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Electron scattering in atomic liquids: Application to the maximum of electron mobility
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The phenomenon of the maximum of the electron mobility in liquids with a high atomic polarizability at the
densityN,, is explained by the suggestion of weakness ofgheave scattering at this density. The model of
the electron scattering by short-range potentials limited within the Wigner-Seitz cells is used. This model
describes the change of the scattering length and predicts a zero value of the scattering length at the density
N,,. Thes andp-wave phase shifts are calculated for this density. It is found that the cross section of the
Wigner-Seitz cell is proportional to the electron energy squared and is negligible for slow electrons. Fluctua-
tions of the liquid density result in fluctuations of the Wigner-Seitz cell radius.sThedp-wave phase shifts
and the mean cross section fiie electron scattering by fluctuatiomse calculated. The phase shifts for an
isolated atom are used as initial parameters. The mean cross section has a small but finite value for slow
electrons and it decreases with the growth of the electron energy. It is shown that slow electrons are scattered
by the fluctuations of the liquid density, and fast electrons are scattered by the Wigner-Seitz cells.
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[. INTRODUCTION the competition between polarization electron-to-atom attrac-
tion and short-range repulsion. Being dominant in gases, the
Electronic states in dense and strongly correlated systemeng-range polarization attraction is reduced in liquids due to
such as liquefied noble gases have been already studied tiye superposition of several electron-atomic potentials. In
many researchers: After being injected into liquids with a liquids the short-range repulsion evidently dominates, so
high atomic polarizabilityliquid argon, krypton, and xenon  with the increase of the medium’s density from gas to liquid,
the electrons are highly mobile and therefore can be considhe effective scattering length..(N) surpasses the zero
ered as virtually free electrons. The zero-field mobility of value and becomes positivé.This change of sign of the
electrons measured in liquids of this kind is a nonmonotoniccattering length results in the maximum of the electron mo-
function of liquid density** With the growth of the liquid  bility.
densityN, the electron mobilityu(N) reaches its maximum. The effective cross section of electron scattering in liquids
These maxima were detected in liquid Ar, Kr, and Xe atcan be calculated using the electron-atom pseudopotential for
densitiesN,,,, which are close to #8 cm 3. According to  liquids**°In the framework of the pseudopotential method,
Lekner*? the peak value of the electron mobilify,.yis de-  the background energyy(N), the effective electron mass
termined by the electron scattering on fluctuations of them.(N), the zero-field mobilityw(N), and the effective cross
liquid density. Such scattering restricts the electron mobilitysection as functions of the density were previously
at the densityN,, . calculated®!’ Parameters of the pseudopotential were deter-
In liquids, electrons move among strongly correlated scatmined from characteristics of the isolated atom such as po-
terers. The basic theory developed by Lekner andarizability « and the atomic scattering length,m. In the
co-worker*! takes into account the spatial correlation of framework of this approach only low-energywave scatter-
atoms in the kinetic approximation of the electron mobility ing was taken into account to calculate the mobility of zero-
in atomic liquids. In this approach, like in the case of gas-energy electrons. The scattering length of the isolated atom is
eous state, the main free path of electrons is much longer asbasic parameter of the pseudopotential.
compared to both the electron wavelength and the inter- Another approach to describe the scattering of fast elec-
atomic distance. It allows the kineticlike description of thetrons in liquids with high atomic polarizability was proposed
electron behavior in liquids to be developed. This approachin Ref. 18. It requires additional information about partial
introduces an effective electron scattering cross section iphase shifts of wave functions of electrons scattered by the
liquids. As shown in Ref. 13 the cross section in liquidsisolated atom. In the framework of this method the phase
differs significantly from well-known cross sections in rar- shifts for s and p waves were calculated by the variable-
efied gases. For zero-energy electrons the cross section phiase methdd for the single cell of the muffin-tin potential.
determined by the scattering length. For isolated atoms of AfThe Schrdinger equation for an electron wave function in
Kr, and Xe, scattering lengths are usually negativg,,, the Wigner-Seitz cell of the muffin-tin potential was solved
<0. This results from the predominant long-range polarizain Refs. 20—22. Parameters of the electron energy spectrum,
tion attraction between the isolated atom and the electron. I, and mg, in liquids were calculated as functions of the
dense fluids the interatomic distance is small enough to makiégquid density. The electron mobility was not determined in
overlapped “tails” of the polarization potentials of neighbor- these calculations. In these works the authors used complex
ing atoms. This “muffin-tin” potential is realized in liquids. electron-atom potentials. In the variable-phase method devel-
Each cell of this potential is a short-range scatterer with aped in Ref. 18 the electron-atom potential is substituted by
positive scattering length, ;> 0. This is the direct result of more accessible ddta?®such as partial waves phase shifts
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8.(#) of the isolated atom with complete information about Which is a truncated electron-atom potential. Far from the
the electron-atom scattering. It allows us to calculate theenter of the cell, the potential has a polarization form
phase shifts for the atomic potential inside the Wigner-Seitz

