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Electrical resistivity at large temperatures: Saturation and lack thereof
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Many transition metal compounds show a saturation of the electrical resistivity at high tempeTfaturiées
the alkali-doped fullerenes and the high-cuprates are usually considered to show no saturation. We present
a model of transition metal compounds, which shows saturation, and a model of alkali-doped fullerenes, which
shows no saturation. The electron scattering is assumed to be due to interaction with phonons. The properties
of these models are determined by performing quantum Monte Carlo calculations. To analyze the results, as
well as earlier results for the high; cuprates, we use tHfesum rule. We demonstrate that theum rule leads
to a natural upper limit for the resistivity, which usually has a w&atkependence. For some systems and at
low T, the resistivity increases so rapidly that this upper limit is approached for experimentally accessible
temperatures. The resistivity then saturates. For a model of transition metal compounds with weakly interacting
electrons, the upper limit corresponds to an apparent mean free path consistent with the loffe-Regel condition.
For a model of the higfi-, cuprates with strongly interacting electrons, however, the upper limit is much larger
than the loffe-Regel condition suggests. This upper limit is not exceeded by experimental resistivities. The
experimental data for the cuprates are therefore consistent with saturation. After saturation the resistivity
normally grows slowly. The alkali-doped fullerenes can be considered as systems where saturation has hap-
pened already fof =0, due to orientational disorder. We show, however, that for these systems the resistivity
grows so rapidly after “saturation” that this concept is meaningless. This is due both to the small band width
and to the coupling to the level energies of the importarttamoleculay phonons in the fullerenes.
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[. INTRODUCTION 1970’s and early 1980’s many examples of this were studied,
and saturation of the resistivity whér-d was considered a
The electrical resistivity of metals is often described in auniversal behaviot.
semiclassical picture, where an electron on the average trav- In a semiclassical picture, this behavior may be expected.
els a mean free pathbefore it is scattered by a phonon, an It may seem that the worst that could happen is that an elec-
impurity or another electron. Assuming a spherical Fermitron is scattered at every atom. We would then expedt to

surface, the resistivity can be expressed in terms lods be fulfilled. This argument is, however, not convincing. In
the semiclassical theory, it is assumed that an electron travels
37%h through the solid with a well-definekl vector between the
p= K2l (1) scattering events. If, howevdr-d, it is not possible to de-

fine k, and the theory breaks dovinA proper theory of
wherekg is the Fermi wave vector. Alternatively, if we know saturation is therefore needed. A number of theories have
the resistivity experimentally, we can deduce an appareriteen put forward;’ but no theory has been generally ac-
mean free path from Edq1). For a good metal, is typically
several hundred A or more. As the temperatiiés in- 160 |
creasedp increases. Normally, it is found tha{T)~T for I
T larger than some fraction of a typical phonon energy. This Nb;Sb
is due to the increased scattering by phonons, and it corre- 1201
sponds to a reduction of Nevertheless, at the melting point,
| is still typically very much larger than the separatidmof
two neighboring atoms. An example of this behavior is given
by Cu in Fig. 1.

In the 1970's a number of exceptions to this behavior
were found! In particular for severah15 compounds, such
as NkSb and NBSn, it was found thap increases very ;
rapidly with T for small T, leading to very large values al- 0 200 400 600 800 1000
ready for temperatures of the order of a few hundred K. At T

these values df, the slope op(T) is strongly reduced. This FIG. 1. Resistivities of Cu and NBb (Ref. 1). The figure also

is shown in Fig. 1, where the resistivities of b and Cu  shows the loffe-RegeRef. 2 saturation resistivity for N{Sb, ob-

are compared. This was described as ‘“resistivityiained by assuming that the mean free daith Eq. (1) is equal to
saturation.” Interestingly, it was found that saturation hap- the the distance between the neighboring atoms. The figure illus-
pened whenl~d, the loffe-Regel conditioR. The corre- trates that for N§Sb the resistivity saturates at roughly the value
sponding resistivity is also shown in Fig. 1. During the expected from the loffe-Regel criterigRef. 2.
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6000 —_— than predicted by the loffe-Regel conditions, afid) a
model of alkali-doped fullerenes, which shows no saturation.
5000 ] We assume that in cas@$ and(iii ) the important scatter-
= 4000 | / //--""’ ] ing is due to the electron-phonon interaction. In a model
§ RbyCgo e \ Hamiltonian approach, there are two natural types of cou-
2 3000 // 1 pling to the phonons, either via the level energie&’s)
E oo | i 1219951007008 | coupling or via the hopping matrix integralisi’s) coupling.
7 In most nonionic compounds the latter effect should be the
1000 L | dominating one. As the distance between two neighboring
loffe-Regel - 0ffe-Regel Nb.Sb atoms is changed due to the excitation of a phonon, the main
----------- S effect should be a change of the hopping integrals. We study
0 100 200 300 400 S00 €00 700 800 900 this for a model of transition metal compounds, referred to as
T(K) the TM model.

In molecular solids, such as the alkali-doped fullerenes,
the situation is different. Due to the weak coupling between
tivities (Ref. 11). The figure illustrates that the resistivity of these the molecules, it is sensible to first calculate the_ levels of a
systems becomes much larger than predicted by the loffe-Regdf€€ molecule, and then to study the weak hopping between
condition. these levels. In the alkali-doped fullerenes the main coupling

is to intramolecular phonons. These phonons couple prima-
) ) rily to the level energies and only weakly to the hopping
cepted. Due to the break down of the semiclassical theonfieqrals between the molecules. We therefore study the LE
whenl~d, the concept of a mean free path itself becomes;oup”ng for a model of alkali-doped g systems, in the
guestionable for such small valueslofin this case we use following referred to as the g model. The LE coupling may
Eq. (1) as a definition of théapparent mean free path. also become important for strongly ionic systems.

More recently, several apparent exceptions to resistivity We use a quantum Monte Carl@MC) method® for cal-
saturation have been found. In particular, this is the case fagulating the current-current correlation function for imagi-
some strongly correlated systems, for instance the Tiigh- nary times. A maximum entropy methtdds then applied to
cuprate$, and for the alkali-doped fullerenés? This is il-  analytically continue the response function to the real fre-
lustrated in Fig. 2, where we show the resistivities ofquency axis. This gives the frequency dependent optical con-
La, o551 0. CUO, and RRBCq, together with the loffe-Regel ductivity o(w) and the resistivityp=1/c(w=0). Since the
resistivities™! Different experiments for alkali-doped¢& QMC method has no sign problem for the models studied
compounds show substantial differences, but this is not esiere, we are able to obtain rather accurate results for the
sential for the present discussion. The loffe-Regel resistiviresistivity. In particular, we can establish whether or not the
ties of these two systems are very large, due to the lownodels we consider show resistivity saturation.
carrier density. The figure illustrates that the experimental To interpret the results we use a simplified approximate
resistivities, nevertheless, greatly exceed the loffe-Regel reapproach, treating the phonorisemiclassically. In this
sistivities. It also illustrates that the resistivities of these twomethod we assume that the phonons can be described by
compounds are very much larger than for;8b and other random static displacements of the atoms with an average
systems, which shows saturation according to the loffe-Regalmplitude that increases with. The remaining electronic
condition. problem can then easily be solved quantum mechanically.

This shows that the semiclassical argument behind th&his approach is in contrast to the Boltzmann equation,
loffe-Regel condition is not only questionable, but that it where the electrons are treated semiclassically. The main ad-
leads to wrong conclusions for the high-cuprates and the vantage of this method, compared with the QMC calculation,
Ceo compounds. This emphasizes the need for a propes that it is simple enough to allow an interpretation of the
theory of why saturation happens for some systems but naesults. By comparing with the QMC results we establish the
for others. We also need to understand why saturation hapange of applicability of the semiclassical method for the
pens for most transition metal compounds wHend, al-  models of interest here.
thoughl is not a well-defined concept any more. In our semiclassical treatment, the excitation of phonons

We have earlier presented such a theory for transitioeads to a static variation of the level energies in thg C
metal compounds in a short publicatithand we here ex- model and of the hopping integrals in the TM model. In the
pand the arguments. We have also analyzed the reasons fowntext of disordered systems, this is referred to as diagonal
the lack of saturation in the alkali-dopeddzompounds®  and off-diagonal disorder, respectively. Past work has prima-
and we provide additional results here. Finally, we have prerily studied diagonal disorder, which in some respects is
sented results for a model of the high-cuprates We have  technically simpler.
therefore considered models of three classes of systgnas: Traditionally, transport is described within the Boltzmann
model of weakly correlated transition metal compoundstheory. The Bloch-Boltzmarif theory starts from the per-
which shows saturation in agreement with the loffe-Regefectly periodic system, and treats the scattering mechanisms
condition, (ii) a model of strongly correlated high: com-  as small perturbations. This can be considered as a theory
pounds, which shows saturation but at much larger valuewhich is valid to lowest order in 1kgl).* This further em-

FIG. 2. Resistivities of LagSr,CuQ, (Ref. 8 and RRCqy
(Ref. 9 and the corresponding loffe-Red&ef. 2 saturation resis-
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pahsizes that the Boltzmann equation becomes questionaldemetimes an essential distinction between LE and HI cou-
whenl~d. Furthermore, the Ziman approximatifrio the  pling. This can be best discussed using tsam rule. We
Boltzmann equation leads {(T)~T for largeT, i.e., there  show that the upper limit of the resistivity is obtained from
is no saturation in contrast to what is found experimentallythe ratio of the band width and the kinetic energy. These two
for many systems. It is then natural to look for extensions ofquantities keep growing without limit witfi, due to the Bose
the Boltzmann equations, which would extend the range ohature of the phonons and the lack of limitation on the num-
perturbation strengths that can be treat®dVe find, how-  ber of phonons. The changes of these two quantities work
ever, that in, e.g., thA15 compounds the thermally excited together for the LE coupling, but tend to compensate each
phonons even at relatively smalitend to largely remove the other for the HI coupling. As a result the resistivity grows
effects of periodicity. In the semiclassical treatment of themore slowly after “saturation” for the HI coupling and the
phonons, the momentum conservation in the electronic syssaturation is more pronounced. This distinction is fairly clear
tem is lost already for temperatures of the order of a fewcut for the Go model. For this model, disorder leads to such
hundred K. We therefore consider the opposite limit to thea strong scattering, that “saturation” can be considered to
Boltzmann equation, where we assume that thermal excitdiave happened already B+ 0. Due to the LE coupling and
tions have completely destroyed periodicity. At Idwthere is  the small band width, howeves(T) grows so rapidly after

a Drude peak in the optical conductivity w) due to intra-  “saturation” that the concept of saturation becomes mean-
band transitions between states with simkavectors. AsT  ingless. For HI coupling, on the other hand, the resistivity
is increasedk conservation is lost, the meaning of intrabandshows a clear change in slope, even for thg i@odel.
transitions is blurred, and the Drude peak disappears. We In Sec. Il we present the TM andsg&models and in Sec.
therefore focus on the limit where there is no pronouncedll the QMC and semiclassical methods are described. The
structure ino(w) at smallw. results are presented in Sec. IV and discussed in Sec. V. In

