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Intersubband spin-density excitations in quantum wells with Rashba spin splitting
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In inversion-asymmetric semiconductors, spin-orbit coupling induces ak-dependent spin splitting of valence
and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Ma-
nipulating nonequilibrium spin coherence in device applications thus requires understanding how valence and
conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoher-
ence mechanism for collective intersubband spin-density excitations~SDE’s! in quantum wells. A density-
functional formalism for the linear spin-density matrix response is presented that describes SDE’s in the
conduction band of quantum wells with subbands that may be nonparabolic and spin split due to bulk or
structural inversion asymmetry~Rashba effect!. As an example, we consider a 40 nm GaAs/Al0.3Ga0.7As
quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wave-
vector-dependent splitting of the longitudinal and transverse SDE’s. However, decoherence of the SDE’s is not
determined by subband spin splitting, due to collective effects arising from dynamical exchange and correla-
tion.

DOI: 10.1103/PhysRevB.66.205305 PACS number~s!: 71.15.Mb, 71.45.Gm, 73.21.Fg, 72.25.Rb
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I. INTRODUCTION

Most currently available semiconductor device techno
gies are entirely based on manipulating electronic char
The emerging field of spintronics1,2 proposes to exploit, in
addition, the spin degree of freedom of carriers, thereby a
ing new features and functionalities to solid-state devic
Many of the proposed new applications rely, in one form
another, on manipulating nonequilibrium spin coheren
The hope that this may indeed lead to viable practical
proaches is supported through recent experime
observations3–5 of long-lived (.100 ns) and spatially ex
tended (.100 mm) coherent spin states in semiconducto
Two characteristic times,T1 and T2, provide a quantitative
measure for the magnitude and persistence of spin co
ence.T1 describes the return to equilibrium of a nonequili
rium spin population, andT2 measures the coherence lo
due to dephasing of transverse spin order~for more details,
see Ref. 6!.

Spin relaxation in GaAs quantum wells was recently st
ied experimentally7–11 and theoretically.12–16 Measurements
of the electronicT1 involve circularly polarized pump-prob
techniques to create and observe coherent spin populatio
the lowest conduction subband. Electron spin decohere
has been shown to occur via the spin precession17 of carriers
with finite crystal momentumk in the effectivek-dependent
crystal magnetic field of an inversion-asymmetric materia18

We note that the theory of Refs. 6,15 gives good agreem
with experiment, without including electron-electron intera
tions.

In this paper, we consider electronic charge and spin
namics in quantum wells involving notonebut two subbands
~we will limit the discussion here mainly to conductio
subbands!.19 One motivation for this work is that intersub
band~ISB! chargedynamics in quantum wells is currently o
0163-1829/2002/66~20!/205305~10!/$20.00 66 2053
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great experimental and theoretical interest,20 since electronic
ISB transitions are the basis of a variety of new devic
operating in the terahertz frequency regime, such
detectors,21 modulators,22 and quantum cascade lasers.23,24In
view of this, it seems worthwhile to explore ISBspindynam-
ics as a possible route towards novel applications in the t
hertz regime.

Analogous to the case of spin dynamics discussed ab
one may define characteristic times forintersubbanddynam-
ics ~for an overview, see Ref. 25!. Population decay from an
excited to a lower conduction subband is measured by
ISB relaxation timeT1

ISB , and loss of coherence of collectiv
ISB excitations is measured by a dephasing timeT2

ISB . These
two times have been measured experimentally for I
charge-density excitations in quantum wells26,27and found to
differ substantially at low temperatures,T2

ISB being three or-
ders of magnitude smaller thanT1

ISB . The reason is that ISB
relaxation proceeds mainly via phonon emission and is t
slowed down by an energy bottleneck for small phonon m
menta as well as for the optical phonon branch. This diff
from the case of conduction electron spin relaxation, wh
T1 andT2 are comparable.6,15

On the other hand, dephasing of collective ISB excitatio
in quantum wells is determined by a complex interplay o
variety of different scattering mechanisms, whose relat
importance is nota priori obvious. In recent experimental28

and theoretical29 work, it was found that the linewidth o
~homogeneously broadened! ISB charge plasmons in a wid
GaAs/Al0.3Ga0.7As quantum well, where phonon scatterin
plays no role, is determined mainly by interface roughn
and electronic many-body effects.

The question now arises which physical mechanisms g
ern the dephasing ofcollectiveISB spin-density excitations
As a first step towards a clarification of this question, th
©2002 The American Physical Society05-1
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paper addresses the influence of thek-dependent crysta
magnetic field in semiconductor quantum wells on ISB sp
density excitations, and the importance of many-body
fects. The latter will be described in the framework
density-functional theory~DFT!.

