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Intersubband spin-density excitations in quantum wells with Rashba spin splitting

C. A. Ullrich
Department of Physics, University of Missouri-Rolla, Rolla, Missouri 65409

M. E. Flatte
Department of Physics and Astronomy, University of lowa, lowa City, lowa 52242
(Received 13 June 2002; published 6 November 2002

In inversion-asymmetric semiconductors, spin-orbit coupling indudedependent spin splitting of valence
and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Ma-
nipulating nonequilibrium spin coherence in device applications thus requires understanding how valence and
conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoher-
ence mechanism for collective intersubband spin-density excitat®b&'s) in quantum wells. A density-
functional formalism for the linear spin-density matrix response is presented that describes SDE’s in the
conduction band of quantum wells with subbands that may be nonparabolic and spin split due to bulk or
structural inversion asymmetriRashba effegt As an example, we consider a 40 nm GaAgh8a, ;As
quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wave-
vector-dependent splitting of the longitudinal and transverse SDE’s. However, decoherence of the SDE'’s is not
determined by subband spin splitting, due to collective effects arising from dynamical exchange and correla-
tion.
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[. INTRODUCTION great experimental and theoretical inter@sgince electronic
ISB transitions are the basis of a variety of new devices
Most currently available semiconductor device technolo-operating in the terahertz frequency regime, such as
gies are entirely based on manipulating electronic chargesletector$! modulators’? and quantum cascade lasé&té?In
The emerging field of spintronits proposes to exploit, in  view of this, it seems worthwhile to explore ISpindynam-
addition, the spin degree of freedom of carriers, thereby addcs as a possible route towards novel applications in the tera-
ing new features and functionalities to solid-state deviceshertz regime.
Many of the proposed new applications rely, in one form or  Analogous to the case of spin dynamics discussed above,
another, on manipulating nonequilibrium spin coherencepne may define characteristic times fotersubbanciynam-
The hope that this may indeed lead to viable practical apcs (for an overview, see Ref. 25Population decay from an
proaches is  supported through recent experimentalycited to a lower conduction subband is measured by an
observation’ * of long-lived (>100 ns) and spatially ex- |gp rejaxation timeTB, and loss of coherence of collective

tended (>100'L.m.1) (_:oherent spin states_ n semlcon_dugtors.ISB excitations is measured by a dephasing t'||'ri§§. These
Two characteristic times[; and T,, provide a quantitative ; .
epgvo times have been measured experimentally for ISB

measure for the magnitude and persistence of spin coh . L )
g P P charge-density excitations in quantum w&l&§ and found to

ence.T, describes the return to equilibrium of a nonequilib- =’ g 1B 1
rium spin population, and, measures the coherence loss differ substantially at low temperature;™ being three or-

due to dephasing of transverse spin ortfer more details, ders of magnitude smaller thai>®. The reason is that ISB
see Ref. & relaxation proceeds mainly via phonon emission and is thus
Spin relaxation in GaAs quantum wells was recently stud-slowed down by an energy bottleneck for small phonon mo-
ied experimentall{*! and theoretically? 6 Measurements menta as well as for the optical phonon branch. This differs
of the electronicT; involve circularly polarized pump-probe from the case of conduction electron spin relaxation, where
techniques to create and observe coherent spin populationsT andT, are comparabl&!®
the lowest conduction subband. Electron spin decoherence On the other hand, dephasing of collective ISB excitations
has been shown to occur via the spin preceséiohcarriers  in quantum wells is determined by a complex interplay of a
with finite crystal momentunk in the effectivek-dependent variety of different scattering mechanisms, whose relative
crystal magnetic field of an inversion-asymmetric matéfial. importance is not priori obvious. In recent experimental
We note that the theory of Refs. 6,15 gives good agreemersnd theoretic&? work, it was found that the linewidth of
with experiment, without including electron-electron interac-(homogeneously broadenel&B charge plasmons in a wide
tions. GaAs/Al ;Ga sAs quantum well, where phonon scattering
In this paper, we consider electronic charge and spin dyplays no role, is determined mainly by interface roughness
namics in quantum wells involving nonhebuttwo subbands and electronic many-body effects.
(we will limit the discussion here mainly to conduction  The question now arises which physical mechanisms gov-
subbands'® One motivation for this work is that intersub- ern the dephasing afollectivelSB spin-density excitations.
band(ISB) chargedynamics in quantum wells is currently of As a first step towards a clarification of this question, this
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paper addresses the influence of tkalependent crystal wherea=T,| and

magnetic field in semiconductor quantum wells on ISB spin- ) 2 2
density excitations, and the importance of many-body ef- R=— i h i h7q 0o 2) +ou(2)
fects. The latter will be described in the framework of dz2m(E,z) dz 2m(E,z) ~°" HLE2
density-functional theoryDFT). (4)