cell. Mathematical aspects of the problem were considered in ae

Ref. 18. Vpol(r): - TEN D

According to Lekner’s theory the maximum mobility is _ _
limited by electron scattering on density fluctuations. TheWherer is the distance between the cell center and the elec-
present paper describes this phenomenon. First, densiti(—oni a is the gtomlc polarizability. The polarization poten-
dependent phase shifts of electron scattering waves are caldl: Ed. (1), is the well-known long-range part of the
culated for the electron-atom potential that is cut off outside€!ectron-atom potential on(r). To consider the scattering
of the muffin-tin cell. Second, phase shifts of the scattering?f €lectrons by the cell, the phase-shift technique in the form
on density fluctuations as functions of the electron energy ar@f the variable-phase methd has been used. In this
obtained by the variable-phase method. In the following sect€thod, it is not necessary to solve the Sdmger equation
tion we discuss the scattering of electrons in dense atomitor wave functions of electrons scattered by the potential
media with high polarizability. In order to obtain the effec- V(r) and to calculate phase shifts of the asymptotic form of
tive transport cross sections the phase shifts of partiadp ~ Wave functions. The phase shif(#) for the potential
waves ¢ =0,1) are calculated, and estimations of higher harV(r) are obtained as asymptotical solutiong,(+,r—),
monics with¢>2 are made. The Wigner-Seitz cell, whose Of the equation for phase functions,
radius depends on the density of media, is a single scatterer ,
in liquids. The phase shifts calculated in the present paper de(r.4) _ 2m\(r) [COS7.} (A1) —SiN 7] ((£T) ]2
are functions of both the electron energyyave numbers) dar w7 el A KGR
and the density of media through the density-dependent ra- 2
dius of the cellr.. Expressions for phase shifts of electron . - N S
scattering by Wigner-Seitz cells in conditions where the ef—W'tr} boundr;ry c?]nd_ltloln 77{’(0’?_;)' Here ”({r) gnd
fective scattering length..i(N) equals zero are obtained ne(T) are the spherical Bessel and Neumann functions, re-

and the cross section of the cell is calculated. Then, the exgpectwely. In order to solve E2) with such a problem

pressions for the mean-squared values ofshand p-wave statement, the shape of the scattering potehi{a) must be

phase shifts for electron scattering by density fluctuations argfetzeergmed over all the considered area including the vicinity
obtained. As it will be shown below, such scattering prevails It is easy to verify thaty,(r,4) is the phase shift of the

over the scattering by an individual cell for low-energy elec- . . i
trons. The magnit%dt)-:‘/ of the fluctuation scattering c?gss seﬁart'al £-wave function scattered by the potentiér) cutat

tion decreases with the growth of the electron wave numbe e distancer frqm the center. Whem approaches infinity, .
f (electron energyand becomes negligible in the case of hotthe phase function tends to reach the value of the phase shift
electrons. Therefore, the single cell is the main scatterer for
hot electrons.

