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Electrons in a twisted quantum wire
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We study electronic states in a straight twisted quantum wire with nonround identical crosssections turned
relative to each other along the wire. The wire internal torsion is supposed to be small compared to the inverse
wire width. This assumption allows us to transform the Hamiltonian to the single-subband one-dimensional
form. Both uniform and nonuniform torsions are considered. The effective Hamiltonian~including spin-orbit
interaction! for one-dimensional motion along the wire has been constructed.
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Recent technological progress makes it possible to fa
cate different low-dimensional systems with complicat
geometric shape,1–4 such as rolls, rings, spirals, or othe
structures. It is expected that the complicated geometry
provide new physical features and new functionality for el
tronic devices.

The electron states in curved low-dimensional syste
were the subject of many recent publications, both theor
cal and experimental~see, e.g, Refs. 5–12!. Electrons in such
systems are described in terms of the adiabatic effec
Hamiltonian for the longitudinal motion by means of ave
aging over the states of transversal quantization.13–15 The
curvature of these systems leads to the appearance of e
tive potential. This curvature-induced potential compleme
large energies of transversal quantization, caused by the
finement alone. While the energy of transversal quantiza
grows as the inverse squared sized of transversal confine
ment, the geometric potential remains finite. In addition
the geometric potential, the longitudinal kinetic energy in
curvilinear low-dimensional system obtains the contributio
}1/d ~see Ref. 17!, which exist if the confining potential ha
no inversion symmetry. What is important for further, t
effective Hamiltonian turns out to depend on internal str
ture of confinement.

Along with external geometric parameters, the curvatu
in particular, one-dimensional systems are also character
by internal parameters, namely, the shapes of the sys
cross sections. When the wire cross-sections or their orie
tion vary along the wire, it effects the electron longitudin
motion.

The purpose of the present paper is to study elec
states in a straight twisted quantum wire with identical cr
sections. Electron motion will be described in terms of t
effective 1D Hamiltonian. The cross sections are suppose
have a noncircular shape. Their relative orientation is defi
by the rotation anglef(z), depending on the coordinatez
along the wire. Figure 1 exemplifies the systems under c
sideration. Such systems, twisted strips, in particular, can
fabricated by means of the technique of self-scrolling.3

We shall consider both the nonrelativistic case and sp
orbit ~SO! corrections. Our interest to the SO interaction
stimulated by the hope that twisted wires are perspective
spin control. In the recent paper17 we have considered th
spin-orbit interaction caused by the surface curvature.
wire internal torsion induces the spin-orbit interaction simi
to the curvature-induced SO interaction.
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I. EFFECTIVE HAMILTONIAN FOR TWISTED WIRE

The potential, confining electrons in the twisted wire, c
be written as

V~r,z!5V@r,w2f~z!#, ~1!

wherer5(x,y), w is the azimuthal angle. The starting poi
is the single-band effective-mass Hamiltonian of the syst

H5
1

2m
p21V~r,z!1HSO, ~2!

where the Hamiltonian of SO interaction is

HSO5a@s,¹V#p. ~3!

Herep is the operator of electron momentum,a is the effec-
tive SO coupling constant of bulk crystal. InA3B5 semicon-
ductors a5(2Egm)21@D(2Eg1D)/(Eg1D)(3Eg12D)#
~see, e.g., Ref. 16!, Eg is the width of the forbidden band an
D is the SO splitting of the valence band. Here and below
set\51.

FIG. 1. Examples of twisted wires, from left to right: twisted 2
ribbon and twisted elliptic cylinder with constant torsion, conjun
ture of twisted and nontwisted elliptic cylinders~step barrier for
electrons!, singly twisted band~smooth barrier!, transition between
uniformly twisted wires with the opposite signs of torsion throu
the domain of zero torsion~potential well!.
©2002 The American Physical Society08-1
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To consider the problem we will first transform th
Hamiltonian Eq.~2! to the new natural curvilinear coord
natesr̄ i5Ui j r j , whereU(f) is the rotation operator abou
the axisz on the anglef(z):

U5S cosf 2sinf 0

sinf cosf 0

0 0 1
D .

In this coordinate system~curvilinear and not orthogonal!

the potentialV does not depend onz̄. The metric tensor is
determined by

Gi j 5S 1 0 ȳt

0 1 2 x̄t

ȳt 2 x̄t 11 r̄2t2
D .

Heret(z)[df(z)/dz is the internal torsion of the wire. Th
determinant of the metric tensorGi j equals 1.

After transformation the Hamiltonian takes the form

H̄5
1

2m
$p̄'

2 1@ p̄z2t~ z̄!Lz#
2%1V~ r̄!1H̄SO. ~4!

