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Electron scattering in atomic liquids: Application to the maximum of electron mobility

Vladimir M. Atrazhev,* Andrey V. Berezhnov, and Igor V. Timoshkin
Theoretical Department, Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya, 13/19, 127412 Moscow,
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The phenomenon of the maximum of the electron mobility in liquids with a high atomic polarizability at the
densityNm is explained by the suggestion of weakness of thes-wave scattering at this density. The model of
the electron scattering by short-range potentials limited within the Wigner-Seitz cells is used. This model
describes the change of the scattering length and predicts a zero value of the scattering length at the density
Nm . The s- and p-wave phase shifts are calculated for this density. It is found that the cross section of the
Wigner-Seitz cell is proportional to the electron energy squared and is negligible for slow electrons. Fluctua-
tions of the liquid density result in fluctuations of the Wigner-Seitz cell radius. Thes- andp-wave phase shifts
and the mean cross section forthe electron scattering by fluctuationsare calculated. The phase shifts for an
isolated atom are used as initial parameters. The mean cross section has a small but finite value for slow
electrons and it decreases with the growth of the electron energy. It is shown that slow electrons are scattered
by the fluctuations of the liquid density, and fast electrons are scattered by the Wigner-Seitz cells.
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I. INTRODUCTION

Electronic states in dense and strongly correlated syst
such as liquefied noble gases have been already studie
many researchers.1–4 After being injected into liquids with a
high atomic polarizability~liquid argon, krypton, and xenon!
the electrons are highly mobile and therefore can be con
ered as virtually free electrons. The zero-field mobility
electrons measured in liquids of this kind is a nonmonoto
function of liquid density.5–11 With the growth of the liquid
densityN, the electron mobilitym(N) reaches its maximum
These maxima were detected in liquid Ar, Kr, and Xe
densitiesNm , which are close to 1022 cm23. According to
Lekner12 the peak value of the electron mobilitymmax is de-
termined by the electron scattering on fluctuations of
liquid density. Such scattering restricts the electron mobi
at the densityNm .

In liquids, electrons move among strongly correlated sc
terers. The basic theory developed by Lekner a
co-worker13,14 takes into account the spatial correlation
atoms in the kinetic approximation of the electron mobil
in atomic liquids. In this approach, like in the case of ga
eous state, the main free path of electrons is much longe
compared to both the electron wavelength and the in
atomic distance. It allows the kineticlike description of t
electron behavior in liquids to be developed. This appro
introduces an effective electron scattering cross sectio
liquids. As shown in Ref. 13 the cross section in liqui
differs significantly from well-known cross sections in ra
efied gases. For zero-energy electrons the cross sectio
determined by the scattering length. For isolated atoms of
Kr, and Xe, scattering lengths are usually negative,Latom
,0. This results from the predominant long-range polari
tion attraction between the isolated atom and the electron
dense fluids the interatomic distance is small enough to m
overlapped ‘‘tails’’ of the polarization potentials of neighbo
ing atoms. This ‘‘muffin-tin’’ potential is realized in liquids
Each cell of this potential is a short-range scatterer wit
positive scattering length,Lcell.0. This is the direct result o
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the competition between polarization electron-to-atom attr
tion and short-range repulsion. Being dominant in gases,
long-range polarization attraction is reduced in liquids due
the superposition of several electron-atomic potentials.
liquids the short-range repulsion evidently dominates,
with the increase of the medium’s density from gas to liqu
the effective scattering lengthLcell(N) surpasses the zer
value and becomes positive.13 This change of sign of the
scattering length results in the maximum of the electron m
bility.

The effective cross section of electron scattering in liqu
can be calculated using the electron-atom pseudopotentia
liquids.13,15 In the framework of the pseudopotential metho
the background energyV0(N), the effective electron mas
meff(N), the zero-field mobilitym(N), and the effective cross
section as functions of the density were previou
calculated.16,17Parameters of the pseudopotential were de
mined from characteristics of the isolated atom such as
larizability a and the atomic scattering lengthLatom. In the
framework of this approach only low-energys-wave scatter-
ing was taken into account to calculate the mobility of ze
energy electrons. The scattering length of the isolated ato
a basic parameter of the pseudopotential.