This paper is organized as follows. In Sec. II we set up
formalism for calculating the electronic ground state
modulation-doped quantum well conduction subbands,
cluding spin-orbit coupling and many-body effects. Sect
III presents a general response formalism for the spin-den
matrix, based on time-dependent DFT~TDDFT!. In Sec. IV
we consider an explicit example and calculate the collec
ISB charge- and spin-density excitations in the conduct
band of a GaAs/Al0.3Ga0.7As quantum well, including spin-
orbit coupling. Section V contains our conclusions. Vario
technical details can be found in Appendixes A and B.

II. ELECTRONIC GROUND STATE

We consider a modulation-doped quantum well~direction
of growth:z axis! containingN conduction electrons per un
area. In the standard multibandk•p approach for
semiconductors,30–33 the single-particle states in a quantu
well are expanded in terms of Bloch functions at the zo
center,un(r ):

C j quu
~r !5 (

n51

Nb

eiquur uuc jn~z!un~r !, ~1!

where c jn(z) are envelope functions belonging to thej th
subband, andr uu5(x,y) andquu5(qx ,qy) are in-plane posi-
tion and wave vectors. In general,un(r )5un↑(r )j↑
1un↓(r )j↓ , where j↑,↓ denote two-component Pau
spinors. Usually, theNb Bloch functions are constructe
from a basis consisting of conduction-bands states and
valence-bandp states~8-band or Kane30 model!, but in gen-
eral a 14-band model is needed for a consistent descrip
of spin splitting in heterostructures.34 This leads to a Hamil-
tonian in 838 ~or 14314) matrix form, whose elements ar
well known.31,32 The envelope functionsc jn(z) for valence
and conduction bands then follow from the resulting 8~or
14! coupled single-particle equations.31

If one is only interested in the electronic structure of t
conduction band of a quantum well, it is convenient to
duce the multi-band Hamiltonian described above to a
32 conduction band Hamiltonian.34–38 The single-particle
states ~1! can then be simplified to the following two
component form:

C j quu
~r !5eiquur uuS w j↑~quu ,z!

w j↓~quu ,z!
D . ~2!

The envelope functionsw j s follow from a two-component
effective-mass Kohn-Sham equation:

(
b5↑,↓

@ ĥdab1vab
ext~z!1Ĥab

so ~z!1vab
xc ~z!#w j b~quu ,z!

5Ej quu
w j a~quu ,z!, ~3!
20530
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wherea5↑,↓ and

ĥ52
d

dz

\2

2m~E,z!

d

dz
1

\2quu
2

2m~E,z!
1vconf~z!1vH~z!.

~4!

The spin-independent partĥ of the 232 conduction band
Hamiltonian accounts for possible nonparabolicity of t
subbands through an effective mass that depends onEj quu

.

Explicit expressions form(E,z) can be found in Refs. 37,38
vconf(z) is the confining bare quantum well potential~e.g., a
square well!, and the Hartree potentialvH(z) is related to the
electron ground-state densityn(z), defined below, through
Poisson’s equation

d2vH~z!

dz2
524pe* 2n~z!, ~5!

wheree* 5e/Ae is the effective charge (e is the static di-
electric constant of the material!.

Let us now discuss the spin-dependent parts of the Ha
tonian in Eq.~3!. The first term,vab

ext(z), describes externally
applied uniform static electric and magnetic fieldsE andB:

vab
ext~z!5eEzzdab1

1

2
g* ~z!mBB•sW , ~6!

whereE5êzEz is perpendicular to the quantum well andB
can have arbitrary direction.sW is the vector of the Pauli spin
matrices, andg* (z) denotes theg-factor of the bulk material
at pointz.

Intrinsic conduction band spin splitting, caused by sp
orbit interaction, in general comes from several differe
sources. One often deals with situation where there are
major contributions:Ĥab

so 5Ĥab
BIA1Ĥab

SIA , where BIA and SIA
denote bulk and structural inversion asymmetry. The fi
term has the well-known formĤab

BIA5@\V•sW /2#ab , where
V5g@qx(qy

22qz
2),qy(qz

22qx
2),qz(qx

22qy
2)# for bulk

zincblende semiconductors.18 For a quantum well,Ĥab
BIA de-

pends on the growth direction. For instance, along@001# we
have

Ĥ↑↑
BIA5~Ĥ↓↓

BIA !†5 i ~qx
22qy

2!S 1

2

dg

dz
1g

d

dzD , ~7!

Ĥ↑↓
BIA5~Ĥ↓↑

BIA !†52
d

dz
g

d

dz
~qx1 iqy!2 igqxqy~qx2 iqy!,

for @110# and @111# directions, see Ref. 36. The second co
tribution to intrinsic spin splitting, SIA~also known as the
Rashba effect39!, has the form

Ĥ↑↑
SIA5Ĥ↓↓

SIA50 ~8!

Ĥ↑↓
SIA5~Ĥ↓↑

SIA!†52
i

2

dh

dz
~qx2 iqy!. ~9!

The material parametersg(z) andh(z) are explicitly given
in Ref. 38. We also mention a possible additional source
5-2
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spin splitting in quantum wells, the so-called native interfa
asymmetry, related to chemical bonds across interfaces~for
more details see Refs. 6,40!.