We have earlier used current and charge conservation t8ec. VI we summarize the present results as well as earlier
obtain simple upper estimates for the resistivity of a mtal. results for the highF, cuprates in the framework of the
Here we show how the same result can be derived by usinfysum rule.
the (related f-sum rule. This approach has the advantage that
it can also be used to discuss the hifheuprates; and that Il. MODELS
it is convenient for discussing the fullerenes. The approach
based on thd-sum rule therefore provides the most conve- A. TM model
nient framework for analyzing the different classes of mate- We first consider a model appropriate for a transition
rials. metal (compound, referred to as the TM model. Each tran-

We combine the-sum rule with the assumption that the sition metal atom has a fivefold degenerate=65) level. It
Drude peak is lost. This naturally leads to an upper limit forcouples to the other atoms via hopping matrix elemepts
the resistivity, which usually has a wed@ldependence. If the where v=(m,i) is a combined label for a orbital index
initial slope ofp(T) is very largep(T) reaches this limiting and a site index. Thus the electronic Hamiltonian is
value already for experimentally available valuesTofAt
this point saturation normally happens, as is illustrated in our
TM model. The removal of the Drude peak could be due to Hdz%% CLUCMJFEU €1 ChoCror» )
any scattering mechanism, e.g., electron-photidinor LE
coupling, electron-electron, or disorder scattering. For theWhereCL creates an electron in the state). As discussed in
TM model considered here, we show in a quantum mechanthe Introduction, we consider two different models where the
cal treatment that saturation should happen roughly when thatoms are put on a bcc or &5 lattice, describing a tran-
loffe-Regel criterion is satisfied. This is somewhat accidentabition metal(Nb) or anA15 compound, respectively. As dis-
and it is not true for a model of the highs cuprates, where cussed above, in the case of tAd5 compound we only
strong correlation effects leads to a larger saturation resistivsonsider the transition metal atoms and, for instance, neglect
ity. Sb in Nk Sbh.*® This is referred to as the Kbmodel.

While a pronounced saturation is observed for &b To describe the hopping integrals, we essentially follow
compounds N§Sb or NiSn, other systems, such as Nb, Harrison?® and assume that the radial part of the integrals
show a weaker saturation or no saturation at all. Here wéas a power dependence on the separation of the atoms.
study a simple model oA15 compounds, referred to as the However, instead of the power five, used by Harrison, we use
Nb% modell® where we include thel orbitals of the Nb the power 3.6, more appropriate for RbUsing Harrison
atoms, put on the appropriafel5 lattice, but where the re- notation for the radial part between two atondcenergy
maining atom(e.g., Sn in NgSn) is neglected. This is com- levels
pared with Nb, where the atoms are put on a bcc lattice.

These two models then only differ with respect to the lattice A2 1

structure. This difference leads to a smaller plasma frequency Vdds= Ndd,s m |R,—R|36+a3® )
for Nb;Sb and a steeper slope ofT). This leads to a much b 0

more pronounced saturation for pgb. where 744 ,= —16.274q4 ,=8.75, andnqq =0 andm is

Even after “saturation” has happenee|,T) tends to con- the electron mass. The paramatghas been chosen in order
tinue to grow, but at a slower rate. In this respect there igo reproduce the band with as obtained from LDA calcula-
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tions for NK ,*° namely,r4=0.7. Since the atoms vibrate, Mined by the hopping betweermprbitals on different mol-
their separation can occasionally become very small. T&cules. The R orbitals couple viac and 7 hopping inte-
avoid that the hopping integrals then become very large, wérals. We use

have introduced the term containiag in the denominator.

We useap,=2 A. Equation(3) shows the distance depen- V,=Vde (@ do)/t (6)
dence. In addition there are angular factors, depending on
which m-quantum numbers are involved, as described by V. =—V /4 @

Harrison?® In the model of Nb we only consider nearest

neighbor hopping, while in th&15 model (N§) also sec- whereV,=9.85 eV, dy,=1.43 A, andL=0.505 A. The cal-

ond nearest neighbor hopping is included, since the second,jations were performed for the lattice parameter 14.24 A.
nearest neighbors are not much further away then the nearggt ,ost calculations we take into accoth®® the orienta-

neighbors. tional disordet® of the Gy, molecules.
We consider the case when the phonons couple 10 the 16 important electron-phonon coupling is due to the in-
hopping integralgHl's). The phonons are approximated as 4 molecular phonons of Hsymmetry. There are eight such

Einstein phonons. The frequenay,;=0.014 eV was 0b-  yh,n0ns in G, each one being a five-fold degenerate Jahn-
tained from the average frequency of Nb méfaFor each o mode. Here we only include one degeneraaridde
Nb atom we introduce one such phonon in each coordinatBer site. We use the Hamiltonian

direction. Thex coordinate of aton is then given by

5 3 3
h el-ph_ g Zwah (» T g .
Rix:RiOx+ V 2wah(bix+biTx J 4 H= 2 h '}/Zl % mE=1 mzzl Vet Yimoim'oXi -

®

whereR?, is the unperturbea coordinate of the atoriy b/,
creates a phonon in thedirection on sitei, andM is the ~ wherex;, is the phonon coordinate for a phonon with quan-
mass of a Nb atom. These vibrations couple to the hoppingim numbery on sitei, g is an overall coupling strength, and
matrix elements. V..., are dimensionless coupling constants given by

To obtain the conductivity we calculate the current-symmetry. The dimensionless electron-phonon coupling con-
current correlation function. This requires a definition of thestant is given by
matrix elements of the current operator. In our model Hamil-
tonian approach, it is not appropriate to calculate these as 92
expectation values of the current operator between some ba- N=5—N(up), 9
sis functions, since the basis functions underlying our model “ph

Hamiltonian are not explicitly defined. Instead one can use , ) ) )
charge and current conservation, i.e., the requirement that there N(x) is the density of states per spin, orbital, and

change of density inside some small volume is equal to th@olecule at the Fermi energy. The current matrix elements

current entering this volume. This leads to the result are given by Eq(5) with R;=R?.
As a comparison, we also consider g @odel where the
- ie intermolecular phonons couple to the hopping integ(klls
=7 (Ri=R)t,, (5 coupling, instead of the LE coupling considered above. This
coupling is obtained by displacing the molecules from their
whereu=(m,i) andv=(m’,j). ideal positions of the fcc lattice due to the excitations of

intermolecular phonons. For large valuesTothe molecules
come unrealistically close to each others in our semiclassical
theory, neglecting the strongly repulsive interaction for small

We next consider a model appropriate for alkali-dopedseparations, and the hopping integrals become unrealistically
fullerenes, referred to as thgnodel. In these systems the large. For this reason we introduce a modification of the
t;, band is partly occupied, and we therefore consider @opping integrals between the Drbitals in the case of the
model with a threefold degeneratg, orbital on each g  HI coupling . The exponerg™(¢=%)'L is replaced by
moleculei. These orbitals are connected by nearest neighbor

B. Cgo model

hopping matrix elements. For the e_Iectronic part we therefore adi—d)/L | (dy—dg)/L

use the same form of the Hamiltonian as abfwe. (2)], but e (di—do)/L , (10)
the orbitals are now threefold degenerate and placed on a fcc e(d=do)/L 4 gldz=do)/L

lattice.

The hopping integrals are obtained from a tight-bindingwhered; =3.1 A is the separation of the nearest C atoms on
descriptior?>2*For each of the 60 C atoms in afnolecule  neighboring molecules in the equilibrium position adsl
we introduce one @ orbital pointing radially out from the =2 A. Ford>d,, the hopping integrals are essentially un-
molecule. We then generate orbitalstgf character by form-  changed, and fod=d; they are exactly unchanged, while
ing linear combinations of the 6QR2orbitals. The hopping for d<d, the hopping integral is cut off at a value which is
between the,, orbitals on different molecules is then deter- factor 10 larger than in equilibrium.
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. METHODS 0.15 ]

A. Quantum Monte Carlo method

To establish the properties of our models, we use a quan-
tum Monte Carlo(QMC) approacht® For these models, the
QMC method has no so-called sign problem, thanks to the
absence of a repulsive Coulomb interaction. In the calcula-
tion of response functions for imaginary times there are then
only statistical errors which can be made arbitrarily small by
improving the sampling. These response functions are ana-
lytically continued to the real frequency axis by using a % 01 0.2 0.3 0.4
maximum entropy methotf Although it is nontrivial to con- T(eV)
trol the errors in this method, it should still be quite accurate

for the response functions considered here, due to the simpl\?bf Ithi' ﬁgRjzsé'c\)’:;yp‘; (rzs fllqse 2;;?;22;&?;:%@?5 :;rd
. ; % =
form of their spectra. Thus we are able to quite accuratel¥u" (N=648) curveand OMC(circles,N— 36) calculations. The

establish the largd behavior of the resistivity for models figure also shows the smdlEq, (25)] and largd Eq. (21)] tempera-

with coupling to phonons. . . S
. . ture results. The figure illustrates that the resistivity of the TM
In the QMC approach used herthe starting point is the model saturates at largé. Comparison with the QMC results,

partition function shows that the semiclassical calculation is quite accurate, at least
for largeT.

