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Electrons in a twisted quantum wire
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We study electronic states in a straight twisted quantum wire with nonround identical crosssections turned
relative to each other along the wire. The wire internal torsion is supposed to be small compared to the inverse
wire width. This assumption allows us to transform the Hamiltonian to the single-subband one-dimensional
form. Both uniform and nonuniform torsions are considered. The effective Hamiltdimelding spin-orbit
interaction for one-dimensional motion along the wire has been constructed.
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Recent technological progress makes it possible to fabri- |I. EFFECTIVE HAMILTONIAN FOR TWISTED WIRE
cate different low-dimensional systems with complicated
geometric shap&,;* such as rolls, rings, spirals, or other
structures. It is expected that the complicated geometry wil

rovide new physical features and new functionality for elec-

Fronic deviceg. ’ ’ Ve =Vip.e=¢(2)], @)
The electron states in curved low-dimensional systemsvherep=(x,y), ¢ is the azimuthal angle. The starting point
were the subject of many recent publications, both theoretiis the single-band effective-mass Hamiltonian of the system

cal and experimentdkee, e.g, Refs. 5—12ZElectrons in such

systems are described in terms of the adiabatic effective

Hamiltonian for the longitudinal motion by means of aver- H= om
aging over the states of transversal quantizatior The

curvature of these systems leads to the appearance of effaghere the Hamiltonian of SO interaction is

tive potential. This curvature-induced potential complements

large energies of transversal quantization, caused by the con- Hso=ala,VV]p. 3

finement alone. While the energy of transversal quantlza'tlor|1_|erep is the operator of electron momentumjs the effec-

grows as the inverse squared sz®f transversal confine- tive SO coupling constant of bulk crystal. AyBg semicon-

ment, the geometric potential remains finite. In addition to " 1
the geometric potential, the longitudinal kinetic energy in a((jsuecetores alr\’_eg‘ziﬁg?) i Eﬁé%ﬁ&ﬁ %giﬁigferbi)édSEr? —ktefrﬁj)gan d
curvilinear low-dimensional system obtains the contributions €9, : 9

= 1/d (see Ref. 17, which exist if the confining potential has A is the SO splitting of the valence band. Here and below we
no inversion symmetry. What is important for further, the seth=1.

effective Hamiltonian turns out to depend on internal struc-
ture of confinement.

Along with external geometric parameters, the curvature,
in particular, one-dimensional systems are also characterized
by internal parameters, namely, the shapes of the system
cross sections. When the wire cross-sections or their orienta-
tion vary along the wire, it effects the electron longitudinal
motion.

The purpose of the present paper is to study electron
states in a straight twisted quantum wire with identical cross
sections. Electron motion will be described in terms of the
effective 1D Hamiltonian. The cross sections are supposed to
have a noncircular shape. Their relative orientation is defined
by the rotation angles(z), depending on the coordinate
along the wire. Figure 1 exemplifies the systems under con-
sideration. Such systems, twisted strips, in particular, can be
fabricated by means of the technique of self-scrolfing.

We shall consider both the nonrelativistic case and spin-
orbit (SO) corrections. Our interest to the SO interaction is  F|G. 1. Examples of twisted wires, from left to right: twisted 2D
stimulated by the hope that twisted wires are perspective fofibhon and twisted elliptic cylinder with constant torsion, conjunc-
spin control. In the recent papémwe have considered the ture of twisted and nontwisted elliptic cylindetstep barrier for
spin-orbit interaction caused by the surface curvature. Thelectrons, singly twisted bandsmooth barrier; transition between
wire internal torsion induces the spin-orbit interaction similaruniformly twisted wires with the opposite signs of torsion through
to the curvature-induced SO interaction. the domain of zero torsiofpotential wel).

The potential, confining electrons in the twisted wire, can
Pe written as

2+V(p,z)+Hso, (2

SSSssssss=22s >
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To consider the problem we will first transform the
Hamiltonian Eq.(2) to the new natural curvilinear coordi-

natesr;=U;r;, whereU(¢) is the rotation operator about
the axisz on the angles(z):

cos¢ —sing O
U=| sing cos¢p O
0 0 1

In this coordinate systerfturvilinear and not orthogonal

the potentialV does not depend on The metric tensor is
determined by

0
1

yr
—xr
VT —XT 14—;27'2
Here 7(z)=d¢(z)/dzis the internal torsion of the wire. The

determinant of the metric tens@;; equals 1.
After transformation the Hamiltonian takes the form