Here we propose a model that allows fluctuation cross
sections of low-energy electrons to be calculated. The exat the full potential, which can be as the nonrestricted poten-
pression for the cross section contains an unknown parantial, as the long-range polarization potential, Et). There-
eter. The physical meaning of this parameter is the volume dfore, calculations of phase shifts for the electron-atom poten-
fluctuations that scatter the electrons. The mobility of electial cut off at the cell boundary. become equivalent to
trons scattered by the fluctuations matches the maximuroalculations of phase functiong,(r.,#). The phase shifts
mobility measured experimentally. So, the value of the unfor the Wigner-Seitz cell can be obtained correctly by solv-
known parameter can be obtained by matching the calculateédg the phase equation, E¢R), with boundary conditions,
mobility with the experimental values @f(N) in the vicin-  Eq. (3), where §,(#) are known partial phase shifts of an
ity of the maximum. The whole procedure is demonstratedsolated atom. No specific information about the short-range
by the example of the electron mobility in liquid xenon. part of the electron-atom potential is required in this ap-
proach. It is enough to solve E) in the interval ¢.,>),
where the boundary conditions, E(B), are valid for the
right boundary of this intervalr(—), and the function
n¢(rc /) is obtained for the left boundary of the interval

In the liquid, electrons interact with the average field cre-(r =r.). There is only the long-range polarization part, Eq.
ated by the atoms of the liquid. This potential field forms a(1), of the electron-atom potential within this interval. The
muffin tin and each element of this potential can be modeleghase shiftss,(#) contain all the information about the
by surrounding each atom with the Wigner-Seitz cell. Theshort-range part of the potentid},,{r). These phase shifts
cell has the density-dependent radiys: (3/47N)*3 hereN  can be taken from previous works.?
is the density number of atoms in the liquid. So, the liquid is The modified-effective-range theo§ERT) developed
considered as a set of Wigner-Seitz cells, and each cell actyy O'Malley?® can be used to obtain phase shifts for an iso-
as a single scatterer for electrons. Inside the cell the electroriated atom. The four-parameter MERT expansions for scat-
interact with the central atom by the potenti};o{r), tering phase shifts are given #y

2

lim 7,(#,r)=8,(4), ()

r—oo

II. SCATTERING OF ELECTRONS BY A SINGLE
MUFFIN-TIN CELL
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Herea, is the Bohr radius¥ is the electron wave number in Electron wave number k (a,)

units of ay L[4 is related to the electron energy(eV) as

6:_13'6%6‘0)2]’ tis the angu_lar mome_ntum quantum num- lated Xe atom, and for the Wigner-Seitz cell with radiog
per, ,L_atom and « are the atormc scattering length and polar- =6.06; and with the Xe atom in the centefy(#) for the atom:
izability; D, F, andal_ are adjustable parameters taléen frompoimsl data(Ref. 27: dashed line, the MERT approximation, Eq.
Ref. 30 for an Xe-like atomi o= —6a,, a=27a;, D (4). no(#,r) for the cell: solid line, calculations by the variable-
=493, F=-628&;, and a;=22a3. The higher-order phase method:; dotted line, calculations by the expandipn
phase shifts{ > 1, were obtained by the Born approximation

for the polarization potential. The MERT expansion for thecorresponds to the decrease ) the scattering length
phase shifts is valid only for a limited range of electron en-grows and changes its sign. According to Ef), Le(rc)

FIG. 1. swave phase shifts vs the wave numlefior the iso-

ergies,e<0.75 eV. passes through zero at

Some characteristics of the phase shifts of the Wigner- .
Seitz cell can be considered in the approximation of small B \/; ™ \F 1 )
values for the wave numbef. For example, the potential of Fm= a 5 harcta aoLao ’ ®)
the Wigner-Seitz cell is limited by the cell boundary and 3
turns out to be a short-range potential. In that case the Blatf?€7€"m=6.080 for L gon= —6a, and a=27a;. _
Jackson expansion for théwave phase shift in terms of [N @ fluid with the densityNy, corresponding to the radius
wave number? is valid8 and leads to als-wave phase- m of the ngner-Sel_tz cellswave _scatterlng is determined
shift expansion in odd powers of the wave number, b_y the second term_m the expansion, .IE@- With the den-

sity I;Ism and the radius ,, the expression foA(r,,) has a
70(Te )=~ LeailThd ~ AT )42 6 form

hereL(rc) is the effective scattering length in the liquid. A(y )= ﬂ{l_lg(z \/Ei } B(z):sz sinx dx
CoefficientsL . (r ;) andA(r,) are functions of the cell ra- 3ag aglm 0 (x+2)
dius. The equation for the coefficierts,(N) andA(r.) can 9

be obtained by the substitution of expansion &j.into Eq.
(2) for € =0 with the polarization potential, Eql), and by a
comparison of the terms within one power of the wave num
ber #. The equation forL . (N) was solved correctly by
quadrature® and the solution becomes