_ —HIT
z=Tre ' (11) conditions are used. Each phonon coordinate is given a ran-

dom displacement according to a Gaussian distribution cen-

where Tr is a trace over all states. An imaginary timé  tered at zero and the width
introduced, G=7<B=1/(kgT). The partition function can
then be expressed as a functional integral over the phonon (x?)=
coordinates as a function ef For given values of the pho- M wpp
non coordinates, the electronic part of the Hamiltonian is
one-particle Hamiltonian. The electronic degrees of freedo
can then be integrated out and be expressed as a determinant.
Finally, the phonon coordinates are sampled in a Monte ng(T)= —————,
Carlo approach. ghopn/(keT) — 1

For the LE coupling, the phonons are local and only in-
fluence the levels on the molecule of the phonon. For the C
model, this corresponds to ax3 block in the determinant

nB(T)v (12)

r?{vhere

(13

is the occupation of the phonon mode. In this way, a set of
displaced coordinates are obtained. These define a one-
article Hamiltonian for the electrons. In the case of HI cou-

obtained in the approach abo_ve. T_he change of the deter ling, we simply calculate the hopping matrix elements using
nant when one phonon coordinate is changed can then eas Ne displaced atomic positions. For the LE coupling, we in-

be obtained in an updating approaCiror the HI coupling, sert the phonon displacements in E8). Since the coupling

on the other hand, each phonon influences the hopping 'm%bntains a factoy/M, the Hamiltonian is independent f

grals to the neighbors of the atom of the phonon. Di1°ferentfor a given\ and w., in the case of the LE coupling
ph :

phonons then couple to partly “overlapping” blocks. It is : g . .
: : . . To calculate optical conductivity, we find the eigenstates
then not possible to introduce the simple block form used u}I> and eigenvalu%s| of this Hamil}c/onian. The opti(?al con-

the Go model. This leads to a substantially more Comp“'ductivit is then aiven b
cated updating approach, which is discussed in Appendix A: y 9 y

2 N
70)= Nag 2 W=t e +e,

While the QMC method above is very useful in establish- (14
ing the properties of our models, its complexity means that iwhere(} is the volume per atom arfg is the Fermi function
is hard to interpret the results. We therefore introduce a mucfor the energye,. The prefactor 2 comes from the summa-
simpler method, where the phonons are treated semiclasgion over spin. We have assumed that the system is isotropic,
cally. We demonstrate that this method is quite accurate fogo that it is no limitation to consider the conductivity in the
the TM model with HI coupling, by showing that it agrees direction.
quite well with the accurate QMC calculations. For thg, C Figure 3 compares the QMQircles and semiclassical
model with LE coupling, the accuracy is less good, in par-(broken curvg methods for N§ with N=36 atoms in the
ticular for largeT. The method is, nevertheless, useful for thesupercell. The QMC calculation has been limited to rather
interpretation. large values ofT, which is the range of particular interest
We consider a large supercell withunit cells,K atoms  here, and which is also the range ©fvhere the calculation
per unit cell and a total d=KL atoms. Periodic boundary can be performed with a reasonable numerical effort. The

B. Semiclassical method
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FIG. 4. Resistivityp(T) as a function of temperaturE in the FIG. 5. Resistivityp(T) as a function of temperatufe for Nb
ordered G, model for w,=0.00001 eV anc\=0.6. The figure according to a semiclassical calculation. The figure compares the
compares the QMGfull (T:JI’VE‘.) the semiclassicaﬂ.dc.)tted curv: semiclassicalfull curve) calculation forN=640 with experimental

and the Boltzmanribroken curve results. The phonon frequency results(circles (Ref. 29. It shows the. smaI[Eq. (25)] and large .
was chosen to be so small th(T) ~ T in the Boltzmann theory for [Eqg. (21)] temperature results. The figure illustrates that there is
all T of interest saturation also for Nb at larg€ in good agreement with experi-

ment.

figure illustrates that the semiclassical calculation is quite

accurate at largd for the TM model. By comparing the structure. This illustrates that our TM model is appropriate
semiclassical calculation fdd=36 andN=648 we also il- for describing resistivity saturation. For smallthe resistiv-
lustrate that at larg& the result does not change much if the ity grows slower than what is found experimentally, which is
size of the supercell is increased. For small valuesTof probably due to the electron-phonon interaction being some-
however, the discreteness of the levelsN+ 36 would pre-  what underestimated in our simple model.
vent a reliable semiclassical calculation for this super cell Figure 5 compares the semiclassical results for Nb with
size. experimental results. The figure shows a surprisingly good

Figure 4 compares the semiclassical the@gtted curvé  agreement between theory and experiment, given the sim-

with the QMC(full curve) and the Boltzmanibroken curvgé  plicity of the model and the absence of adjustable param-
theories for the g model with LE coupling, assuming or- eters. The figure illustrates that saturation also happens for
dered G, molecules. The small- behavior is discussed in Nb, but at a much larger temperature scale than fof Nb
detail in Sec. V F. Here we just notice that the semiclassicalhe reason for this difference is discussed in Sec. V D.
theory agrees with the Boltzmann theory for very smiall

and that it agrees approximately with the QMC results for
small and intermediate values @t There is, however, a B. Cgg model
g#glr'ltatggtig'sé?griﬁge dr}tséﬁééfﬁgﬁozzecégaso?hs IEZIL;TE i Figure 6 shows QMC calculations for the resistivity of the
the sgmiclassicaglJ theory for largdeads to Ioczllizatitr))n This %60 model. It illustrates that there_ Is no sign of saturation.
is discussed in more detail in Sec. V H. While the s<.amiclas—ACtua'.Iy t_he eurves ten(_j to _bend slightly up\{vards_for IaTge

. L ' S .~ Thex indicates the resistivity due to the orientational disor-
sical theory for the g model with LE coupling is suffi-

ciently accurate to analyze the results for small and intermeqer' ThisT=0 resistivity was calculated from E¢L4), i.e.,

. o independently of the QMC formalism. The curve far
diate values ofT, it is less accurate than for the TM model b Y Q S .

. . ! X o =0.80 shows signs of superconductivity at smialsince the
with HI coupling, in particular for largel. This is further .

: : curve turns sharply downwards asis lowered, due to su-
discussed in Sec. V H.

perconducting fluctuations. For a still larger valueNothe
system behaves as an insulator, as illustrated by the negative
IV. RESULTS slope ofp(T) for small T.
The solid curve show the result far=0. In this case the
resistivity is entirely due to the orientational disorder of the
The full curve in Fig. 3 shows the semiclassical results forCs, molecules. It is interesting that thisT“independent”
the NB; model. It illustrates how the resistivity shows a very scattering mechanism gives rise to a wéeakdependence.
pronounced saturation already at quite small temperature3he reason for this are discussed in Sec. V E.
The calculated resistivity at large agrees rather well with The results for RECq in Fig. 2 were measured at a con-
the experimentally results, e.g., about 0.122rom at T  stant pressure and show an approximately quadratic depen-
=900 K (0.08 e\j.! This agreement with experiment is im- dence onT. If these results are converted to a constant vol-
portant, since, as we discuss below, our saturation resistivityme measurement, however, an approximately linear
[Eq. (21)] essentially only depends on the nearest-neighbodependence of is found down toT~100-200 K. In
distance, the orbital degeneranythe filling and the lattice agreement with this, Fig. (T) shows a rather linear de-

A. TM model
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FIG. 6. Resistivityp(T) as a function of temperaturé and
electron-phonon coupling for the G, model according to QMC
calculations. The phonon frequencyds,=0.1 eV. The figure il-
lustrates the lack of saturation. For=0.80 the onset of supercon-
ductivity can be seen as a sharp downturp (i) asT is lowered,
due to superconducting fluctuations. Fo#1.06 and 1.32, the re-
sistivity has a negative slope for smdll indicating an insulating
system. Thex shows the resistivity due to orientational disorder.

FIG. 7. Resistivityp(T) as a function ofT for the G, model
considering coupling to the level energigall line, LE coupling
and coupling to the hopping integralbroken line, HI coupling
according to semiclassical calculations. Thg @olecules are or-
dered. The figure also shows results for the case when the tempera-
ture Tr of the Fermi functions in Eq(14) is put equal to zero. The
figure illustrates that there is a large difference between LE and Hl
coupling for the Gy model.

pendence foih <0.8 until the SUperCOﬂdUCtiVity fluctuations almost constant for HI Coup”ng and |arg'e(dotted Curvé_
set in.13The reason for this behavior have been discussgtor the TM model we find a change of slopeiiT) for both
earlier. HI and LE coupling, but the change is more pronounced for
HI coupling.
C. Comparison of HI and LE coupling

The results for the TM and & models differ drastically. V. DISCUSSION
While the TM model shows saturation, thg;@nodel does
not. It is interesting to ask to what extent this is due to a ) .
difference in the electron-phonon couplitigll versus LE We mainly focus on temperatures which are so large that
coupling and to what extent it is due to other differences, ("€ Drude peak is essentially lost. The Drude peak is related
such as the size of the unit cell, the lattice structure and thi intraband transitions between states with similaectors.

band width. For this reason we have also studied tgg C N Appendix B we illustrate that for Nysb in the semiclas-
model assuming a HI coupling. sical approximationk conservation is lost already at rather

The HI coupling in G is due to intermolecular phonons small values ofT and that the concept of intraband transi-
describing the rigid vibrations of theggmolecules relative 10NS becomes rather ill defined. Indeed, for large values of
to each other. The coupling to these phonons has usually it becomes a good approximation to assume that all states

o ; Couple with the same strength via the current operator to all
been assumed to be wedkThis is also what we find here. other state$? as is illustrated in Appendix C and in Fig. 8.
We therefore artificially increase the coupling until be- ' ; :
comes the same as for the intramolecular coupling. Since The Drude peak is then completely lost. Figure 8 shows that
Nw;;hz for intermolecular phonons, we can obtain the in-for NbsSb the Drude peak is almost completely goneTat

A. Loss of Drude peak

creased coupling by artifically reducing the phonon fre-:0'1 ev.

quencyw,,. Experimentally, the intermolecular frequencies

fall in the range from zero and up to almost 7 me\WVe B. f-sum rule

have used a value ab,,=1.8 meV which is substantially In the largeT limit, the f-sum rule provides a very useful

smaller than the average frequency of the experimental spegool for analyzing the resistivity. For model Hamiltonians of
trum. The resulting\ ~0.6 should therefore be substantially the type considered here, theum rule takes the forth (for
larger than the experimental value. a derivation, see Appendix)D

We compare the resistivity in semiclassical calculations

for the Ggo model with LE and HI coupling in Fig. 7. The 2 (= B A

same values of ~0.6 andw,,= 1.8 meV were used in both ;fo o(w)dw=— 3 5672(0[T|0), (15
cases. The molecules are orientationally ordered. While the R

resistivity shows now sign of saturation for the LE coupling where Ty is the kinetic energy operatod is the nearest-
(full curve), the model with HI coupling shows a weak satu- neighbor distance, anf is the volume per atom. As dis-
ration (broken curve This becomes even more pronouncedcussed above, we assume tffais large enough that the
if we neglect the rather trivial temperature dependence of th®rude peak has been smeared out and difat) is a smooth
Fermi-functions in Eq.(14). The resistivity then becomes function. We furthermore assume tha{w)=0 for #|w|