- 1 2 =, 12 N
H=5 (Pt +[p,~ (D)L} + V() + Hso.  (4)

Here LZ=_x—py—y—pX_isLhe z component of the angula_r mo-
mentum p;= —id/dr;,p, =(px,Py). The transformedHso

can be expressed via the covariant components of vector,

The covariant components of any vectgrtransform asg;

=K;kax. The matrix of transformatioK; = dr,/dr;. For
our transform,

—aUkJ

Kij:Uij‘I‘aiyzrkW. (5)

The covariant transformo of spin matrix iso;=Kjjo;=o;
+ 6, fdo/dz. Hereao=Uo are the rotated matrices

5 0 € _ 0 —¢€?¢
O-X:(ei(b 0)1 (Ty:|<ei¢ 0 )1
om0, (6)
The SO Hamiltonian can be rewritten as
_ i— IV—
Hso= e’ o;—=p;, (7)
(?rk

where€'l* is the antisymmetric tensor of Levi-Civitta.

Expanding the wave functions

\p(r—):; Un(P) Xn(2)

in the eigenfunctions of transversal motiglm(;), which
satisfy the equationﬁ?f/Zer V(p)—E,]¥.(p)=0, we get
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(En+p22Mm—E) xn+ > Van Xn=0. (8)
n!

. . . _ or O .
The Hamiltonian of perturbatlom?nn/—vﬁmﬁrvﬁn, consists

of the torsion-induced’", and SO-induced>>, terms

nn’

1 _
" _%[Z(Lz)nn’{T(z)ypz}‘*’ 7’2(2)(L§)nn,:|7 (9

O _
V:n’_

a[ Ti( A + (0x(Fy)nn — ay(Fy)an )P4, (10)

where the figure brackets stand for the gperation of symme-
trization,{C,D}=(CD+DC)/2, F;=dV/dr;,

—1(2)XA,.

A=F.py—F,px, A=7(2)yA,, A= »

Below we explore the smallness of the torsied<1, as an
adiabatic parameter. In this section we shall study the case of
nondegenerate states the degenerate case will be consid-
ered later. If the torsion is small, an electron mainly con-
serves the definite transversal subbango thaty,> x,- if
n’#n. The main contribution to the adiabatic Hamiltonian
arises from the diagonal elemedy,,, providing V,,#0,
otherwise we need the second order corrections.

Another small parameter is the relativistic SO parameter
a. The effective Hamiltonian will be found in the first order
of a. Within this approximation SO interaction vanishes in
Rontwisted wires. The diagonal element of this perturbation
also vanishes in the twisted wires, therefore the adiabatic SO
interaction arises in the second perturbation order from the
interference o/, and V39 .

To obtain the effective Hamiltonian we shall proceed
similarly to thek-p perturbation theory. Let an electron state
be formed mainly from the subbamd The nondiagonal el-
ements ofY,, result in admixing other subbands. As in, Ref.
17 we express the “small” componenjg,s via the “large”
componenty,, and substitute them into the equation jgy.
Terminating the iteration we find

1
ﬁE_E"—Vnn

- 2 Vnn'

n’#n

E,+ Xn

1

En/ + %pz

-1
_E> Vn/nxn=0.

(12

The smoothness of the functiaf(z) yields a smallness of
momentum transfer in Fourier transform ®f,, . Hence
typical differences in longitudinal energies in Ed.2) are

less than intersubband distance and the denominators in the
resolvent En,+E§/2m—E)*1 can be replaced by K,
—E,) L. The final perturbational formula yields

1
En+ ﬁE_E'I'Vnn Xn™— E Van'

n’#n

——VarnXn=0.
n’— En
(13
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After substitution ofV,, we find the effective 1D Schro Equation(18) shows that the spectrum decays onto two in-
dinger equation for electrons in timth subband of the trans- dependent spin states with the definite spin projections
versal quantization +1/2 onz axis.