Here Lz5 x̄p̄y2 ȳp̄x is the z component of the angular mo
mentum p̄i52 i ]/] r̄ i ,p̄'5( p̄x ,p̄y). The transformedH̄SO
can be expressed via the covariant components of vec
The covariant components of any vectorai transform asāi

5Kikak . The matrix of transformationKik5]r k /] r̄ i . For
our transform,

Ki j 5Ui j 1d i ,zr̄ k

]Uk j

]z
. ~5!

The covariant transforms̄ of spin matrix iss̄ i5Ki j s j5s̃ i

1d i ,zr̄ k]s̃k /]z. Heres̃5Us are the rotateds matrices

s̃x5S 0 eif

e2 if 0 D , s̃y5 i S 0 2eif

e2 if 0 D ,

s̃z5sz . ~6!

The SO Hamiltonian can be rewritten as

H̄SO5ae i jk s̄ j

]V

] r̄ k

p̄i , ~7!

wheree i jk is the antisymmetric tensor of Levi-Civitta.
Expanding the wave functions

C~ r̄ !5(
n

cn~ r̄!xn~z!

in the eigenfunctions of transversal motioncn(r̄), which
satisfy the equations@ p̄'

2 /2m1V(r̄)2En#cn(r̄)50, we get
20530
rs.

~En1 p̄z
2/2m2E!xn1(

n8
Vnn8xn850. ~8!

The Hamiltonian of perturbationVnn85Vnn8
tor

1Vnn8
SO consists

of the torsion-inducedVnn8
tor and SO-inducedVnn8

SO terms

Vnn8
tor

5
1

2m
@2~Lz!nn8$t~z!,p̄z%1t2~z!~Lz

2!nn8#, ~9!

Vnn8
SO

5a@s̃ i~Ai !nn81~ s̃x~Fy!nn82s̃y~Fx!nn8! p̄z#, ~10!

where the figure brackets stand for the operation of sym
trization, $C,D%5(CD1DC)/2, Fi5]V/] r̄ i ,

Az5Fxp̄y2Fyp̄x , Ax5t~z!ȳAz , Ay52t~z!x̄Az .
~11!

Below we explore the smallness of the torsion,td!1, as an
adiabatic parameter. In this section we shall study the cas
nondegenerate statesn; the degenerate case will be consi
ered later. If the torsion is small, an electron mainly co
serves the definite transversal subbandn, so thatxn@xn8 if
n8Þn. The main contribution to the adiabatic Hamiltonia
arises from the diagonal elementVnn , providing VnnÞ0,
otherwise we need the second order corrections.

Another small parameter is the relativistic SO parame
a. The effective Hamiltonian will be found in the first orde
of a. Within this approximation SO interaction vanishes
nontwisted wires. The diagonal element of this perturbat
also vanishes in the twisted wires, therefore the adiabatic
interaction arises in the second perturbation order from
interference ofVnn8

tor andVnn8
SO .

To obtain the effective Hamiltonian we shall proce
similarly to thek-p perturbation theory. Let an electron sta
be formed mainly from the subbandn. The nondiagonal el-
ements ofVnn8 result in admixing other subbands. As in, Re
17 we express the ‘‘small’’ componentsxn8 via the ‘‘large’’
componentsxn and substitute them into the equation forxn .
Terminating the iteration we find

S En1
1

2m
p̄z

22E1VnnDxn

2 (
n8Þn

Vnn8S En81
1

2m
p̄z

22ED 21

Vn8nxn50.

~12!

The smoothness of the functionf(z) yields a smallness o
momentum transfer in Fourier transform ofVnn8 . Hence
typical differences in longitudinal energies in Eq.~12! are
less than intersubband distance and the denominators in
resolvent (En81 p̄z

2/2m2E)21 can be replaced by (En

2En8)
21. The final perturbational formula yields

S En1
1

2m
p̄z

22E1VnnDxn2 (
n8Þn

Vnn8

1

En82En

Vn8nxn50.

~13!
8-2
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After substitution ofVnn8 we find the effective 1D Schro¨-
dinger equation for electrons in thenth subband of the trans
versal quantization

S En1
1

2m
p̄z

21Un~z!2gn$t~z!,p̄z%
21HSO

(n)Dxn50.

~14!

Here

Un~z!5bnt2~z!,

bn5
1

2m
~Lz

2!nn , gn5
1

m2 (
n8Þn

u~Lz!nn8u
2

En82En

. ~15!

Note that the contribution to the diagonal elementV nn
tor from

the first term in Eq.~9! vanishes for nondegenerate stat
The quantityUn(z) is the torsion-induced effective geometr
potential in thenth subband. The parametergn determines
the corrections to the longitudinal kinetic energy. The ge
metric potential is positive and grows with the torsion.