242
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1= o(0)
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(@) | 0.4 i
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T=0.025 eV~ @
O0 05 1 00 05 ] FIG. 9. Schematic picture af(w). The average over the band

width is given byo(0)/y.
AW AW given bya(0)y
FIG. 8. The optical conductivity as a function of the frequency ~ TABLE I. The quantity y [Eq. (16)] and & [Eq. (20)] for a
o for the (8) A15 and(b) Cg, models in the semiclassical calcula- constanl[Eg_ (17)], a GaussiafEqg. (18)] ahd a semielliptical Eq.
tion. The frequency has been scaled by The0 band widthw. (@ (19)] density of state¢DOS) and for half filling.
also showsbroken curve the result of approximating all current

matrix elements by their averaggq. (C4)]. Constant Gaussian Semielliptical
_ . o . a 0.125 0.141 0.106

>W, whereW is the band width. This is exactly true in the 1.44 1.81 1.91

semiclassical treatment and approximately true in the QMC 0.180 0.255 0.202

treatment. Ifo(w)=0c(0) for #|w|<W, the integral on the
left-hand side of Eq(15 would be Wo(0)/A and o(0)

would simply be given by this integral multiplied by/W. C. Large T behavior
This is shown schematically in Fig. 9. For a more general
shape ofo(w) we write

As above, we consider temperatures which are so large
that the Drude peak is gone, but we furthermore assume that
" the temperatures are small compared with the band width.
U(w:o)zvl\’/f o(w)hdw, (16) This applies, in particular to many transition metal com-
0 pounds, e.g., thé&15 compounds. We consider noninteract-
ing electrons, which should be a reasonable assumption for
broad band transition metal compounds. To apply the analy-
sis above, we have to calculate the kinetic enérgy Since
pT<W, we can assum&=0 in the calculation ofT. We
find that

where y depends on the shape ofw). To estimatey we
assume a certain density of stat€0S) N(¢) and constant
matrix elements of the current operator, as discussed in A
pendix C. In Table | we give the value of for different
shapes oN(e), namely, a constant

if |e|<Wi/2, TKIZnJM eN(e)de=—2naWN (20
N(g)=4{ W’ (17) - W2

0,  otherwise, is proportional to the band widtilV and the orbital degen-

a Gaussian eracy. The shape of the DAO$(¢) and the filling enter via
the parametew. This parameter is given in Table | for dif-
ferent shapes of the DOS for half filling and in Table Il for

N(g)= e (2eW)? (18)  different filings and a semielliptical DOS. Inserting the re-
™ sult for Tk in thef-sum rulg[Eq. (15)] and using Eq(16), we
and a semielliptical obtain
8V(WI2)2= 2/( W2 i Je|<wWr2, TABLE II. The quantitiesy [Eq. (16)] and a [Eq. (20)] for a
N(e)= ( )7 e (W) 2] ) 19 semielliptical DOSEq. (19)] as a function of the fractional filling
0, otherwise. p. The results are symmetrical around half filling= 0.5).

DOS. The Table illustrates that does not depend strongly

on the shape of the DOS. In the following we assume a 0.1 0-2 03 04 0-5

semielliptical DOS. a 0.041 0.070 0.090 0.102 0.106
It is also interesting to study the filling dependence. This 2.63 2.19 2.02 1.93 1.91

is shown in Table Il. The dependence is weak around half- 4, 0.108 0.153 0.182 0.197 0.202

filling, but v becomes larger for a small filling.
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TABLE lIl. The quantity ()/d? for different lattices, wherel is s <0|d2 t ¢‘r y |0>
the nearest-neighbor distance aids the volume per atom. (d2)= uva prprVpe¥vol ) 23)
E[LVU<O|tMV(/lLU¢VU|O>
fee bee ALS s¢ whered,,, is the distance between the atoms with the orbitals
1 4 4 v andu. At T=0 this increased from 0.5a to about 0.5@
Q/d® —=0.707 ——=0.770 —=1.333 1 for the A15 structure. For a semielliptical DOS and filling
V2 3V3 3 0.4, this leads to a larger saturation conductivity and a
smaller resistivity of about 0.11¢hcm instead of
0.14 m cm if the nearest-neighbor separation is used. This
may d® ne? is in better agreement with the calculated resistivity.
oO=—="q9%q (21 In a similar way we can use tHesum rule to estimate the

resistivity for the Go model, although the assumptioh

) . <W is now much more questionable, as discussed in Sec.
Here may/3 depends on the details of the electronic struc, g Considering a fcc lattice, using=1.91 andd=10 A
ture and is of the order of 0.21%/Q depends on the lattice \ye obtain ’ '

structure(see Table I}, but is of the order 1.

The result(21) is independent of the band width. This = 0.288 qQ 04
follows, since the kinetic energ§20) is proportional tow p(T)= T (TN M em: (24)
and is cancelled by the/ in Eq. (16). . . -

; K : . Using the band widttw=0.6 eV and obtaining «(T) from

The quantityne?/(%d) has the dimension of a conductiv- . : : d
ity and it contains the essential material param dd. semiclassical calculations for theggmodel, we find the

. . saturation resistivity 0.4 @ cm. The calculatedh=0 and
Herefiag/e?=22 uflcm, wherea, is the Bohr radius. Fora - _ e : ; -
" ' ) . T=0 resistivity (0.29 nf) cm) is below this value, while the
transition metal compound, witm=5 and d~3 A, this y( )

T L results for larger values of andT strongly exceed the satu-
leads to an upper limit for the resistivity of the order of 9 gy

. . . . ... ration resistivity. The reasons for this are discussed in Sec.
0.1-0.2 nf) cm. This agrees with the saturation resistivities,, y

observed for these systems.

It is interesting to_study the f_iIIing depe_ndence, indi_cated D. Small T behavior
by Table Il. We consider Sc, which is the first element in the , , ) o
3d series. According to a band structure calculation, Sc has !N view of the discussion above, we expect the resistivity
about 1.8 electrons® Compared with a system close to to have an upper limit for models with noninteracting elec-
half filling, such as NpSb, we then expect the saturation fons scattered by phonons, unléss very large. In many

resistivity to be about a factor 1.4 larger. This filling effect is Metals, however, the resistivity increases so slowly With

somewhat reduced by the different geometries of the comt-,hat the corresponding conductivity is much large than the

pounds. Indeed, while the saturation resistivity is estimatedMit (21) even at the melting temperature. The issue of
to be 0.15 rf) cm for Nb;Sb.! it is well over 0.2 n€) cm for whether or not the resistivity saturates is then not raised. It is

dherefore of interest to study the loW-behavior ofp(T).

Sc3* in agreement with the expectations. Similar results ar
For T> w,, we expect®

also found for Y¥2° For the other end members of thd,34d,

and 5 series clear saturation does not seem to have been
ATkg
observed. p(T)=8x? = (25)
Using the definition of the mean free pdtin the intro- iy

duction[Egs. (1)], we can convert the conductivity in Ed. \yherek, is the Boltzmann constant andis the dimension-
(21) to a mean free path less electron-phonon coupling constant. For the TM model

with HI coupling we define\ =X (u, ), where

where for simplicity we have assumed that there is only one - 2 2
. . T NKMN(u) wph 1171«

spherical Fermi surface. For a semielliptical DOS and half

filling ¢=0.74 (fcc), 0.72 (bco, and 0.60 A15). Thus the xé(gl’—g’—wph), (26)

quantity cri’®is close to unity fom=5, as appropriate here. . . .
This provides a quantum-mechanical derivation of the Ioffe—WherGK Is the number of atoms in a unit cell, the sum-

Regel condition for weakly correlated systems. maFion is over the three coo_rdinatem,is the ato'_“ic mass,
In particular for theA15 lattice, the second nearest neigh—|I> Is an eigenstate dfl, andi labels the atoms in the unit

bor hopping plays a rather important role. The separatior?e”' {pi is the plasma frequency

(0.612a) is not much larger than for the nearest neighbors g2

(0.5a), but there are eight second nearest neighbors but just (ﬁQm)z:ﬁ > f dk

two nearest neighbors. For this reason, we also define a dis- Ton Jez

tanced which is a weighted average of these distances. Asvhereg, is the energy of a state with the band indeand

weight factors we use the hopping matrix elements. Thus wéhe wave vectok and u is the chemical potentiakl, de-

define pends on the average Fermi velocity.

| =cn'd, (22
2

o(e|—¢€)

~ 1
N(e,e’)

| oH "
<|ﬁia|>

2
enk—p), (27)

de nk
ak
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The straight lines corresponding to Eg5) and Eq.(21) Fermi functions of Eq(14). This can be seen by considering
are shown in Fig. 3. If these lines cross in the experimentallythe resistivity due to static disorder. Although this scattering
accessible temperature range we expect saturation. mechanism isT independent, the resistivity is, nevertheless,

It is now interesting to compare our models for Nb andT dependent. Expanding the Fermi functions in Eif) in
Nb% . We obtain similar values ok for the two cases\ 1/T, we obtain that-(0)~ 1/T andp(T)~T for very largeT.
=1.0 (NB) and\=0.9 (Nb). A larger value ofA=1.7 for A similar dependence also enters for the the electron-phonon
Nbj was estimated by Alléhwhile a rather similar value scattering, and it tends to mask some interesting differences
was obtained for NbX=1.0) fromab initio calculations’®® ~ between level energ{L E) and hopping integra(HI) cou-

We observe tha)t~1/w§h depends quite sensitively apy,. plings. In the f_ollowmg, we jcherefore_fr.eeze the electron
Since we have replaced the whole phonon spectrum by thrd€mperatureTe=0, and consider the limit of a very large
Einstein phonons per atom, obtained as the average of tH{10N0N temperaturgs, i.e., we consider a large but re-
phonon spectrum of N# one should not expect very accu- Place the Fermi functions b functions in Eq.(14).

rate values of in our calculation. For the plasma frequency 1€ band width entering Eq16) can be approximately
we obtain Q,=3.6 eV(N) and 8.2 eV(Nb), in rather expressed in terms of the second moment of the density of

. L . statedEq. (C9)]. The same is also approximately true for the
good agreement witlab initio calculations 3.4 eV (Np) S
(Ref. 37 and 9.5 eV(Nb).® kinetic energy. We therefore focus on the second moment,

The difference in values of.,, for Nb% and Nb alone which can expressed in terms of the Hamiltonian
then leads to a difference by a factor of five in the slope of 1
the line from Eq.(25). As a result N§ shows a very pro- (e?)= N > wa, (29
nounced saturation already at sniBliwhile Nb only shows AN e
sign of saturation at rather large The difference is due t0 \yhereN is the number of atoms in the system.
the fact that NB has a large unit cell with many bands and W first consider the case of the HI coupling. In our semi-
many forbidden crossings. This leads to quite flat bands anglassical formalism we can write
to small electron velocities. The result is a small plasma
frequency[Eq. (27)] and a steep line from Eq25).