An important feature in Eq.~3! which distinguishes the
present approach from previous studies of conduction b
nonparabolicity and spin splitting, is that many-body effe
are explicitly included through the exchange-correlation~xc!
potentialvab

xc (z). xc effects have previously been shown
produce nonnegligible shifts of quantum well subband en
gies and ISB charge plasmon frequencies.25,29,41As discussed
below, including xc effects is crucial for a physically corre
description of collective ISB spin excitations.

The solutions of Eq.~3! have the interesting property o
being mixed spin-up and spin-down eigenstates, due to
off-diagonal terms in the Hamiltonian caused by spin-or
coupling and, possibly, externally applied transverse m
netic fields. The off-diagonal terms inĤab

so depend onquu ,
and there is no choice of basis which diagonalizes Eq.~3! for
all quu . Due to the absence of a global quantization axis, s
is no longer a good quantum number. This requires a ge
alization of the well-known spin-DFT~Refs. 42–44! to sys-
tems with noncollinear spin. So far, this was done at o
few occasions in the literature, namely, for noncollinear m
netic materials such asg-Fe, U3Pt4, and Mn3Sn,45,46 and
inhomogeneous quantum Hall systems,47 but, to our knowl-
edge, never before in the present context of semicondu
nanostructures.

Formally, the xc potential is defined as

vab
xc ~r !5

dExc@n#

dnab~r !
, ~10!

where the xc energy of the system,Exc@n#, is a functional of
the spin-density matrix43

n~r !5(
j ,quu

f j quu
C j quu

C j quu

† [S n↑↑ n↑↓
n↓↑ n↓↓

D , ~11!

where f j quu
[ f (EF2Ej quu

) denotes the Fermi occupatio

function andEF is the conduction band Fermi level. Fo
C j quu

given by Eq.~2!, we have

n↑↑~z!5(
j ,quu

f j quu
uw j↑~quu ,z!u2 ~12!

@similarly for n↓↓(z)], and

n↑↓~z!5n↓↑* ~z!5(
j ,quu

f j quu
w j↑~quu ,z!w j↓* ~quu ,z!. ~13!

The usual approximation is to take the density matrix~11! to
be locally diagonal,46,47 so that the LSDA for noncollinea
spin reads

vab
xc ~z!5

]

]nab
@nexc

h ~n,ujW u!#U
n5n(z)

, ~14!

exc
h (n,j) is the xc energy per particle of a homogeneous e

tron gas of densityn and spin polarizationj, which is
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well known from quantum Monte Carlo calculations.48 The
local density and spin polarization are given by

n5Tr n, ~15!

jW5
1

n
Tr sW n. ~16!

The ground-state density is normalized as*dzn(z)5N. Ex-
plicit expressions forvab

xc (z) are given in Appendix A. With
this form for vab

xc (z), the 232 effective-mass Kohn-Sham
equation~3! is now completely defined. Self-consistent sol
tion yields a set of subbands which are occupied up toEF .

III. LINEAR RESPONSE FORMALISM FOR THE
SPIN-DENSITY MATRIX

Once the electronic ground state~characterized by a set o
subband levels and wave functions! has been calculated, th
next step is to consider excitations. The formal framewo
for describing excitations in electronic many-body system
provided bylinear response theory.49,50

For the case where the wave functions take on a tw
component form, the TDDFT linear response equation
quantum wells becomes a 232 matrix equation:

nss8
(1)

~kuu ,z,v!5 (
l,l85↑,↓

E dz8xss8,ll8
KS

~kuu ,z,z8,v!

3vll8
(1)

~kuu ,z8,v!. ~17!

This expresses, formally exactly, the first-order change of
spin-density matrixnss8

(1) via the response of a noninteractin
system, characterized by the response functionxss8,ll8

KS ~see
below!, to an effective perturbing potential of the form
vll8

(1)
5vll8

(1,ext)
1vll8

(1,H)
1vll8

(1,xc) . Here, vll8
(1,ext) is the external

perturbation, and the linearized Hartree and xc potentials

vll8
(1,H)

~kuu ,z8,v!1vll8
(1,xc)

~kuu ,z8,v!

5 (
z,z85↑,↓

E dz9F2pe* 2

kuu
e2kuuuz82z9udll8dzz8

1 f ll8,zz8
xc

~kuu ,z8,z9,v!Gnzz8
(1)

~kuu ,z9,v!. ~18!

In the widely used adiabatic local-density approximati
~ALDA !,51 the xc kernel is given by

f ll8,zz8
xc

~kuu ,z,z8,v!5
]2exc

h ~n,ujW u!

]nll8~z!]nzz8~z!
d~z2z8!.

~19!

The noninteracting response function takes on the form o
fourth-rank tensor:
5-3
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xKS~r ,r 8,v!5(
j l

`

(
quuquu8

~ f j quu
2 f lquu8

!

3

C j quu
~r !C lquu8

†
~r !C j quu

† ~r 8!C lquu8
~r 8!

v2Ej quu
1Elquu8

1 ih
.