This paper is organized as follows. In Sec. Il we set up thel_he spin-independent paft of the 2x2 conduction band

formalism for calculating the electronic ground state inH miltonian nts for ible nonparabolicity of th
modulation-doped quantum well conduction subbands, in- amifionian accounts for possible nonparabolicity of the

cluding spin-orbit coupling and many-body effects. SectionSUPPands through an effective mass that dependg;gn
Il presents a general response formalism for the spin-densitfXxplicit expressions fom(E,z) can be found in Refs. 37,38.
matrix, based on time-dependent DFTIDDFT). In Sec. IV Vcon2) is the confining bare quantum well potentialg., a
we consider an explicit example and calculate the collectivéquare we), and the Hartree potentialy(2) is related to the
ISB charge- and spin-density excitations in the conductiorglectron ground-state densityz), defined below, through
band of a GaAs/AJ{Ga, -As quantum well, including spin- Poisson’s equation
orbit coupling. Section V contains our conclusions. Various )
technical details can be found in Appendixes A and B. d“vp(2)

dz?

=—47e*°n(z), (5

Il. ELECTRONIC GROUND STATE . . . ..
wheree* =e/ /e is the effective chargee(is the static di-

We consider a modulation-doped quantum wditection  electric constant of the materjal
of growth: z axis) containingN conduction electrons per unit Let us now discuss the spin-dependent parts of the Hamil-
area. In the standard multiband-p approach for tonianin Eq.(3). The first termp‘;xé(z), describes externally
semiconductord?~* the single-particle states in a quantum applied uniform static electric and magnetic fieElsnd B:

well are expanded in terms of Bloch functions at the zone

. 1
center,u,(r): vi}t(z)=EEzZ5a5+ Eg*(Z)MBB' 7, (6)
Np
Wiq,(r)= 21 €'l (Z)un(r), (1)  whereE=eg,E, is perpendicular to the quantum well aBd
“

can have arbitrary directiom is the vector of the Pauli spin

where ¢;,(z) are envelope functions belonging to thta matrig:es, andy* (z) denotes the-factor of the bulk material
subband, and; = (x,y) andq;=(dx.q,) are in-plane posi- at pointz. _ ' o _
tion and wave vectors. In general,(r)=un(r)& I_ntr_|n5|c cqnduc_:tlon band spin splitting, caused b_y spin-
+u, (r)€,, where & denote two-component Pauli orbit interaction, in general comes from several different

Spinors' Usua”y’ thd\]b Bloch functions are constructed sources. One often deals with situation where there are two

from a basis consisting of conduction-basdstates and major contributionsH3%,=H2% +H52, where BIA and SIA
valence-bang states(8-band or Kan& mode), but in gen-  denote bulk and structural inversion asymmetry. The first
eral a 14-band model is neededégor a consistent descriptioggrm has the well-known fornfl 3"*:[;19.5/2]%3, where

of spin splitting in heterostructuréSThis leads to a Hamil- — 2_ 42 2_ 42 2_ 42

tonian in 8<8 (or 14x 14) matrix form, whose elements are =100y~ 02).0y(dz g (k= )] for - bulk
well known®* The envelope functiong;,(z) for valence
and conduction bands then follow from the resultingo8
14) coupled single-particle equatiofs.

If one is only interested in the electronic structure of the A A 1dy d
conduction band of a quantum well, it is convenient to re- H?%Az(H'f"lA)T:i(qi—qi)(— —+ y—), @
duce the multi-band Hamiltonian described above to a 2 2dz “dz
x 2 conduction band Hamiltonia#t=3 The single-particle d d
states (1) can then be simplified to the following two- {BIA_ BAyI_ _ —  — P ) —i i
compo(n;nt torm: P 9 HID =)= = S vgp(axtiay) —iyaay(ac—iay),

zincblende semiconductot$For a quantum wellH2) de-
pends on the growth direction. For instance, alf®@l| we
have