An even more dramatic example i&Mn, which has a % HW(T)—% H,,(T=0)
unit cell with 58 atoms® One should therefore expect a very
small plasma frequency and a correspondingly early satura- H,,
tion. Indeed, it is found that the resistivity saturates at about = 2 R OR; 4(T)
T=60 K.2° pone T

In view of the discussion above, Fig@ and Eq.(25), it 1 aZHW
. . . + — — " SR ) + ...
is tempting to write > g;a % R R, OR;o(T) 6R;5(T) ,

O (30
o(0=0T)= + Osan (28 \yhere the summation ovéextends over all atoms. Since the

displacement$R;, are random, we can assume that

where the first term describes the Drude pHEa§. (25)] and )

the second term is the conductivity in EQ1) at saturation. (0Rio(T))=0 (IR o(T)OR;4(T))= 5ij S,5(R%), (31)

This formula is correct for small’ and for T which are so 2 2 .
here(R“)=kgT/(M . We then obtain

large that the Drude peak is gone but very much smaller tha\rl1v (RO=ksT/( ph) I

the band width. Eq(28) is the “parallel resistor” formula of

Wiesmanret al*° > HZ(T)—2 HZ(T=0)
v y7ax
E. Very large T behavior aH ,,\2 *H,,
: : =(R%) >, (—”) +(RH) X H,,—22+- -
We have so far discussed temperatures which are so large iapv \ IRiq i IRZ,

that the Drude peak have been washed out, but which are
small compared with the band width. We now focus on val- (32

ues of T which are large enough that the coupling to thegxplicit calculations for the TM model show that the second
phonons causes a substantial change in the band width. Sudym tend to partially cancel the first term, while for thg,C
effects are not very important for typical transition metal model it adds to the first term. As a crude approximation we
compounds, which have large band widths. They are, howneglect the second term. The first term can be approximately

ever, of substantial interest for the{Inodel, for which the rejated to the electron-phonon coupling Integrating Eq.
fluctuations in the level position become comparable to thg2e) we obtain

band width at values of which can be reached experimen-

tally. gH |2
At such large values dF, there is a rather trivial depen- NW2\ ~ > ( aRM> : (33
dence due to the electron temperatdrie entering in the NMN() wpp iasr o
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2 y T T T T where the first term is the off-site and the second the on-site
p(T) (0 06) —_— contribution. Assuming a constaht(e), we estimate that
T ('ll)/T ) 0%) R T(T=0)/N~—2.6(2)¥2,. For largeT, the coupling to
1.5 | KUK ] _
¥0.06)((T) -~ e the phonons leads to large separations of the levels, and we

can use perturbation theory for calculating the kinetic energy.

0occ unocc
n..m-"“"ww/

t2 1 Nn(e?) -

Te(T)=2
k(T) 228—8 3 (e, —ey O
051 where we have replaced the denominator by an average de-
nominator(e ,—¢,) and the limitations on the sums to oc-
0 . . : . . . . cupied and unoccupied states introduce a factor of 1/4. A
0 002 004 008 008 0.4 0.12 0.14 simple estimate ofs ,— ¢,) is obtained by assuming that the

T (eV) levels have the energiesAe/2. Then the separation of the
levels isAe=2(£2)¥?, where only the on-site contribution

FIG. 10. p(T), Tw(T), W(T), and »(T) divided by theirT 1, .2y ghould be included. At larg®, however, the on-site

=0.06 eV values for the casd a a coupling to the hopping inte- - . : .
grals (HI) in the G model for \=0.6 andwyy=0.0018 eV. The _cr(r)]r;trr:butmn dominates and we have dropped this restriction.
figure illustrates that that thE dependence of(T) andW(T) are

similar and therefore to a substantial extent cancel in Bds, (16) ( 2>T_0

for HI coupling in the Gy model, leading to a weak dependence Te(T)~—2.6N
of p(T) for large T. The electron temperatufB-=0 and only the
phonon temperaturgg is varied.

(7 =

where we have used the same prefactor 2.6 as below Eg.

_ (36). This gives a better agreement with the numerical results

where we have assumed thefe,e’)=N. AssumingN(u) than the prefactof3/4) derived from the arguments above,

=1/W, we obtain which is substantially too small, as one would expect. The
averaging in Eq(37) greatly favors small values of the de-
nominator, while our simple estimate focuses on large val-
ues. The estimate in E438) is also a good estimate far

(34) =0, as shown above, and actually for the whole temperature
range. As usual, we relate the band width to the second mo-

Assuming that e2)=W?/12, as is appropriate for a constant ment. Assuming a constant DOS, E¢&5), (16) give

density of states, we obtain

> H2(T)— E HZ (T=0)=nNAW(T=0)kgT.
nv

2677')/ e2d2 <82>T:O
6V12 Qh  (s2)1

where one factots2)¥? comes from the band width and one
factor from the kinetic energy. Sinée?) grows with T [Eq.
(36)], both the kinetic energy and the band width work to-
gether to reduce(0) and to increasp(T) asT is increased.
Thus we obtain

a(0)= (39

kg
W(T)=W(0) \/1+CH|)\W(T:0), (35
wherecy, =12.

We next consider the kinetic enerdy . As discussed in
Sec. V B[Eq. (20)], the kinetic energy is closely related to
the band width via the quantityg. As T is increased, how-
ever, the shape dfi(¢) changes somewhat, and there is not 0.8 T
a perfect proportionality betweeW(T) and T¢(T). This is p(T)= (T) W) mQcm, (40
illustrated in Fig. 10, where the curves describing Thde-
pendence of these two quantities differ slightly. Neverthe-by using parameters appropriate fo§Qyo.
less, from Eqs(15), (16), it follows that theT dependence of From the derivation we obtaicy .= 12. A better fit to the
these two quantities largely cancel in the calculation ofdata is obtained frone =15. In addition we observe that
o(w=0) andp(T). This is illustrated in Fig. 10, wherg(T) there is also an appreciable dependence iny(T). These
has only a weakT dependence, once the resistivity hasresults are illustrated in Fig. 11. In particular, we notice that
“saturated” (at aboutT=0.06 eV). The remainind depen- W(T) andT«(T) have the opposit& dependence, and there-
dence is due to th& dependence of andvy. fore work together in the expressions in in E¢E5), (16).

We next consider the case of the LE coupling for thg C This is in strong contrast to the case of HI coupling, where
model. In this case the second moment is the sum of onthe twoT dependencies largely cancel each other.
contribution from the hoppingoff-site elementsof H ,, in
Eq. (29 and one contribution from the fluctuations of the F. Lack of saturation in the Cgo model
level energiegon-site termpin Eq. (29). Then, at largeT,

1+cCeN

By using thef-sum rule, we showed in Sec. V B that one
should expect the resistivity of the alkali-doped fullerenes to
(e2)7=(e¥)7_o+ LT (36) saturate at about 0.4 fhcm. Actually, this value is almost

Y N(0) reach already af=0 (0.3 m(}) due to the orientational
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ior, but not necessarily with the same slope as at siall
Simple arguments suggest that the two slopes might be of the
same order of magnitude, as found in Fig. 12. The small
slope is, however, related to the properties around the Fermi
energy, while the very largé& slope refers to properties in-
tegrated over all states. The two slopes should therefore not
be expected to be the same. The Boltzmann equation is not

qualitatively wrong for larg€l in this case, but the relatively
/ | good agreement for largeéis somewhat accidental.
/ For the disordered § model, the disorder itself leads to a
resistivity comparable to the “saturation resistivity, and the
: s ' : : : : very largeT” limit in Sec. V E applies already for any finite
0 002 004 006 008 01 012 014 T. This theory predicts thai(T) has a linear dependence on
T (eV) T, as is also approximately se¢see Fig. 6. The resistivity
FIG. 11. p(T), To(T), W(T), and %(T) divided by theirT could_be considered to have sa_turated, but_th_ls_ concept is
=0.06 eV values for the casd a a coupling to the level energies meanlnglgss for the & model, since t“he reS|§t|V|Ey grows
: L _ ' linearly, with a large slope, also after “saturation.
(LE) in the G model withA =0.6 andw,,,=0.0018 eV. The figure .
illustrates that that th& dependence of «(T) and W(T) are the . We observe that the bos_on (.:harac'ter of th_e phonons s
opposite and therefore work in the same direction in Et, (16) important for the arguments in this section and in _Sec.\?_E._
for the LE coupling in the g model, leading to a strong depen-  Be€cause of this, the number of phonons grow without limit

dence ofp(T). The electron temperatui&-=0 and only the pho- &ST is increased, leading to the corresponding growth in the
non temperaturd@g is varied. phonon amplitud¢R?). This leads to a continuing growth of

the band width and reduction of the kinetic energy for the
case of LE coupling. As a result the resistivity does not satu-

05

disorder. One can therefore consider thg @@odel as a case
: rate.
where saturation has already happeneta0.