~20!

If xKS is constructed using the multiband wave functions
Eq. ~1!, this response formalism describes transitions am
valence and conduction subbands, as well as interband
sitions. In this paper, however, we focus exclusively on
tersubband transitions in the conduction band of modula
doped heterostructures, and thus use theC ’s given in Eq.~2!.
One can then transform the response function~20! into

xss8,ll8
KS

~kuu ,z,z8,v!

5(
j l

E d2quu

~2p!2

f lquu2kuu
2 f j quu

v2Ej quu
1Elquu2kuu

1 ih
w j s~quu ,z!

3w ls8
* ~quu2kuu ,z!w j l* ~quu ,z8!w ll8~quu2kuu ,z8!, ~21!

where the Kohn-Sham envelope functionsw j s and energies
Ej quu

are obtained from Eq.~3!.
One can combine the perturbing spin-dependent poten

vss8
(1) and the solutionsnss8

(1) of the response equation~17! in
the following, physically more transparent way, see also E
~A3! and ~A4! of Appendix A:

Vj
(1)5Tr@s jv

(1)#, ~22!

mj
(1)5Tr@s jn

(1)#, ~23!

j 50,1,2,3, wheres0 is the 232 unit matrix ands1 ,s2 ,s3
are the Pauli matrices.

m0
(1)5n↑↑

(1)1n↓↓
(1) describes a collective charge-density e

citation ~CDE!, andm3
(1)5n↑↑

(1)2n↓↓
(1) is a longitudinal spin-

density excitation~SDE! with respect to thez axis. In terms
of this choice of global spin quantization,m1

(1)5n↑↓
(1)1n↓↑

(1)

andm2
(1)5 i @n↑↓

(1)2n↓↑
(1)# appear as transverse spin-density~or

spin-flip! excitations. The CDE couples to an oscillatin
electric field polarized along thez direction, associated with
V0

(1) . The longitudinal SDE is excited by an oscillating ma
netic field alongz associated withV3

(1) , and the transverse
SDE’s are excited by oscillating magnetic fields alongx and
y, associated withV1

(1) and V2
(1) , respectively. We will dis-

cuss these selection rules in more detail below.
In terms of these quantities, the linear response equa

~17! takes on the following form:

mj
(1)~kuu ,z,v!5 (

k50

3 E dz8P jk
KS~kuu ,z,z8,v!Vk

(1)~kuu ,z8,v!.

~24!

The response functionsP jk
KS andxss8,ll8

KS are related as fol-
lows:
20530
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KS5 (

s,s8
l,l8

xss8,ll8
KS S ]mj

(1)

]nss8
(1) D S ]Vk

(1)

]vll8
(1) D 21

, ~25!

where the coefficients]mj
(1)/]nss8

(1)
@5]Vj

(1)/]vss8
(1)

# are eas-
ily obtained from Eqs.~22! or ~23!. Explicit expressions for
P jk

KS are given in Appendix B. TheVk
(1) , in turn, are given as

sums of external perturbations and linearized Hartree and
terms:

Vk
(1)~kuu ,z,v!5Vk

ext~kuu ,z,v!

1(
l 50

3 E dz8F2pe* 2

kuu
e2kuuuz2z8udk0d l0

1 f kl
xc~kuu ,z,z8,v!Gml

(1)~kuu ,z8,v!. ~26!

The xc kernelsf kl
xc in ALDA are given in Appendix A.

IV. RESULTS AND DISCUSSION

A. Kohn-Sham wave functions and Rashba effect

We will now discuss an example to illustrate the sp
density matrix response formalism developed above. C
sider the case of a 40 nm wide GaAs/Al0.3Ga0.7As square
quantum well,29,41without any externally applied static elec
tric or magnetic fields. We make the simplifying assumpti
of parabolic conduction subbands~i.e., neglecting the differ-
ence of the effective masses in well and barriers!. Further-
more, we neglect BIA, but assume spin splitting is dom
nated by SIA, described by a simplified Rashba term of
form39

ĤSIA5a@sW 3q#z5S 0 R

R* 0 D , ~27!

whereR5a(qy1 iqx), anda is taken to be a real, positive
adjustable parameter. The Rashba field is thus assumed
the same for all conduction subbands, which is a reason
approximation for wide quantum wells. The two-compone
Kohn-Sham equation~3! becomes

S ĥ01v↑↑
xc R1v↑↓

xc

R* 1v↓↑
xc ĥ01v↓↓

xc D S c i↑
c i↓

D 5EiquuS c i↑
c i↓

D , ~28!

wherei 51,2,3, . . . , and

ĥ05
1

2m*
S 2

d2

dz2
1quu

2D 1vconf~z!1vH~z!. ~29!

