos propdSeal finite
the Calogero model has been renewed. It was profdsatl  matrix version of the model. He claimed that this matrix
the supersymmetric extension of the model could provide anodel was in fact equivalent to the Calogero model. We
microscopic description of the extremal Reissner-Nordstro analyzed the algebra of observables acting on the physical
black hole. The supersymmetric extensions of the CalogerBock space of that modél,and observed that the minimal
model themselves were analyzed in detaMany more ap- algebra of observables was identical with that of the Calog-
plications of the model have been found, whih have intensiero model, although the complete algebraic stuctures are dif-
fied the research of the model intrinsic properties. ferent. We identified the states in th#h tower of the CS
Investigations of the algebraic properties of the Calogeramatrix model Fock space with the states in the physical Fock
model in terms of thé&y-extended Heisenberg algebtae-  space of the Calogero model with the interaction parameter
fined a basic algebraic setup for further research. Floreanini=1+1. Also, we described quasiparticle and quasihole
et al™ showed that the dynamical symmetry algebra of thestates in the both models in terms of Schur functions. Using
two-body Calogero model was a polynomial generalizationa coherent-state representation, the wave functions for the
of the SU2) algebra. The three-body problem was alsoChern-Simons matrix model proposed by Polychronakos
treated:? and the dynamical algebra of the polynomial typewere constructed and compared with the Laughlin Ghes.
and the action of its generators on the orthonormal basi¥he same authors also studied the spectrum of the model and
were obtained. It was shown that in the two-body case thédentified the orthogonal set of stat&s.
polynomial SU2) algebra could be linearized, but an attempt  Taking into consideration all relations between the Calog-
to generalize this result to thid-body case led toN—1) ero model, the matrix model and the QH physics, we feel
linear SU2) subalgebras that operated only on subsets of théhat a more detail algebraic analysis is in order. In this paper
degenerate eigenspaleThe general construction of the dy- we analyze the complete algebra of observables of the CS
namical symmetry algebra was given in Ref. 14. Also, thematrix model and confirm by explicit construction that the
bosonic realization of a nonlinear symmetry algebra describmodels in question have different algebraic structures.
ing the structure of degenerate energy levels of the Calogero The paper is organized as follows. In Sec. Il we review
model was obtainetf In this paper we give a more detailed basic steps in the construction of tig-extended Heisen-
analysis of the algebra of observables of the Calogero modehherg algebra of the Calogero model represented on the
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Sy-symmetric subspace of the positive-definite Fock space. 1

In Sec. Il we construct the minimal algebra of observables, a-T— (=Di+x;), aj=
Ay and discuss its general properties. We establish a map- V2

ping to the Heisenberg algebra and this gives us a natural,
orthogonal basis for the model. In the following section we
consider the larger algebig, and show that its spin repre-
sentation gives an irreducible representation of the algebra
constructed in Ref. 16. In Sec. V we present four different
realizations of the dynamical symmetry algebra describing
the structure of the degenerate eigenspace in detail. The
analysis of the algebra of obervables is extended to the finite
CS matrix model in Sec. VI, and in the last section we com-
pare the algebraic structure of the two models. Finally, in thedne can easily check that the commutators of the creation
appendixes we confirm our findings by explicit calculations.and annihilation operator@) are

1
—=(Di+xp), 4)

\/E I I

Where the operatom; annihilates the vacuum. Using the

well-known properties of the Dunkl operators

[D;,D;]=0, K;D;=DK;;

N
[Di,Xj]=5ij 1+Vk21 Kik _VKiJ',

Il. THE CALOGERO MODEL ON THE SYMMETRIC [a.a]=[al 2]]=0,
FOCK SPACE N
The Hamiltonian of the(rationa) Calogero model de- [a ,aj’f]= 1+v> K| 6 vKj; . 5
scribesN identical particlegbosons interacting through an k=1

inverse square interaction subject to a common confinin

. i tter performing a similarity transformation on the Hamil-
harmonic force:

tonian (1), we obtain the reduced Hamiltonian

M p2 2 &N H =6 Ho= = Z{a,, all= 2aa+Eo, ®)

_ 1) acting on the space of symmetric functions. We restrict the
2m - F (x—x))? Fock space{aI”L . -aL”N|0>} to the Sy-symmetric subspace
Fsymm:» WhereN'= EiN= 1a;rai acts as the total number opera-
tor. In the following we demand that all states should have
positive norm, i.e.p>—1/N.?* Next, we introduce the col-

6ective Sy-symmetric operators

In the following we seti, the mass of particlem and the
frequency of harmonic oscillatos equal to 1. The dimen-
sionless constant is the coupling constant anN is the
number of particles. The ground-state wave function is, up t
normalization,

N
2%

i=1

N| -

N
B,=2, al, n=0.1,... N, R
Yo(Xp, oo XN)=0(Xq, ... ,xN)ex;{ — )’ =

whereBj is the constanN multiplied by the identity opera-
where tor, andB; represents the center-of-mass operator. The com-

plete F,mm can be described g81™B1"2. .. BI™|0)}. We
wish to construct the operatokg such tha[Bl,Xl]=0 for

(X, .. Xn)= ,1;[1 X _XJ'| g ) everyk greater than 1, in order to separate the center-of-mass
coordinate. The general solution of this equatlon is described
with the ground-stateénerg&(): N[1+(N—=1)v]/2. by any symmetric monomial polynomiah,(a;, .. ..ay)
The Dunkl operato =3Xa; 1_7‘2 . 57‘” WhereaI —B; /N, and the sum goes
over aII dlstmct permutations oﬂ\(l,)\z, ..., AN). The mul-
D,=0;+v E (1-Kj)) tiset (\1,\2, ... ,Ay) denotes any partition ol such that
LA XX =N I\ /\/’and)\l Np=---=\\=0. The “shifted” opera-

are the basic building blocks of the Calogero model creatioriors a; anda;] satisfy the following commutation relations:
and annihilation operatofS.The elementary generatoks;

of the symmetry grouisy exchange the labelsandj: [al,aj] [al, J] 0,
Kix=xKi;, Kij=K;i, (K;j)?=1, N
[a,al]=|1+v>, K-k)ﬁ--—vK--—i. 8
KijKj =Ky Ky =Ky Kjj for i#j, i#l, j#I, o = N

and we choose(ij|0>=|0>. Now we can introduce the cre- The simplest choice of theN—1) operators commuting
ation and annihilation operators: with the center-of-mass operator is
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N o N
A= al=>,
i=1 i=1

Another possible choice i$i,=Sgga; - -a;  describing

one-quasihole statés,spanning{h}
metric Fock Space symm is now{BInl

after removing the center-of-mass operator it is + > ck(m,n)(H al
{A;“Z- - ~AL“N}|O>. We have reduced the problem to tHg ( k=2

CALOGERO.. .. PHYSICAL REVIEW B6, 205313 (2002

The second relation in Eq12) is a consequence of the Ja-
n=2,...N. 9 cobi identity. The commutator

N
1
[Am,A;]=mn(2 al " Vam - SAL 1Am1)

~JFE'[,}|O).Jr The sym-
n n
A2 2, . 'AN N|0>} and min(m,n) m—k

nk( H g

—1) Jacobi-type operators. The norm of the state (13
(0|A,AT0) can be calculated recursively. We present results

up ton=4:

is anSy symmetric and normally ordered operator. We have
separated the; coefficient because it determines the struc-

(0|A,A|0)=2(N—1)(1+Nw), ture of the algebra of observables. The coefficiepten,n)

(N-1)(N-2)

depend also on the precise index structia® can be seen in
the k=1 case¢, and the symbolical expressioflQ)¥ de-

O — )
(01AqA3[0)=3 N (1+Nw)(2+Nw), notes a product of operatot3 of the total ordek in a;(a]).
Hence, the structure of théy(v) algebra is of the following

(N=1) - type:

(0|A,ALj0)=4 N (1+N»)[6(N°—3N+3)

=]

+Nw(5N2— 18N+ 18)+ N22(N—2) [ALIA, - TA AT 1= (H Al (19
X (N—3)]. (10

We see from EQq.10) that for the

N o wherel =EL:1ia>2j, and similarly for the hermitian con-
positive-definite Fock jugate case. Generallyj successive commutators of

space v is larger than —1/N. Two different states A A with AT form a homogeneous polynomial
J