The magnitude ofA(r,,) is 13&8 for r,=6.06a,. The ex-
pansion Eq(6) is significantly different from the MERT ex-
‘pansion, Eq(4), for swave phase shifts of the nonlimited
polarization potential, where the term quadratic in power
mat?l3a,, coexists with odd power terms. This is the result
of the spatial limitation of the Wigner-Seitz cell potential.

Lou(re) = i+ ﬁta arcta \/E 1 The results of the calculations of tteewave phase shifts
celk e/ r g @ Ao Lato under conditions where the effective scattering length equals
zero are shown in Fig. 1, together wishwave phase shifts

_ \/;1 ' 7 for the Xe atom calculated in Ref. 27 and by the MERT
a_oE ' @) approximation. The phase shift for the isolated atom is posi-
tive for small # and increases further in proportion
It is important to note that the scattering length of theThen, §y(#) falls down and passes zero. That leads to the
Wigner-Seitz cell,L.¢(rc), obtained by this approactthe = Ramsauer effect for electron scattering in heavy noble gases.
mean potential of the environment was not taken into conThe Ramsauer effect disappears in these ligtidss it fol-
sideration describes qualitatively all features that are char-lows from Fig. 1, thes-wave phase shift is a negative mono-
acteristic for electron scattering in atomic liquids. At largertonic function of# until the Wigner-Seitz cell radius reaches
distances . (or at lower densitieN), the functionL ¢ (r¢) rm- The magnitude of the-wave phase shift is far less than
tends to the valud ., which is the negative scattering the magnitude of the phase shift of the isolated atom for
length of the isolated atom. As the density increagdsich  small wave numbers.
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0.10 T y T for the cell is much less than tleewave phase shift for an

isolated atom obtained in the same approximatiés()
=mas?/105%,. Hence, thed-wave scattering is negligible
for the calculations of cross sections.

Transport properties of electrorisobility, diffusion co-
efficient, etc) are determined by the momentum-transfer
cross section of electron scattering by the atoms of the me-
dium. In our model electron scatterers are Wigner-Seitz cells.
Each cell has the atom at its center. Therefore, spatial loca-
tions of the cells correspond to the positions of atoms in the
liquid and they are correlated due to atom-to-atom interac-

. . tion. According to the Cohen-Lekner thebtythe structure

BT 0.1 ' 02 0.3 factor of the liquidS(#) should be taken into account when

Electron wave number k (a,) calculating the momentum-transfer cross section. The struc-
ture factorS(#) can be obtained from the experimental data

FIG. 2. p-wave phase shifts vs the wave numbefor the iso-  of neutrorf® and x-ray scattering in liquids or by computer
lated Xe atom and the Wigner-Seitz cell with radiyys=6.068, and  simulations. A long-wave limit of the structure facts(0) is
with the Xe atom in the centem,(«) for the atom: points, data jj the relationship with the isothermal compressibility of
(Ref. 27; dashed line, the MERT approximation, B8). 7:1(4.'m)  the liquid, S(0)=NTy7, and can be obtained from thermo-
for the F:ell: solid Iine, calculations by .the variable-phase method'dynamic properties of the liquid. For slow electrons 8§8)
dotted line, calculations by the expansidid). factor can be used in calculations of the momentum-transfer
Eg:ross section, which is determined by the partial phase shifts

P- wave phase shift

According to the Blatt-Jackson expansion for the phas
shifts for a short-range potentfalin terms of wave number ¢’
/#, the first term of this expansion fgrwave shifts has the A o
same power of wave numbef‘_ as the second term of the Qeen(Tc, €)= 78(0)2 (€+1)SiP(7,— 1041).
expansion fors-wave phase shifts, v =0 12

N 3 5
m(re,£)=—ay(re)s7+0(£7). (10 The partial-wave phase shiftg,(4,r.) depend on the cell