This can be further illustrated by considering the resistiv- This is different from the case of electron-electron scat-
. y 9 tering, where Fermi occupation numbers enter the theory. As
ity for a model where all the § molecules have the same

. . ; . . a result, we have found that there is saturation of the resis-
orientation, i.e., a system without disorder. The results ar

compared with the resistivity expected from the Boltzmann?g/ggelln ;}[ E;nsrglﬁq (t)f? ee ?jnn;rﬁ;};rlnnr? s;rrl](f]li ;?Egg:jm'_\wgv?[ard

eg:’até?]?a'l? Zlgltrﬁt. Ihhee ggﬁnﬁ]r;rf]rnec;uer;yogas_ Zeseg Cl.r;]%fier& this, it is interesting that the highz cuprates are usually
very smail, . z quation giv IN€a%onsidered as examples of systems where the resistivity does
behavior for all T of interest. For small values of the

. . . not saturate, although electron-electron scattering is often be-
Boltzmann equation and the semiclassical theory agre

However, wherp(T) becomes of the order of 0.3 fhcm, fieved to be the dominating mechanism. This issue is ad-

. . dressed in the next section.
shortly before saturation might have been expected, the two

curves start to deviate. At this point we may consider the
system has having saturated, and the theory in Sec. V E of
very largeT applies. This theory also predicts a linear behav- The resistivity in some of the high; cuprates is substan-

tially larger than one would expect from the loffe-Regel

G. Saturation for high-T cuprates

14 . . . . . criterion* It has therefore been assumed that these com-
o P pounds are examples of systems where the resistivity does
12 | Semiclassical —— ] not saturate. Using thisum rule, however, we have found
1 | Saturation =~ ——— /'/ 1 that the resistivity saturation is to be expected at much higher
B /‘” resistivities than predicted by the loffe-Regel criterion or
é 08| - 1 what is found for, e.g., th&15 compounds$? The reason is
= 06 // ] that the kinetic energy is strongly reduced in these systems.
& o~ This is partly due to the strong Coulomb interaction reducing
04r e ] hopping, in particular for systems with a small dopirg
o2 | : Furthermore, only the®—y? orbital is believed to play an
0 . . . . . essential role, leading to a small degeneraeyl. As a re-
0 001 002 003 004 005 006 sult, for Lg,Sr,Cu0, we find™*
T(eV)
FIG. 12. Resistivity of the ordered (& model for wpy, p(T)=m m{ cm. (42)

=0.00001 eV,A=0.6 and LE coupling. The figure illustrates that

the semiclassicaifull curve) and the Boltzmanr{dashed curye  This resultis much larger than the saturation resistivity of the
agree well for smallT, but deviates whep(T) becomes compa- order of 0.1 nf) cm for theA15 compounds, in particular for
rable to the hypothetical saturation resistiviiyorizontal dotted Smallx. Experimental resistivities are smaller than E4f),
curve. The figure shows that there is no real saturation in this casebut for small values ok not much smallef.For these cases
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signs of saturation are indeed s&ewe therefore conclude ity for HI coupling (off-diagonal disorder since saturation is
that the data are consistent with saturation. Actually, the datenost pronounced in this case. The resistiyity,, is much
show signs of saturation when the experimental resistivitjarger than the saturation resistivity obtained abdfze).
comes close to the expected saturation resistivify. (21)] for the TM model with a fivefold degenerate orbital
(n=5). For a fcc lattice and a half-filled semielliptical band
H. Relation to Mott's minimum conductivity it takes the form

Within the semiclassical theory, the phonons cause a static 0.14d
disorder. The problem discussed here therefore has some re- psa=——" MQ cm, (45)
lations to the conduction in disordered system. Thus the LE n
and HI couplings correspond to diagonal and off-diagonal,hich is of the order of 0.1 § cm.
disorder, respectively. While the disordered systems are usu-
ally studied for smalll, we are here interested in the lar§e-
behavior. In the semiclassical theory, however, apart from
causing disordefl only enters via the Fermi functions, andit ~ Cote and Meis&lproposed an interesting explanation of
does not play an important role for the qualitative behaviorsaturation. They argued that the electrons would not see
Below we therefore compare our work with the treatment ofphonons with a wave length that is much longer than the
disordered systems. mean free path. They therefore assumed that an electron can
Diagonal disorder can lead to an Anderson metal-insulatoonly be scattered by a phononl it A. As T is increased and
transition atT=0.%? For the case of off-diagonal disorder, | is reduced, an increasing fraction of the phonons become
however, Antoniou and Economtthave found that there is inefficient as scattering sources. The result is #(f) in-
no metal insulator transition if the Fermi energy is located increases much slower thanat largeT, in rather good agree-
some finite region around the middle of the band. Our semiment with experiment.We are now in the position to test
classical calculations agree with these results, i.e., we finthis assumption.
localization for LE but not for HI coupling a§ is increased. Above, we have studied a model with three local Einstein
In the QMC calculation of the resistivity, however, we seephonons on each atom, describing the vibrations in the three
no sign of localization for LE coupling, just a lack of satu- coordinate directions. This is equivalent to study Einstein
ration. This is natural. Localization depends sensitively orphonons ing space. We then write the displacement of the
the phase factors, which are not destroyed in the elastic scadtom at the unperturbed positi®f as
tering in an disordered system. In the inelastic scattering by
phonons at finitd these phase factors are, however, lost, and 1 o
localization is not expectetf. The effects of the inelastic SR=— > ujae'qi'Rl, (46)
scattering is properly included in the QMC but neglected in N Ja
the semiclassical treatment, and therefore localization shows .
up in the semiclassical but not in the QMC treatment. wherej=1,... N labels theN q vectors andw Ifibels the
Mott*! has argued that as the disorder increases, there istgree modes for each vector. The corresponding phonon

discontinuous transition from a metal to an insulatorTat amplitude is Uj,. We pgrform_ a calculation where the
—0. He therefore introduced the concept of the minimumphonons are treated semiclassically as before, but where the

amplitudesu;, are treated as random variables. This gives

I. Alternative explanations

conductivity the same resistivity as before. We then gradually turn off the
g2 long wave length phonons, putting the corresponding ampli-
Tmin=0.026,"1, (42)  tudesu;,=0. For smallT we expect this to reduce the resis-

tivity. For large T, however, the arguments of Cote and
whered is the nearest-neighbor atomic distance. Later workMeisef suggests that this should not influence the resistivity
has argued that the transition from a metal to an insulatoif A>| for the phonons turned off.
actually is continuous, but that,,, may still have some We group theg vectors with equal length in shells. Shells
relevance for low but nonzero temperatutésVe therefore  with g vectors of similar length are further grouped together
make a comparison af,;, to the resistivity in the TM and in such way that each group contains a similar numbey of
Cego models. Converting Eq42) to a resistivity, we obtain  vectors. Then the groups of phonons are successively turned
off. The results are shown in Fig. 13. The figure illustrates
Pmax=1.6d  mQcm, (43 that as a group of phonons is turned off there is a drop in the
resistivity. This is not only true for small but for all T
tudied here. Consider for instance the curve with all
honons included andT=0.4 eV. The resistivity p
~0.1 m(2 cm corresponds tb~3.5 A. The theory of Cote
and Meisel then assumes that all phonons with3.5 A can
Pma=1 mMQcm. (44) be turned off withouip changing. The figure illustrates that
this is far from the result of our calculation. This illustrates
Mott derived his result for diagonal disorder. His result that also phonons with a relatively long wave length contrib-
can most naturally be compared with our saturation resistivute substantially to the large-esistivity, althoughA >1.

whered is measured in A. Based on experiment, Mott de-
duced a somewhat larger minimum conductivity for systemsg‘
containing transition metal atoms, resulting in the maximu
resistivity
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FIG. 14. Resistivityp(T) as a function of temperaturé and
FIG. 13. The resistivity of Nb as a function @f The scattering electron-phonon coupling for the G, model according to QMC
from phonons of successively shorter and shorter wave lergies ~ calculations. The phonon frequency dg,,=0.1 eV. The straight
suppressed. For the uppermost curve all phonons are considered.lines show the resistivity)(T) =0.29+ 17AT m( cm, where 0.29
the lower curves the phonons corresponding to Mheshortestq is the resistivity due to the orientational disorder. The figure illus-
vectors(longest wave lengthsvere suppressed, whekkis marked  trates that there is some “excess” resistivity at modefaéad large
at the curve. The figure illustrates that the long wave lengthh but no saturation for this model.
phonons contribute about equally much both to the smaksis-

tivity and largeT resistivity. the phonons. This leads to a larger vibration amplitude and

an increased resistivity. Similar results are found in our QMC

o A calculation, as discussed above. In a more realistic model,
length make a small contribution to the resistivity for any the electrons would couple to many phonon modes, each

The reason is that a long wave length phonon does ng| pically with a substantially weaker coupling. Even if the
change the relative separation of two neighboring atoms ver btal A\ may be large, each phonon would in such a model
much, which means that the corresponding hopping matiX ave a more harmon’ic potential well, and we would not ex-

element is not changed very much. pect a large “excess” resistivity. This further supports our

(ljt hats a(ljsp beﬁnlatrg_u‘(‘—fkthgt Ir e5|st|V|tyhs?tu_ra_t||ontcan bg belief that this type of model is not appropriate for describ-
understood in a Holstein model, somewhat similar to ogy ing resistivity saturation.

model. For smalll and large\ the Holstein model shows an
“excess” resistivity. Similar effects are observed in oug,C
model, as is seen in Fig. 6 far=0.80. The result is that the

Figure 13 illustrates that phonons with a very long wave

slope of thep(T) curve is reduced a3 is increased. To VI SUMMARY
analyze this, we compare the calculapgd’) with the resis- We have studied models of weakly correlated transition
tivity metal compoundTM mode) and of alkali-doped fullerenes
(Cgo mode). These models were studied using Quantum
p(T)=0.29+17\T mcm, (47)  Monte Carlo(QMC) and semiclassical methods. The resuilts,

in Fig. 14. The value 0.29 comes from the orientational dis>> well as earlier results for the higi-cuprates, were ana-

. . lyzed by using thd-sum rule. We assumed thatis so large
order and the term-\T is the type of behavior we expect that the Drude peak has been smeared out. THes. (15),
for a normal nonsaturating systefe.g., from Boltzmann

theory). The slope was adjusted to the results Xer 0.26. (16)] an approximate lower limit tar(0) is given by
For such a small value of there is no sign of saturation in
Fig. 6. If the system shows saturation for larger values ,of 1 1 (e
we would then expect the calculated resistivity to be below ——=g(0)~ _f o(w)dw
Eq. (47). We find, however, that QMC results for larfjestay p(T) WJo
above these results for all valueslofthat we have studied.
In the figure this is illustrated fox =0.8. As pointed out in ) o ) .
Ref. 44, the resistivity in this model actually does not satu-WhereTk(T) is the kinetic energV(T) is the band width,
rate, and it was concluded that “saturation” is a misnomer,2ndd is the nearest neighbor distance. ,
As we have shown above, however, the TM model is a much e first considered <W. For the TM model of nonin-
better model of saturation, both because it is much morderacting electrons, it then followed tha@k~W. This leads
realistic for systems showing saturation, and because it ald@ the simple upper limit
gives results much more similar to experiment.

In a semiclassical treatment of the type used by Millis
et al** the “excess” resistivity for large. and smallT is due _hd (49)
to the formation of a highly anharmonic potential well for née?

Tk(DI

Tawm P

205105-14



ELECTRICAL RESISTIVITY AT LARGE . .. PHYSICAL REVIEW B 66, 205105 (2002

for the resistivity, wheren=5 is the orbital degeneracy of
thed level. This agrees rather well with the saturation resis-
tivity of many transition metal compounds, and it corre-
sponds to a mean free pdthd.

