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Phase transition and critical behavior of thed=3 Gross-Neveu model
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A second-order phase transition for the three-dimensional Gross-Neveu model is established for one fermion
speciesN=1. This transition breaks a paritylike discrete symmetry. It constitutes its peculiar universality class
with critical exponentr=0.63 and scalar and fermionic anomalous dimensigps-0.31 and,=0.11,
respectively. We also compute critical exponents for otlie®ur results are based on exact renormalization-
group equations.
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An understanding of systems with many fermionic de-is symmetric under a coordinate reflection
grees of freedom is one of the big challenges in statistical
physics. Due to the anticommuting nature of the variables,
numerical simulations are not straightforward—analytical . o
methods are crucially needed. One, typically, has to solve a P(X)=>—Pp(—X),  P(X)—=p(—X).
functional integral for ad-dimensional system with Grass-
mann variables. Approximate solutions for “test models”
would be of great value. The Gross-Nev@iN) modetf is — ] ] )
one of the simplest fermionic models. In three dimensions, 4&Ve note thaty and /s are independent variables in an Eu-
discrete symmetry forbids a mass term unless it is spontanglidean formulation. A nonvanishing expectation value of
ously broken. In the symmetric phase, the GN model isy; ! spontaneously breaks this symmetry. If the spingrs
therefore, a realization of a statistical system of gapless fefcontain more than one irreducible representation of the rota-

mions._SFor a large numbeN of fermion species, it iS ion (or Lorents group SO), we can find alternative defi-
knowrf > that a second-order phase transition separates the.. . . — N
tions of the coordinate reflection, wheggy! remains in-

symmetric phase from an ordered phase, where the symmB— - - T _ . . )
try is spontaneously broken and the fermions become magarant. In pgrtlcular, this is realized for Dirac spinors in
sive. Using methods based on an exact renormalizatiorfven dimensions, where a mass term couples two irreducible
group equatiofi, a second-order transition fak=2 was representationg, andyr. One may then define a standard
confirmed. To the best of our knowledge, we know, hOWGVGrPari'[y transformation, under whiclry is invariant. In this

of no previous work that clarifies the existence and nature ol ce howeverz W, #0 breaks a discrete chiral symmetr
the phase transition in the simplest model with only one ' ZYRYLY ) Y y
fermion species. The model with one fermion species is in#L—>— ¥, ¥ —>—¢. We will concentrate here on one
accessible to lattice simulations due to the fermion doublingwo-component spinor in three dimensions. For1, the
problem and the N expansion is not expected to give rea- above “parity transformation” is the only possible choice of
sonable results foN=1. The caseN=1 is also of special ¢qordinate reflections ang} /0 spontaneously breaks this
interest since an order paramet@p; ')#0 leads to a symmetry.

ground state, which does not admit any discrete symmetry

involving the reflection of all coordinates, in contrast to thebe | the svmmetric bhase or exhibit Spontaneous symmetr
models withN=2. y p p Yy y

In this paper, we improve the exact renormalization-grouppreaklng (SSB W'tﬁ a lnontrlwal expectation value of the
approach and establish a second-order phase transition ferder parametefGy; ). We will describe a space depen-
N=1. We also compute the critical exponents. This is im-dent fermion bilinear—i G ;(x) () by a real scalar field
portant beyond a possible relevance for real physical syss(x) such that SSB is indicated by nonzero homogeneous
tems: the GN model constitutes a peculiar universality clasgs)+0. By a partial bosonization, we express the GN model
due to the presence of massless fermions at the critical pointl) as an equivalent Yukawa model with
Just as the Q{)-Heisenberg models for bosons, the GN
model could in the future become a benchmark for our un-
derstanding of critical systems in the presence of fermions. .

The GN model describebl-fermionic fields with local I T 2
quartic interaction. Heré;, j=1...N, are irreducible rep- S"_J dx ("”J"'?Wﬂawi Y+ EU ' 2
resentations of the group @ including parity reflections,

i.e., 22 component Dirac spinors fateven and ¥~V for
d odd. The classical Euclidean action

Depending on the value of the coupliﬁ_ig the model will

The equivalence of the partition function can be seen by
performing the Gaussiano integration [#7¢ means

- G — .
S:fddx [l//j(x)“ﬂlﬂj(x)‘F E[l//,’(x) PP (@) fddx;j(X) H )],
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Z[n,7]= f Do DDy expl — S, o, i, ]+ i+ nip)

