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Phase transition and critical behavior of thedÄ3 Gross-Neveu model
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A second-order phase transition for the three-dimensional Gross-Neveu model is established for one fermion
species,N51. This transition breaks a paritylike discrete symmetry. It constitutes its peculiar universality class
with critical exponentn50.63 and scalar and fermionic anomalous dimensionshs50.31 andhc50.11,
respectively. We also compute critical exponents for otherN. Our results are based on exact renormalization-
group equations.
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An understanding of systems with many fermionic d
grees of freedom is one of the big challenges in statist
physics. Due to the anticommuting nature of the variab
numerical simulations are not straightforward—analyti
methods are crucially needed. One, typically, has to solv
functional integral for ad-dimensional system with Grass
mann variables. Approximate solutions for ‘‘test model
would be of great value. The Gross-Neveu~GN! model1 is
one of the simplest fermionic models. In three dimension
discrete symmetry forbids a mass term unless it is spont
ously broken. In the symmetric phase, the GN model
therefore, a realization of a statistical system of gapless
mions. For a large numberN of fermion species, it is
known2–5 that a second-order phase transition separates
symmetric phase from an ordered phase, where the sym
try is spontaneously broken and the fermions become m
sive. Using methods based on an exact renormalizat
group equation,6 a second-order transition forN>2 was
confirmed. To the best of our knowledge, we know, howev
of no previous work that clarifies the existence and nature
the phase transition in the simplest model with only o
fermion species. The model with one fermion species is
accessible to lattice simulations due to the fermion doub
problem and the 1/N expansion is not expected to give re
sonable results forN51. The caseN51 is also of special
interest since an order parameter^c̄ j c j&Þ0 leads to a
ground state, which does not admit any discrete symm
involving the reflection of all coordinates, in contrast to t
models withN>2.

In this paper, we improve the exact renormalization-gro
approach and establish a second-order phase transitio
N51. We also compute the critical exponents. This is i
portant beyond a possible relevance for real physical s
tems: the GN model constitutes a peculiar universality cl
due to the presence of massless fermions at the critical p
Just as the O(N)-Heisenberg models for bosons, the G
model could in the future become a benchmark for our
derstanding of critical systems in the presence of fermio

The GN model describesN-fermionic fields with local
quartic interaction. Herec j , j 51 . . .N, are irreducible rep-
resentations of the group O(d) including parity reflections,
i.e., 2d/2 component Dirac spinors ford even and 2(d21)/2 for
d odd. The classical Euclidean action

S5E ddx H c̄ j~x!i ]”c j~x!1
Ḡ

2
@c̄ j~x! c j~x!#2J ~1!
0163-1829/2002/66~20!/205111~5!/$20.00 66 2051
-
al
s,
l
a

’

a
e-
,
r-

he
e-
s-
n-

r,
f

e
-
g

ry

p
for
-
s-
s

nt.

-
.

is symmetric under a coordinate reflection

c~x!°2c~2x!, c̄~x!°c̄~2x!.

~We note thatc and c̄ are independent variables in an E
clidean formulation.! A nonvanishing expectation value o

c̄ jc
j spontaneously breaks this symmetry. If the spinorsc j

contain more than one irreducible representation of the r
tion ~or Lorentz! group SO(d), we can find alternative defi

nitions of the coordinate reflection, wherec̄ jc
j remains in-

variant. In particular, this is realized for Dirac spinors
even dimensions, where a mass term couples two irreduc
representationscL andcR . One may then define a standa

parity transformation, under whichc̄c is invariant. In this

case, however,c̄RcLÞ0 breaks a discrete chiral symmet

cL°2cL , c̄L°2c̄L . We will concentrate here on on
two-component spinor in three dimensions. ForN51, the
above ‘‘parity transformation’’ is the only possible choice

coordinate reflections andc̄ jc
jÞ0 spontaneously breaks th

symmetry.