2

Al"2... Al™|0) and ATnz an|0> with the same energy E(HA)' I'in a; of orderl —j with coefficients independent

(Sin;=3in/) are not orthogonal The total number operatorOf v. Therefore, we stress that the algebraic relat(dm;are

oNn Fsymm spllts into

common to all sets of operator§A.,Al}, with k
=2,3,... N, satisfying

NT=N=N+ N,
[ALAT=[AlA]1=0, [N Afl=8;A]. (19
.
N1 Nl_ B 181, Two different sets of operators satisfying the same algebra
(14) differ only in the generalized vacuum conditions, see
N below. So, we denote the common algebra of the opera-
=N= K- tors {A, y Ay, and its representation for a given
N=N=D kN, (11) A ALl by A d i ion f i
k=2 »>—1IN by Ay(v).
Note that\; are the number operators Aﬁ but not of A, . The termA,_; on the right-hand sidérhs) of Eq. (14)

Namely, [Ni,Al1=684A, and
=n(---Al"...|0)) for every k
NTaﬁNk If /\/’k were Hermitian,

Al™...AI™|0) would be orthogonal

; i AN N—1
Ni(- - Tnk -|0Y) appears with the coefficientll(,i,)j!. There are ;(N )

Iarger than 1 but —N linearly independent relatiord4). Specially, we find

then the eigenstates
A5 [Ay, .. . [Ay, Al ... 1=2"n'4,,
|, and vice versa. &,_[2, nleeel (16

n

and more generally

Ill. THE Ay ALGEBRA AND BOSONIC REALIZATION

Next, we discuss theAdy algebra of the collective [A3.[A,, ... [A,,1AL, 1AL, ... [A].A4,] .. .]

Sy-invariant operatord\, defined in

Eq.(9) and acting on

Feymm- It is convenient to add two additional operatofs, " "
=N-1andA;=0. We easily see that _(—ymp2m m!n! A
_(_) (n—m)' n- (17)
_rat at1—
[ALAT=IATAT=0, Relations(16) and (17) can be proved using induction and
Jacobi identities. Note that ard,,, n>N, can be algebra-
[ALLA XTI=[A[A L XT]], V i,j, anyX'. (12)  ically expressed in terms oA,, m<N, see Appendix A.
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Hence, thedy algebra expressed in terms ofNe{ 1) alge- ! ~nl tn n
braically independent operators, is closed, finite, and of the (O[A22. - ANA2. - ATNOy =TT ;! Snny- (23)
polynomial type. :

For generalN, the Ay(v) algebra of the collective
Sy-symmetric operatord) completely determines the action
of A, on any state:

Although the operatoré\, and Afr are not Hermitian conju-
gates, the second equation(#®) induces a new scalar prod-
uct with respect to which the statég"- - - A\™|0) are or-
thogonal to{0|A)?- - - AN, according to Eq(21). Generally,
the operatorg\; can be written in the form

N—k
11 AT) |0), ksN. (18

AATZ. AT 0)=3

In order to calculate the precise form of the rhs of Ef), .

we apply the hermitian conjugate relation Ety) on the Ihs ~ 1 k
of Eq. (18) shifting the operatoA, to the right, at least by Ai:Ai+gz II A
one place. We repeat this iteratively as long as the number of

A"'s on the right fromA, is larger or equal to the indelk  We give an example for thd=3 case in Appendix B. Then
Fork>Xn;, we calculate the finite set of relations, so-calledwe define the number operatok$ and the transition number
generalized vacuum conditions, directly from E¢8) and  operators\, ; as

(8). We show that theminimal set of generalized vacuum

conditions needed to completely define the representation of = e 1 .

the algebra14) on the Fock space is N=ATA Ni=N i=AA;, leﬁBlBl’

K+ i
11 A) . (24)

AANI0)=2(N—1)(1+»N)|0), N AT sAl N e o
i A= 0pA L LN A= — GikAy
AsAL0Y=3(N—1)(N—2)(1+»N)(2+ »N)/N|0),
[N j N ]= SN — Ny - (25

A3AL0)=3(N—2)(2+vN) , iy N :
One can define a new Hermitian conjugation operationir
X[2(N=1)(1+»N)+18]/N|0). (19 the following way:

Namely, the operator#\,, A;, and Hermitian conjugates
play a distinguished role in the algebra, as all other operators
An, Ag for n=4 can be expressed as successive commuta- o
tors(14), using onlyA,, A ,and their Hermitian conjugates. hj,k=2,... N.
Therefore, one can derive all other generalized vacuum co
ditions using Eqgs(14) and(19).
Note that the action o;l‘\iAjT (and ;) on the symmetric

Fock subspace can be written as an infinite, normally ordere
expansion

NE =N, (AD*=A, (AY*=A[, Bf=B],

"Fhis realization of the algebra of observables provides an
orthogonal basis in the dual Fock space and leads to a simple
Healization of the dynamical symmetry algebra.

We point out that if the set of operatofa,,Al} satisfies
relations (15), then there exists the mapping = f(b; ,biT)

= Kt j k+i from the ordinary Bose oscillatork; b} to {A,,Al}. If
AAT=2 (H Af 11 A) Y i,j. (200  there are no null-norm vectors in t§A} Fock space, there
k=0 exists the inverse mappingiszl(Ak,Al). It has been
Applied to a monomial state of the finite ord&fin Fymm,  found in Ref. 25 that the full Fock spa¢e;™, . .. al™|0)}

only the finite number of terms in Eq20) will contribute.  for »>—1/N does not contain any additional null-norm
For theN=3 case, we prOVide eXpliCit calculations in Ap' states when Compared with tm Fock space. Agsymm is a
pendix B, demonstrating the main features of thg(v) al-  subspace of the full Fock space, it also does not contain any
gebra. _ _ additional null-norm states, $6,ymm is isomorphic to theb}
There is a usefuland orthogonalbasis for the problem at  ggck space, and the mappitigs invertible for »>— 1/N.
hand. We define the operatofs, i=2,... N, satisfying The pointy=—1/N is a critical point of the algebra and a

the vacuum conditio;|0)=0 and description of the system near this point is given in Ref. 26.
In our case of interest, namely, in tiAg(v) algebra, we
AAZ AT ATy =i Al ATOTD AT 0y have started with positive-norm states, i.e> — 1N, so

(21)  there exists a real mappirigand its inversd . In general,
one can write the infinite series as

An=2 (H b?”i)k(H b,-”i)k+n,

for all ny, ... nyeNo. As a consequence ¢A ,A1=0,
we immediately find

[’Ai 1’AJ]:01 [KI vAr]: 6I] ’ Ia] :21 e vN' (22)
We define a dual Fock space as a set of states

(O[AJ2- - AN, nje Ny, such that

> ini=k, X jnj=k+n,
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k k+n o L N
bn:E H AT) H A) J (26) Bn,mA;nz' ’ 'ALHN|0>EBn.m( H AT) |0)
and then calculate the coefficients. There is freedom in map- ~S 11 At N*”’m|o
ping Eq.(26), which appears in the subspaces spanned by the - )-

monomials {IANHY [or (IIbN)M] of the same orderV. A

simple and natural choice of fixing these boundary condi-_ There are 1/2+4)(N—1) algebraically independent

tions is B, m operators contained in the algebi(v), namely,
2(N—-1) operatoranyozAE for n=2,3,... N and their

AT”2|0>: /<O|A22A2fn2|o>bm2|o> Hermitian conjugates, anti(N—1)/2 operatorsliLm for

2 n,! 2 ' n,m=1n+ms<N. One can express the operat@s,, for

n+m>N in terms of the algebraically independent operators

ng B, m With n+m=<N, see Appendix A. This is a consequence
t n,m
A0y~ (H b;b;) |0), of Cayley-Hamilton theorem. Generally,

gl,lzj\_/‘v [Bl agn,m] =0, [gl,l’gn,m] =(n— rn)gn,m )

[gl vgn,m] =n

_ 1
n ™ _iT(nil) im_ _an m}- 30)
A0~ (H b£-~-bL) 10), 27) 4 AT NP (

In the case ol free harmonic osillators withh=0, we

and generally, find the generalBy(0)-algebra relation

ATnZATnS, . ,ATnN|0> min(n,m) 1 K
200 N B o Bunl= S Aumm| =) {[(N=1)%+1]
S oS (T oiot] ™[ TT o35 ™ [Brvm Brl= 2y AUMM|g
~ b2 2 ( b2b3> .. ( b2' . bN) |O> . - .
(28) XBm’+n—k,m+n’—k_Bm’,m—an—k,n’

min(n—k,m—k)

Only after fixing this freedom, one can determine the coeffi- + Z Bs(m—k,n—k)
cients in Eq.(26) in a unique way. For th&l=3 case, we s=1

present results for the first few coefficients in E26), up to - 1\s
k+n=<5, for the operator$\, and A; in Appendix B. The me,+n_k_S,m+n,_k_s(1— N) ]
states in thd¢A} Fock space are not orthogonal. However, the

monomial statedIb'™/\n;|0) in the {b} Fock space are —{m’ —n,n’ om}, (31)

orthogonal, so when we exprelss=f ~1(A,,A]), we obtain

natural orthogonal states in tH8} Fock space, labeled by where

(ny, ...,ny), i.e., by free oscillator quantum numbers. De- min!
generate, orthogonal energy eigenstates of I&elre then Bi(m,n)= S .
defined byN=Zin;. kt(m=k)!(n—k)!