Equation~28! is solved by the following ansatz:

cs j↑~quu ,z!5
1

A2
w j~z!, ~30!

cs j↓~quu ,z!5
s

A2

R*

uRu
w j~z!, ~31!
5-4
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where we replaced the subband indexi by the pair of indices
$s j%, such thats5(21)i and j 5( i 11)/2 for i odd and j
5 i /2 for i even. In the absence of the off-diagonal terms
Eq. ~28!, i.e., for inversion symmetry and hence spin deg
eracy at eachquu , j simply labels the spin-degenerate pai
ands labels the eigenfunctions within each pair.

It is not difficult to see that in the presence ofR the
ground-state density matrix remains diagonal withn↑↑
5n↓↓ , and hencev↑↑

xc 5v↓↓
xc[vxc and v↑↓

xc 5v↓↑
xc 50. The

w j (z) are therefore simply the solutions of the spi
unpolarized effective-mass Kohn-Sham equation

F2
1

2m*

d2

dz2
1vconf1vH1vxcGw j5e jw j , ~32!

wheree j are the energy levels of the associated, doubly
generate, parabolic subbands. The presence of the
diagonal Rashba terms in Eq.~28!, however, lifts the spin
degeneracy forquuÞ0. We thus obtain, usinguRu5aquu ,

Es jquu
5e j1

quu
2

2m*
1saquu , s561, ~33!

for the energy eigenvalues associated with the soluti
~30!,~31! of Eq. ~28!.

B. Collective intersubband excitations

In the following, we will consider only cases where th
lowest conduction band is occupied, which restricts the e
tron density in the quantum well toN,1.8231011cm22.
The goal is to study collective charge- and spin-density
citations between the first and the second subband. T
collective modes are obtained by solving the response e
tion ~24! for the case where the external perturbation is ze

FIG. 1. Lowest (1→2) ISB excitation frequencies versus ele
tronic sheet densityN in a 40 nm GaAs/Al0.3Ga0.7As quantum well,
at kuu50, for values ofN where only the lowest subband is occ
pied ~with parabolic subbands and without spin-orbit splitting!. Full
line: single-particle excitations (v5e22e1). Dotted line: charge-
density excitations in RPA. Dash-dotted and dashed lines: cha
and spin-density excitations in ALDA.
20530
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In that case, the effective perturbing potentialVk
(1) consists of

the self-consistent linearized Hartree and xc terms only.
Let us first consider the case without spin-orbit coupli

(a50). Figure 1 shows the density dependence of vari
ISB excitations at zero in-plane wave vector (kuu50). The
full line depicts the single-particle excitations with freque
cies v5e22e1, i.e., the bare Kohn-Sham excitation ene
gies. The dotted line shows the ISB charge-density excita
in RPA, i.e., settingf kl

xc50 in the effective potentialVk
(1) ,

Eq. ~26!. The RPA excitation energies are always higher th
the single-particle excitations, due to the so-called depo
ization shift.52 The ISB charge-density excitation in ALDA i
shown by the dash-dotted line. Including xc effects in t
response calculation produces a downshift of the plasm
energy of up to 0.75 meV. Finally, the spin-density ISB e
citation is shown by the dashed line. In RPA, this excitati
coincides with the single-particle excitation, since the de
larization shift affects only the charge mode. Thus, the s
plasmon only exists as a distinct, collective excitation b
cause of xc effects.

We now include spin-orbit coupling in the quantum we
material by taking a finite, density-independent value ofa
510 meV Å for the Rashba coupling parameter. This is
typical value for practical situations of interest, for instanc
when applying a static electric field of strength 10 kV/cm
a GaAs quantum well.37

e-

FIG. 2. ISB charge and spin plasmon wave vector dispersion
a 40 nm GaAs/Al0.3Ga0.7As quantum well, for Rashba coefficient
a50 ~top! anda510 meV Å ~bottom!. The electronic sheet den
sity is 131011 cm22. The shaded regions indicate Landau damp
of the charge and spin plasmons. Fora50, both regions coincide
For finite a, the Landau damping region for charge plasmons
unchanged~darker region!, but grows for spin plasmons~darker
plus lighter region!. The charge plasmon is essentially independ
of a, but the spin plasmon splits into three branches for finitea.
5-5
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The ALDA in-plane wave vector dispersions of the IS
plasmons are shown in Fig. 2, comparing the case ofa50
~top! and finitea ~bottom!. The shaded regions indicate La
dau damping, i.e., collective modes overlap with the partic
hole continuum and can decay into incoherent particle-h
pairs. In both cases, the charge plasmon lies above the re
of Landau damping, and the spin plasmons lie below. In
case ofa50, there is a common region of Landau dampi
for the charge and the spin plasmons. For finitea, the region
of Landau damping for the spin plasmons grows, while
the charge plasmons it stays unchanged. In the absenc
other intrinsic or extrinsic scattering mechanisms~phonons,
disorder!, all collective modes outside the region of Land
damping have infinite lifetime in ALDA.

The charge plasmon dispersion is essentially indepen
of a. The spin plasmon, however, splits up into thr
branches for finitea. This is shown in more detail in Fig. 3
where Dv denotes the difference of the spin plasmon f
quencies ata510 meV Å anda50. There are three differ
ent spin plasmon modes, all degenerate ata50. We will
now discuss the nature of these modes, and how they co
to external fields.