The p-wave phase shift for the Wigner-Seitz cell with the radiusr. As a rule, the phase shift with=0 is the domi-
radiusr ., is calculated by Eq(2) for ¢ =1. Dat&’ for ,(4) na_nt .Shlf'[ in the case of slow electrons. Tisisvave phase
are used for the boundary condition, E@). The resuits Shift is @ linear function for smalt: 7(+,rc) =~ Leai(rc)
presented in Fig. 2 also contain the atomic phase shift. Thé- It leads to expression for the effective cross section of
last one is a positive nonmonotonic function of the wavelndividual scattering of slow electrons by the single cell,
number that increases a€ for small.#. It results from the 2
long-range polarization interaction between an electron and a Geen(N) =47S(0) Lgei(N). (13

single atom. For the short-range potential of the Wignerin 3 |iquid with the densityN,,, at the maximum of electron

Seitz cell with the radius,, the quantityn,(rm.4) is @  mobility, the effective scattering length equals zero and the

monotonic negative function and varies &3 for small #  individual swave scattering is weak. In order to calculate the

according to the expansion EG0). It has been verified that ndividual scattering cross section of the cell at the density

lim, o[ 71(rm.#)/4°] is a constant as long aa;(rm) N, we take into account the second term of the series for

=3.5a;. So, in liquids with the densityN,,, where the swave phase-shift expansion by powers of the wave

Leen(Nm) =0, s- andp-wave phase shifts are proportional to number and the first term of the corresponding series for the

/43 and their values are less than the values for the correg-wave phase shift. It leads to a more accurate expression for

sponding phase shifts for an isolated atom. the cross section of the single Wigner-Seitz cell in a liquid
The following d-wave phase shifty,(#,r,) for the [as compared to Eq13)],

Wigner-Seitz cell can be estimated for small wave numbers

using the Born approximation while considering only the 47S(0) 2

polarizing interaction of the electron with the central atom, Geeil(€)=——2— (7= 2770+ 373)

@« s = 47S(0) AL AX(1 ) — 2A(1 )@y (r m) +3a3(r ) 1.
172802, " m()li) (14)

, Taf? [Tt ) _
e
2ay Jo

Here phase shifts are assumed to be less than unity, and only
Here Jg5(X) is the spherical Bessel function, and the finals- and p-wave phase shifts are taken into account for small
expression is obtained fafr ,<1. The phase shift for the =~ wave numbers#. The cross section for slow electrons is
wave is proportional to£° for a short-range potential. The proportional to the electron energy squared. This effective
expression Eq(1l) is the first term of the Blatt-Jackson ex- cross section is shown in Fig. 3 together with the cross sec-
pansion for thed-wave phase shift. Thd-wave phase shift tion of an isolated atom of Xe. We restrict our considerations
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. . ’ ] value of [A 7,(#,ro)]? is connected wit{AN)? and has a
nonzero value. So, the momentum-transfer cross section in-
cludes both the contribution of individual scattering by
single cellgg(€,N,,), EQ.(14), and the contribution of scat-
tering by density fluctuations,

)

100 ¢

-
(=1
T

4
Ufiuct( €, Nm) = F[(A 70)°+3(A71)2—2(A oA ny)].
(16)

The terms in the right-hand side of Ed.6) are proportional

to the mean-squared value of density fluctuatiamsiN)?,

and as it follows from Eq(15) that they contain derivatives

from phase shifts of the cell radius. To calculate these de-

rivatives, the variable-phase method was used. Rewriting Eq.
FIG. 3. Momentum-transfer cross section vs the electron energy2) for the phase shiftsy,(,r) of scattering on the polar-

Points, isolated Xe atontRef. 30; dashed line, isolated Wigner- ization potentialV,(r), one obtains

Seitz cell; dotted line, density fluctuations; solid line, the total cross

Momentum transfer cross section (a
©
b -
T

0.01
0.01

Electron energy ¢ (V)