For v#0, the structure of thésy(v) algebra becomes
IV. THE By(v) ALGEBRAAND SPIN REPRESENTATION more complicated. New polynomial terms of the form

One can construct the larger closBg(v) algebra con- (I1:Bn, m ) with T ,n,<n+m’-1,3 ,m,<n"+m-1 ap-
taining Ay(v) as a subalgebra. This larger algebra appearpear on the rhs of the commutation relati@i). The corre-
naturally when one calculates the commutators between thgponding coefficients are polynomial in vanishing whernv
operatorsA; and AJ-T, defined in Eq(9). We discussed this goes to zero. The coefficients of the leading tefiks 1 in
algebra in Ref. 14; here we repeat the main results for comgd. (31)] do not depend om, i.e., they are the same for any
pleteness and present an alternative construction of the alge- For example, for arbitrarid and », we find
bra.

One can defin&y-symmetric operators,, : [AZaAI]:annl,l_l'n(%) Al ,(n—1+vN)
=Y : Singm_ Rt A n2
Bn,m_i:1 a; & _Bm,n’ n,me No. (29 +I’1V_El (Al,g,iAiT—ALz), (32
=

The operatorgn,m can be represented in the symmetric Focklt is known that forN—o andv=0 the corresponding alge-
space: bra isW, .., so it would be interesting to see what kind of
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deformation theB,.(v) algebra(for nontrivial v) represents. - — N—1
Some investigation in this direction has already been done,Jz,o: \/E 6Bzt Byq 12 N

see Ref. 27.

Alternatively, the By(v) algebra can be constructed by
grouping the generators into (du1)-spin multiplets. Note

that the operators

Ji=3AL, J_=3A,, Jo=3[Az,A]] (33

generate the &) algebra. The complete set of generators
spanning thd3y(v) algebra is given byN—1) nondegener-

ate spin multiplets withs=1,3/2,2 ... ,N/2. The unique
generator with spirs and projectiors, is defined as

1 (s+s.)!

(S_Sz)!

$,8

[Az,"',[Az,Ags]“‘]-
—_———

(s—s,)

z: 2(5752)

(39
Its Hermitian conjugate is simply];rysz=Jsv,Sz. One can
show that by proving relatiofil7)

[Ay,[A,, ... [AyIAL[AD, ... [ALA50 ... ]

s—5, s—5,

(s—s8)1(28)!

—(_ (5752)22(5752)
( ) (S+Sz)! 25

by induction and using Jacobi identities. The action of ele-

ments of the $P) algebra on the generatdg s is defined in
the following way:

[J_ v‘]s,sz] = \/(S+ S,)(s—s,+ 1)Js,sz—lv

[J+ vJs,sZ] = \/(S_ Sz)(3+ S+ 1)Js,sz+1-

[\]OvJs,sZ]:sst,sZ- (35)

Let us write down the first few spin multiplets for amyin

terms ofgi‘j operators:
s=1,N=2,

Jii=\2Al=223.=3] ,,

J16=2B1 1+ (N—1)(1+Nv)=4Jo, (36)

s=3, N=3,

_ T_ 4t _ _ 1t
Jaz.a= NBAL=311 3, Ja1i=3V2B21= 3% 11,

37)
s=2,N=4,

J22=2 \/gAZ: J;—z '

3

J2’1=2\/5{ 2B+ + v(2N—3)}AZ] =3 _,,

PHYSICAL REVIEW B66, 205313 (2002

+(TN=12) |+ (N—1)

X (1+Nv) +v(2N—3)

3 N—1
N

The algebra of the operatoty s is finite, closed and of
general form,

[Jsl,slzi‘]sz,sh]zz (H J) )

S,s1,*5Sy,

] . (38

(39

where|s;,+ S,,| <S<s;+5,— 1. Using the definition(35)
and relation(36), one can easily obtain commutation rela-
tions involving operators of the=1 spin multiplet,

[31,0 ) Js,sz] = 452‘-]3,327

[Jl,il a\]s,sz] =+ \/8(51 S)(s*s,+ 1)Js,szt1 . (40

For arbitraryN, the algebra o6=3/2 operators is

9V3 ,

[J312,1/2: 932,321 = EJZ,Z_ TJM’

9 9.2

[J3/2,—1/2-J3/2,3/2-|:EJZJ N Y1110

+9\/§J1‘1[— %+v(2—N)},

9 27

6 N
[33/2,—3/2v\]3/2,3/ﬂ:EJz,o— N 31,131,—1—9(N+ 5 v[Jd10

+a,

9 18
[J312-1/2+9312,12] :ﬁJz,oﬁL NJl,lJl,—l_ WJl,O

N4
4

1
+18J14N+ +Db,

where the constants andb are
N

E_l)v

+

N+1
a=+9(N—-1)(1+Nv) N

b=—18N—-1)(1+Nw)

1 3 11 1
—=+-=+N+ NZ—ZN—— v

*1727 9N

2

For N=3, the B;(») algebra (including s=1 and s
=3/2 spin-mutipletsis in full agreement with Ref. 12. The
exact correspondence betwe¥pandJ defined in Ref. 12
and our operatords s, is

Yi=—2311, Yap= 23325, Yio=— 27331
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J=13,0-2), \]5: L(3,0-2)2-3%3,3, 4. (41  The generatorX;; are Hermitian but they do not commute
becausd®; ;'s do not commute even far=0.* On the other

This representation of the algebra of observables can bgand, the number operators, (11) commute but are not

vie_wed as a genera_lization of the polynomial algebras foformitian because the statA%“z- . ,ALHN|O> are not mutu-
N=2 (Ref. 1) andN= 3 (Refs. 12 and 28to the generaN.

The By(v) represents an irreducible representation of th
infinite-dimensional Lie algebrg of all possible strings of
consecutive commutatof®; ,[B; ,...[B;,B;]...]in-
troduced in Ref. 16. Thg algebra depends neither on the [H.X;1=[N.X; ;1=0, forall i,j. (44)
particle numbeN nor on the constant of interactian The
elements of the algeb@fall into spin multiplets. There is a The general structure of the commutation relations ifor
unique spin multiplet with a maximal spsy=(m+n)/2, =i, k=lis
no spin multiplet with spirs=s;,,,— 1, and many spin mul-

eaIIy orthogonal. Generally,

[NL X 1= ==X g, [INXi ==X,

(i—=j)+(k=1)
tiplets with s<s,,,,—1. On the other hand, we have started [X X ]:[§ B ] B_
with a fixed numbeN of Calogero particlesoscillators and Bk WERELVUN
an arbitraryr> — 1/N. Then we have defined a finite closed

algebraBy(v) of operatorsgm,n, with m+n=<N. We have :2 [H X } (45)
J— n_,m_f»
shown (see Appendix A that all operatorsB,,, with m a
+n=N can be expressed in terms Bf, , with m+n<N.  anq fori>j, k<I,
These operators have a uniquglsll) decomposition into
unique spin multiplets with spis=1,3/2 ... ,N/2. Degen-
erate spin multiplets in the approach of Isakov and Leitfaas [ X 1= 2 |11 Xn, m G0, m (M)
are just composites of lower-spin multiplets in our picture. “
+Xi j Xi Fijii (N1, (46)

with the restriction &=Xm,<j+I-1, 0<3n, <i+k—-1,
and similarly for Hermitian conjugate relations. The func-
The dynamical symmetry algeb@(v) of the Calogero tionsf andg are generally rational functions of;, with the
model is defined as maximal algebra commuting with thefinite action on all states. One can show thatiferj,
Hamiltonian (6), on the restricted Fock spad&y,m. The
generators of th&y(v) algebra act among the degenerate B,
states with a fixed energg=AN+E,, N a non-negative in- (\/_ﬁ
teger. Starting from any of the degenerate states with energy
E, all other states can be reached by applying the generators
of the algebra. Degeneracy appears &= 2. The vacuum =Ny F1+i—j)---(N+i)
|0) and the first excited stat®]|0) are nondegenerate. For
N'=2, the degenerate states &¢°0), A}|0); for N=3,  and
the degenerate states #8¢°0), BIAJ|0) and A}j0), etc.