The charge and spin plasmons withkuu50 couple to ex-
ternal spin-dependent potentials of the formv (1,ext)(z,v)
5eE0zs j . For j 50 ~CDE!, v (1,ext) is related to an oscillat-
ing uniform electric fieldE exp(2ivt), whereE5E0êz ~lin-
early polarized alongz, perpendicular to the quantum we
plane!. For the SDE’s (j 51,2,3), v (1,ext) corresponds by
comparison with Eq.~6! to oscillating magnetic fields
B exp(2ivt), where B52E0z/g* (z)mB . The CDE and
SDE’s can thus be formally viewed as collective electric a
magnetic dipole transitions. At finitekuu , the plasmons
couple to external potentials of the form53 v (1,ext)(kuu ,z,v)
5eE0a0* exp(kuuz)sj , wherea0* is the effective Bohr radius

FIG. 3. Splitting of the ISB spin plasmon dispersions, for t
same quantum well as in Fig. 2.Dv denotes the difference of th
spin plasmon frequencies ata510 meV Å anda50. The dots
indicate that the plasmons enter the region of Landau damping.
inset illustrates the selection rules~see text!. mz

(1) and muu,
(1) are

coupled and twofold split. To lowest order ina, the splitting has the
form S5C(N)akuu , where C(N) depends on the electron she
density.
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As before, these potentials can be related to oscillating e
tric and magnetic fields, E exp@i(kuu•r uu2vt)# and
B exp@i(kuu•r uu2vt)#.

The inset in Fig. 3 illustrates the selection rules for t
individual SDE modes:~i! a longitudinal mode, denoted b
mz

(1) , which couples to a magnetic field perpendicular to t

quantum well,B5Bzêz , ~ii ! two transverse~or spin-flip!
modesmuu,

(1) andmuut
(1) , which couple to magnetic fields in th

plane of the quantum well,B5Buu,ê, and B5Buutêt where
ê,5kuu /kuu and êt5ê,3êz . Figure 3 shows that, at finitea,
mz

(1) and muu,
(1) are coupled and twofold split. On the othe

hand, muut
(1) depends only very little ona, except a small

redshift independent ofkuu . This small redshift, as well as th
small splitting between thez anduu, modes atkuu50, can be
shown to be proportional toa2.

Writing the Hamiltonian~27! in the form ĤSIA5\VR
•sW /2 defines the Rashba effective magnetic fieldVR
5(2a/\)(qy ,2qx,0), which lies in the quantum well plan
and is perpendicular toquu . Since in our example all sub
bands experience the sameVR , a collective ISB excitation
with wavevectorkuu implies a change in the effective mag
netic field DVR5(2a/\)(ky ,2kx,0) for all single-particle
transitions, whereDVRuuêt ~see Fig. 3!. This explains the
physical origin of the splitting between the different SD
branches: The two spin plasmon branches whose energie
shifted (z anduu,) are those responding to fields perpendic
lar to DVR , whereas the one which to lowest order ina
does not shift (uut) is parallel toDVR . Thus a spin polariza-
tion in eitherz or uu, will precess in thez-, plane. There are
two possible linear combinations,mz

(1)6 imuu,
(1) , one precess-

ing in that direction which is favored byDVR , the other in
the opposite direction, thus costing more energy.

To lowest order ina, the magnitude of the splitting be
tween the two linear combinations ofmz

(1) and muu,
(1) , S, is

proportional to a and grows linearly withkuu , i.e., S
5C(N)akuu . The numerical prefactorC(N) is a function of
the electron density, and is plotted in Fig. 4. The SDE sp
ting strongly increases with electron density, and reaches
ues of around 0.120.2 meV for sheet densities of order
31011 cm22 and higher, and plasmon wave vectors of ord

he

FIG. 4. ISB spin plasmon splitting coefficientC(N) ~see Fig. 3!,
versus electron sheet density.
5-6
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0.001 Å21. These splittings should be experimentally o
servable, for example using inelastic light scatteri
techniques.54,55 This would provide an opportunity for mea
suring the Rashba coefficienta.

V. CONCLUSION

We have presented a microscopic theory of collect
charge- and spin-density excitations in semiconductor qu
tum wells based on spin-density-functional theory, with s
cific emphasis on intersubband excitations within the c
duction band. The approach consists of two steps. We
calculate the electronic ground state in the quantum w
~subband levels and envelope functions!, including conduc-
tion band nonparabolicity and spin splitting, which leads t
232 conduction band Hamiltonian. The associated Ko
Sham matrix equation features spin-dependent xc poten
which are functionals of the spin-density matrix.

We then determine the excitation energies using lin
response theory in the formulation of TDDFT. Formally, o
needs to solve a 232 matrix equation for the couple
charge- and spin-density-matrix response, including dyna
many-body effects.