for [110] and[111] directions, see Ref. 36. The second con-

W (1)=&l i1 (.2) _ ()  tribution to intrinsic spin splitting, SIAalso known as the
I @i (qy,2) Rashba effed?), has the form
LM
The envelope functiong;,, follow from a two-component SIA_ ySIAZ ®
effective-mass Kohn-Sham equation: [
n N HSlA:(HslA)T:_i_d_n( —j ) (9)
> [ho.ptvii(2)+ A2 +vis(2)]e)p(a).2) TR 2 dz T
B=T.l
_ The material parameterg(z) and n(z) are explicitly given
_Equ‘PJa(qH ), 3) in Ref. 38. We also mention a possible additional source of
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spin splitting in quantum wells, the so-called native interfacewell known from quantum Monte Carlo calculatiofsThe
asymmetry, related to chemical bonds across interfdoes local density and spin polarization are given by
more details see Refs. 640
An important feature in Eq(3) which distinguishes the n=Trn, (15)
present approach from previous studies of conduction band -
nonparabolicity and spin splitting, is that many-body effects
are explicitly included through the exchange-correlatior) E- ETr - (16)
potentialv’ 5(2). xc effects have previously been shown to “n o
produce nonnegllg|ble shifts of quantum well subband ener-
gies and ISB charge plasmon frequenée&:*'As discussed  The ground-state density is normalizedfakzn(z) =N. Ex-
below, including xc effects is crucial for a physically correct plicit expressmns fon*S (z) are given in Appendix A. With
description of collective ISB spin excitations. this form for v’(2), the 2x 2 effective-mass Kohn-Sham
The solutions of Eq(3) have the interesting property of equation(3) is now completely defined. Self-consistent solu-

being mixed spin-up and spin-down eigenstates, due to thon yields a set of subbands which are occupied ufgo
off-diagonal terms in the Hamiltonian caused by spin-orbit

coupling and, possibly, externally applied transverse mag-

netic fields. The off-diagonal terms iH 5 depend o,
and there is no choice of basis which dlagonahzes(E)qfor

all g . Due to the absence of a global quantization axis, spin - Once the electronic ground statsharacterized by a set of

is no longer a good quantum number. This requires a genegubband levels and wave functiorgs been calculated, the
alization of the well-known spin-DFTRefs. 42—44to sys-  next step is to consider excitations. The formal framework
tems with noncollinear spin. So far, this was done at onlyfor describing excitations in electronic many-body systems is
few occasions in the literature, namely, for noncollinear magprovided bylinear response theor§?*°

netic materials such ag-Fe, UPt,, and MnSn,*>*® and For the case where the wave functions take on a two-
inhomogeneous quantum Hall systeth$ut, to our knowl-  component form, the TDDFT linear response equation for

edge, never before in the present context of semiconductqjuantum wells becomes ax2 matrix equation:
nanostructures.

Formally, the xc potential is defined as

lll. LINEAR RESPONSE FORMALISM FOR THE
SPIN-DENSITY MATRIX

”fflgr(kH,Z,w): 2 dz' er’ w(Kj,2,2", o)

OExd n] AN =100
et (10
Xv}\)\,(kH Z' o). 17)
where the xc energy of the systeBy [ n], is a functional of
the spin-density matrfX - This expresses, formally exactly, the first-order change of the
spin-density matn)n(l), via the response of a noninteracting
n(r)=2 oy gt (m nu), (1)  system, characterized by the response func;ti('éilyw (see
- Yo = oy ey ng Ny bellovxb 'go an elf'fl_iectivel perturbing leotentiaI of the form
where f,, =f(Eg— ) denotes the Fermi occupation U(M)’ (M?X%r (M’)+ (M)’(C)' Here,u(M'?Xt) is the external

IQ| ICI\
funct|on andEg is the conduction band Fermi level. For
given by Eq.(2), we have

perturbation, and the linearized Hartree and xc potentials are

lq ’ ) ’
I vil)\',_')(ku Z ,w)+v(hl)\)fc)(k|\ 2, w)
2
N (2= fiq lej(a),2)2 (12 | 27 k-2
i T T :“zu dz K e M7 25,5, 8,