_ . _  _ G_
- f Dy Dy eXF{ — i diy+ pp+ nip— E(lﬂlﬂ)z}

xf Daexr{ - %(aﬂcﬁwl, 3

where the last factor yields an irrelevant constant.
A powerful tool for nonperturbative examinations are ex-
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wheret=In(k/A). The supertrace runs over momenta and all
internal indices, and provides appropriate minus signs for the
fermionic sector. The heart of the flow equation is the fluc-
tuation matrix,

5 . 5
k .
sbl(—p)  0Py(a)

[T2(p,a) ap= (@)

Together withR, it represents the exact inverse propagator
at the scalek.
Equation(6) is an exact but complicated functional differ-

act renormalization-group equations for the effective actiorfntial equation. There is no way around some approximation

I', i.e., the generating functional of the 1Pl Green’s
functions’® Starting with the classical actio at the UV
cutoff A, we obtain a type of coarse-grained free endrgy

by truncating the most general form Bf,. We work here in
the lowest order of a systematic derivative expansion, where
I', contains a scalar potential, kinetic terms, and a Yukawa

by integrating out the quantum fluctuations with momentaCoupling. In momentum space, it is given byfdq

larger than a given scale Eventually, we reach the macro-
scopic thermodynamic potenfidl' atk—0. The IR cutoffk

is implemented in a smooth way by introducing a masslike
term AS, into the classical action, which gives extra masses

to modes with momenta smaller th&nIn the limit k—0,

the IR cutoff is absent, and fluctuations at all scales have

been taken into account. At— A, all fluctuations are sup-
pressed and' , approache&

This procedure should be explained more precisely. For

notation purposes, we combine the fermionic aneal
bosonic fields to a column vectgr= (o, ,¢"), and the row
J contains all the external sourced=(J,7,7"). We start

= [diq/(2)9]:
z

7K o (— ) 02a(q)

Fk[o-ﬂr//ig]:‘f ddXUk(O-)+J dq{ 2

~Zyibi(a) d $(q)
+J dpini(p) o(p—a) w(q)}. ®)
The connection betweed andh becomes clear if we rescale

o in Eq. (2) to ho and setazﬁzlmi, m, denoting the
boson mass.

with the generating functional for the connected correlation Using a truncation of the effective action causes the limit

functions in the presence of the IR cutoff,

Wk[ﬂ=|nf Dy exp(—S,[x]-ASIx]+Ix). (4

For vanishingA S, (at k—0), this matches exactly with the
free energy of the Gross-Neveu modgl. The effective ac-

k— 0 to depend on the precise form of the cutoff functions.
In order to take control of this, we have used two different
choices, an exponentfaand a linea!® cutoff,

yreiy) = yrat(y)=(1-y)0(1—-y),

exply)—1’

tion is then defined via a modified Legendre transformatiorwherey=q?/k?, andrg(y) is chosen in both cases such that

by
L @]:=—W[IP]]+ T P]P-AS[P], 5

which depends on the expectation values of the fields
=(x)-

The infrared cutoff takes the formS[d]=1d 'R ®,
and R, is a matrix

R(p.q)
Res(d) O 0
= 0 0 _RIF(_Q) (2m)98%p—q),
0  Rke(q) 0

with Ryg(a) =Z, k0°rke(d) and Ree(q)=—Z,,kdr ().
(Z,x and Z,,, are wave-function renormalizationswith

these definitions, an exact renormalization-group equatiom

for the scale dependence Bf can be found™®

1
Al =5STA(NE+RY ™ aR, (6)

y(1+rg)=y(1+rg)?. We introduce renormalized, dimen-
sionless quantitiesh?=2,'Z,, %k *hg, p=32,k* %?,
u=Uk™ 9, and we usai,=du,/dp, etc.

We obtain a set of evolution equations for the effective
parameters of the theory by inserting E§) in the exact
flow Eq. (6). The evolution equation of the effective scalar
potentialu, is found by evaluating“(kz) for a constant scalar
background field,

U= —dug+ (d =2+ ,) pUic+ 2v{I G+ 2puic; )

(€)

where we useN’=d, N, with d, the dimension of they
matrices, and 3 *=29"17921(d/2). The definition of the
threshold functiond and I{7¢ as well asIf%¢, m{ .

627, andm{f ¢ used belowsee Eqs(1)—(13)] is given

in the appendix of Ref. 8. These functions contain all the
momentum integrations. For the linear cutoff, the integra-
tions can be performed analytically—an enormous advantage

for the subsequent numerics. We obtain

—N'IP42nZp; )},
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The anomalous dimensiong, and 7, are defined as

N,(K)==ddInZ,\, my(K)=—dInZ,,.