The simplest case occurs for the uniform torsiefz)

=const. In that event the longitudinal momentymis the

1 _
— 2 (n) —
+ —p2+ + =0. . :
En 2mPz Un(2) = voi 7(2), P2} HSO) Xn=0 conserving quantity, and the energy spectrum becomes

(14)
Here En(p)=En+p22m= a,mp+ 728, . (19)
U(2)=B,m(2), _ — .
n(2)=Fn7(2) It should be emphasized that the momentpyrin the coor-
1 1 (L) |2 dinatesr is not the same as the momentyin the labora-
Br==—(L2) yo=— > —21_ (15 tory coordinate system. The operatomp, generates infini-
2m z’nns n m2 , E —E . k . . -
n#n bEnp 7 En tesimal translations alongz axis while p,=p,+7L,

- ; determines in the laboratory system the superposition of in-
Note that the contribution to the diagonal eIemb’rﬁ’ﬁ from O : i . .
9 finitesimal translation and rotatiofspiral translatiohp that

the first term in Eq.(9) vanishes for nondegenerate states.COrres onds to the spiral symmetry of an uniformly twisted
The quantityi4,(z) is the torsion-induced effective geometric . P P y y y

O . wire.
potential in thenth subband. The parametey, determines . ) o ) N —
the corrections to the longitudinal kinetic energy. The geo- Equation(19) is valid if the spin splitting 2, 7p is less
metric potential is positive and grows with the torsion. ~ than the intersubband distance. If the wire form approaches
In the general case, whe, —E, and E, have same toa cylmgncal one, the quantities, do not vanish, and the
orders, the contribution proportional tg, has the order of linear in p term in spectrum Eq(19) remains. This looks
magnitude of kinetic energy along the wing?/2m, multi-  strange, if not to consider that the spectrum of transversal
plied by the small parameter@)2. Hence in this case the states tends to degenerate with the resulting inapplicability of
correction to the kinetic energy is negligible. The correctionEd. (19). In fact, the case of the circular symmetric wire
becomes essential in the near-degenerate spectrum due to gfwuld be studied using the near-degenerate perturbation
small denominator in Eqi13). In this caseand for the de- theory.
generate case alsove should explore the near-degenerate Let us discuss the physical reason of the spin-orbit inter-
theory of perturbationgsee below. action in the twisted wire. Let an electron be described by a
The torsion can be considered as the way to provide thwave packet propagating along the wire. The transversal
potential for longitudinal control on electrons by producing shape of the packet repeats the wire cross section. During the
the longitudinal confinement, barriers, etc. The solvable onepropagation the packet rotates with the angular velocity
dimensional problems from the quantum mechanics textr(z)p/m. The rotating packet produces the magnetic field
b00!<s are simply transcribed to the _systems With nonunziforrrBZN T(Z)E/m in the frame translationally accompanying the
torsion 7(z). Hence the problems with the functi¢m(z)]1®  electron. Interaction of this field with the electron spin re-
of the form aé(z), af(z) #(b—z), atanhfb), a/cost(z/b) sults in the SO Hamiltoniakl g~ 7(2) o,p, /m.

areTf\(;lveifbelgﬁve SO interaction is given by the expression The twisted wire can provide a way of spin control. Con-
9 y P sider the wire with constant torsion surrounded by non-
O 150 | S0 for twisted c_iomains with reflt_actionless smooth transitions b(_a-
HO=— S nn’ “n'n "~ “nn’”n’n tween different parts. This system can serve as a “spin
SO W n E,—E, rotator.” If electron states with spin projectiortsl on thex
axes denote the information states 1 and 0, correspondingly,
@ (Ldnrn ~ — mr-angle spin rotator carries out the functibiOT.
T m ngn E.—E ((Ann=Anrn) - {0{7(2),pa}} Let the electron spin at the entrance of the system be
" " oriented along thex axis. While propagating along the wire
+H{(OXFan); P {7(2).p1]). (16)  the spin will rotate in thex-y plane. Using the SO Hamil-

tonian (17) we find that the angle of spin rotatiof(z) is

Here the square brackets stand for the commutator. Near thgz) = 2ma,¢(z), where, in accordance with the assump-
subband bottoms the contributiono, alone survives, and  tions, ma,<1.

we get

HO= a,o 4 7(2),pal (17) Il. EFFECTIVE HAMILTONIAN
FOR A PARABOLIC QUANTUM WELL

where . . -
Here we study a specific quantum well with confining

potential V(p)=m(wix?+ wjy?)/2. The coefficientsp,,
(19 vn, anda, are determined solely by the transversal wave
n'#n En—En function of the wire. The simple calculation gives

2_“ E (FyE(_ any)nn'(l-z)n’n

an= m
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o« 2nx+ny+1+ N , Nx— Ny 2 —oml E N 1 23
an=7 | (0~ wy oty (0t wy) oy’ 21=2M| E= (ot oy) F5 (o= wy) |. (23
20 . .
20 It can be shown that for strict degeneraey, & o, , the wire
with circular symmetrythe torsion can be excluded from the
Bn= [(2nx+l)(2ny+1)(wf+w§)—2wxwy], effective Schrdinger equation. To accomplish this one
8Maw,wy should carry out the transformatiory.=expFi¢)(x1
*iy_4). Equation(23) takes the form
[n=(ny,ny),n,,=0,1,2...]. (22