Another approach to describe the scattering of fast e
trons in liquids with high atomic polarizability was propose
in Ref. 18. It requires additional information about part
phase shifts of wave functions of electrons scattered by
isolated atom. In the framework of this method the pha
shifts for s and p waves were calculated by the variabl
phase method19 for the single cell of the muffin-tin potential
The Schro¨dinger equation for an electron wave function
the Wigner-Seitz cell of the muffin-tin potential was solve
in Refs. 20–22. Parameters of the electron energy spect
V0 and meff , in liquids were calculated as functions of th
liquid density. The electron mobility was not determined
these calculations. In these works the authors used com
electron-atom potentials. In the variable-phase method de
oped in Ref. 18 the electron-atom potential is substituted
more accessible data23–28 such as partial waves phase shi
©2002 The American Physical Society06-1
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d,(k ) of the isolated atom with complete information abo
the electron-atom scattering. It allows us to calculate
phase shifts for the atomic potential inside the Wigner-S
cell. Mathematical aspects of the problem were considere
Ref. 18.

According to Lekner’s theory12 the maximum mobility is
limited by electron scattering on density fluctuations. T
present paper describes this phenomenon. First, den
dependent phase shifts of electron scattering waves are
culated for the electron-atom potential that is cut off outs
of the muffin-tin cell. Second, phase shifts of the scatter
on density fluctuations as functions of the electron energy
obtained by the variable-phase method. In the following s
tion we discuss the scattering of electrons in dense ato
media with high polarizability. In order to obtain the effe
tive transport cross sections the phase shifts of partials andp
waves (,50,1) are calculated, and estimations of higher h
monics with,.2 are made. The Wigner-Seitz cell, who
radius depends on the density of media, is a single scat
in liquids. The phase shifts calculated in the present pa
are functions of both the electron energy~wave numberk !
and the density of media through the density-dependen
dius of the cell,r c . Expressions for phase shifts of electro
scattering by Wigner-Seitz cells in conditions where the
fective scattering lengthLcell(N) equals zero are obtaine
and the cross section of the cell is calculated. Then, the
pressions for the mean-squared values of thes- andp-wave
phase shifts for electron scattering by density fluctuations
obtained. As it will be shown below, such scattering preva
over the scattering by an individual cell for low-energy ele
trons. The magnitude of the fluctuation scattering cross s
tion decreases with the growth of the electron wave num
k ~electron energy! and becomes negligible in the case of h
electrons. Therefore, the single cell is the main scatterer
hot electrons.

Here we propose a model that allows fluctuation cr
sections of low-energy electrons to be calculated. The
pression for the cross section contains an unknown par
eter. The physical meaning of this parameter is the volum
fluctuations that scatter the electrons. The mobility of el
trons scattered by the fluctuations matches the maxim
mobility measured experimentally. So, the value of the
known parameter can be obtained by matching the calcul
mobility with the experimental values ofm(N) in the vicin-
ity of the maximum. The whole procedure is demonstra
by the example of the electron mobility in liquid xenon.

II. SCATTERING OF ELECTRONS BY A SINGLE
MUFFIN-TIN CELL

In the liquid, electrons interact with the average field c
ated by the atoms of the liquid. This potential field forms
muffin tin and each element of this potential can be mode
by surrounding each atom with the Wigner-Seitz cell. T
cell has the density-dependent radiusr c5(3/4pN)1/3; hereN
is the density number of atoms in the liquid. So, the liquid
considered as a set of Wigner-Seitz cells, and each cell
as a single scatterer for electrons. Inside the cell the elect
interact with the central atom by the potentialVatom(r ),
20510
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which is a truncated electron-atom potential. Far from
center of the cell, the potential has a polarization form

Vpol~r !52
ae2

2r 4 , ~1!

wherer is the distance between the cell center and the e
tron, a is the atomic polarizability. The polarization poten
tial, Eq. ~1!, is the well-known long-range part of th
electron-atom potential,Vatom(r ). To consider the scattering
of electrons by the cell, the phase-shift technique in the fo
of the variable-phase method19 has been used. In thi
method, it is not necessary to solve the Schro¨dinger equation
for wave functions of electrons scattered by the poten
V(r ) and to calculate phase shifts of the asymptotic form
wave functions. The phase shiftsd,(k ) for the potential
V(r ) are obtained as asymptotical solutions,h,(k ,r→`),
of the equation for phase functions,

dh,~r ,k !

dr
52

2mV~r !