V. DYNAMICAL SYMMETRY OF THE CALOGERO
MODEL

i j

Bl

NN

B,

N

(i—1)
) (NM+1)--- (N1 +])

\/_%) (=1

The number of degenerate states of leéls given by par- BI\'/ B, 0D

titions V3, . . . Ny of A" such thatV=3,kN; . The genera- —| | =] =MW1—1)- - (M—j+1)| =

tors of the algebra&y(») can be chosen in different ways, WNJ TN N

and in the following we present four different sets of genera- B, \ (=1

tors. =(—1 (Ny=i+]) (M =i+,
Set 1 Let us choose 1/AN+4)(N—1) algebraically in- N

dependent generatol§ ; (i+j<N) in the following way: and similarly fori<j. Now it is easy to see that

B (i-§) [ g\ G0 i +\I7 min.j) +\ G-k (i=k)
Xi,j:Bi,j(_l) . Xji=X!;=B;; — 1= Bu| [Bi)]_ S B j)(i) (i
N N o LWNUWN T & AR T
(42) (47)
For example, TheCy(v) algebra is intrinsically polynomial. Fad=2, the
. i C,(v)-Calogero algebra is the $%BJ-polynomial (cubic
% Al By ' oA B_I algebrat! i.e., [X2,0,:X02=P3(N1,N). In this case, the
o™ M N/ 0i N/ C,(v) algebra can be linearized to the ordinary(3\halgebra
owing to the fact that there are two independent, uncoupled
— oscillatorsB; andA,, which can be mapped to two ordinary
[Xi0.Xj0]=[Xo; Xo;j1=0, X[ /=X i=Bi;. (43  Bose oscillatorZ® The SU2) generators are
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g 1 ai2n [X1-1.Xs5,] =+ V8(s+5) (5= 5,7 1)Xs 5 -1 (N1~ 25,
+ — 1 2
4N~ 1)(N+ 1+20) A2 S s g
. )( 1 S; ) Nl—ZSZ 1,-17%s;s,
J-=AjBE — =7, 25,~1
4N = 1) (V+1+20) X\ 2t N 2s, 1) S0 (52)
1 4 This construction can be viewed as a generalization of the
Jo=== BI?BZ- —————AJlA, polynomial algebras foN=2 (Ref. 11 andN=3 (Ref. 12
161 (M—1) (N=1+2v) to the generaN, using theBy(v) algebra.
1 Set 3 Here we introduce a new set of generators of the
= _(Nl_jT/)’ (48) dynamicalCy(v) algebra which obey very simple relations

4 and possess interesting properties. The dynamical algebra
satisfying [ 7, ,7-1=27, [Jo,J-1=+J. . The genera- can be dg_fined through the set of generators in terms of
tors.7. and.7_ are hermitian conjugates to each other and inth€ transition number operato¢25)
this respect differ from the construction done in Ref. 13. For i—j
N=3, theCz(v) algebra in Eqs(45) and(46) is the same as Y. =N E for i=]
in Ref. 12. One can easily find the exact correspondence METTHUUN
using Eq.(41).

Set 2 We can construct a new set of generators of the BI I
dynamicalCy(v) algebra in terms of the operatalss . For Yii=Ni; \/—N for i<j,
generalN, we define
)\ Yii=N (53
XSYSZZJSYSZ(\/_N) for s,=0, where I<i,j<N. The diagonal generator¥;; mutually

commute and are Hermitian with respecto(not '), be-
cause the basis is now orthogonal, E2{l), in the dual Fock

_ BT —2s,

XS’SZ:JS,SZ< \/—$> for s,<0. (49) space(23). Note that

- . o . . v oy, - Yij(NM+1)- - (NM+]), 1= 54
The operator s satisfy a similar algebraic relation as the WL (A1) C(NLHDYi g,

i<j.
enerators of the preceding realization, and (46):
J P 9 Has) 49 Hence,Y; ; generators can be written in terms dfi2 1 Y

2(s,+5s5) generators and their Hermitian conjugates. We find
~ ~ 1
[X‘ ,Xr"]:[\]y ,erl] e . . — . .
TR RN [N Yil==G=DYij, INYiI=G-DYij,
-y (H y) Cs,s=0, (50 [HYi=IMYi1=0, [Yi0 Y0 =[Y1.Y1)]=0 Vi,
S.s,+s,

[Yig, Yy 1=[Nj— 5ijN1]BileI(jil)
T NNBY BT
[Sl(s,szysl(s’,s;] = 2 [H S‘(s,”‘,sgés"‘,s,‘zj‘(/\/’l)} == 5ilegii (Nl) +Yi,1Yl,jfij (Nl)- [ >j ’

(55
with f and g being some rational functions df;. The dy-
namical symmetry algebr&y(v) is expressed in a much
simpler way through the abovgY;;} generators than
through the{X; ;} or {?(S,SS} generators, but in all three cases
is still of the polynomial type.

The Cy(v) algebras are equivalefisomorphig for all »
arameters larger than1/N. Also, they are equivaleritso-
morphig to the dynamical symmetry algebrd, of the

(X1 0,%e o ]=48,X< <, HamiltonianH,=H' —Eo= Eﬁ‘zlkblbk , Whereb,’s satisfy
' "z "z the standard bosonic commutation relation, withy

=B,/\N. The generators of the corresponding symmetry
algebra are

where|s,+s,|<S<s+s'—1, and fors,=0, s,<0:

+3‘(s,s§(s’,sﬁs,sz,s’,sé(Nl)a (5D

with the restriction=sé=s,+s,, ¥s*<s+s’—1, and simi-
larly for Hermitian conjugate relations. The functiohsnd
g are generally rational functions df;, with the finite ac-
tion on all states. For generdl, we present several typical

commutators that demonstrate the general structure given b
Egs.(50) and (51),

[3‘(1,15(3,52] = \/8(5_ Sz)(s+ Sz+ 1)Xs,sz+l’ S,= O’
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bibj(by)' 7, i>]
blb;, i=j

and[H,,Z
fixed energyE=N, NeN,, of the HamiltonianH,. The

commutation relations foZ; ;'s are the same as those for
Yi,;'s, see Eqs(55). This mot|vated us to look for a bosonic

realization of the dynamical symmetry algebra.

Set 4 Finally, we present the bosonic realization of the

Cn(v) algebra in terms of 77,77, i=2,... N genera-
tors, which represent a generalization of E4B):

1

= bl'b,
Ji JINV—1)- - (Np—i+1) *
1
—_ T | _ +yT
Ji=hib YNV D) (Vi D) =70
J?%(&—b b) (57

One can express the generatdrd; ,J°} in terms of
{Ak,Al}, using the expression for mapping, Eg6), for any

i j]=0. They act among degenerate states wit

PHYSICAL REVIEW B6, 205313 (2002

The states with fixed energfe=N are given by
N o™/ nT|0) with SN jin;= A" These states are ortho-
normal and build an irreducible representatianep) of the
symmetry algebr&y .

h The dimension of the irrep on the states with fixed energy

N of the Cy algebra can be obtained recursivelyNn

[NVIN]
D(N,N)= 20 D(N—Ni,N—1).