: : dne(4,re) T ‘
section for the densiti,. edr A o’ [J¢i1(#£Tc)coSn,
c 0'c

by electron energies that do not exceed 1 eV. Within this P . )

energy interval the expansion of phase shifts in terms of the H(=D JesaplAro)sing ] (17)
wave number powers Eq&) and(10) is valid. The effective  gypstituting Eq.(17) into Eq. (15), one can obtain mean-
cross section is negligible for slow electrons. So, in the lig-squared values of-wave phase shifts

uid with the densityN,,, low-energy electrons are not scat-

tered by the single Wigner-Seitz cell with radiys=r,, and —— | T« 2Txr 4 .
their mobility seems to be infinite. Nevertheless, values of (A7e)®= Gaormz 0 Jer 224 m). (18)

the peak mobility,umad{Ny), Mmeasured in experiments are ) ) S
high, but limited. To explain this fact, the electron scatteringHere it was assumed that the phase shjftsre negligible in
by density fluctuations needs to be involved into our modelcomparison with#r, for considered values of wave num-
bers. The spherical Bessel function in the right-hand side of
IIl. SCATTERING OF ELECTRONS BY DENSITY Eq. (18) defines(A ,)? as a function of the wave numbet
FLUCTUATIONS So, at the densityN,, the partial cross sections & and

p-waves scattering by density fluctuations are
In this section electron scattering by density fluctuations

is considered. In real liquids, there are density fluctuations 47r(Ang)? 5 Arm)

AN, and their mean-squared valgdN)? has a nonzero (Go)uer=—— 7z =4m(AL) A (199
value. The mean-squared value of the density fluctuations,

(AN)?2=N2Tx:Q 1, is in a relationship with the isothermal 4y

compressibility of liquid,y, and the volume of fluctuations, (ql)ﬂuct:73(A 71)

Q. The cell radiusr(N) varies correspondingly with fluc-

tuations. The mean-squared value of randomly fluctuating 15 W(Sinﬂm—/rmw%fm N
radius of the cel(Ar.)? also has a nonzero value. For low- B (£ )2

energy electrons, the cross section is determined by the (19b)

partial-wave phase shift squared, and the mean-squared
swave phase shift differs from zero for cells with the meanFor low electron energies whefr ,<1, the constant partial
radiusr,. We consider the fluctuation having the linear di- cross section fos-wave scattering is

mension much larger than the mean interatomic distance, -

Fluctuations of the cell radiusAr.=—r.AN/3N, lead to (do)fue=4m(AL)?, (20
fluctuations of partial-waves phase shiftg,(r,#) of scat-

tering by the Wigner-Seitz cell here(AL)“ is the mean-squared value of the random scatter

ing length due to density fluctuations,
r_c d"]{f(rc 1/> A_N

2
Ane(re,/)=— 3 dr. N (15) (AL?= a TXT(vaT).

3agm QO
The mean value of density fluctuatior@N), equals zero There is the adjustable parameggin this expression, which
and the mean value of the phase-shift fluctuationjs the volume of the fluctuation. We do not know how to

An(#,rg), equals zero as well. The expression for the crosgustify the choice of this parameter. The first that comes to
section, Eq(14), contains the phase shift squared. The meamind is to assume that the linear dimension of the optimal

(21)
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fluctuation is equal to the electron wavelength. For thermamomentum-transfer cross section is constant for small ener-
electrons in liquid Xe atT=223 K one obtains()=6.7 gies and is determined by scattering by the density fluctua-
><104a8. In the present calculations the experimental fatations. For electrons with higher energies the cross section
for Xe were used. According these data the mobility maxi-Oauc( €, Np,) decreases, Fig. 3, dotted line, and the summary
mum in Xe occurs aff =223 K andN,,=1.2x10?> cm™ 3, cross section increases monotonically due to scattering by
where S(0)=TNy=0.18. It was obtained tha&(0)/N,,()  the Wigner-Seitz cells. The cross section of hot electrons is
=0.0015 andAL)?=0.003%2. determined by scattering by Wigner—Seitz cells and increases
In the framework of our model, it is possible to obtain the @ the square of electron’s energy, Fig. 3, dashed line.
cross section of fluctuations as a function of the wave num-

ber #. The partials-wave cross sectionqg)q,.: decreases IV. DISCUSSION
with the growth of the electron energy according to Eqg. ) 5 o o )
(19@ The partia'p_wave Cross Section’ Em_gb), is propor- Ea.r“er Lekne+ assumed n hIS quahtatlve eXp|anatI0n Of

tional to the squared electron energy for slow electrons, ~ the nature of the maximum mobility in liquid Ar thatwave
scattering of slow electrons by atoms is negligible in liquids