\2k
@cosh, j ,~k r !2sinh, j ,~k r !#2,

~2!

with boundary conditionh,(0,k )50. Here j ,(k r ) and
n,(k r ) are the spherical Bessel and Neumann functions,
spectively. In order to solve Eq.~2! with such a problem
statement, the shape of the scattering potentialV(r ) must be
determined over all the considered area including the vicin
of zero.

It is easy to verify thath,(r ,k ) is the phase shift of the
partial,-wave function scattered by the potentialV(r ) cut at
the distancer from the center. Whenr approaches infinity,
the phase function tends to reach the value of the phase

lim
r→`

h,~k ,r !5d,~k !, ~3!

at the full potential, which can be as the nonrestricted pot
tial, as the long-range polarization potential, Eq.~1!. There-
fore, calculations of phase shifts for the electron-atom pot
tial cut off at the cell boundaryr c become equivalent to
calculations of phase functionsh,(r c ,k ). The phase shifts
for the Wigner-Seitz cell can be obtained correctly by so
ing the phase equation, Eq.~2!, with boundary conditions,
Eq. ~3!, whered,(k ) are known partial phase shifts of a
isolated atom. No specific information about the short-ran
part of the electron-atom potential is required in this a
proach. It is enough to solve Eq.~2! in the interval (r c ,`),
where the boundary conditions, Eq.~3!, are valid for the
right boundary of this interval (r→`), and the function
h,(r c ,k ) is obtained for the left boundary of the interv
(r 5r c). There is only the long-range polarization part, E
~1!, of the electron-atom potential within this interval. Th
phase shiftsd,(k ) contain all the information about th
short-range part of the potentialVatom(r ). These phase shifts
can be taken from previous works.23–28

The modified-effective-range theory~MERT! developed
by O’Malley29 can be used to obtain phase shifts for an is
lated atom. The four-parameter MERT expansions for sc
tering phase shifts are given by30
6-2
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ELECTRON SCATTERING IN ATOMIC LIQUIDS: . . . PHYSICAL REVIEW B 66, 205106 ~2002!
tand052Latomk F11
4a

3a0
k 2 ln~k a0!G

2
pa

3a0
k 21Dk 31Fk 4, ~4!

tand15
pa

15a0
k 22a1k 3,

tand,5
pak 2

~2,13!~2,11!~2,21!a0
. ~5!

Herea0 is the Bohr radius;k is the electron wave number i
units of a0

21 @k is related to the electron energye ~eV! as
e513.6(k a0)2]; , is the angular momentum quantum num
ber; Latom anda are the atomic scattering length and pola
izability; D, F, anda1 are adjustable parameters taken fro
Ref. 30 for an Xe-like atom:Latom526a0 , a527a0

3, D
5490a0

3, F52628a0
4, and a1522a0

3. The higher-order
phase shifts,,.1, were obtained by the Born approximatio
for the polarization potential. The MERT expansion for t
phase shifts is valid only for a limited range of electron e
ergies,e,0.75 eV.

Some characteristics of the phase shifts of the Wign
Seitz cell can be considered in the approximation of sm
values for the wave numberk . For example, the potential o
the Wigner-Seitz cell is limited by the cell boundaryr c and
turns out to be a short-range potential. In that case the B
Jackson expansion for the,-wave phase shift in terms o
wave numberk is valid31,18 and leads to ans-wave phase-
shift expansion in odd powers of the wave number,

h0~r c ,k !52Lcell~r c!k 2A~r c!k 3, ~6!

hereLcell(r c) is the effective scattering length in the liquid
CoefficientsLcell(r c) andA(r c) are functions of the cell ra
dius. The equation for the coefficientsLcell(N) andA(r c) can
be obtained by the substitution of expansion Eq.~6! into Eq.
~2! for ,50 with the polarization potential, Eq.~1!, and by a
comparison of the terms within one power of the wave nu
ber k . The equation forLcell(N) was solved correctly by
quadratures18 and the solution becomes

Lcell~r c!5H 1

r c
1Aa0

a
tanFarctanSAa

a0

1

Latom
D

2Aa

a0

1

r c
G J 21

. ~7!