For example, foN=1, D(N,1)=1, i.e., for a single oscil-
lator, there is no degeneracy; fdtd=2, D(N,2)=[N/2]

+1, N=0; for N=3,

More specifically, forA/=6n+i, for some integen and i
=0,...,5:

[A73]

D(N,3= >,

1=0

N=3i
2

+

D(6n+i,3)=(3n+i)(n+1) fori=1,...,5,

D(6n,3)=3n(n+1)+1.

v>—1/N. The coefficients in the expansion depend on the Note that the dynamical symmetry algebra of the Hamil-

parametery. The generatorgs7) satisfy the following new

algebra for every,j=2, ... N:
[T T 1=%5|5+8;|T7
VNN —i+] N,
jﬁj;—(% j;jr=aij(i—l).

No—i
T T - \/ﬁjjv%o, [70,771=0. (58

Note that the generatotg;” and J; are Hermitian conju-
gate to each other, and that relatigh8) do not depend on
v. The(Cy algebra containsN—1) ordinary SU2) subalge-

bras. Different S2) subalgebras are connected in a nonlin- H,

ear way, namely, relationg8) have nonlineafalgebraic in

N;) deformations. We demonstrate these features by the

simpleN=3 example:
U2:[75.751=*T5, [J5.751=275,

SW2):[J3,.J51=*T5, [J3.T51=279,

[73.751=*%75, [J3.751=*%75,
VNN +1
JSJ;—;\;—::;)j;j;:O,

1

N,—2
JSJi—\//\ﬁjg.ﬂ:O

tonianHl—Ek lb by is SU(N) The corresponding genera-
tors areb b;, and[Hl,b bj]1=0 for all'i andj. The degen-
erate states aréi]\ bT"'/\/_|0> with =;nj=N. They form

a totally symmetric irrep of SW) described by the Young
diagram with/\-boxes

1]
——

N

(Ref. 28. The states of the same Fock space
{Hib;mi/\/n_i!|0>} are differently arranged. With respect to
H,, degenerate states are organized into theNg§lgymmet-

ric irrep’s. However, in respect td,, degenerate states build
the M-irrep of theCy algebra. In this sense, one céor-
mally) say that the nonlinear algebfg of the Hamiltonian

is related to the boson realization of the $U(algebra
descrlbmg the dynamical symmetry of the Hamiltontdn.

VI. THE CHERN-SIMONS MATRIX MODEL
A. Introduction—The physical Fock space

The Chern-SimongCS) matrix model was obtained from
the noncommutativé) (1) Chern-Simons theory, and it was
conjectured that it described the quantum Hall fifidche
regularized version of the model, introduced in Ref. 19, is
related to the Calogero mod®1?°?2In Ref. 20 it was shown
that the minimal algebraly of the observables was identical
in the CS matrix theory and in the Calogero model. Using
the results obtained in sections herebefore, we discuss the
algebraic structure of the finite CS matrix theory in detail.

Let us start from the action proposed in Ref. 19:
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N

S=f thTr{sab(Xa-l—I[AO,Xa])Xb—I—Z&AO—ng} |oy=]1 (TrAt)eic™|0), (64)
=1
TV —AgW). (59  where C'=egit vyl (WiAT), ... (WTA™N1), = and
Here,Ap andX,, a=1,2, areNX N Hermitian matrices and (A);j|0)=W0)=0. o _ 5
¥ is a comple\-vector. The eigenvalues of the matricés The system containdl”+N oscillators coupled byN
represent the coordinates of electrons Agds a gauge field. —1 constraint equations in the traceless part of &f).

We choose the gaugB,=0 and impose the equation of Effectively, we can describe the system wht 1 indepen-
motion for A, as a constraint; dent oscillators. Therefore, the physical Fock space that con-

sists of all SUN)-invariant states can be spanned Ny 1
—iB[ Xy, X,]+ ¥ W T=Bg. (60)  @algebraically independent operators:

The trace part of Eq2) givesW ¥ =NB#. Notice that the B/=TrA™ with n=1,2,...N, (65)

commutators have so far been classical matrix commutators. + ] +
After quantization, the matrix elements X, and the com- andC'. Again, the operator8, for k>N can be expressed

ponents of ¥ become operators satisfying the following asT a homogeneous polynomial of total ordér in

commutation relations: {BI, ... ,BJ}, with constant coefficients which are common
to all operatorsA’, see Appendix C. We use the same letter
RZ ,‘I’J-T]=5ij, to denote observables in both models. In the CS matrix

model,B,,=TrA" and in the Calogero mode®,==;a/", but
i from the context it is clear whd,, represent. Since
[(X0)ij (X2l = 5 Gt Sk - (61
TrAkc™o0y=B,Cc"|0)=0 V k,V I, (66)
It is convenient to introduce thf operatér=yB/2(X;  the stateC''|0)=|0,l) can be interpreted as a ground state—
+iX5) and its Hermitian conjugat&’ obeying the following  \,53cuum with respect to all operatoB.. Note that the

commutation relations: vacuum is not normalized to 1, i.€0,|0,)# 1. The whole
_— physical Fock space can be decomposed into tovacs-
L(A)ij ,(AD) ] = i ik, ules built on the ground states with differeht
[(A)ij (A)l=[(A");; (Ah)]=0. (62 *

P, =3 | T1 8o,

In Ref. 20 it was shown that the states in thie tower of the

Then, one can write the Hamiltonian of the model at hand as

2 2

H=w N_ +Tr(ATA)) =w N_ +Nal, (63) Chern-Simons matrix model Fock space were identical to the
2 2 states of the Calogero model with the interaction parameter
N, being the total number operator associated wAth. v=I+1.
Upon quantization, the constraint80) become the genera-
tors of unitary transformations of botk, and¥. The trace B. The Ay algebra, bosonic realization, and dynamical
part of the constrain{60) demands thatthe Ihs being the symmetry

number operator fol’s) B6=I be quantized to an integer.  ysing [A; ,BI]zn(A’”‘*l)ij , we find a general expres-
The traceless part of the constraif®) demands that the gjon for the commutators between observables:
wave function be invariant under SNY transformations,

under whichA transforms in the adjoint andr in the funda- m-1

mental representation. Note that Agransforms in the re- [Bm.BI1=nY, Tr(ATAT"-1A™—-1)

ducible representationN?—1)-+1, with the singletB; r=0

=Tr A, one can introduce a pure adjoint representation as n—1

(A)ij=(A)ij— 8;B1/N. This slightly modifies the commuta- = mSEO Tr(ATSAM—1ATN=s—1), (67)

tor (62), and completely decoupld®; from the Fock space.

Physically, this corresponds to the separation of the centegy, o -an normally order the rhs of E@7) using the recur-
of-mass coordinate as it has been done for the CalogerQt relation

model. However, for the sake of simplicity, this will not be

done in this section. So, one has to remember that when W ATAT—IAM—1) = Tr(AT-IATN—1AM)

compare the results for the Calogero model with those for

the CS matrix model, it is always up to the separation of the n-2

center-of mass. + > Tr(AT AT Tr(ATn—s—2am-1),
Energy eigenstates will be SNJ singlets, and explicit s=0

expressions for the wave functions were written in Ref. 30: (68
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With the formal mapping TR'ATA¥)— 3 ala'af, rela- k k

tion (67) goes to the relation valid for the observables in the Cg:; (H BT) C“HCI(H B) -

Calogero model. Also, the recurrent relatio8) has its '

counterpart in the Calogero model witt+= 1, with the same ) )

formal mapping. The minimal algebray, including only As_ln the case of the Qaloge_ro model, these mappings are not
observables of the typ@, andBE, defined by the following unique, but there exist a simple and natural choice of the

relations (including the corresponding Hermitian conjugate boundary co_ndmon, see EqR7) and (28). T_he mapping to
relations: bosons provides a natural orthogonal basis.
In order to describe the dynamical symmetry of the CS
n matrix model, we can use the same relations as those ob-
[Bil’[Biz’[ ... [B; =BI] . J1=n! H i,Bi_n, (69 tained for the Calogero model. The generators of the sym-
" a=1 metry algebra obtained from the Calogero model act within a
wherel =3"_,i_, andij, i, n=1.2,...N. The iden- fixeq_tower of states iﬁgfg,s. However, one can introdu_ce an
tical successive commutators relatid®®) hold for the ob- add'“"”‘%' generator acting betyveen different towers n order
servables acting on th&-symmetric Fock space of the to describe the larger dynamical symmetry connecting all