Depending on the value of the couplingḠ, the model will
be in the symmetric phase or exhibit spontaneous symm
breaking ~SSB! with a nontrivial expectation value of th

order parameter̂Gc̄ j c j&. We will describe a space depen

dent fermion bilinear2 i Ḡc̄ j (x)c j (x) by a real scalar field
s(x) such that SSB is indicated by nonzero homogene
^s&Þ0. By a partial bosonization, we express the GN mo
~1! as an equivalent Yukawa model with

Ss5E ddx S c̄ j i ]”c
j1 isc̄ jc

j1
1

2Ḡ
s2D . ~2!

The equivalence of the partition function can be seen
performing the Gaussians integration @h̄c means
*ddx h̄ j (x) c j (x)],
©2002 The American Physical Society11-1
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HÖFLING, NOWAK, AND WETTERICH PHYSICAL REVIEW B66, 205111 ~2002!
Z@h̄,h#5E DsDcDc̄ exp~2Ss@s,c,c̄#1h̄c1hc̄!

5E DcDc̄ expF2c̄ i ]”c1h̄c1hc̄2
Ḡ

2
~ c̄c!2G

3E Ds expF2
1

2Ḡ
~s1 iḠc̄c!2G , ~3!

where the last factor yields an irrelevant constant.
A powerful tool for nonperturbative examinations are e

act renormalization-group equations for the effective act
G, i.e., the generating functional of the 1PI Green
functions.7,8 Starting with the classical actionS at the UV
cutoff L, we obtain a type of coarse-grained free energyGk
by integrating out the quantum fluctuations with mome
larger than a given scalek. Eventually, we reach the macro
scopic thermodynamic potential8 G at k→0. The IR cutoffk
is implemented in a smooth way by introducing a massl
term DSk into the classical action, which gives extra mass
to modes with momenta smaller thank. In the limit k→0,
the IR cutoff is absent, and fluctuations at all scales h
been taken into account. Atk→L, all fluctuations are sup
pressed andGL approachesS.

This procedure should be explained more precisely.
notation purposes, we combine the fermionic and~real!
bosonic fields to a column vectorx5(s,c,c̄T), and the row
J contains all the external sourcesJ5(J,h̄,hT). We start
with the generating functional for the connected correlat
functions in the presence of the IR cutoff,

Wk@J#5 lnE Dx exp~2Ss@x#2DSk@x#1Jx!. ~4!

For vanishingDSk ~at k→0), this matches exactly with th
free energy of the Gross-Neveu model~1!. The effective ac-
tion is then defined via a modified Legendre transformat
by

Gk@F#ª2Wk†J@F#‡1J@F#F2DSk@F#, ~5!

which depends on the expectation values of the fieldsF
5^x&.

The infrared cutoff takes the formDSk@F#5 1
2 FTRkF,

andRk is a matrix

Rk~p,q!

5S RkB~q! 0 0

0 0 2RkF
T ~2q!

0 RkF~q! 0
D ~2p!ddd~p2q!,

with RkB(q)5Zs,kq
2r kB(q) and RkF(q)52Zc,kq” r kF(q).

(Zs,k and Zc,k are wave-function renormalizations.! With
these definitions, an exact renormalization-group equa
for the scale dependence ofGk can be found7–9:

] tGk5
1

2
STr$~Gk

(2)1Rk!
21 ] tRk%, ~6!
20511
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wheret5 ln(k/L). The supertrace runs over momenta and
internal indices, and provides appropriate minus signs for
fermionic sector. The heart of the flow equation is the flu
tuation matrix,

@Gk
(2)~p,q!#abª

dW

dFa
T~2p!

Gk

dQ

dFb~q!
. ~7!

Together withRk , it represents the exact inverse propaga
at the scalek.

Equation~6! is an exact but complicated functional diffe
ential equation. There is no way around some approxima
by truncating the most general form ofGk . We work here in
the lowest order of a systematic derivative expansion, wh
Gk contains a scalar potential, kinetic terms, and a Yuka
coupling. In momentum space, it is given by@*dq
5*ddq/(2p)d#:

Gk@s,c,c̄#5E ddxUk~s!1E dq H Zs,k

2
s~2q!q2s~q!