It is important to note that the scattering length of t
Wigner-Seitz cell,Lcell(r c), obtained by this approach~the
mean potential of the environment was not taken into c
sideration! describes qualitatively all features that are ch
acteristic for electron scattering in atomic liquids. At larg
distancesr c ~or at lower densitiesN!, the functionLcell(r c)
tends to the valueLatom, which is the negative scatterin
length of the isolated atom. As the density increases~which
20510
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corresponds to the decrease ofr c) the scattering length
grows and changes its sign. According to Eq.~7!, Lcell(r c)
passes through zero at

r m5Aa

a0
Fp

2
1arctanSAa

a0

1

Latom
D G21

; ~8!

herer m56.06a0 for Latom526a0 anda527a0
3.

In a fluid with the densityNm corresponding to the radiu
r m of the Wigner-Seitz cell,s-wave scattering is determine
by the second term in the expansion, Eq.~6!. With the den-
sity Nm and the radiusr m , the expression forA(r m) has a
form18

A~r m!5
ar m

3a0
F12bS 2Aa

a0

1

r m
D G , b~z!5zE

0

` sinx

~x1z!
dx.

~9!

The magnitude ofA(r m) is 13a0
3 for r m56.06a0 . The ex-

pansion Eq.~6! is significantly different from the MERT ex-
pansion, Eq.~4!, for s-wave phase shifts of the nonlimite
polarization potential, where the term quadratic in powerk ,
pak 2/3a0 , coexists with odd power terms. This is the res
of the spatial limitation of the Wigner-Seitz cell potentia
The results of the calculations of thes-wave phase shifts
under conditions where the effective scattering length equ
zero are shown in Fig. 1, together withs-wave phase shifts
for the Xe atom calculated in Ref. 27 and by the MER
approximation. The phase shift for the isolated atom is po
tive for small k and increases further in proportion tok .
Then, d0(k ) falls down and passes zero. That leads to
Ramsauer effect for electron scattering in heavy noble ga
The Ramsauer effect disappears in these liquids.32 As it fol-
lows from Fig. 1, thes-wave phase shift is a negative mon
tonic function ofk until the Wigner-Seitz cell radius reache
r m . The magnitude of thes-wave phase shift is far less tha
the magnitude of the phase shift of the isolated atom
small wave numbers.

FIG. 1. s-wave phase shifts vs the wave numberk for the iso-
lated Xe atom, and for the Wigner-Seitz cell with radiusr m

56.06a0 and with the Xe atom in the center.d0(k ) for the atom:
points, data~Ref. 27!; dashed line, the MERT approximation, Eq
~4!. h0(k ,r m) for the cell: solid line, calculations by the variable
phase method; dotted line, calculations by the expansion~6!.
6-3
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ATRAZHEV, BEREZHNOV, AND TIMOSHKIN PHYSICAL REVIEW B 66, 205106 ~2002!
According to the Blatt-Jackson expansion for the ph
shifts for a short-range potential31 in terms of wave numbe
k , the first term of this expansion forp-wave shifts has the
same power of wave numberk as the second term of th
expansion fors-wave phase shifts,

h1~r c ,k !52a1~r c!k 31O~k 5!. ~10!

The p-wave phase shift for the Wigner-Seitz cell with th
radiusr m is calculated by Eq.~2! for ,51. Data27 for d1(k )
are used for the boundary condition, Eq.~3!. The results
presented in Fig. 2 also contain the atomic phase shift.
last one is a positive nonmonotonic function of the wa
number that increases ask 2 for small k . It results from the
long-range polarization interaction between an electron an
single atom. For the short-range potential of the Wign
Seitz cell with the radiusr m , the quantityh1(r m ,k ) is a
monotonic negative function and varies ask 3 for small k
according to the expansion Eq.~10!. It has been verified tha
limk 20@h1(r m ,k )/k 3# is a constant as long asa1(r m)
53.5a0

3. So, in liquids with the densityNm , where
Lcell(Nm)50, s- andp-wave phase shifts are proportional
k 3 and their values are less than the values for the co
sponding phase shifts for an isolated atom.

The following d-wave phase shifth2(k ,r m) for the
Wigner-Seitz cell can be estimated for small wave numb
using the Born approximation while considering only t
polarizing interaction of the electron with the central atom

h2~k ,r m!5
pak 2

2a0
E

0

r mk

J5/2
2 ~x!x23dx'

a

1728a0r m
2 ~k r m!5.