Calogero model, see EL4), the only difference being that degenerate states in the CS matrix model.
in the Calogero model we have separated the center-of-mass

motion. Theminimal set of generalized vacuum conditions C. The BSS algebra
needed to completely define the representation of the algebra . _
(69) on the Fock space is Thg problem of flndlng the.underlymg algebra of ob;erv—
ables in the CS matrix model is more complicated than in the
B,BJ01)=2N(N+IN—-1)|0}l), Calogero model. An additional problem is that in the CS
matrix model there are more invariants of a given order. For
B3BJ|0J)=3N[N2+1+I(N—1)(2N—1) example, let us consider the set of six observables of the
fourth order  {Tr(AT2A?%), Tr(AAT2A), Tr(ATA?AT),
+12(N=1)(N=2)7|0J)=y|0/), Tr(A2AT2), Tr(ATAATA), Tr(AATAAT)}.  After performing
the normal orderingsee Appendix ¢ we find that there are
B3B1?0)1)=54{(1+1)BIB}+[N+(N—2)I two  independent, normally  ordered invariants
; {Tr(A"2A2), AT ALAjA;} for N=4. (ForN=3 there is only
+y/271B3}0,]). (70

one independent invariant of that ordem the Calogero

The generalized vacuum conditions for the CS matrix modeMmedel, fTO,Lf '\;24* there is only one invariant SOf the fourth
(70) are the same as those for the Calogero model with thrder=a; “a;". Hence, we cannot describe thg® algebra in

interaction parametelp:| +1.20 terms of the generatOIBm'nZTr(ATmA”) in a way analo-
Using the results obtained in the Calogero model, we ca§ous to the procedure in the Calogero model.

construct a mapping from free Bose oscillatébs b’} to There are two approaches to the construction of algebra of

(B, B_T}_ However. the coefficients in the expansio;l observables in the CS matrix model. Generally, these two
b ' approaches result in different algebra, although in the Calog-

n+k k ero model they produce the same algebra. The first one is to
Bi=> ]I bT) (H b write all possible invariants iA" andA, and then to reduce
K them to the normally ordered ones. The main point is that
depend orl, i.e., they are not the same for all towers in thethis set of normally ordered invariants coincides with the set
physical Fock space. On the other hand, we can construct@f all invariants in twoNx<N matricesX andY of which the
mapping that includes th@ operator and its bosonic conter- matrix elements are numbers. The problem thus reduces to
partco: finding the minimal number of algebraically independent in-
variants of twoN XN matrices. This was solved explicitly
BI=S (H bT> n+kc“c' (H b) k for N=2,3 by Sibirsky* and for generaN by Donkin3? One
nT & 0 ~0 ' starts with the finite set of the algebraically independent in-
' variants, for example, foN=3 with {Bl,Bz,B3,BT,BT,B§,
k k Tr(ATA), Tr(AT2A), Tr(ATA?), Tr(AT2A?),: Tr(AT?A2ATA): ],
CT:E (H bT) CZ'HC'O(H b) , and calculates all possible commutators between them. The
kol results are invariant operators that can be expressed generally
where in terms of polynomials in algebraically independent invari-
ants. Note that the basic set of independent invariants is not
[b; ,bjT]z 8ij, [co.cd1=1, [b;,ci1=0. unique and can be chosen in different ways. However, each
) S o invariant can be uniquely expressed in terms of a given basic
The inverse mapping is given similarly as set of algebraically independent invariants. Generally, one
K ‘ can express the commutator between any two observables as
b$=2 (H B‘r) ctic! H B) ’ a polynomial in terms of basic generators. This approach is
k] under investigation and will be reported separately.
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The second approach is a generalization of our constru@nd the others can be expressed as polynomials of genera-
tion of the Ay algebra. Namely, we start with a minimal tors. Here we give some simple, general results:

number of generator§B;,B,, . ..,BI,B}, ...} describing

. [B; ... [Bi,BM---1 B B! n-1
the complete physical Fock space, and try to close the alge-1"i,_; LBiBn B [Bi'—n+2,B5] , .
bra under the Lie brackécommutatoy with a minimal num- n—1 - 2(1'=n+2) A las
ber of additional generators. For finitg the algebra is finite ( 1T ia) n!
and generally contains less generators compared with the a=1

first approach. Since the result of the Lie commutator of two
generators is a polynomial in the basic generators, we call
the algebra of this type finite polynomial Lie algebra.
ForN=2, theB3, algebras for the Calogero model and the .
= . ; of all successive commutators of the type
CS matrix model are equivalent, but fde=3 they differ. We yP

. CTo ... To: .q h _is eitherB: or BY i
demonstrate this by thél=3 example. We start the con- [9:,:19i,, ’[g'n’g'n_+1] 1, whereg, is eithers, or B, | .
struction of theBgs algebra With{Bl,Bz,Bg,BI,BZ,TBg} natural number. This set was closed under commutation,

which followed from the Jacobi identities, and all generators
were “mirror” symmetric. However, they did not know how
the algebraj looked like explicitly, and gave a step-by-step
[B, B.’r]:ijO._ L ij=23. construction. As their main results, they presented a Table
Pl L=l AT with numbers of linearly independent invariants of a given
The operators{Bz,B’g,OLJ} build the s1,1) algebra. This type (n,m), but they completely omitted the discussion of
algebra is a subalgebra of every polynomial Lie algebranonlinear identities between invariants that are crucial for the
B(N:S' The operato©, ; (the total number operatpsatisfies finite number of degrees of freedom. The conclusion of Ref.

Tr(ATTAATS+ ATSAAT) = Tr(ATTFSA+ AATTTS). (73)

The authors of Ref. 17 considered the infinite set

and four additional generato€3, 1, O, 5, O, 1, O,,defined
as

the following relation: 17 was that the algebrasfor the Calogero model and for the
matrix model were the same. Although this is true, the actual
[011,0,]1=(—))O; ;. models are different, as can be seen from the algebraic struc-

ture obtained for a fixed number of particlds
The Bgs algebra is defined by two types of commutation

relations: VIl. CONCLUSION

[Bi,Oj]=1]Oj - 1x+i-1, [Bfr Ol =1KO; - 11 The minimal algebrady of invariant operatorg\; defined

(71 by the successive commutation relation and the generalized
vacuum conditions completely define the action of the opera-
tors A; on the states in the physical Fock space. The general

PP S structure of thed,, algebra can be viewed as a generalization

[Oi41j+1:Okrrir 2] = Gk =D O pir g, 11 k_?é) of triple operator’\lalggebrééto the (N+1)-tuple operator al-
gebra. ForN=2, the A,(v) algebra is jusfA,,[A,,A}]]

The latter commutato(72) follows from the former(71) and ~ =8A, for a single oscillato”,= (a; — a,)?/2 describing the

the Jacobi identities. relative motion in the two-body problem.

ItlTs2 n;wpgrtant to note that the invariant of the sixth order e have constructed an orthogonal bajsin the dual
Tr(A'“A“A'A) does not participate in the above aIgebra.Fock space. The operatofs andAJfr are conjugate to each

This means that although the above 'algel'Bgé Is the mini- _other with respect to the new scalar product that they induce
mal algebra, closed under commutation, it is not complete iy, yhe gual Fock space. This construction differs from the

the sense that we do not know the commutator between any,nqirction proposed in Ref. 13 where conjugated operators
two observables The second important point is that ey gifferent indices do not commute. Furthermore, we have

above algebra3 5™ applies equally well to the three-body ghown that there exists a mapping from ordinary Bose oscil-

Calogero model. The only difference is that the invariantgiors to operatorsAk,Al, and its inverse, and in this way

0,2 in the Calogero model can be expressed in terms of thg,e haye ohtained a natural orthogonal basis for the symmet-
lower invariants, see Appenldlx A. However, when we reducg. pock space.

the set of generators fd5™ to nine, using the identity for Since this algebraic structure is identical in the Calogero
O, we obtain a different algebra with different commuta- model with that in the CS matrix model, all above-mentioned
tion relations. The above construction can be generalized foiag|ts aplly equally to both models.

any finite N. The generators are of the for@,, B, It has been showft?? that the states in thkth tower of
[Bn.B], [Bk.[Bn,Bl 1], etc. The number of generators is the CS matrix model Fock space are equivalent to the states
finite, with an upper limit of N? generators. Of course, the in the physical Fock space of the Calogero model with the
lower limit of the number of generators is the number ofinteraction parameter=1+1. Therefore, in order to de-
generators ofBﬁa' in the Calogero model—1/R(+4)(N scribe the dynamical symmetry of the CS matrix model, we
—1). Using Jacobi identities, the commutator of any twocan use the same relations as those obtained for the Calogero
generators can be expressed as a combination of successinedel.

commutators. Some of them are generators of the algebra, The authors of Ref. 17 claim that the infinite algelgia

and
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analyzed in their paper, is common to both, the CalogergivesA,=1+k"+(—=)"(1+k)" for A, in Eqg. (A3). For N
model and the CS matrix model. In fact, this algebra is com=2, one easily finds

mon to all systems of infinitely many identical particles.