—2(4“rm)4 at the densityN,,. This means that the mean scattering
() fuct=4m(AL) o7 (22 |ength becomes zero and scattering of slow electrons occurs
only by fluctuations of the liquid density &t,,. On the other
The magnitude of this cross section is negligible in compariside, the theory advanced in Ref. 13 does not include the
son with thes-wave cross sectionqg) g, for #1»,<1. The  density-dependent effective scattering lenth,(N), so in
p-wave partial cross section of scattering by fluctuation,order to estimate the cross section of fluctuations, Lekner
(91)nuct EQ- (22), is the same function of the electron wave considered a spatial displacement of atoms in the electron
number# as the cross section of the individual scattering byenvironment:2 This approximation considers only the influ-
the single cell, Eq(19). The magnitude of the later is much ence of the fluctuating potential of atoms surrounding the
higher than that for ) fuct- cell.
Following Eq.(18), thed-wave phase shift witlf =2 for In the present paper, we undertake further development of
scattering of slow electrons by density fluctuations is propor{ekner’s theory but our approach to the problem is slightly
tional to.#°, and the magnitude of thé-wave partial cross different. The method we used is also capable of describing

section of fluctuation is negligibly small. the passage of the functiob.e(N) through zero atN
The expressiori16) for the cross section of scattering by =N,. The model proposed in this paper describes electron
density fluctuations has the crossing term scattering in media where individual electron-atesrvave

scattering vanishes in the first order of the expansion in pow-
_ ﬁzm ers of the wave numbde We also discuss next terms of the
£? 0= partial-wave phase-shifts expansion. Electrons are scattered
. , by the Wigner-Seitz cells and each cell is characterized by
SINAT o (SINAT — AT 1 COSET 1) |2

= —8m(AL)? the average radiug, and the potential acting on the electron
(£Tm)° inside the cell. Scattering of slow electrons is determined
St 2 through the constant cross section, Ef§3), in the low-
~ _BW—(AL)Z( ’ ;m) _ (23) energy limit of thes wave. The scattering length of the cell

equals zero at density,,,, so the scattering of slow electrons
by the cell is totally determined by the next termssofand
p-wave scattering. In the present work we calculated the
phase shifts fois- and p-partial waves. Other partial phase
shifts (d wave, eto. are small for electrons with energies
<1 eV, which results in the expression for the cross section
N A TAI N2 1B o N2 of scattering by the Wigner-Seitz cell. This cross section is
Aiuct 42 m) = 4T (AL) (1= (4T m) ). (24 proportional to the electron energy squared, @4), and is
The cross section of fluctuations as a function of the wavenegligible for low electron energies. It means that the mobil-
number/ is shown in Fig. 3, dotted line. For slow electrons ity of electrons scattered by the cells becomes infinite as the
with £ ,<1, this cross section remains a constant. Then theensity reachell,,. Experiments demonstrate large but nev-
cross section decreases with the growth of the electron emrtheless the finite value of the peak mobility. We consider
ergy according to Eq.24). scattering of electrons by extensive fluctuations of the fluid
The summary momentum-transfer cross sectionglensity that can change the radius of the Wigner-Seitz cell.
q(e,Np) =0cei( €, Nm) + dauci( €, Nm)  Of €electron scattering As a result, scattering phase shifts vary randomly. The mean-
by the Wigner-Seitz cells and by density fluctuations aresquare scattering lengttAL)? in the expression for the
shown in Fig. 3, solid lines. The partial andp-wave cross atomic cross section is not zero. As is shown, the mean-
sections of the Wigner-Seitz cell depend on the electron ersquare value of the-wave phase shift provides a major con-
ergy ase® and they are very small for low energies. For slowtribution to the cross sectiong,(€), Eq. (16), for low-
electronss-wave scattering by density fluctuations gives theenergy electrons. In the framework of our model, the cross
main contribution to the summary cross section. So, thesection of scattering by density fluctuations becomes a con-