~11!

Here J5/2(x) is the spherical Bessel function, and the fin
expression is obtained fork r m!1. The phase shift for thed
wave is proportional tok 5 for a short-range potential. Th
expression Eq.~11! is the first term of the Blatt-Jackson ex
pansion for thed-wave phase shift. Thed-wave phase shift

FIG. 2. p-wave phase shifts vs the wave numberk for the iso-
lated Xe atom and the Wigner-Seitz cell with radiusr m56.06a0 and
with the Xe atom in the center.d1(k ) for the atom: points, data
~Ref. 27!; dashed line, the MERT approximation, Eq.~5!. h1(k ,r m)
for the cell: solid line, calculations by the variable-phase meth
dotted line, calculations by the expansion~10!.
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for the cell is much less than thed-wave phase shift for an
isolated atom obtained in the same approximation,d2(k )
5pak 2/105a0 . Hence, thed-wave scattering is negligible
for the calculations of cross sections.

Transport properties of electrons~mobility, diffusion co-
efficient, etc.! are determined by the momentum-trans
cross section of electron scattering by the atoms of the
dium. In our model electron scatterers are Wigner-Seitz ce
Each cell has the atom at its center. Therefore, spatial lo
tions of the cells correspond to the positions of atoms in
liquid and they are correlated due to atom-to-atom inter
tion. According to the Cohen-Lekner theory14 the structure
factor of the liquidS(k ) should be taken into account whe
calculating the momentum-transfer cross section. The st
ture factorS(k ) can be obtained from the experimental da
of neutron33 and x-ray scattering in liquids or by compute
simulations. A long-wave limit of the structure factorS(0) is
in the relationship with the isothermal compressibilityxT of
the liquid,S(0)5NTxT , and can be obtained from thermo
dynamic properties of the liquid. For slow electrons theS(0)
factor can be used in calculations of the momentum-tran
cross section, which is determined by the partial phase sh
h, ,

qcell~r c ,e!5
4p

k 2 S~0! (
,50

`

~,11!sin2~h,2h,11!.

~12!

The partial-wave phase shiftsh,(k ,r c) depend on the cel
radiusr c . As a rule, the phase shift with,50 is the domi-
nant shift in the case of slow electrons. Thiss-wave phase
shift is a linear function for smallk : h0(k ,r c)52Lcell(r c)
k . It leads to expression for the effective cross section
individual scattering of slow electrons by the single cell,

qcell~N!54pS~0!Lcell
2 ~N!. ~13!

In a liquid with the densityNm , at the maximum of electron
mobility, the effective scattering length equals zero and
individual s-wave scattering is weak. In order to calculate t
individual scattering cross section of the cell at the dens
Nm , we take into account the second term of the series
the s-wave phase-shift expansion by powers of the wa
number and the first term of the corresponding series for
p-wave phase shift. It leads to a more accurate expression
the cross section of the single Wigner-Seitz cell in a liqu
@as compared to Eq.~13!#,

qcell~e!5
4pS~0!

k 2 ~h0
222h1h013h1

2!

54pS~0!k 4@A2~r m!22A~r m!a1~r m!13a1
2~r m!#.

~14!

Here phase shifts are assumed to be less than unity, and
s- and p-wave phase shifts are taken into account for sm
wave numbersk . The cross section for slow electrons
proportional to the electron energy squared. This effect
cross section is shown in Fig. 3 together with the cross s
tion of an isolated atom of Xe. We restrict our consideratio

;

6-4
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ELECTRON SCATTERING IN ATOMIC LIQUIDS: . . . PHYSICAL REVIEW B 66, 205106 ~2002!
by electron energies that do not exceed 1 eV. Within t
energy interval the expansion of phase shifts in terms of
wave number powers Eqs.~6! and~10! is valid. The effective
cross section is negligible for slow electrons. So, in the
uid with the densityNm , low-energy electrons are not sca
tered by the single Wigner-Seitz cell with radiusr c5r m , and
their mobility seems to be infinite. Nevertheless, values
the peak mobility,mmax(Nm), measured in experiments a
high, but limited. To explain this fact, the electron scatteri
by density fluctuations needs to be involved into our mod