Taking second derivatives of E@) with respect to the fields

(1+ @) "(1+ wy)"2
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ahg=(2my+ m,+d=4)h{
+ 80dh4| (FB)d(Zhikk U+ 2k Uy ; Ny s No)-
(13

We study the flow of the effective potential in two differ-
ent ways that correspond to two different truncation$’ pf
First, we expand the evolution equation of the poterifiain

a Taylor series up to third order jaround its minimum and
evolve the resulting coupled ordinary differential equatibns.
In a second, more involved approach, the full equatiorufor
is discretized on a grid, yielding coupled ordinary differential
equationgone for each grid point which are solved simul-
taneously. We use the equation fgr instead of the one for
uy for numerical reasons.

The only critical parameter in the theory is the four-

fermion couplingG,.,. This parameter has to be tuned in
order to be near to the phase transition. The flow Egs-

(13) are evolved from an UV cutoff scalé to k—0. We
concentrate on the three-dimensional case with one fermion
species §=3 andN=1). The initial values of the param-
eters are chosen such thdt,=S,: Z,\= 10‘1°~0
Z,=1,hi=c A, andu}(p)=e:=(Z,,G,A) ! for all p.

The GN model corresponds to=1, whereas foc#1, we
investigate Yukawa-type theories in the same universality
class.

Very close to the phase transition, we find scaling solu-
tions for all evolving parameters corresponding to vanishing
B functions. This behavior indicates a second-order
phase transition. The symmetric regime is characterized by
u,(0)>0 as well as«,=0, while after spontaneous symme-
try breakingu, (0) becomes negative ang>0. Starting in
the symmetric regime, the system evolves into the SSB re-
gime and reaches the scaling solution. Further down the flow,

it evolves back into the symmetric regime 8, <G, _ or it

by means of Eq(7), we obtain evolution equations for the yremains in the SSB regime fc@A>GA This behavior

exact inverse boson and fermion propagators. Expanding the
momentum dependence gt=0 for o= o at the potential

minimum yields equations for,, and 7,

74(K) = 8¢ {Kk (Bu+ 2ruy ) 2mf o ug + 2 U, 0; 7,,)

+N’hZm§42hZk; 7,)
—2hZiemP 420k ) 13,

Ud ' ”.
7,/(K) = 8- hgm{Z 2Nk, U+ 2005 77,

Here k|, denotes the position of the minimum of(p) and
all derivatives of the potential are evaluatedpat « .

ontrasts the one foN=2, where the scallng solution is
located in the symmetric regime.

Figure 1 shows the critical flow o, andu,(0) for two
different values ofc, namelyc=1 (full and dashed lines,
respectively and c=10"10 (thin dashed lines It nicely
demonstrates that only the beginning of the flow is affected
by the choice of the noncritical parameters. All universal
quantities such as critical exponents and mass gaps are inde-
pendent ofc. The polynomial expansion of the potential
works well only for small enough. The value of the critical

couplingG ., depends, however, on the choiceofin the
limit c—1, it converges towards a constant value, which is
reported in Table I.

We calculate the critical exponents characterizing a
second-order phase transition. In order to test the reliability
of the numerical algorithms, we determine the exponents in
the symmetric as well as in the ordered phase. The scale

viding the evolution equation of the fermion propagatordby dependent renormalized boson mm§$2(k) is defined as the

and evaluating it at zero momentum, ameF o, yields the

evolution equation oh?,

curvature of the potential at its minimum. In the SSB regime,
it is given by m25(k) =2k?kuj(ky), in the symmetric re-
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0.1 T T T T —
1 . dlnmig(de
v==lim ¢), (15)
0.08 - _ 2 se~0 dlInde
where de=|e—e,|. The exponenty is defined as usual,
0.06 | since the unrenormalized boson mass=Z,m?;, is not af-
0.04 | fected by the fluctuations of the massless fermions,
aInm2(se)
0.02 1 = |lim —=——=2 16
Y se—0 dlInde (16
0 X i In the ordered phase, both exponents are defined as usual,
002 | e e /| usingm?; instead ofm?; for the definition ofv. The critical
14 exponents is defined as
004 1 )
! I I 1 1 I o 1 . & In O'O
25 -20 15 -10 5 0 B=5 Im nse (17