The last equation was derived for small wave numbers
41 ,<1. The contribution from this term reduces the fluctua-
tion cross section, Eq16), which for the smalls” decreases
with growth of the wave numbejor electron energyas
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stant for zero-energy electrons, E@0). The mean-squared 10000 y T : T " ;
scattering length characterizes the cross section. Our expre!

sion for the scattering length, E@1), contains the unknown __
parametef) that reflects the total volume of fluctuations. We g

ulem

wavelength of the electron. Validation of this assumption
was carried out by comparison of our calculations with ex-
perimental data. ;

The partials-wave scattering by density fluctuations must
be taken into account for the calculation of the mobility of
slow electrons. This scattering determines a magnitude of th¢ ®
electron peak mobility al=N,,. Earlier Leknet* proposed
the Lorentz formula for the mobility

6000

Electron mobility
g
—

2000 -

Mmax= 5 (25 Density (10*' cm™®)

2 2 \12 e 8 . 10 ‘ 12 . 14
3 ( )

™M) Ny Am((AL)2+S(0)L2,(N))
mAT((AL)7+ SO0 cai(N)) FIG. 4. The electron mobility maximum in liquid Xe Points,
and predicted the Lorentzian shape of the peak as a functiotata(Ref. 7); solid line, calculations using E¢25).

of the density. Now we use this expression for the mobilityat the vapor-liquid coexistence linae use the density and

of slow electrons in trz'e vicinity oNp, SZUbSt'tUt'ng N EQ. temperature dependence of the isothermal compressibility in
(25) the values ofAL)“, Eq.(21), andLg whereLee(N)  our present calculations.
= (dLcen/dN)y(N—=Np). The derivative @Lce/dN)y, was In order to come to general conclusions we have devel-
calculated with the function obtained, Eq.7): oped a model for electron scattering in liquids with high
(dLegy/d N)mz(aISrmaO)Nr}l. In this approximation the atomic polarizability for the conditions wheswave scatter-
mobility maximum has the Lorentzian form predicted by Le-ing is weak and the electron mobility goes through the maxi-
kner, mum as a function of the liquid density. Electron scattering
by fluctuations of the liquid density totally determines the
2( 2 )1’2 e magnitude of the peak mobility. Such fluctuations contain

LR — a )2 about hundred atoms. The cross section of the fluctuation
W S(0) obtainedgs,(€), is a functlor_] of the electron_ energy and
m drops as the electron energy increases. For high electron en-
N, ergies the scattering by fluctuations is replaced by scattering
(N=N_)2 (26) by the Wigner-Seitz cells. Both types of scatterings give con-
—szmQ) tribution to the summary cross section. This cross section
Nm coincides with the cross sectiayy, for low energies of

The Lorentzian shape of the mobility maximum is deter-€leCtrons. As the electron energy grows, the contribution
mined by the parametéd,.Q. The higher is the maximum, from the scattering by individual cells.¢(€) gradually be-

the narrower it is. Experimental d4ttor Ar and Xe do con- €OmMes predominant in the summary cross section. As a re-
firm this statement: the mobility maximum in Ar is lower and sult, the cross section combined starts to increase with the

wider than this maximum in Xe. The real functign(N) growth of t_he energy of hot elec_trons. This understanding o_f
measured in liquid Ar, Kr, and Xe in the vicinity df,, is the behavior of the cross sections allows transport coeffi-
still far from the Lorentzian shape. In order to compare ourcients of both thermal and hot electrons to be calculated.
calculations with experimental data, E@5) should be used.
The structure facto5(0) dependence on the liquid density
and the temperature should also be taken into account. The This work has been supported by the Russian Foundation
measurements® were conducted in the vicinity of the for Basic ResearchGrants Nos. 00-02-17392, 00-15-96529,
vapor-liquid coexistence line, wher®(0) changes signifi- 01-02-04008 NNIC and partially by a NATO Collaborative
cantly. Figure 4 shows the ddtalong with the calculation Research Grant and by the DGF Grant No. 436 RUS/113/
results forN,,Q0 =120. For the experimental condition&e  433.
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