To illustrate the formalism, we considered the example
a quantum well with parabolic subbands that are split b
Rashba effective magnetic field. The charge plasmons w
found to be independent of the Rashba field. The three p
sible spin plasmons, which are degenerate in the absenc
spin-orbit coupling, were found to be split into thre
branches, the splitting being proportional to the in-pla
wavevector and to the strength of the Rashba field.

This study illustrates the importance of including man
body effects beyond the RPA in calculating collective sp
excitations. The collective nature of the ISB spin plasmon
purely a consequence of dynamical xc effects. Due to th
collective effects,T2

ISB is not influenced by the precession
decoherence mechanisms related to spin-orbit coup
which determine the intraband spin relaxation timeT2.17

Therefore, in the absence of impurities, disorder and pho
scattering, the lifetime of ISB spin plasmons is limited
dynamical many-body effects only. To capture these effe
one has to go beyond the ALDA and include retardation29

Within the ALDA, on the other hand, collective CDE an
SDE’s are infinitely long-lived. The effect of nonparabol
bands and more general forms of spin-orbit splitting~both
BIA and SIA! in semiconductor quantum wells will be ad
dressed in more quantitative detail in the future.
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APPENDIX A: LSDA FOR NONCOLLINEAR SPINS

In LSDA, the xc energy per particle of a spin-polarize
homogeneous electron gas,exc

h (n,j), is usually approxi-
mated by the von Barth–Hedin parametrization42–44
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exc
h ~n,j!5exc

h ~n,0!1@exc
h ~n,1!2exc

h ~n,0!# f ~j!. ~A1!

The interpolation function between the paramagneticj
50) and ferromagnetic (j51) limits,

f ~j!5
~11j!4/31~12j!4/322

2~21/321!
, ~A2!

reproduces the exactj-dependence of the exchange ener
of the homogeneous electron gas, and approximates
j-dependence of the correlation energy.

In the LSDA for noncollinear spins,45–47one still uses the
spin-polarized homogeneous electron gas as reference
tem, assuming that the xc energy per particle depends
on the local ground-state densityn and the absolute value o
the local ground-state spin polarizationjW , where, using defi-
nitions ~15! and ~16!,

n5n↑↑1n↓↓ , ~A3!

jW5
1

n S n↑↓1n↓↑
i ~n↑↓2n↓↑!

n↑↑2n↓↓
D [

1

n S m1

m2

m3

D ~A4!

so that

uju5
1

n
Am1

21m2
21m3

2, ~A5!

and the sign ofj is determined with respect to the chos
global quantization axis: sgn(j)5sgn(n↑↑2n↓↓).

The xc potential in LSDA may then be obtained as fo
lows: Lettingn[m0, we define

v j
xc~z!5

]@nexc
h ~n,j!#

]mj
U

mi5mi (z)
i 50,1,2,3

~A6!

which yields

v0
xc5exc

h 1n
]exc

h

]n
2j

]exc
h

]j
, ~A7!

v i
xc5

mi

nj

]exc
h

]j
, i 51,2,3. ~A8!

Using

vab
xc 5(

i 50

3
]mi

]nab
v i

xc , a,b5↑,↓, ~A9!

one finds

v↑↑
xc 5exc

h 1n
]exc

h

]n
1Fn↑↑2n↓↓

nj
2jG]exc

h

]j
, ~A10!
5-7
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v↓↓
xc 5exc

h 1n
]exc

h

]n
2Fn↑↑2n↓↓

nj
1jG]exc

h

]j
, ~A11!

v↑↓
xc 5

2n↓↑
nj

]exc
h

]j
, ~A12!

v↓↑
xc 5

2n↑↓
nj

]exc
h

]j
. ~A13!

Equations~A10!–~A13! are in agreement with the results
Heinonenet al.47

Next, we calculate, in ALDA, the xc kernels needed
Eq. ~26!. The definition is

f jk
xc~z,z8,v!5

]2@nexc
h ~n,j!#

]mj]mk
U

mi5mi (z)
i 50,1,2,3

d~z2z8!,

~A14!

with the following results@omitting thed(z2z8)]:

f 00
xc52

]exc
h

]n
1n

]2exc
h

]n2
22j

]2exc
h

]n]j
1

j2

n

]2exc
h

]j2
, ~A15!

f 0i
xc5

mi

nj

]2exc
h

]n]j
2

mi

n2

]2exc
h

]j2
, ~A16!

f i j
xc5

d i j

nj

]exc
h

]j
2

mimj

~nj!3 S ]exc
h

]j
2j

]2exc
h

]j2 D , ~A17!

wherei , j 51,2,3 in~A16! and~A17!, andf i j
xc5 f j i

xc for all i , j .
For spin unpolarized ground states (m15m25m350), only
those xc kernels diagonal ini , j are nonzero, with

f 00
xc52

]exc
h ~n,0!

]n
1n

]2exc
h ~n,0!