2Zc,kc̄ j~q! q” c j~q!

1E dpih̄kc̄ j~p! s~p2q! c j~q!J . ~8!

The connection betweenḠ andh̄ becomes clear if we rescal
s in Eq. ~2! to h̄s and setḠ5h̄2/ms

2 , ms denoting the
boson mass.

Using a truncation of the effective action causes the lim
k→0 to depend on the precise form of the cutoff function
In order to take control of this, we have used two differe
choices, an exponential8 and a linear10 cutoff,

yrB
exp~y!5

y

exp~y!21
, yrB

lin~y!5~12y!Q~12y!,

wherey5q2/k2, andr F(y) is chosen in both cases such th
y(11r B)5y(11r F)2. We introduce renormalized, dimen
sionless quantitieshk

25Zs
21Zc

22kd24h̄k
2 , r̃5 1

2 Zsk22ds2,

uk5Ukk
2d, and we useuk85]uk /]r̃, etc.

We obtain a set of evolution equations for the effecti
parameters of the theory by inserting Eq.~8! in the exact
flow Eq. ~6!. The evolution equation of the effective scal
potentialuk is found by evaluatingGk

(2) for a constant scala
background field,

] tuk52duk1~d221hs!r̃uk812vd$ l 0
d~uk812r̃uk9 ;hs!

2N8l 0
(F)d~2hk

2r̃;hc!%, ~9!

where we useN85dgN, with dg the dimension of theg
matrices, andvd

2152d11pd/2G(d/2). The definition of the
threshold functionsl n

d and l n
(F)d as well asl n1 ,n2

(FB)d , mn1 ,n2

d ,

m2/4
(F)d , andmn1 ,n2

(FB)d used below@see Eqs.~11!–~13!# is given

in the appendix of Ref. 8. These functions contain all t
momentum integrations. For the linear cutoff, the integ
tions can be performed analytically—an enormous advant
for the subsequent numerics. We obtain
1-2
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l n
d~v;hs!5

2~dn,01n!

d S 12
hs

d12D 1

~11v!n11
,

l n
(F)d~v;hc!5

2~dn,01n!

d S 12
hc

d11D 1

~11v!n11
,

l n1 ,n2

(FB)d~v1 ,v2 ;hc ,hs!

5
2

d

1

~11v1!n1~11v2!n2
F n1

11v1
S 12

hc

d11D
1

n2

11v2
S 12

hs

d12D G ,
mn1 ,n2

d ~v1 ,v2 ;hs!5
1

~11v!n1~11v!n2
,

m2
(F)d~v;hc!5

1

~11v!4
, m4

(F)d~v;hc!5
1

~11v!4

1
12hc

d22

1

~11v!3
2S 12hc

2d24
1

1

4D 1

~11v!2
,

mn1 ,n2

(FB)d~v1 ,v2 ;hc ,hs!5S 12
hs

d11D 1

~11v1!n1~11v2!n2
.

The anomalous dimensionshs andhc are defined as

hs~k!52] tln Zs,k , hc~k!52] tln Zc,k . ~10!

Taking second derivatives of Eq.~6! with respect to the fields
by means of Eq.~7!, we obtain evolution equations for th
exact inverse boson and fermion propagators. Expanding
momentum dependence atq250 for s5s0k at the potential
minimum yields equations forhs andhc :

hs~k!58
vd

d
$kk~3uk912kkuk-!2m4,0

d ~uk812kkuk9,0;hs!

1N8hk
2@m4

(F)d~2hk
2kk ;hc!

22hk
2kkm2

(F)d~2hk
2kk ;hc!#%, ~11!

hc~k!58
vd

d
hk

2m1,2
(FB)d~2hk

2kk ,uk812kkuk9 ;hc ,hs!.

~12!