III. SCATTERING OF ELECTRONS BY DENSITY
FLUCTUATIONS

In this section electron scattering by density fluctuatio
is considered. In real liquids, there are density fluctuati
DN, and their mean-squared value(DN)2 has a nonzero
value. The mean-squared value of the density fluctuatio
(DN)25N2TxTV21, is in a relationship with the isotherma
compressibility of liquid,xT , and the volume of fluctuations
V. The cell radiusr c(N) varies correspondingly with fluc
tuations. The mean-squared value of randomly fluctua
radius of the cell(Dr c)

2 also has a nonzero value. For low
energy electrons, the cross section is determined by
partial-wave phase shift squared, and the mean-squ
s-wave phase shift differs from zero for cells with the me
radiusr m . We consider the fluctuation having the linear d
mension much larger than the mean interatomic distancer c .
Fluctuations of the cell radius,Dr c52r cDN/3N, lead to
fluctuations of partial-waves phase shiftsDh,(r c ,k ) of scat-
tering by the Wigner-Seitz cell

Dh,~r c ,k !52
r c

3

dh,~r c ,k !

drc

DN

N
. ~15!

The mean value of density fluctuations,(DN), equals zero
and the mean value of the phase-shift fluctuati
Dh,(k ,r s), equals zero as well. The expression for the cr
section, Eq.~14!, contains the phase shift squared. The me

FIG. 3. Momentum-transfer cross section vs the electron ene
Points, isolated Xe atom~Ref. 30!; dashed line, isolated Wigner
Seitz cell; dotted line, density fluctuations; solid line, the total cr
section for the densityNm .
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value of @Dh,(k ,r s)#2 is connected with(DN)2 and has a
nonzero value. So, the momentum-transfer cross section
cludes both the contribution of individual scattering b
single cellqcell(e,Nm), Eq.~14!, and the contribution of scat
tering by density fluctuations,

qfluct~e,Nm!5
4p

k 2 @~Dh0!213~Dh1!222~Dh0Dh1!#.

~16!

The terms in the right-hand side of Eq.~16! are proportional
to the mean-squared value of density fluctuations,(DN)2,
and as it follows from Eq.~15! that they contain derivatives
from phase shifts of the cell radius. To calculate these
rivatives, the variable-phase method was used. Rewriting
~2! for the phase shiftsh,(k ,r ) of scattering on the polar
ization potentialVpol(r ), one obtains

dh,~k ,r c!

drc
52

pa

2a0r c
2 @J,11/2~k r c!cosh,

1~21!,J,11/2~k r c!sinh,#2. ~17!

Substituting Eq.~17! into Eq. ~15!, one can obtain mean
squared values of,-wave phase shifts

~Dh,!25F pa

6a0r m
2 G2 TxT

V
J,11/2

4 ~k r m!. ~18!

Here it was assumed that the phase shiftsh, are negligible in
comparison withk r m for considered values of wave num
bers. The spherical Bessel function in the right-hand side
Eq. ~18! defines(Dh,)2 as a function of the wave numberk .
So, at the densityNm the partial cross sections ofs- and
p-waves scattering by density fluctuations are

~q0!fluct5
4p~Dh0!2

k 2 54p~DL !2S sink r m

k r m
D 4

, ~19a!

~q1!fluct5
4p

k 2 3~Dh1!2

512p~DL !2S sink r m2k r m cosk r m

~k r m!2 D 4

.

~19b!

For low electron energies whenk r m!1, the constant partia
cross section fors-wave scattering is

~q0!fluct54p~DL !2, ~20!

here(DL)2 is the mean-squared value of the random scat
ing length due to density fluctuations,

~DL !25F a

3a0r m
G2 TxT~Nm ,T!

V
. ~21!

There is the adjustable parameterV in this expression, which
is the volume of the fluctuation. We do not know how
justify the choice of this parameter. The first that comes
mind is to assume that the linear dimension of the optim

y.
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fluctuation is equal to the electron wavelength. For therm
electrons in liquid Xe atT5223 K one obtainsV56.7
3104a0

3. In the present calculations the experimental da7

for Xe were used. According these data the mobility ma
mum in Xe occurs atT5223 K andNm51.231022 cm23,
whereS(0)5TNxT50.18. It was obtained thatS(0)/NmV
50.0015 and(DL)250.0033a0

2.
In the framework of our model, it is possible to obtain t

cross section of fluctuations as a function of the wave nu
ber k . The partials-wave cross section (q0)fluct decreases
with the growth of the electron energy according to E
~19a!. The partialp-wave cross section, Eq.~19b!, is propor-
tional to the squared electron energy for slow electrons,

~q1!fluct54p~DL !2
~k r m!4

27
. ~22!