[similarly for n; ()], and

o2 20 g (K2 e). (1

N (2=nf(2=2 fq e 2¢f (2. 13
M In the widely used adiabatic local-density approximation
The usual approximation is to take the density maftik to ~ (ALDA),>! the xc kernel is given by
be locally diagonaf®*’ so that the LSDA for noncollinear
spin reads 2eh (n.|E))
)\)\’ {(’(kH Z, Z w)—mé(z—z’).
(Z)__[nexc(n 1€])] : (14) MW e

n=n(z)

(19

eQC(n,g) is the xc energy per particle of a homogeneous elecThe noninteracting response function takes on the form of a
tron gas of densityn and spin polarizationé, which is  fourth-rank tensor:
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ﬂm(l) (9\/(1)
KS ’
i (r;r y @ E E (quH fIqH 2 XO'O" )\)\’(a (1) a (1) I} (25)
aja Uy
)\ )\,
,q”(r)\lflqu(r)\lquu(r )Wiq)(r) where the coefficientsm(*/an{?),[ = av{V/v'?,] are eas-

in obtained from Eqs(22) or (23). Explicit expressions for

H are given in Appendix B. Thb’(l) in turn, are given as
(20 sums of external perturbations and linearized Hartree and xc
ms:

w—E; +E|q"+|7]

19

If x*Sis constructed using the multiband wave functions ofter
Eq- (1), this response formalism describes transitions among  V{M(k|,z,w)=V¥(k |,z,w)
valence and conduction subbands, as well as interband tran- 3 )
sitions. In this paper, however, we focus exclusively on in- E 4z 2me*
tersubband transitions in the conduction band of modulation + z

doped heterostructures, and thus useltfegiven in Eq.(2).
One can then transform the response funct@®) into

_ T
e M 2150510

+ 18k ,2.2' ) (MM (k2 0).  (26)

KS
Xo’o”,)\)\’(kH 'Z’Z,’w)

f da fiay—k~ Tigy
(277)2 (L)_E]q”‘{‘ E|qH,kH+i n

The xc kernels ) in ALDA are given in Appendix A.

®jo(q),2) IV. RESULTS AND DISCUSSION

A. Kohn-Sham wave functions and Rashba effect

X oF (an—ky,2) e (q,2’ (an—kp,2"), (21
eo A=k 2 eilay. 2 en (A=K .2) ‘ We will now discuss an example to illustrate the spin-
where the Kohn-Sham envelope functiops, and energies density matrix response formalism developed above. Con-

quH are obtained from Eq3). sider the case of a 40 nm wide GaAgfAba, -As square

. . . . 9,41, H H
One can combine the perturblng spin-dependent potentiaftiantum welf*# without any externally applied static elec-
(1), and the solutlonﬂ , of the response equatid?) in tric or magnetic fields. We make the simplifying assumption

of parabolic conduction subbands., neglecting the differ-
the following, phyS|caIIy more transparent way, see also Eqs
(A3) and (A4) of Appendix A: énce of the effective masses in well and barjieRurther-

more, we neglect BIA, but assume spin splitting is domi-

nated by SIA, described by a simplified Rashba term of the
Vfl)=Tr[<Tjg(l)], (22) o0 y y p
mJ(l):Tr[UJE(l)L (23 o 0 R)
H>"=a[oXql,= , 2
j=0,1,2,3, wherer, is the 2< 2 unit matrix andoy, 0,03 loxal=| g @

are t{}? Pa}ll“')“ melt)nces whereR=a(qy+idy), anda is taken to be a real, positive

Ny Ny de(sl?nbe(%a C(()llgeCt'Ve charge-density ex-, i stable parameter. The Rashba field is thus assumed to be
C|tat|on (CDE), andmg”’=niy’—n]}" is a longitudinal spin-  {he same for all conduction subbands, which is a reasonable
density eXC|tat|or(SDE) Wlth respect to the axis. In terms approximation for wide quantum wells. The two-component
of this choice of global spin quantizatiom{"’=n{Y+n{%  Kohn-Sham equatiof8) becomes
andm{M=i[n{}—n{}] appear as transverse spin- denémy
spin-flip) excitatlons The CDE couples to an oscillating ﬁ0+ Uﬁ R+v it it
electric field polarized along thedirection, associated with ( ) Eiql< _ ) (28
V. The longitudinal SDE is excited by an oscillating mag- Yl Yl