However, the analysis of the finite CS matrix model pro- K

posed in Ref. 19 requires finite algebras of observables. We AZKIFAZ’ Ag+1=0, k>1.
have shown that owing to the trace identities between ob-

servables for finiteN, the effective, minimal, finitd3y alge-  We also list some results fdd=3:

bras of observables for the Calogero model and the CS ma- L2 s 1h3 . 12
trix model are quite different. ThB ° algebra contains more As=3A7, As=5AA3, As= 1A T 3A3,
algebraically independent observables tBeﬁ’?'. Also, inthe  and forN=4

CS matrix model one has to be careful when constructing the

B{° algebra. There are two different methods of constructing As=2 AsA3,
the algebra and they lead to different results, as we have s 1h3. 12
demonstrated by theN=3 example. Moreover, for the As=1RAA1— A3t 3A;3,

Calogero modeI,B‘N:aI can be connected taV algebras,
whereas for the CS matrix model it is unclear whetBg®
represents a generalization of théalgebra.

Ar=15AZAL+ 5 ASA;.

To calculate the coefficients in E¢A2), we proceed in
two steps. First, we find the coefficients in the following
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Contract No. 00980103. where=n,=n, Zm,=m, and ©O: denotes normal ordering
of the operator®, a] on left anda; on the right. Since by
APPENDIX A definition :a;a] :=:ala; :, we consider the identit{A4) as an

identity in the ring of polynomials in two sets of commuting,

It is knowr™ that the sum of powerB,=={L,a for  real variables. Then we construct a set of linear equations
n>N can be expressed in termsBf, 1<k=<N in the form inserting some points in relation®2) and (A4). For ex-
B,=2(IIB)". In sections herebefore, we have claimed thatample, for points {al,...al_;}={1k0,....0 and
there exist similar relations for the elements of the algebraa —

An(v) andBy(v) of the form .an-14=1{1.0, ...,0,1} the corresponding invariants

are
n J—
An=2 (H A) ,  N>N, (A1) Bym=I+(—)""(1+k)"(1+H™ m>0 V n,

Al=1+K"+(—)"(1+kK)" V n,

and more generally, n (=) )
A=1+1"+(—)"(1+k)" V n.

Bnm= 2 (H Bna,ma)i n+m>N, (A2)  For theN=2 case, we find
whereXn,<n, Em,<m. Here we give a method for calcu- Enym:o for n+m=odd,

lating the coefficients in the identitiga\1l) and (A2).

For fixedN, let us denote — 1 — 1 —
sz,z:WAgkAl , sz+1,z+1:2—A£kBl,1A|2-

k+1-1
N—1 N—1 n
A= i”+(—)”< > ai> , (A3)  We also have a set of relations fidr=3:
=1 i=1
. - . . B3 1= %A;Bl,l’
wherea,, ... ,ay_1 are independent operators. Since these
operators mutually commute, we treat the above identity as B,,=1:B2 1+ LAJA,,
an identity in the ring of polynomials in real variables
R. In order lcul h fficients in 1), w Y -y =y
e order to ca cu ate the coefficie ts ' Edl), we . Byi— %AgBl,ﬁ %A;Bz,ll
construct a set of linear equations inserting some points
a;,ay, ..., ay_1) in Eg. (Al). For example, the point = — = = .
(31,2, aw-a) N BG (AD ple the p Borm AW+ 3AB, o 3 BoBrat.
In the four-particle case, the expressions@rl andgg,z are
(1L,k,0,....0) the same as in the three-particle case, and we present results
—

N—1 for BS,ll §4'2 and§3’3:
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Bs1=5AlB,1+ 5AlBs
Byo= iAIA,— §ATPA,+ 5AIB, o1 SAIB »,
§3,3: - #AlA+ %3§2,2§1,13 - %3§1,13 + 3352,1§1,23 .

Note that identities for§n,m transform into identities for

An. m after identificationa! =a; .

PHYSICAL REVIEW B56, 205313 (2002

[Az.[A,[A, All]]=48A,,
[As,[As,[As, AllT]=54A5— 2A3. (B1)

For a given representation with fixed parametewe also
need generalized vacuum conditions:

A2|0)=A;]0)=A,AL|0) = AzA]|0) = A3AL2|0) =0,

In the second step we express the normally ordered prodA2A3|0)=4(1+3)[0), AsAj|0)=2(1+3v)(2+3)|0),

ucts in terms of the elements of tiBy (v) algebra:

:H gna,ma:ZE H gn;,m;

2 n.<n,, 2 m,<m,, (A5)

using the commutation relation®). We present few ex-
amples:

:gil:zgl,l(gl,l_ 1+Nv),

1§2,1§1,1==§2,1(§1,1_ 1+Nv),

- — — 1
1By 1B1 =B 1B1,—(1—N V)( Boo— NAZAz) )

:§2'2§1'1::§2'2(§111_ 2 + N V) - VA;AZ ’

:B3 ;=B 4(B1 1~ 1+Nv)(By1— 2+ 2Nv—2v)

— v(AJA,+NB, ).

Finally, we have
By,=3B;— 5B1a(1-Nv)+3AJA,, N=3,
§3,2: LALA+ %AZE,Z— %§2,1§1,1+ %EZ,l(l_ Nv), N=4,
Bas= — ZAIAs— 1B1 1By~ 1+ Nw)(By 1~ 2+ 2Nv—2v)
+ A§1§2,2§1,1+ §§2,1§1,2_ %Ez,z(% —Nv)

+ATA(i—v) N<5
272\ 8N ’ :

APPENDIX B

In this appendix we perform some explicit calculations for
the A;(v) algebra. The minimal set of relations that define

the A; algebra of operator§A,, Az, AL AL A} is
[A[A2,AJ]]=4iA;,
[As.[As,A3]1=3A,

[A L [A2[As AlTTI=6iAA,, =23,

AAIALI0Y=2(2+3v)(4+31)AL|0),

(B2)

The algebra(B1), with the vacuum condition$B2), has a
unique representation dRg,,. Using Egs.(B1) and (B2)
one finds the action of the operatdks andA; on any state
in the Fock space:

A3AL20)=2(2+3v)(11+6v)A]|0).

n
23)|n2+2,n3—2>+4n2(3n3+n2+3v)

Azlny,ng)=3

X|nz—1n3),

n
Asln,,ng)=2|ns(2+3v)(1+3v+ 3n2)+9( 3)

2
N3
X(2+3v+n) +27] 4
n n
+6n3< 22) |n2,n3—1)+48( 32)|n2—3,n3+ 1)
81 (n;
“> 13 [n,+3,n3—3). (B3)

The ket|n,,nz) denotes the stata]™2A1™|0).