For the highT. compounds, the kinetic energy is strongly
reduced by correlation effects. There is a strong reduction in
the hopping probability of an electron to a neighboring site if
there already is an electron on this site. This lead§Tid
~X(1—x), wherex is the doping. The corresponding upper
limit for the resistivity is then 100

[+23
o

o
o
T

'S
[=}

Ceo

p(T) (nQem)
g

n
(=4

e
-
-

hc TK
- ex(1-x)’ (50
FIG. 15. Resistivity of Cu, N§Sb (multiplied by a factor 1/b
. . . (Ref. 1), Lay 93515 o7CUO, (multiplied by 1/100 (Ref. 8), and alkali-
where c is the distance between two Cp(lanes. Since  yqneq ¢, (multiplied by 1/100 (Ref. 9. The figure also shows our

. 2 2 . . .
essentially only thex”—y< orbital is involved, the degen- estimated saturation resistivities for the latter three cases. The figure
eracy factor ism=1. This resistivity is much larger than for jjystrates that the resistivity saturates for 4$b and

the TM model, both because of=1 and because of factor |a, ¢:Sr, ,CuQ, but not for alkali-doped .
X(1—x). This limit is therefore apparently never exceeded

for any highT. compound. There are only a few cases Wheremc saturation. We may therefore consideg, ® belong to a

the resistivity gets close to this limit, and in these cases th‘aifferent class than th&15 and high¥, compounds

e . . c .
resistivity shows signs of saturation. This is illustrated in Fig. 15, which shows the resistivity

Whether or not saturation is actually observed, dependfﬁOr Cu, NIySb, L3 ¢:ST 0,CUO;, and hole-doped &, where

: Tty ’ H ’ ’ 9 0.0 4y - ’

I('m .thow r:ap|dIyTthE )\r_el_is;z'v]ity %rov_\lfi/lfor Zn]a-:ls' ,:E;\T; the resistivities of the latter three metals have been reduced
imit we Z‘VEP( ) 5 p,_orf .T | mo ec.mor_ by factors 5, 100, and 100. The resistivities of8b and
comlpl)o(ljm S ehg.,l N&n, )‘. IS I?lry d akr]ge an f pl Ibs vgry h Lay 9551 o/ CuQ, stay below the expected saturation resistiv-
smalt,_ utehtci :he arg_et_untlt cell and the qwt_zl a}f an ;'" Sties, while the resistivity of g is far above the “saturation”
resuft1s that the resistivity grows very rapidly for sm resistivity, shown in the lower left corner of the figure. This

and_ (E;_e_tts i:?se tﬁ the limiting valuedfor {athﬁr SmFE”TRE suggests that the systems studied here fall in three different
resistivity tnen shows a pronounced saturation. =or b, Oly|5ggag, namelyj) weakly correlated transition metal com-

the other hand(}, is _much larger an_d the resistivity grows pounds, showing saturation in agreement with the loffe-
{_nucthore Sltowa{ V;"th;l;; alr_1d _:_here IS Otm_}; a We"li(;( salturl;a- Regel condition,(ii) strongly correlated higfi-. cuprates,
lon. For most metals, the fimiting resistivity would only be showing saturation but at much larger values than predicted
reached far above the melting temperature, due to the slo‘gy the loffe-Regel condition, angiii) alkali-doped G, com-

increase 0p(T) for smallT. ounds, showing no saturation
We also considered very large valuesTofwhereT be- P ' g '

comes comparable to the band width. Then bbthand W

have strongT dependences. It is important to distinguish ACKNOWLEDGMENTS

between the case when the phonons couple to the level po- . .

sitions (LE coupling and to the hopping integral#il cou- We' would like to thank M. Hanle, P.'Horsc.h, 0. Jepsen,
B. Keimer and R. Zeyher for useful discussions, M. Jarrell

pling). In the former caseTx decreases witlT, since the X . ; .
different levels have different energies, and hopping is ref0r making his maximum entropy program available, and the

duced. In the latter cas@j is increased, since the square of Max-Planck-Forschungspreis for financial support.

the hopping integrals increases with In both case$V in-

creases withl. In the LE case, t_>oth effects Worl_< t_ogether APPENDIX A: QMC FOR THE TM MODEL

[Eq. (48)] to reduces(0) and to increase the resistivity. In

the HI case, on the other hand, the two effects partly com- The Hamiltonian of the TM model can be written as
pensate each other, and the increase in the resistivity is

smaller. Np
These considerations are very relevant for thg €se. H=2> H,,= > H,, (A1)
Due to the orientational disorder, the saturation limit can be wy =1

considered to have been reached alreadylfel0. Because

of the the small band width, however, tAedependence of where 7 labels a given ordering of thi,=zNr? bonds,z

the band width and the kinetic energy become very imporbeing the number of atoms connected to a given site by the
tant. Furthermore, the coupling is of the LE type, so that théHamiltonian operator.

T dependence of these two quantities cooperate in increasing DefiningA 7= B/L, using Trotter decomposition at lowest
the resistivity. The result is a drastic increase in the resistivorder and breaking up the Hamiltoniany, terms, the par-

ity, beyond the “saturation resistivity,” and little or no sign tition function is;®
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L L 1 with
z=Tr [] e ®H|=Tr ][] ]I e—ATHn] (A2)
=1 =1 7=Np 1 1
Bi= [l b= I] e " (Ad)
Integrating out the electron degrees of freeddhaads to 7=Np 7=Np,
The matricesb',] have dimensioMn and have the following
Z=[de(1+BB_ ;---By)]? (A3)  form:

1 .. 0 .. 0
0 .. cosltiA7H,) .. sin(—A7H,) .. O
b= : : : : Co (A5)
0 .. sinf—A7H,) .. cosltAsH,) .. O
0 0 0

It can be showt? that the electron Green function is writen ~ The matrix Aj—1) is symmetric and has only four ma-
as trix elements different from zero, as can be seen from Eq.
(A5), (A7), so that the products in EGA9) can be performed
g=(1+B_---B,B;) "L (A6)  in orderNn operation.
So far it is known how to calculate the determinant as
During the simulationg andg ™! are constantly stored and long as a single bond is changed. In the more complicate
updated. case of several bonds, the problem can be reduced to this
A quantum Monte Carlo move is a displacement of a pho-simpler one by noting that the determinant is expressed as
non coordinate for a given slice. The move is then accepted
or rejected according to the Metropolis algorithm which in- R=Rn, Nn-1RN-1N.-27"Rio (A11)
volves the calculation of the square determinant ratio be- . . . .
tween the electron Green functions after and before the di:s"%nd Rjj-1 i the ratio be_tween two determlnants having
placementR2=[det(g’)/det(g) 2. changed only the firgtandj —1 bonds, respectively,

Without loss of generality let us suppose that an atasn

R:i_
displaced in the first slicéso that we can omit the higher /%
index in bi]). This will involve a change irB;—B; or N, def(1+B,-- 'BZbNb' . -biinj- . 'bilAil' --by)
o2 ; = .
zn“ changes in the factors de(1+B, - -Bsby,-- 'bij,lAij,l' b A -by)
b, >bl =b A, k=12,...N, (A7) (A12)

Each of theseN. determinant ratios is given by E4A9)
with {i;<i,<---<iy}. In the case only oné; factoris ith the Green functiomy replaced by the new one
changed N.=1) the determinant ratio can be easily ob-
tained as gj,1=(1+bij,l- b/

oy .bi'l. ~-biB_---byby - - .bij)*l
(A13)
de(1+ BL' A szNb‘ * .bilAil. * bl)

R= (A8) which has only the firsf —1 bonds updated.
de{(1+B.---B,B;)

Once the determinarR; ; _, has been obtained, it is nec-

essary to update the Green functign ; to the new onejj
—def1+ (1—51)(Ai1— 1)], (A9) which will be used to evaluat®; . ;. This update is done in

two steps and requires the knowledgeaﬁl so that the
functiong ™! has to be bookkeeped during the simulation.

The first step is to define the new Green func@ras

where g;=(1+1b; - -b;By - --Boby,---b; ) ! is a modi-
fied electron Green function and is obtained frgras

_ B 5,—=(1+bi.71---b-’._ o-b/ ---bjB---bob ---b/ )7L
91=(by,_1---byg(by y---b) "L (AL0) = e T(AL9)
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APPENDIX B: LOSS OF MOMENTUM CONSERVATION

be obtained using the Green function updating in the simpler At large T the phonon vibrations become very large. In

case of a single bond chantfenamely,

g;=[g; "1+ (g 1~ (A — D] (A15)

The matrixA= (g, % - 1)(A;,— 1) is zero everywhere a part
from two columns. As a consequence, E415) can be ef-
ficiently performed with the Shermann-Morrison fornftfla
applied togjill so that the calculation djj involves order
(Nn)? operations.
The second step is then to obtain fr@pthe Green func-
tion g; as follows:
g;=(b;

i1~ 1

: 'bij+1bi,j)aj(bij+l—l' : ‘bij+1bi,j)_l-
(A16)

Onceajis known it is clearly possible to obtaiR; . ,; fol-
lowing the same steps we have outlined before.

the semiclassical treatment of the phonons, this tends to de-
stroy the periodicity and therefore it tends to violate momen-
tum conservation within the electronic system. Below we test
how this violation increases with in the TM model using a

HI coupling. Qualitatively similar results are, however, ob-
tained also in the other models. We first calculate the states
of the Hamiltonian afT=0. The system is then perfectly
periodic and all the statesik, T=0) can be labeled by a
wave vectok and a band inder. We use a unit cell with six

Nb atoms and the band index therefore runs over 30 states.
Next the states at a finif€ are calculated. These statésT)

are labeled by an inddx These states can be expanded in the
complete set off =0 states

||,T>=k2 Ink, T=0)(nk, T=0|l,T). (B1)

For a given state we determine the amounk afharacter

For a given Trotter slice and a given phonon coordinate

the algorithm can be summarized as follows

(1) Displace coordinatd’;—R/ and identify the bonds
<ip<<--- <iNC which will be affected by the atomic dis-
placement.

(2) Setgo=g andg, =g~ *, computeg, andg, * using
Eq. (A16) and the similar one foggl.

(3) Perform loopj=1, ... N, over the previously iden-
tified bonds.

(4) Calculate the matrix&ij.

(5) CalculateR; ;_; usingg;_; and Eq.(A9).

(6) Updateg;_;—g; andg; ,—g; * using Egs.(A15),
(Al6).