In the general case, whenEn82En and En have same
orders, the contribution proportional togn has the order of
magnitude of kinetic energy along the wire,p2/2m, multi-
plied by the small parameter (td)2. Hence in this case the
correction to the kinetic energy is negligible. The correcti
becomes essential in the near-degenerate spectrum due
small denominator in Eq.~13!. In this case~and for the de-
generate case also! we should explore the near-degenera
theory of perturbations~see below!.

The torsion can be considered as the way to provide
potential for longitudinal control on electrons by produci
the longitudinal confinement, barriers, etc. The solvable o
dimensional problems from the quantum mechanics te
books are simply transcribed to the systems with nonunifo
torsiont(z). Hence the problems with the function@t(z)#2

of the form au(z), au(z)u(b2z), a tanh(z/b), a/cosh2(z/b)
are solvable.

The effective SO interaction is given by the expressio

HSO
(n)52 (

n8Þn

Vnn8
tor Vn8n

SO
1Vnn8

SO Vn8n
tor

En82En

52
a

m (
n8Þn

~Lz!n8n

En82En

~~Ann82An8n!•$s̃,$t~z!,p̄z%%

1@$~s̃3Fnn8!z ,p̄z%,$t~z!,p̄z%#!. ~16!

Here the square brackets stand for the commutator. Nea
subband bottoms the contribution}sz alone survives, and
we get

HSO
(n)5ansz$t~z!,p̄z%, ~17!

where

an5
2a

m (
n8Þn

~Fyp̄x2Fxp̄y!nn8~Lz!n8n

En82En

. ~18!
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Equation~18! shows that the spectrum decays onto two
dependent spin states with the definite spin projecti
61/2 onz axis.

The simplest case occurs for the uniform torsiont(z)
5const. In that event the longitudinal momentump̄z is the
conserving quantity, and the energy spectrum becomes

En~ p̄!5En1 p̄2/2m6ant p̄1t2bn . ~19!

It should be emphasized that the momentump̄z in the coor-
dinatesr̄ is not the same as the momentumpz in the labora-
tory coordinate systemr . The operatorpz generates infini-
tesimal translations alongz axis while p̄z5pz1tLz
determines in the laboratory system the superposition of
finitesimal translation and rotation~spiral translation! that
corresponds to the spiral symmetry of an uniformly twist
wire.

Equation~19! is valid if the spin splitting 2ant p̄ is less
than the intersubband distance. If the wire form approac
to a cylindrical one, the quantitiesan do not vanish, and the
linear in p̄ term in spectrum Eq.~19! remains. This looks
strange, if not to consider that the spectrum of transve
states tends to degenerate with the resulting inapplicabilit
Eq. ~19!. In fact, the case of the circular symmetric wi
should be studied using the near-degenerate perturba
theory.

Let us discuss the physical reason of the spin-orbit in
action in the twisted wire. Let an electron be described b
wave packet propagating along the wire. The transve
shape of the packet repeats the wire cross section. During
propagation the packet rotates with the angular veloc
t(z) p̄/m. The rotating packet produces the magnetic fie
Bz;t(z) p̄/m in the frame translationally accompanying th
electron. Interaction of this field with the electron spin r
sults in the SO HamiltonianHSO;t(z)szp̄z /m.

The twisted wire can provide a way of spin control. Co
sider the wire with constant torsion surrounded by no
twisted domains with reflectionless smooth transitions
tween different parts. This system can serve as a ‘‘s
rotator.’’ If electron states with spin projections61 on thex
axes denote the information states 1 and 0, correspondin
p-angle spin rotator carries out the functionNOT.

Let the electron spin at the entrance of the system
oriented along thex axis. While propagating along the wir
the spin will rotate in thex-y plane. Using the SO Hamil-
tonian ~17! we find that the angle of spin rotationu(z) is
u(z)52manf(z), where, in accordance with the assum
tions,man!1.

II. EFFECTIVE HAMILTONIAN
FOR A PARABOLIC QUANTUM WELL

Here we study a specific quantum well with confinin
potential V(r)5m(vx

2x21vy
2y2)/2. The coefficientsbn ,

gn , and an are determined solely by the transversal wa
function of the wire. The simple calculation gives
8-3
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an5
a

2 F ~vx2vy!2
nx1ny11

vx1vy
1~vx1vy!2

nx2ny

vx2vy
G ,

~20!

bn5
1

8mvxvy
@~2nx11!~2ny11!~vx

21vy
2!22vxvy#,

@n5~nx ,ny!,nx,y50,1,2, . . . #. ~21!

The applicability of Eq.~20! is limited by the proximity of
the denominators to zero. Ifan becomes too large, the pe
turbative approach fails and the degenerate perturba
theory should be used.