]n2
~A18!

and

f i i
xc5

4/9

n~21/321!
@exc

h ~n,1!2exc
h ~n,0!# ~A19!

for i 51,2,3. Notice thatf 00
xc and f i i

xc have the same exchang
parts, f 00

x 5 f i i
x 5(4/9n)ex

h(n,0)52(9pn2)21/3, but in gen-
eral have different correlation parts.

APPENDIX B: NONINTERACTING RESPONSE
FUNCTIONS

For convenience, we list here the explicit relations b
tween the response functionsP jk

KS and xss8,ll8
KS following

from Eqs. ~22!, ~23!, and ~25! ~omitting the superscrip
‘‘KS’’ !:

P005x↑↑,↑↑1x↑↑,↓↓1x↓↓,↑↑1x↓↓,↓↓ ,

P015x↑↑,↑↓1x↑↑,↓↑1x↓↓,↑↓1x↓↓,↓↑ ,

P0252 i ~x↑↑,↑↓2x↑↑,↓↑1x↓↓,↑↓2x↓↓,↓↑!,
20530
-

P035x↑↑,↑↑2x↑↑,↓↓1x↓↓,↑↑2x↓↓,↓↓ ,

P105x↑↓,↑↑1x↑↓,↓↓1x↓↑,↑↑1x↓↑,↓↓ ,

P115x↑↓,↑↓1x↑↓,↓↑1x↓↑,↑↓1x↓↑,↓↑ ,

P1252 i ~x↑↓,↑↓2x↑↓,↓↑1x↓↑,↑↓2x↓↑,↓↑!,

P135x↑↓,↑↑2x↑↓,↓↓1x↓↑,↑↑2x↓↑,↓↓ ,

P205 i ~x↑↓,↑↑1x↑↓,↓↓2x↓↑,↑↑2x↓↑,↓↓!,

P215 i ~x↑↓,↑↓1x↑↓,↓↑2x↓↑,↑↓2x↓↑,↓↑!,

P225x↑↓,↑↓2x↑↓,↓↑2x↓↑,↑↓1x↓↑,↓↑ ,

P235 i ~x↑↓,↑↑2x↑↓,↓↓2x↓↑,↑↑1x↓↑,↓↓!,

P305x↑↑,↑↑1x↑↑,↓↓2x↓↓,↑↑2x↓↓,↓↓ ,

P315x↑↑,↑↓1x↑↑,↓↑2x↓↓,↑↓2x↓↓,↓↑ ,

P3252 i ~x↑↑,↑↓2x↑↑,↓↑2x↓↓,↑↓1x↓↓,↓↑!,

P335x↑↑,↑↑2x↑↑,↓↓2x↓↓,↑↑1x↓↓,↓↓ . ~B1!

With eigenfunctions of the form~30!,~31!, the Kohn-Sham
response function~21! can be written as

xss8,ll8
KS

~kuu ,z,z8,v!5(
i j

Fss8,ll8
i j

~kuu ,v!w i~z!w j~z!

3w i~z8!w j~z8!, ~B2!

and likewise

Pkl
KS~kuu ,z,z8,v!5(

i j
Gkl

i j ~kuu ,v!w i~z!w j~z!w i~z8!w j~z8!.

~B3!

The Gkl
i j (kuu ,v) are related to theFss8,ll8

i j (kuu ,v) according
to ~B1!. The latter functions are given by
5-8
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Fss8,ll8
i j

~kuu ,v!52
1

4 (
ss8

61 E d2quu

~2p!2

f ~Esiquu
!

v2Esiquu
1Es8 j quu2kuu

1 ih
Fds↑1ds↓s

R* ~quu!

uR~quu!u
G Fds8↑1ds8↓s8

R~quu2kuu!

uR~quu2kuu!u
G

3Fdl↑1dl↓s
R~quu!

uR~quu!u
G Fdl8↑1dl8↓s8

R* ~quu2kuu!

uR~quu2kuu!u
G1

1

4 (
ss8

61 E d2quu

~2p!2

f ~Esiquu
!

v1Esiquu
2Es8 j quu1kuu

1 ih

3Fds↑1ds↓s8
R* ~quu1kuu!

uR~quu1kuu!u
G Fds8↑1ds8↓s

R~quu!

uR~quu!u
G Fdl↑1dl↓s8

R~quu1kuu!

uR~quu1kuu!u
G Fdl8↑1dl8↓s

R* ~quu!

uR~quu!u
G .

~B4!

It is not difficult to show that for the case ofa→0, i.e., vanishing Rashba term, the functionFss8,ll8
i j becomes diagonal in the

spin indices and reduces to the well-known limit41 (v i j 5e j2e i),

Fss8,ll8
i j

~kuu ,v!52dslds8l8E d2quu

~2p!2 5 f S e i1
quu

2

2m*
D

v1v i j 1
kuu

2

2m*
2

quu•kuu

m*
1 ih

2

f S e i1
quu

2

2m*
D

v2v i j 2
kuu

2

2m*
2

quu•kuu

m*
1 ih6 . ~B5!
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