(7) End loop overj.

(8) ComputeR and check if the proposal move is ac-

cepted.

(9) If the proposal is accepted updaj@c,l—fé,\,c from
Eqg. (Al15).

After the proposed displacement for atarhas been ac-

c()=2 [(nk,T=0|1,T)|2 (B2)

or the amount of mixing with states having the band index

cn(|)=; |(nk,T=0]1,T)|. (B3)

From normalization it follows that,c{’=1 and =,c{
=1. We define

Ak<|>=nk§ [c{]2 (B4)
and
Ay(h=302, [c7?, (B5)

wheren, is the number of allowed vectors and 30 is the
number of band index. If the weight of a given statés

cepted by the Metropolis condition, the most straightforwarcequally distributed ovem, /m different k vectors, A(l)
way to proceed would be to obtain the new Green function=Mm. In particular, if all effects of periodicity are lost, we

g’ [Eq. (A6)], with all theb,, factors updated, as
g'=(bj, -+ -by)gn (bi -+ -by) (A17)

and then from step 2 of the algorithm obtain the rgjfor

the atomj=i+1. Note anyway that these two steps can be
efficiently condensed in one if a particular order for the site

is chosen. If the sites are ordered in such a way that
increase monotonically with, e.g.,{11<21<~--<NC1},
then Eq.(A17) becomes

-b;) (A18)

i

§6=(biNc- : 'bjl)ilaNc(biNc' :

involving 2jil products byb, factors less than the most
straightforward procedure.

S

expect thatd (I)=1, since we then expect all k compo-
nents to have equal weighin=1). On the other hand, if a
state contains only onlevector,A, (1) =n . Typically in the
periodic system, several states with differéntectors are
degenerate, e.g., states wkhand —k may be degenerate.
Even at a very small amount of disorder, a state of the dis-
ordered system is then typically a linear combination of
states with several differett vectors, and\ (1) is reduced
correspondingly. We consider a super cell with periodic
boundary conditions. The value of then depends on the
size of the supercell. For a given amount of disorder, we
expect that a given state will containvectors from a certain
fraction of the Brillouin zone. The number &f vectors in-
creases with the size of the supercell. Howerreintroduced
above should stay roughly constant. Thus we find that defi-
nition (B4) gives results which are rather independent of the
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10 band indices is lost relatively quickly for Nbas T is in-
8!l creased. Therefore the meaning of intraband and interband
transitions is lost.
6 L
J
41 APPENDIX C: CONSTANT CURRENT MATRIX
) ELEMENTS
In view of the rapid loss of momentum conservation, il-
0 0 200 400 600 800 1000 lustrated in Appendix B, it is interesting to consider the limit

TK) where momentum conservation is completely lost due to the
disorder. This is the opposite limit to the traditional Bloch-
FIG. 16. The quantityd, in Eq. (B6) for Nb; and Nb as a Boltzmann treatment, where the scattering is assumed to be
function of T for n, =256 allowedk vectors.A, measures the loss so small thak is a useful quantum number. In the complete
of periodicity. The horizontal lineX,=1) represents complete loss disorder limit studied here, all states are coupled to all states
of periodicity. The figure illustrates the rapid loss of periodicity and i3 the current operator. The calculations for the;Nbodel
momentum Clonlse?’at;\?g for the Kitmodel, while this loss hap- g6y that these assumptions, taken literally, are not satisfied.
pens more siowly for Tb. We note, however, that the expression in Et¥) for the

) . optical conductivity can be rewritten as
super cell size for values &f which are not very small. On

the other hand, folf =0, this definition gives results which 2.2
grow roughly linearly withn,. The definition is, however, o(w)= J'dSN(‘S)J' de’N(e')j(e,e")
sensible for the range daf of interest here. In a similar way NQw
it follows that A, (I)=1 if the conservation of the band in- X[f(e)—f(e')]o(ho—¢e'+e), (C1
dices is completely lost.
We average over all states where
. 1
Ai:Z Ai(D/(Nn), i=k or n. (B6) i(e,e')=

n°N(e)N(e")

Figure 16 shows\, for Nb} and Nb, where\ is an average
overA(l). The lineA=1, corresponding to a complete loss
of periodicity, is also shown. The figure illustrates that for
Nb% much of the periodicity is lost already fof~200 N(e) is the density of states per atom, orbital, and spin, and
—300 K. For Nb this happens at high&r but also in this N is the orbital degeneracy(e)=(/m)/(e*+%) is a
case periodicity is lost fairly quickly. Lorentzian. The functiof(e,e") is shown in Fig. 18 for two

The rapid loss of periodicity for Npcan be related to the Values ofT, using the broadening=0.01 eV. The figure
many flat bands. This means that there are states witk all ilustrates that the functiop(e,&’) has only a moderate de-
values within a rather small energy range. Then only a smaleéndence on the energies fdr=0.043 eV=500 K. We
perturbation is needed to mix all these differéntvalues,

X2 (i1 PL(e—g))L(s"—&]), (C2)
I’

implying a loss of momentum conservation. (@ | e=24 — b)  &=24 ——
In a similar way, Fig. 17 shows that the meaning of the 2:'(1):2 I =08
T=50 K
)
=
8 L
6 L
4t A
2 L
0 . . . . Gk, 'v Ko Lt T
0 200 400 600 800 1000 3 2 1 0 1 2 3 3 2 1 0 1 2 3
T (K) e (eV) € (eV)
FIG. 17. The quantityp, in Eq. (B6) for Nbj as a function off FIG. 18. Averagej(e,e') of the current matrix elements over

for n,=256 allowedk vectors.A,, measures how the conservation states with similar energid&q. (C2)] for Nb% . The units are arbi-
of the band index is lost, with the horizontal linA {=1) showing trary. The figure illustrates that foF=0.0043, e\=50 K j(&,e")
a complete loss. The figure illustrates how the meaning of the bandaries strongly with the energies while far=0.043, e\=500 K
indices is lost relatively rapidly for the Nbmodel. this variation is much less pronounced.
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therefore now work out the consequences of assuming that TABLE IV. The quantity(sN(u)? for a constanfEq. (17)], a

the matrix elements of the current can be replaced by theiaussiaiEqg. (18)] and a semiellipticalEq. (19)] density of states
average. (DOS) and for half filling.

This average is defined as

Constant Gaussian Semielliptical
1 A
2 f r\|2
= I I , C3 1 1 1
Jav (Nn)? %“ [ €3 (®N()? —~=0.083 -—=0.159 —=0.101
12 2 T
where|i) are theNn eigenstates of the Hamiltonian. The
expressior(14) for the optical conductivity can then be writ-
ten as
o 0C unoce Expressingt,,, in terms of (¢2) in Eqg. (C8), we can
o(w)=gla> 2 —dlfie—e+e), (C4 rewie Eq.(CHas
K 2n n d3 2
where we have consideree>0 and assumed thd<W so o(0)= <82)N(,u an (C1)

that we can replace the Fermi functions®yfunctions. Fig-
ure §a) compares the actually calculateqw) with the re-  whereQ/d?® is shown in Table Ill. The quantitg®/(%d) has
sult of (C4), assuming a semielliptical DO[&q. (C4)]. The  the unit of conductivity and Eq.C11) can be rewritten as
good agreement for large gives further justification for the

. . . Q/d® d
assumptions behind E¢C4). This gives _ 1 —19.7 Qcm, C12
.- 2h Y O'(O) < 2>N( )2 py ( )
o(w=0)= l a\)\l(ﬂ)z (CH) whered is now expressed in A. As seen in Tables IV and IlI,

(e)N(un)?~0.1 andQ/d®*~1. For a transition metal, we

where u is the chemical potential. We then need to find amay use d~3 A and n=5, which leads to p
relation betweenj,, and N(x), which is obtained from ~100u€Q cm. Such a resistivity is indeed typical for the

charge and current conservation. We first rewjjjeas saturation resistivity of a transition metal compound.
1 o APPENDIX D: DERIVATION OF THE {-SUM RULE
ja= gz (i w)l? ()
Jav (Nn)2 V|| x| s ’ . . . .
v In this appendix we derive thiesum rule, essentially fol-

. 2 . e
where|v) is a basis state in a local representation. We thei®"ind Maldague’ We introduce the position operator

use the charge and current conservation in (By. relating

the current and hopping matrix elements. This gives ﬁng R;lﬁ';‘;al/lvo. (D1)

2 |(v|] | >|2_e2d2t2 (C7) For tight-binding Hamiltonians and when the current opera-

asxy al tor has no on-site matrix elements
and for an isotropic system . e .
1 e’d?
j5= (N2 332 < (C8)  For w>0, the optical conductivity is written as
2 ; (1| w| —E,+ Ep)
To relatej;, to N(g), we introduce the second moment U(w)_ E (n|] x|0>|2 = _Eno . (D3)
n
<82>:f N(e)e?de, (C9  where|n) is a many-body state with the ener@y,. By

inserting Eq.(D2) in one of the two matrix elements ¢f ,
where N(g) is normalized to unity. This quantity can be one obtains
related to the hopping integrals . 2

2 A~ ~
=] rtwdo= o O RIRI0). @4

n(s?)= iE t2,. (C10
N7z Performing the commutators, we find
We assume a specific form fdé(s), calculate(s?) for this
form and then relate it ttl(x). Table IV shows results for 2 [[H.R.R,]= E A2t e (DY)
different shapes of the DOS. The table illustrates that there is
not a drastic dependence on the shap&l(f). In the fol-  whered,, is the distance between the sites with the orbitals

lowing, we focus on the semielliptical DOS, which is prob- » and x and « labels the coordinate. This result is true for
ably the most realistic one of the three cases considered. the TM model in its semiclassical form, theddnodel and
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the t—J model. We now assume only nearest-neighbor hopwhere Ty is the kinetic energy. For a two-dimensional sys-
ping, replacingd,, by d. Furthermore, we assume the sys-tem the factor 3 in the denominator is replaced by a factor 2.
tem to be isotropic, so that all directions are equivalent. This result can also be generalized to a finite temperature. In
For a three-dimensional system, the commutator on the righthe case of the TM model, however, the atomic separations

hand side of Eq(D4) is then one third of the result in Eq.
(D5). This gives

1 d%e?

2 o
;L U(w)dw=—§W<0|TK|0>v (D6)

cannot be treated as constants, since they vary as the
phonons are excited. The coordinates in Ho4) can then

not be taken outside the avera@e -). We can, neverthe-
less, recover an expression such as (&) by defining an
appropriate average separatidfir).
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