Here we demonstrate how to construct an orthogonal ba-
sis in the dual Fock space defined (B3). We write the
general expressiof24), up tok+n<5:

A= 02As+ G AT AT+ oAl A A - -
A3=03As+gaALAA+ - - -, (B4)

with unknown coefficientg. To calculate five unknown co-
efficients in Eq.(B4), we need the following relations:

A,AL0)=4(1+3v)|0),
A3AL0)=2(1+3v)(2+3v)|0),
A,A}?0)=8(2+3v)A]|0),
A,AJAL[0)=4(4+3v)A][0),

AAIALI0Y=2(2+3v)(4+31)Al|0). (B5)

Next, we apply Eqs(B4) to the states in the Fock space, and
using Eq.(B5) we obtain
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1 1 and similarly for Hermitian conjugates.
A,= Ay— A3 The norms in thé AI"2A1"3|0)} Fock space are positive if
2 4(1+31)" % 161+30)%(2+3p) 2 7 €A, A5 7|0)} pe positiv
v>—1/3 [see Eq.(10)], and we look for inverse mapping.
3 The general expressions are
- 2 A;A3A2+”" Y 1 ATA2 1At
8(1+3v)%(2+3w)(4+3v) by=f5A,+ fh,ALAS+ fLATA A+ - - -
% 1 A by=f4As+ FLALAAG+ - - -. (B8)
37 2(1+3v)(2+3p) " 3 Inserting these relations into
10\ — Thiln) — T
- : 3 AlAAH- bib]|0)=&;;]0), bib/b]|0)=(1+ &;)b]|0),
8(1+3»)%(2+3v)(4+3v) and solving for unknown coefficients, we find
Next, we calculate_tht_a coefficients ?n the expressi@es, A, AZ A2 1+3p
up tok+n=<5, thus finding the mapping from the Bose os- b,= + 7 1
cillators {b; b/} to the operator§A; A}, and vice versa. 2y1+3v  8(1+3v) 2+3v

We write the general expression

AlAA, [1+3v )
_ Th2 T + 1/+---,
Ap=Taby+ f250505 + fogbzbobst - - 4(1+3v)%2(2+3p)\ V4+3v
A3: f3b3+ f32b£b2b3+ oy, (BG) A3
with unknown coefficientd. Inserting the expansio(B6) bs= V2(1+3v)(2+3v)
into Egs.(B5) and solving forf’s, we obtain
A,=2\11 3vby+2(\2+ 30— 1+ 31)bib? + AAA; ( A 1) +
= 14 V— 14
? ? 27 42(1+3v)%(2+3v) | V4+3v
+2(\J4+3v—1+3v)blbbg+ - - -, (89)
Az=12(1+3v)(2+3v)bz+[V2(4+3v)(2+3v) After determining the mapping, we are in a position to
+ construct the orthogonal states. The first few of these states
—\2(1+3v)(2+3v)]bibbg+ - - -, (B7)  are as follows:

B0)= 5= A0l B0} A0, B0 e l0)
b30}j0) = _ AIAY0), b1l0)= = AY(0)
2\2(1+3v)(2+3v)(4+3v) 8V3(1+3v)(2+3v)(1+v)
b1?0)=a(— 121+ »)A}? 0)+ALZ[0)),
a 1=122(1+v)(1+3v)(2+3v)[(1+ v)(2+3v)(11+ 6v) - 2]. (B10)
|
APPENDIX C wheree, is therth elementary symmetric functidhof ei-

genvalues ofA. The trace of Eq(C1) can be written in the
We propose a method for constructing algebraic relationgollowing form:
between observables in the Chern-Simons matrix model. The

starting point is the Cayley-Hamilton theorem. FON&x' N " 1

matrix A, it expresseAN as a linear function of lower pow- F’N:g1 (=) "eipn-i, (C2
ers of A, with coefficients which are symmetric functions of

eigenvalues ofA: wherep, is therth power sur* of eigenvalues of\. Using

Egs.(C1) and(C2) we can generate algebraic relations be-
tween observables for fixetl. We will demonstrate the
AN=g AN"1_g AN"24 ... (—)N“1g .1, (C1)  method for theN=2 andN=3 cases.
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For N=2, the Cayley-Hamilton theorem gives

A?=(TrA)A—detA-1=B,;A—detA-1, (C3
and the trace of EqCJ3) gives
B,=B3—2detA. (C4)

First, we generate some algebraic relations expressing the

observableB,,, defined in Eq(65), for n=3, using onlyB;

and B,. One multiplies Eq.(C3) by A, takes a trace and

expresses dét using Eq.(C4), to obtain

Bs=3B,B;— 3Bj. (CH)

PHYSICAL REVIEW B56, 205313 (2002

Tr(A’AT) =Tr(AT?A%) + 3NTr(ATA) + 2 TrATTrA
+N(N?+1),

Tr(AAT2A)=Tr(AT2A%) + TrATTrA+ NTr(ATA),
Tr(ATA?AY) =Tr(AT2A2) + TrATTrA+ NTr(ATA),
Tr(AT?AAT) =Tr(AT3A) + NTrA™?,

Tr(ATAAT2) =Tr(AT3A) + NTrAT2+ (TrAT)2. (C10

The expression foB, is obtained along the same lines, but Now, we can construct the relations connecting normally or-

we also have to use the relatio85),

B,=:B5+B,B3— 1B]. (C6)

derd observables starting from the expressions Bgr
=Tr(AX). For example, in th&N=3 case, we use the first
relation in Eq.(C9) to write

Recursively, we can generete all algebraic relations express-

ing B,,, n=3, using onlyB; andB,. Of course, when we
put B;=0, we obtain results valid foA; operators in the

Calogero mode(see Appendix A

For theN=3, case we present a few relations obtained
along the same lines. The Cayley-Hamilton theorem gives

A3=(TrA)A%+ L[ TrA2—(TrA)?]A+detA-1, (C7)
and from the trace of EqC5) we obtain
detA=1B;—1B,B,+iB3. (C8)

Using Egs.(C7) and(C8) one easily obtains
B,=3B5—B,BI+3B3B;+§B],
Bs=¢B,Bs+2B3B] — §B,BI+ 35BS,
Bo= B3+ 3B3+B3B,B, + §B3B] ~ BB}~ 1B,B]
+5BS. (C9)

Next, we turn to the elements of the algelfg°>. These
observables are all of the type A{("A™...ATMAM),
wherem;,n;e{1,2,...,\N—1)}, andk<N. They are not

Tr(AT+ A4 =3 [Tr(AT+ A) 22— Tr(AT+ A) %[ Tr(AT
+A) %+ 2 Tr(AT+A)STr(AT+A):

+ 3 [Tr(AT+A) 4 (C11)
This relation gives us an identity expressing observables of
order (3,1) as functions of observables of lower order. An
observable of ordernf,n) is any observable of the type
Tr(AAT---A-..) with m A" andn A matrices in the trace.
We take :TrATA+A2ATA+AATAZ+ AAT®): on the Ihs of

Eq. (C11) and we pick up all terms of the same orderAh
andA on the rhs Thus, we obtain the following result:

Tr(AT3A) =1 TrAT2Tr(ATA) — 3 TrAT2TrATTIA
— 3(TrA"2Tr(ATA) + E(TrAT)3TrA

+TrATTr(AT2A) + L TrAT3TrA. (C12

Using Eqg.(C12 and relations given in Eq.C10 we can
express all observables of order (3,1) as functions of observ-

ables of lower order. From relatiof€11) we also obtain a
relation for observables of order (2,2)—we simply pick the

all algebraically indepedent, and in the following we give at€rms of order (2,2) on both sides of HE11):

method for constructing the relations between them.

We are dealing with matrices whose matrix elements are 2Tr(AT?A?)+: Tr(ATAATA)

operators, so we have to take care of ordering. It is important
to observe that the relations between normally ordered in-
variants are identical to relations between invariants in two
NX N matrices whose matrix elements areumbers. There-

fore, our first step is to reduce observables to normally or-

dered ones. For example,

n—1
Tr(AAT™) =Tr(ATA)+ 3, TrATsSTrAT 71,
s=0

Tr(AATAAT) =:Tr(AATAAT): + 3NTr(ATA) + N3,

Tr(ATAATA)=:Tr(ATAATA): + Tr(ATA),

=:[Tr(ATA) % + S TrAT2TrA2— 2 TrATTr(ATA) TrA
— S TrAT2(TrA) 2= 3 (TrAT)2TrAZ+ 3 (TrAT2(TrA )2
+2Tr(AT?A)TrA+ 2 TrATTr(ATA?).

To obtain all relations among the invariants, one uses the
Cayley-Hamilton theorem for matriC=A"+\A. For k
>N we can write TEX as a polynomial in T, . ..,TiCN,
and project terms with\", n=1,2,...,k—1). We start
with k=N+ 1 and construct algebraicaly independent invari-
ants, step by step, by going to higher

For completeness, we give some resultsNer 2 case:
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Tr(AT2A) =3 TrAT2TrA+ TrATTr(ATA) — 3 (TrAT)2TrA,

Tr(AT2A%) = L TrAT2TrA?+ TrATTr(ATA) TrA

—3(TrA"2(TrA)?,

PHYSICAL REVIEW B6, 205313(2002
Tr(ATAATA) := — ITrAT?TrA%+:(Tr(ATA)) 2

+3TrAT2(TrA)?+ 3 (TrAT)?TrA?

—3(TrA")*(TrA)2.
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