We shall estimate the value ofa0,0 for the lowest subband
of a InAs helix scrolled from a strip, similar to the one o
tained in Ref. 1. InAs has strong enough basic SO interac
with a50.145/mEg . In fact, the helixes obtained in Ref.
contain both monolayers of InAs and bilayers of GaAs, b
apparently it is easy to produce similar structures with ma
InAs layers and only few GaAs layers. These wires ha
curvature, but nevertheless can be described by the pote
of the form Eq.~1! with the shift of origin in the (x̄,ȳ) plane.
Providing that the confining potential is harmonic it can
written asm@vx

2(x2x0)21vy
2(y2y0)2#/2. For this potential

the Eqs.~20!,~21! prove also correct.
For vx@vy , that corresponds to a strip helix,ma00

50.145E00/Eg . If we set E0050.1 eV, the paramete
ma0050.0354. The spiral wires obtained in Ref. 1, havet
;106 cm21. For such value oft, the above-mentioned
p-angle spin rotator should be 431025 cm long.

III. DEGENERATE STATES

The degenerate spectrum appears, e.g., for a hard-
wire with square cross-sections or in a parabolic poten
well with multiple frequencies. In this case the resonant
nominators vanish and the theory of perturbation fails. T
same is true in the near-degenerate spectrum. In these
one should use the initial expression~8!, where the sum in-
cludes the states from the degenerate~or near-degenerate!
group only, numerated by a numbern:

S En1
p̄z

2

2m
2ED xn1 (

n8Þn

Vnn8xn850. ~22!

As an example, we shall consider the near-degene
parabolic confining potential withvx2vy!vx . For sim-
plicity, we neglect the SO interaction. The lowest level (vx
1vy)/2 is not degenerate, while the second (vx13vy)/2
and the third (3vx1vy)/2 compose the group of nea
degenerate levels.~For definiteness, we setvx.vy .) It is
convenient to definen5nx2ny , n561. From Eq.~22! it
follows that

p̄z
2x2112i $t,p̄z%x11t2x212k21

2 x2150,

p̄z
2x122i $t,p̄z%x211t2x12k1

2x150,
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2 52mS E2~vx1vy!7

1

2
~vx2vy! D . ~23!

It can be shown that for strict degeneracy (vx5vy , the wire
with circular symmetry! the torsion can be excluded from th
effective Schro¨dinger equation. To accomplish this on
should carry out the transformationx65exp(7if)(x1
6ix21). Equation~23! takes the form

~ p̄z
2/m22E1vx1vy!x65~vy2vx!e

72if(z)x7 .
~24!

If vx5vy , Equation~24! becomes independent oft in ac-
cordance with the physical meaning. Equation~23! immedi-
ately yields the spectrum for the case of uniform torsion

E5vx1vy1
p̄21t2

2m
6A~vx2vy!2

4
1

t2p̄2

m2
. ~25!

IV. TWISTED WIRE IN MAGNETIC FIELD

In this section we generalize the problem without the S
interaction to include the magnetic field along the wire ax
Choosing the vector potential of the magnetic fieldB as A
5(2By,Bx,0)/2, we have instead of Eq.~2!

H5
1

2m
p'

2 1
1

2m
pz

21
vc

2
Lz1

mvc
2r2

2
1V~r,z!, ~26!

wherevc5eB/mc is the cyclotron frequency. Transforma
tion to the curvilinear coordinates leads to

H̄5
1

2m
@ p̄'

2 1~ p̄z2t~z!Lz!
2#1

vc

2
Lz1

mvc
2r̄2

2
1V~ r̄!.

~27!

Further we can proceed in the same manner we used to
tain Eq. ~14!. The resulting 1D Schrodinger equation in th
presence of longitudinal magnetic field has the form

S En2E1
1

2m
p̄z

21Un~z!2gn$t~z!,p̄z%
22gnmvc$t~z!,p̄z%

1
mvc

2~ r̄2!nn

2
D xn50. ~28!

Equation~28! is valid for the bottom states only. Note tha
the interaction of longitudinal motion with the magnetic fie
is characterized by the same constantgn as the torsion-
induced additions to the kinetic energy.

V. CONCLUSIONS

In conclusion, we have solved the problem about the
fective single-subband Hamiltonian of electrons in the ad
batically twisted straight wire. Both nonrelativistic and rel
tivistic cases were studied. The main contribution to t
nonrelativistic Hamiltonian is the effective potential caus
by the wire torsion. The potential of nonuniform torsion c
reflect or localize electrons propagating along the wire. T
8-4
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spin-orbit interaction between the translational momentum
electron along the wire and the same component of elec
spin has been found. This interaction can be used for elec
spin control. We have also constructed the effective Ham
tonian in the presence of longitudinal magnetic field.
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