T e T24(2),,
The applicability of Eq.(20) is limited by the proximity of (Pz/m=2E+ oyt 0y x= =0y~ 0 e X7 -

the denominators to zero. #, becomes too large, the per- 24

turbative approach fails and the degenerate perturbatiof w,=w,, Equation(24) becomes independent efin ac-

theory should be used. cordance with the physical meaning. Equati@8) immedi-
We shall estimate the value af , for the lowest subband ately yields the spectrum for the case of uniform torsion

of a InAs helix scrolled from a strip, similar to the one ob- o _

tained in Ref. 1. InAs has strong enough basic SO interaction p°+ 72 (0x—wy)? 7p?

with @=0.145ME;. In fact, the helixes obtained in Ref. 1 E=oxtoy+——= 4 +

contain both monolayers of InAs and bilayers of GaAs, but

apparently it is easy to produce similar structures with many

InAs layers and only few GaAs layers. These wires have IV. TWISTED WIRE IN MAGNETIC FIELD

curvature, but nevertheless can be described by the potential |, this section we generalize the problem without the SO

of the form Eq.(1) with the shift of origin in the k,y) plane. interaction to include the magnetic field along the wire axis.
Providing that the Confining potential is harmonic it can beChoosing the vector potentia| of the magnetic fieldas A
written asm[ wz(X—Xo) 2+ w;(y—Yo)*]/2. For this potential = (—By,Bx,0)/2, we have instead of E)
the Egs.(20),(21) prove also correct.

For w,>w,, that corresponds to a strip helixpagg 1, 1 , o mw2p?
=0.14F/E4. If we set Ey=0.1€V, the parameter H=5 Pt 5Pt 5 Lt—5—+V(p2), (20
Mago=0.0354. The spiral wires obtained in Ref. 1, have
~10° em L. For such value ofr, the above-mentioned Whereo.=eB/mc is the cyclotron frequency. Transforma-

- (29

m-angle spin rotator should bex410~° c¢m long. tion to the curvilinear coordinates leads to
— 1 -5 — 0e . Wc mwgzz —
lIl. DEGENERATE STATES H= %[pl +(p,— 1(z)L,)2]+ 7|_Z+ > +V(p).
The degenerate spectrum appears, e.g., for a hard-wall (27

wire with square cross-sections or in a parabolic pOtemialzurther we can proceed in the same manner we used to ob
well with multiple frequencies. In this case the resonant de- P

nominators vanish and the theory of perturbation fails. Thdan Eq.(141.|The_treds:uIt||ng 1D St.chfr.o?énﬁer ter(]qu?tlon in the
same is true in the near-degenerate spectrum. In these cadd§sence otlongitudinal magnetic field has the form

one should use the initial expressi@), where the sum in-

1 — —
cludes the states from the degeneraie near-degenerate (En—E+ 2—B§+Un(2)—7n{7'(2),pz}2— yaMod 7(2),p)
group only, numerated by a number m

2,72
"2 mwc(P Jnn
E 4ot Bt S Vorw=0. (22 T om0 29
v #v

Equation(28) is valid for the bottom states only. Note that
As an example, we shall consider the near-degeneratie interaction of longitudinal motion with the magnetic field
parabolic confining potential witho,—wy<w,. For sim- is characterized by the same constant as the torsion-
plicity, we neglect the SO interaction. The lowest level ( induced additions to the kinetic energy.
+wy)/2 is not degenerate, while the second, {3w,)/2

and the third (2,+wy)/2 compose the group of near- V. CONCLUSIONS

degenerate levelgFor definiteness, we sei,>w,.) It is _

convenient to define=n,—n,, v==1. From Eq.(22) it In conclusion, we have solved the problem about the ef-
follows that Y fective single-subband Hamiltonian of electrons in the adia-

batically twisted straight wire. Both nonrelativistic and rela-
tivistic cases were studied. The main contribution to the
nonrelativistic Hamiltonian is the effective potential caused
— R ) 5 by the wire torsion. The potential of nonuniform torsion can
Pox1—2i{7,ptx-1+ T x1—Kix1=0, reflect or localize electrons propagating along the wire. The

53)(_1+2i{752})(1+ x_1—k% 1x-1=0,
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