* XC o
R +UlT h0+vu

netic field alongz associated with/(31), and the transverse wherei=1,2,3..., and

SDE'’s are excited by oscillating magnetic fields alongnd

y, associated with/{" and V! | respectively. We will dis- 1 e,

cuss these selection rules in more detail below. ho:2m* - EﬂLqH Tvcon(2) Ton(2). (29
In terms of these quantities, the linear response equation

(17) takes on the following form: Equation(28) is solved by the following ansatz:
(1) ’ (1) 1

mM(k),z,w) = 2 dz' T3k, 2,2, ) VDK .2 o). Yejr(q,2) = J_qgj(z) (30

(24)

The response functiorld > and x>, | |, are related as fol-
lows:

s R*
’ﬁsjt(QH-Z):EWQDJ’(Z)i (31
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FIG. 1. Lowest (1-2) ISB excitation frequencies versus elec- =
tronic sheet densitil in a 40 nm GaAs/A :Ga, ;As quantum well, “E’
at k||=0, for values ofN where only the lowest subband is occu- ~—
pied (with parabolic subbands and without spin-orbit splitjirfgull 3
line: single-particle excitationse(=€,— €;). Dotted line: charge-
density excitations in RPA. Dash-dotted and dashed lines: charge- 6|
and spin-density excitations in ALDA.

0 0.001 0.002 0.003

where we replaced the subband inddsy the pair of indices k (A)—l

{sj}, such thats=(—1)' andj=(i+1)/2 fori odd and] I

=i/2 for i even. In the absence of the off-diagonal terms in  F|G. 2. ISB charge and spin plasmon wave vector dispersions in

Eq. (28), i.e., for inversion symmetry and hence spin degens 40 nm GaAs/A Ga, ;As quantum well, for Rashba coefficients

eracy at eacly, j simply labels the spin-degenerate pairs,«=0 (top) and @=10 meV A (bottom. The electronic sheet den-

ands labels the eigenfunctions within each pair. sity is 1X 10 cm™2. The shaded regions indicate Landau damping
It is not difficult to see that in the presence Bfthe  of the charge and spin plasmons. ko0, both regions coincide.

ground-state density matrix remains diagonal with, For finite a, the Landau damping region for charge plasmons is

=n,,, and henCEUﬁZUﬁvac and U)T((izv)l(%zo' The unchangeddarker regio but grows for spin plasmong&larker

¢;(z) are therefore simply the solutions of the spin- plus lighter regi(?m The charge.pla}smon is essentially indepgndent

unpolarized effective-mass Kohn-Sham equation of a, but the spin plasmon splits into three branches for finite

In that case, the effective perturbing poten\'/&l) consists of
the self-consistent linearized Hartree and xc terms only.
1 d? B Let us first consider the case without spin-orbit coupling
T om* E+Uconf+vH+”XC PiTEP (32) («=0). Figure 1 shows the density dependence of various
ISB excitations at zero in-plane wave vectdq € 0). The
wheree; are the energy levels of the associated, doubly defull line depicts the single-particle excitations with frequen-
generate, parabolic subbands. The presence of the ofties w=¢,—€,, i.e., the bare Kohn-Sham excitation ener-
diagonal Rashba terms in E(R8), however, lifts the spin  gies. The dotted line shows the ISB charge-density excitation
degeneracy fog#0. We thus obtain, usintR|= aq, in RPA, i.e., settingf}°=0 in the effective potentiaV/{>,
Eq. (26). The RPA excitation energies are always higher than
the single-particle excitations, due to the so-called depolar-
qﬁ ization shift>? The ISB charge-density excitation in ALDA is
Esjq =€+ -, Tsaq, s==*1, (33)  shown by the dash-dotted line. Including xc effects in the
2m response calculation produces a downshift of the plasmon
for the energy eigenvalues associated with the solution§N€rgy of up to 0.75 meV. Finally, the spin-density ISB ex-
(30),(31) of Eq. (28). citation is shown by_the dash_ed I|ne..|n RPA, .th|s excitation
coincides with the single-particle excitation, since the depo-
larization shift affects only the charge mode. Thus, the spin
plasmon only exists as a distinct, collective excitation be-
In the following, we will consider only cases where the cause of xc effects.
lowest conduction band is occupied, which restricts the elec- We now include spin-orbit coupling in the quantum well
tron density in the quantum well tdl<1.82x 10'cm™ 2. material by taking a finite, density-independent valueaof
The goal is to study collective charge- and spin-density ex=10 meV A for the Rashba coupling parameter. This is a
citations between the first and the second subband. Thesgpical value for practical situations of interest, for instance,
collective modes are obtained by solving the response equarhen applying a static electric field of strength 10 kV/cm in
tion (24) for the case where the external perturbation is zeroa GaAs quantum wefl’