FIG. 1. Critical flow of 10¢, (full line) andu,(0) (dashed ling  \yith oo=limy_ ook . The exponents,, andz,, for the criti-
plotted as functions of=In(k/A). The thin dashed lines show the 5| correlation functions are computed by taking the values
flow for c=10"1% We have chosen two initial values ef/ery near of the scale dependent anomalous dimensigpék) and
';f)cég?d:c:]k;atsoet;r:r:zgﬁgét:/r;epﬂg\;ve.separates only for very skall |7_7¢,(k) at the scaling solut_ic_)mSec. 4.2 of Ref. B _Table I

ists our results for the critical exponents. We find a good

, ) o, match of the values in the two different phases. Besides,
gime by mge(k) =k“u(0). In the ordered phase, the run- \ye have checked the index relations=»(2—7,) and
ning of m,r(k) essentially stops onck becomes much s_1,q—2+ 4 ) which are well fulfilled. The dependence
smaller tharm,r(k). The situation is slightly more difficult  4f the exponents on the cutoff functions andr - as well as
in the symmetric phase since the fermions are masslesgy, the truncation can also be seen from the table. The latter
Their fluctuations induce a scale dependencg of even for  gne seems to be weaker when using the linear cutoff. The
very small momentak: 7,—1 for k—0 in contrast t0  grror in the exponent could be larger than the difference be-

7,—0 for k—0 in the ordered phase. To get rid of this tween the results for different truncations of the potential and
problem, we define the renormalized boson mass at some

fixed small ratior ;= k/m, (Ref. 6 as TABLE II. Critical exponents for various! in three dimensions.
-2 2r 1 rcr — 2 4 12
m(rR:kc[ukc(O)_u kc(o)]i kC:rCmu’R! (14)

0.927% 1.018* 1.018%
whereu’£"(0) denotesi;(0) on the critical trajectory. In the ¥ 0.962° 1.016° L0117
numerical calculations we have used a ratje=0.01, but 0.738° 0.903° 1.007*
our results do not depend og for r,<0.1. Thus, we define 0948
the critical exponent, 1.00(4)°

0.525% 0.756* 0.927%

TABLE |. Critical exponents and mass gaps =1 in three 7o 0.554° 0.786° 0.935
dimensions. 0.635°¢ 0.776° 0.914°¢
0.763 ¢ 0.913f
Truncation Full equation foruy Taylor expansion 0.754(8)°
Cutoff lin exp lin exp 0.071% 0.032% 0.0087°
b b b
Vsymm 0.621 0.640 0.623 0633 (())'?(6); g'giif g'g(ng
Yoymm 1.051 1.077 1.053 1062 & e o =
v(2—1,) 1.051 1.076 1.054 1.064 4 17 3b 1408 e
Vesh 0.620 0.637 0622 0632 o = e
Yssb 1.050 1.071 1.053 1.062 4 11'4b 7'9b 3'4b
Bssb 0.406 0.420 0.407 0.417 : : :
(v12)(1+ 7,) 0.405 0.420 0.407 0.417 *Linear cutoff, full equation for u; .
No 0.308 0.319 0.308 0.319 bEXponential cutoff, Taylor expansion of u; .
7y 0.112 0.114 0.112 0.113  ©1/N expansion (Padé-Borel resummed).
A, 16.0 17.6 16.8 18.1 de expansion (Padé-Borel resummed).
A, 14.2 14.9 14.4 15.2 *Monte Carlo simulations.
EA oA 43.13 26.68 fConformal techniques.
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different cutoffs. This issue could be investigated by extendCarlo methods have been used to calculate critical exponents
ing the truncation(8), e.g., by including a quartic fermion for N=4, which are compared with the results from the
interaction )2 along the lines discussed in Ref. 11. e=4—d expansion to O¢?)."* Our values for the Taylor
Since the fluctuations generate bosonic and fermioniexpansion with exponential cutoffootnote ) agree well
masses, one might be interested in the resulting gaps. Theyith Ref. 6, where the precise numerical implementation was

are proportional to the order paramepgy=3Z,0a: different.
The largest discrepancy between different approaches
Myr=A,p0, Myr=A2,p0 (18 concerns the values of the anomalous dimensions. This is
The gapsA,, andA , are shown in Table . similar as for the bosonic ) models and is expected to

We have also calculated the critical exponents inimprove substantially in the next order in the derivative
the three-dimensional GN model foN>1. They are expansiort® The overall picture is, however, quite satisfac-
compared with results from other methods in Table Il.tory and lends support to the validity of our method based on
For N=2,4, and 12, critical exponents have been calculatethe exact renormalization-group equation. We believe that
in the 1N expansion td(1/N?)2*3and anomalous dimen- our finding of a second-order phase transition for 1 is
sions to O(1/N®) using conformal techniquéd. Monte  quite robust.
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