Herekk denotes the position of the minimum ofuk( r̃) and
all derivatives of the potential are evaluated atr̃5kk . Di-
viding the evolution equation of the fermion propagator bys
and evaluating it at zero momentum, ands5s0k yields the
evolution equation ofhk

2 ,
20511
he

] thk
25~2hc1hs1d24!hk

2

18vdhk
4l 1,1

(FB)d~2hk
2kk ,uk812kkuk9 ;hc ,hs!.

~13!

We study the flow of the effective potential in two diffe
ent ways that correspond to two different truncations ofGk .
First, we expand the evolution equation of the potential~9! in
a Taylor series up to third order inr̃ around its minimum and
evolve the resulting coupled ordinary differential equation6

In a second, more involved approach, the full equation foruk8
is discretized on a grid, yielding coupled ordinary different
equations~one for each grid point!, which are solved simul-
taneously. We use the equation foruk8 instead of the one for
uk for numerical reasons.

The only critical parameter in the theory is the fou
fermion couplingḠLcr . This parameter has to be tuned
order to be near to the phase transition. The flow Eqs.~9!–
~13! are evolved from an UV cutoff scaleL to k→0. We
concentrate on the three-dimensional case with one ferm
species (d53 andN51). The initial values of the param
eters are chosen such thatGL5Ss : ZsL510210.0,
ZcL51, h̄L

2 5c L, anduL8 ( r̃)5eª(ZsLḠLL)21 for all r̃.
The GN model corresponds toc51, whereas forcÞ1, we
investigate Yukawa-type theories in the same universa
class.

Very close to the phase transition, we find scaling so
tions for all evolving parameters corresponding to vanish
b functions. This behavior indicates a second-ord
phase transition. The symmetric regime is characterized
uk8(0).0 as well askk50, while after spontaneous symme
try breakinguk8(0) becomes negative andkk.0. Starting in
the symmetric regime, the system evolves into the SSB
gime and reaches the scaling solution. Further down the fl
it evolves back into the symmetric regime forḠL,ḠLcr

or it

remains in the SSB regime forḠL.ḠLcr
. This behavior

contrasts the one forN>2, where the scaling solution i
located in the symmetric regime.

Figure 1 shows the critical flow ofkk anduk8(0) for two
different values ofc, namely c51 ~full and dashed lines,
respectively! and c510210 ~thin dashed lines!. It nicely
demonstrates that only the beginning of the flow is affec
by the choice of the noncritical parameters. All univers
quantities such as critical exponents and mass gaps are
pendent ofc. The polynomial expansion of the potenti
works well only for small enoughc. The value of the critical
coupling ḠLcr depends, however, on the choice ofc. In the
limit c→1, it converges towards a constant value, which
reported in Table I.

We calculate the critical exponents characterizing
second-order phase transition. In order to test the reliab
of the numerical algorithms, we determine the exponents
the symmetric as well as in the ordered phase. The s
dependent renormalized boson massmsR

2 (k) is defined as the
curvature of the potential at its minimum. In the SSB regim
it is given by msR

2 (k)52k2kkuk9(kk), in the symmetric re-
1-3
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gime by msR
2 (k)5k2uk8(0). In the ordered phase, the run

ning of msR(k) essentially stops oncek becomes much
smaller thanmsR(k). The situation is slightly more difficult
in the symmetric phase since the fermions are mass
Their fluctuations induce a scale dependence ofZs,k even for
very small momentak: hs→1 for k→0 in contrast to
hs→0 for k→0 in the ordered phase. To get rid of th
problem, we define the renormalized boson mass at s
fixed small ratior c5k/m̄sR ~Ref. 6! as

m̄sR
2 5kc

2@ukc
8 ~0!2u8kc

cr~0!#, kc5r cm̄sR , ~14!

whereu8k
cr(0) denotesuk8(0) on the critical trajectory. In the

numerical calculations we have used a ratior c50.01, but
our results do not depend onr c for r c&0.1. Thus, we define
the critical exponentn,

FIG. 1. Critical flow of 10kk ~full line! anduk8(0) ~dashed line!
plotted as functions oft5 ln(k/L). The thin dashed lines show th
flow for c510210. We have chosen two initial values ofe very near
to the phase transition. The flow separates only for very smak,
according to the respective phase.