B. Collective intersubband excitations
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FIG. 3. Splitting of the ISB spin plasmon dispersions, for the

same quantum well as in Fig. A.w denotes the difference of the
spin plasmon frequencies at=10 meV A anda=0. The dots

indicate that the plasmons enter the region of Landau damping. Thgic

inset illustrates the selection rulésee text m¢™ and mf) are
coupled and twofold split. To lowest order én the splitting has the
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FIG. 4. ISB spin plasmon splitting coefficieB(N) (see Fig. 3,
versus electron sheet density.

As before, these potentials can be related to oscillating elec-
and magnetic fields, Eexdi(k,-rj—ot)] and
Bexr[i(k||~rH—wt)].

The inset in Fig. 3 illustrates the selection rules for the

form S=C(N)ak, where C(N) depends on the electron sheet jndividual SDE modesi) a longitudinal mode, denoted by

density.

The ALDA in-plane wave vector dispersions of the ISB modesm!?)

plasmons are shown in Fig. 2, comparing the case o0

(top) and finitea (bottom). The shaded regions indicate Lan-
dau damping, i.e., collective modes overlap with the particle- f(l)
hole continuum and can decay into incoherent particle-hol
pairs. In both cases, the charge plasmon lies above the regi
of Landau damping, and the spin plasmons lie below. In thé
case ofa=0, there is a common region of Landau damping

for the charge and the spin plasmons. For fiaitehe region

of Landau damping for the spin plasmons grows, while for

mgl), which couples to a magnetic field perpendicular to the

quantum well,B=B,e,, (ii) two transverse(or spin-flip
() andm(p, which couple to magnetic fields in the

plane of the quantum welB=Bj e, and B=Be, where

e,=k /k| ande,=e,xe,. Figure 3 shows that, at finite,
and m({) are coupled and twofold split. On the other

r-nZ
%\qnd,mfﬁ) depends only very little oy, except a small

edshift independent d, . This small redshift, as well as the
small splitting between theand||¢ modes ak =0, can be
shown to be proportional te?.

Writing the Hamiltonian(27) in the form HSA=#%0x

the charge plasmons it stays unchanged. In the absence of/2 defines the Rashba effective magnetic fief

other intrinsic or extrinsic scattering mechanis(plonons,

=(2alf)(qy,—0x,0), which lies in the quantum well plane

disordey, all collective modes outside the region of Landauand is perpendicular tq). Since in our example all sub-

damping have infinite lifetime in ALDA.

bands experience the sarfly, a collective ISB excitation

The charge plasmon dispersion is essentially independefitith wavevectork implies a change in the effective mag-
of a. The spin plasmon, however, splits up into threenetic field AQg=(2a/%)(k,,—k,,0) for all single-particle

branches for finitex. This is shown in more detail in Fig. 3,

transitions, whereA Qg||e, (see Fig. 3 This explains the

where Aw denotes the difference of the spin plasmon fre-physical origin of the splitting between the different SDE

quencies atr=10 meV A anda=0. There are three differ-
ent spin plasmon modes, all degeneratexat0. We will

branches: The two spin plasmon branches whose energies are
shifted (z and||¢) are those responding to fields perpendicu-

now discuss the nature of these modes, and how they coupler to AQg, whereas the one which to lowest order dn

to external fields.

The charge and spin plasmons wkfp=0 couple to ex-
ternal spin-dependent potentials of the fourft®Y(z,w)
=eEyzo;. Forj=0 (CDE), v**¥ s related to an oscillat-
ing uniform electric fieldE exp(—iwt), whereE=E,e, (lin-
early polarized along, perpendicular to the quantum well
plang. For the SDE's {=1,2,3), v*®9 corresponds by
comparison with Eq.(6) to oscillating magnetic fields
B exp(—iwt), where B=2Eq,z/g*(z)ug. The CDE and

does not shift |(t) is parallel toAQg. Thus a spin polariza-
tion in eitherz or ||¢ will precess in thez-¢ plane. There are
two possible linear combinations)t” = im({, one precess-
ing in that direction which is favored by g, the other in
the opposite direction, thus costing more energy.