The magnitude of this cross section is negligible in comp
son with thes-wave cross section (q0)fluct for k r m,1. The
p-wave partial cross section of scattering by fluctuatio
(q1)fluct Eq. ~22!, is the same function of the electron wav
numberk as the cross section of the individual scattering
the single cell, Eq.~19!. The magnitude of the later is muc
higher than that for (q1)fluct .

Following Eq.~18!, thed-wave phase shift with,52 for
scattering of slow electrons by density fluctuations is prop
tional to k 5, and the magnitude of thed-wave partial cross
section of fluctuation is negligibly small.

The expression~16! for the cross section of scattering b
density fluctuations has the crossing term

2
4p

k 2 2~Dd0Dd1!

528p~DL !2Fsink r m~sink r m2k r m cosk r m!

~k r m!3 G2

'28p~DL !2
~k r m!2

9
. ~23!

The last equation was derived for small wave numbe
k r m!1. The contribution from this term reduces the fluctu
tion cross section, Eq.~16!, which for the smallk decreases
with growth of the wave number~or electron energy! as

qfluct~k ,r m!54p~DL !2~12 8
9 ~k r m!2!. ~24!

The cross section of fluctuations as a function of the w
numberk is shown in Fig. 3, dotted line. For slow electron
with k r m!1, this cross section remains a constant. Then
cross section decreases with the growth of the electron
ergy according to Eq.~24!.

The summary momentum-transfer cross secti
q(e,Nm)5qcell(e,Nm)1qfluct(e,Nm) of electron scattering
by the Wigner-Seitz cells and by density fluctuations
shown in Fig. 3, solid lines. The partials- andp-wave cross
sections of the Wigner-Seitz cell depend on the electron
ergy ase2 and they are very small for low energies. For slo
electrons,s-wave scattering by density fluctuations gives t
main contribution to the summary cross section. So,
20510
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momentum-transfer cross section is constant for small e
gies and is determined by scattering by the density fluct
tions. For electrons with higher energies the cross sec
qfluct(e,Nm) decreases, Fig. 3, dotted line, and the summ
cross section increases monotonically due to scattering
the Wigner-Seitz cells. The cross section of hot electron
determined by scattering by Wigner-Seitz cells and increa
as the square of electron’s energy, Fig. 3, dashed line.

IV. DISCUSSION

Earlier Lekner12 assumed in his qualitative explanation
the nature of the maximum mobility in liquid Ar thats-wave
scattering of slow electrons by atoms is negligible in liqui
at the densityNm . This means that the mean scatteri
length becomes zero and scattering of slow electrons oc
only by fluctuations of the liquid density atNm . On the other
side, the theory advanced in Ref. 13 does not include
density-dependent effective scattering lengthLcell(N), so in
order to estimate the cross section of fluctuations, Lek
considered a spatial displacement of atoms in the elec
environment.12 This approximation considers only the influ
ence of the fluctuating potential of atoms surrounding
cell.