TABLE I. Critical exponents and mass gaps forN51 in three
dimensions.

Truncation Full equation foruk8 Taylor expansion
Cutoff lin exp lin exp

nsymm 0.621 0.640 0.623 0.633
gsymm 1.051 1.077 1.053 1.062
n(22hs) 1.051 1.076 1.054 1.064
nssb 0.620 0.637 0.622 0.632
gssb 1.050 1.071 1.053 1.062
bssb 0.406 0.420 0.407 0.417
(n/2)(11hs) 0.405 0.420 0.407 0.417
hs 0.308 0.319 0.308 0.319
hc 0.112 0.114 0.112 0.113
Ds 16.0 17.6 16.8 18.1
Dc 14.2 14.9 14.4 15.2

ḠLcrL 43.13 26.68
20511
ss.

e

n5
1
2

lim
de→0

] ln m̄sR
2 ~de!

] ln de
, ~15!

where de5ue2ecru. The exponentg is defined as usual
since the unrenormalized boson massms

25ZsmsR
2 is not af-

fected by the fluctuations of the massless fermions,

g5 lim
de→0

] ln ms
2~de!

] ln de
. ~16!

In the ordered phase, both exponents are defined as u
usingmsR

2 instead ofm̄sR
2 for the definition ofn. The critical

exponentb is defined as

b5
1
2

lim
de→0

] ln s0
2

] ln de
, ~17!

with s05 limk→0s0k . The exponentshs andhc for the criti-
cal correlation functions are computed by taking the valu
of the scale dependent anomalous dimensionshs(k) and
hc(k) at the scaling solution~Sec. 4.2 of Ref. 8!. Table I
lists our results for the critical exponents. We find a go
match of the values in the two different phases. Besid
we have checked the index relationsg5n(22hs) and
b5 1

2 n(d221hs) which are well fulfilled. The dependenc
of the exponents on the cutoff functionsr B andr F as well as
on the truncation can also be seen from the table. The la
one seems to be weaker when using the linear cutoff.
error in the exponent could be larger than the difference
tween the results for different truncations of the potential a

TABLE II. Critical exponents for variousN in three dimensions.
1-4
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PHASE TRANSITION AND CRITICAL BEHAVIOR OF . . . PHYSICAL REVIEW B 66, 205111 ~2002!
different cutoffs. This issue could be investigated by exte
ing the truncation~8!, e.g., by including a quartic fermion
interaction (c̄c)2 along the lines discussed in Ref. 11.

Since the fluctuations generate bosonic and fermio
masses, one might be interested in the resulting gaps. T
are proportional to the order parameterr05 1

2 Zss0
2:

msR5Dsr0 , mcR5Dcr0 ~18!

The gapsDs andDc are shown in Table I.
We have also calculated the critical exponents

the three-dimensional GN model forN.1. They are
compared with results from other methods in Table
For N52,4, and 12, critical exponents have been calcula
in the 1/N expansion toO(1/N2)12,13 and anomalous dimen
sions to O(1/N3) using conformal techniques.14 Monte
20511
-

ic
ey

.
d

Carlo methods have been used to calculate critical expon
for N54, which are compared with the results from th
e542d expansion to O(e2).13 Our values for the Taylor
expansion with exponential cutoff~footnote b! agree well
with Ref. 6, where the precise numerical implementation w
different.

The largest discrepancy between different approac
concerns the values of the anomalous dimensions. Thi
similar as for the bosonic O(N) models and is expected t
improve substantially in the next order in the derivati
expansion.15 The overall picture is, however, quite satisfa
tory and lends support to the validity of our method based
the exact renormalization-group equation. We believe t
our finding of a second-order phase transition forN51 is
quite robust.
,
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