To lowest order ina, the magnitude of the splitting be-
tween the two linear combinations afl") andm({, S is
proportional to « and grows linearly withk,, ie., S
=C(N)ak|;. The numerical prefacta€(N) is a function of

SDE'’s can thus be formally viewed as collective electric andthe electron density, and is plotted in Fig. 4. The SDE split-

magnetic dipole transitions. At finité, the plasmons
couple to external potentials of the fottn (*(k; ,z,w)
=eEyagexplk)a;, whereag is the effective Bohr radius.

ting strongly increases with electron density, and reaches val-
ues of around 0:2£0.2 meV for sheet densities of order 1
X 10t cm™2 and higher, and plasmon wave vectors of order
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0.001 AL, These splittings should be experimentally ob- el(n,&)=e"(n,0+[el(n,1)—el(n0)]f(&). (A1)
servable, for example using inelastic light scattering
techniques*°° This would provide an opportunity for mea-
suring the Rashba coefficient

The interpolation function between the paramagnetic (
=0) and ferromagnetic§=1) limits,

V. CONCLUSION (1+ &P+ (1-9)*3-2

f(§)= YT
We have presented a microscopic theory of collective (27°-1)

charge- and spin-density excitations in semiconductor quaneproduces the exagtdependence of the exchange energy
tum wells based on spin-density-functional theory, with speuf the homogeneous electron gas, and approximates the
cific emphasis on intersubband excitations within the con_gependence of the correlation energy.

duction band. The approach consists of two steps. We first | the LSDA for noncollinear spin€=*" one still uses the

calculate the electronic ground state in the quantum welkpin-polarized homogeneous electron gas as reference sys-

tion band nonparabolicity anq spi.n splitting, whic.h leads to0 8y, the local ground-state densityand the absolute value of
2x2 conduction band Hamiltonian. The associated Kohny .. ground-state spin polarizati§nwhere, using defi-

Sh_am matrix equation features_ spin-d_epende_nt XC potentia tions (15) and (16),
which are functionals of the spin-density matrix.

We then determine the excitation energies using linear
response theory in the formulation of TDDFT. Formally, one n=n;;+n;, (A3)
needs to solve a 22 matrix equation for the coupled
charge- and spin-density-matrix response, including dynamic

: (A2)

Ny +ng my
many-body effects. . ) 1
To illustrate the formalism, we considered the example of &= iy —np) | = S| M2 (Ad)
a quantum well with parabolic subbands that are split by a Ny =N, ms

Rashba effective magnetic field. The charge plasmons were
found to be independent of the Rashba field. The three po$© that
sible spin plasmons, which are degenerate in the absence of
spin-orbit coupling, were found to be split into three 1
branches, the splitting being proportional to the in-plane €= Vmi+ma+mg, (A5)
wavevector and to the strength of the Rashba field.

This study illustrates the importance of including many-and the sign of is determined with respect to the chosen
body effects beyond the RPA in calculating collective spinglobal quantization axis: sgéf=sgn(;;—n, ).
excitations. The collective nature of the ISB spin plasmons is The xc potential in LSDA may then be obtained as fol-
purely a consequence of dynamical xc effects. Due to theslws: Lettingn=m,, we define
collective effectsT5® is not influenced by the precessional
decoherence mechanisms related to spin-orbit coupling a[nexh (n,6)]
which determine the intraband spin relaxation tiffig*’ v%2)= -
Therefore, in the absence of impurities, disorder and phonon
scattering, the lifetime of ISB spin plasmons is limited by i
dynamical many-body effects only. To capture these effectgVhich yields
one has to go beyond the ALDA and include retardafion.
Within the ALDA, on the other hand, collective CDE and oell. el
SDE’s are infinitely long-lived. The effect of nonparabolic vy = chJrn an —§ 9E
bands and more general forms of spin-orbit splittifbgpth
BIA and SIA) in semiconductor quantum wells will be ad-
dressed in more quantitative detail in the future.

am; (A6)

i m;=m;(2)

i=0,1,23

(A7)

m; del
vi“:n—éa—?' i=1,2,3. (A8)
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i=0 &naﬁ

APPENDIX A: LSDA FOR NONCOLLINEAR SPINS one finds

In LSDA, the xc energy per particle of a spin-polarized N
homogeneous electron gach(n,f), is usually approxi- 98¢