In the present paper, we undertake further developmen
Lekner’s theory but our approach to the problem is sligh
different. The method we used is also capable of describ
the passage of the functionLcell(N) through zero atN
5Nm . The model proposed in this paper describes elect
scattering in media where individual electron-atoms-wave
scattering vanishes in the first order of the expansion in p
ers of the wave numberk. We also discuss next terms of th
partial-wave phase-shifts expansion. Electrons are scatt
by the Wigner-Seitz cells and each cell is characterized
the average radiusr c and the potential acting on the electro
inside the cell. Scattering of slow electrons is determin
through the constant cross section, Eq.~13!, in the low-
energy limit of thes wave. The scattering length of the ce
equals zero at densityNm , so the scattering of slow electron
by the cell is totally determined by the next terms ofs- and
p-wave scattering. In the present work we calculated
phase shifts fors- and p-partial waves. Other partial phas
shifts ~d wave, etc.! are small for electrons with energiese
<1 eV, which results in the expression for the cross sect
of scattering by the Wigner-Seitz cell. This cross section
proportional to the electron energy squared, Eq.~14!, and is
negligible for low electron energies. It means that the mob
ity of electrons scattered by the cells becomes infinite as
density reachesNm . Experiments demonstrate large but ne
ertheless the finite value of the peak mobility. We consid
scattering of electrons by extensive fluctuations of the fl
density that can change the radius of the Wigner-Seitz c
As a result, scattering phase shifts vary randomly. The me
square scattering length(DL)2 in the expression for the
atomic cross section is not zero. As is shown, the me
square value of thes-wave phase shift provides a major co
tribution to the cross sectionqfluct(e), Eq. ~16!, for low-
energy electrons. In the framework of our model, the cr
section of scattering by density fluctuations becomes a c
6-6
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stant for zero-energy electrons, Eq.~20!. The mean-squared
scattering length characterizes the cross section. Our exp
sion for the scattering length, Eq.~21!, contains the unknown
parameterV that reflects the total volume of fluctuations. W
assume that the size of the density fluctuation is equal to
wavelength of the electron. Validation of this assumpti
was carried out by comparison of our calculations with e
perimental data.

The partials-wave scattering by density fluctuations mu
be taken into account for the calculation of the mobility
slow electrons. This scattering determines a magnitude o
electron peak mobility atN5Nm . Earlier Lekner34 proposed
the Lorentz formula for the mobility

mmax5
2

3
S 2

pmT
D 1/2 e

Nm4p~~DL !21S~0!Lcell
2 ~N!!

, ~25!

and predicted the Lorentzian shape of the peak as a func
of the density. Now we use this expression for the mobi
of slow electrons in the vicinity ofNm substituting in Eq.
~25! the values of(DL)2, Eq. ~21!, andLcell

2 whereLcell(N)
5(dLcell /dN)m(N2Nm). The derivative (dLcell /dN)m was
calculated with the function obtained, Eq.~7!:
(dLcell /dN)m5(a/3r ma0)Nm

21. In this approximation the
mobility maximum has the Lorentzian form predicted by L
kner,

mmax5
2

3 S 2

pmTD 1/2 e

Nm4pS a

3a0r m
D 2

S~0!

3
NmV

S 11
~N2Nm!2

Nm
2 NmV D . ~26!

The Lorentzian shape of the mobility maximum is det
mined by the parameterNmV. The higher is the maximum
the narrower it is. Experimental data6 for Ar and Xe do con-
firm this statement: the mobility maximum in Ar is lower an
wider than this maximum in Xe. The real functionm(N)
measured in liquid Ar, Kr, and Xe in the vicinity ofNm is
still far from the Lorentzian shape. In order to compare o
calculations with experimental data, Eq.~25! should be used
The structure factorS(0) dependence on the liquid densi
and the temperature should also be taken into account.
measurements6,7,9 were conducted in the vicinity of the
vapor-liquid coexistence line, whereS(0) changes signifi-
cantly. Figure 4 shows the data7 along with the calculation
results forNmV5120. For the experimental conditions7 ~Xe
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at the vapor-liquid coexistence line! we use the density and
temperature dependence of the isothermal compressibilit
our present calculations.

In order to come to general conclusions we have dev
oped a model for electron scattering in liquids with hig
atomic polarizability for the conditions whens-wave scatter-
ing is weak and the electron mobility goes through the ma
mum as a function of the liquid density. Electron scatteri
by fluctuations of the liquid density totally determines t
magnitude of the peak mobility. Such fluctuations conta
about hundred atoms. The cross section of the fluctua
obtainedqfluct(e), is a function of the electron energy an
drops as the electron energy increases. For high electron
ergies the scattering by fluctuations is replaced by scatte
by the Wigner-Seitz cells. Both types of scatterings give c
tribution to the summary cross section. This cross sec
coincides with the cross sectionqfluct for low energies of
electrons. As the electron energy grows, the contribut
from the scattering by individual cellsqcell(e) gradually be-
comes predominant in the summary cross section. As a
sult, the cross section combined starts to increase with
growth of the energy of hot electrons. This understanding
the behavior of the cross sections allows transport coe
cients of both thermal and hot electrons to be calculated
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