XC h
: g =el tn—=+
mated by the von Barth—Hedin parametrizatfor* SRR CRRLL R

gel

XC

M7y %
dE "’

nE (A10)
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h h
vi=etn e —n”n_;”%rﬁi?, (A1)
2n,, deh
vii="¢ 7 (A12)
2n,, o€l
uﬁ:n—g = (A13)

Equations(A10)—(A13) are in agreement with the results of
Heinonenet al*’

Next, we calculate, in ALDA, the xc kernels needed in
Eq. (26). The definition is

Pnel(n,é)]

XC, ’ _ o
fi(z,2", @) Jm,am mi=mi(2)5(z z'),
i=0123
(A14)
with the following resultd omitting the §(z—z')]:
oeh. 9%l o%el. &2 5%l
= tn— -2 — £ 7% (A15)
an an? gndé  n g2
m, 9%, m; o2l
fre— -2 17 (A16)
ng dnd¢ n? 5¢2
o 0 Pk MMy ais‘:—saz 2° (A17)
Uoné 9& (ng)3\ ¢ ag2 )’

wherei,j=1,2,3 in(A16) and(A17), andfixjczf}‘iC foralli,j.
For spin unpolarized ground states,(=m,=m;=0), only
those xc kernels diagonal inj are nonzero, with

9%e"(n,0)

aeﬂc(n,O)
+n >
an

an

XC__
00—

(A18)
and

ii

9
1)[eQCm,l)—ch(n,ou (A19)

n(21/3_
fori=1,2,3. Notice thaty; andf;* have the same exchange
parts, f;=fX=(4/9n)e"(n,0)=— (97n?)~* but in gen-
eral have different correlation parts.

APPENDIX B: NONINTERACTING RESPONSE
FUNCTIONS

For convenience, we list here the explicit relations be-

L aEKS Ks ;
tween the response functiod$;,” and x, . ,,. following

from Egs. (22), (23), and (25 (omitting the superscript
HKS” ):

Woo= X110t X11, 00t XL T XL
Wor=x11 00t Xm0 T Xt X

Moo= =i (X111, = X100+ X00a1 = X1101)s

PHYSICAL REVIEW B 66, 205305 (2002

Woa=X11,11 = X110 X0 = X100
Mao=X1 1t X100t Xt X
Mo=xp it Xt xo X
Myo=—=iCxy =X 0 b xo =X
aa=X1 =X 00 b X =X
Ma0=1(x1 1,11 X010 = X011 = X010
Mo =iCxp 1t X0 = X = X0
Mao=x1 101~ X100 = Xt X
Maa=i(x 11,01 = X110~ X T X0
Wao=X11,11F X110~ X1~ X1
War=Xp100F X110 = X0~ X1
go= =100 = Xm0~ Xt

Was=x11 1= X100~ X1t X0 (B1)

With eigenfunctions of the forn30),(31), the Kohn-Sham

response functio21) can be written as
Xii,’n,(kH,Z,Z',w):% Fgg,’nr(ku,w)<Pi(Z)<Pj(Z)

(B2)

X @i(2')ei(2"),

and likewise
HEF(k”,z,z',w>=; G(K| @) ¢i(2) 9;(2) i(Z') 0j(Z)).
(B3)

The GE,(kH ,w) are related to thEEU,M,(kH ,w) according
to (B1). The latter functions are given by
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1 ot dZCIH f(ESqu) (qI)H (qH_kH) }
(K 1 Y s Byry B yr S
oamtio==33 | Gl Ea Exia il RG] g
R(qy) H ,R*(Q||—k|)} 1o d’q F(Esiq))
S S Ot o S'T=———F7|+—+
S MITR(gT || oS |[R(ay =kl "2 f (2m)? @+ Egig ~ Esrjq e Ti7
,R*(Q|+k|)H R(q)) H R(q|\+k\|) H R*(ql)}
R T R (T RN TR 0] | RNARNES CXE

(B4)

It is not difficult to show that for the case af—0, i.e., vanishing Rashba term, the functléhr,’“, becomes diagonal in the
spin indices and reduces to the well-known Ii‘l’hi([wij =€ —€),

2 2
q q
2 f Ei+ I f |+ H
CRIRETIC RN s 2’ 2 ®5)
0'0" aw K@ x9N’ 2 2 - 2 :
(2m) Kl arky - K kg
w+ (.Ui]' + +1 w (J)ij +
2m* m* 2m* m*
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