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Electrical resistivity at large temperatures: Saturation and lack thereof

M. Calandra and O. Gunnarsson
Max-Planck-Institut fu¨r Festkörperforschung D-70506 Stuttgart, Germany

~Received 12 July 2002; published 19 November 2002!

Many transition metal compounds show a saturation of the electrical resistivity at high temperaturesT while
the alkali-doped fullerenes and the high-Tc cuprates are usually considered to show no saturation. We present
a model of transition metal compounds, which shows saturation, and a model of alkali-doped fullerenes, which
shows no saturation. The electron scattering is assumed to be due to interaction with phonons. The properties
of these models are determined by performing quantum Monte Carlo calculations. To analyze the results, as
well as earlier results for the high-Tc cuprates, we use thef-sum rule. We demonstrate that thef-sum rule leads
to a natural upper limit for the resistivity, which usually has a weakT dependence. For some systems and at
low T, the resistivity increases so rapidly that this upper limit is approached for experimentally accessible
temperatures. The resistivity then saturates. For a model of transition metal compounds with weakly interacting
electrons, the upper limit corresponds to an apparent mean free path consistent with the Ioffe-Regel condition.
For a model of the high-Tc cuprates with strongly interacting electrons, however, the upper limit is much larger
than the Ioffe-Regel condition suggests. This upper limit is not exceeded by experimental resistivities. The
experimental data for the cuprates are therefore consistent with saturation. After saturation the resistivity
normally grows slowly. The alkali-doped fullerenes can be considered as systems where saturation has hap-
pened already forT50, due to orientational disorder. We show, however, that for these systems the resistivity
grows so rapidly after ‘‘saturation’’ that this concept is meaningless. This is due both to the small band width
and to the coupling to the level energies of the important~intramolecular! phonons in the fullerenes.

DOI: 10.1103/PhysRevB.66.205105 PACS number~s!: 72.10.2d, 72.80.Ga, 72.80.Rj
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I. INTRODUCTION

The electrical resistivity of metals is often described in
semiclassical picture, where an electron on the average
els a mean free pathl before it is scattered by a phonon, a
impurity or another electron. Assuming a spherical Fer
surface, the resistivityr can be expressed in terms ofl as

r5
3p2\

e2kF
2 l

, ~1!

wherekF is the Fermi wave vector. Alternatively, if we know
the resistivity experimentally, we can deduce an appa
mean free path from Eq.~1!. For a good metal,l is typically
several hundred Å or more. As the temperatureT is in-
creased,r increases. Normally, it is found thatr(T);T for
T larger than some fraction of a typical phonon energy. T
is due to the increased scattering by phonons, and it co
sponds to a reduction ofl. Nevertheless, at the melting poin
l is still typically very much larger than the separationd of
two neighboring atoms. An example of this behavior is giv
by Cu in Fig. 1.

In the 1970’s a number of exceptions to this behav
were found.1 In particular for severalA15 compounds, such
as Nb3Sb and Nb3Sn, it was found thatr increases very
rapidly with T for small T, leading to very large values a
ready for temperatures of the order of a few hundred K.
these values ofT, the slope ofr(T) is strongly reduced. This
is shown in Fig. 1, where the resistivities of Nb3Sb and Cu
are compared. This was described as ‘‘resistiv
saturation.’’1 Interestingly, it was found that saturation ha
pened whenl;d, the Ioffe-Regel condition.2 The corre-
sponding resistivity is also shown in Fig. 1. During th
0163-1829/2002/66~20!/205105~20!/$20.00 66 2051
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1970’s and early 1980’s many examples of this were stud
and saturation of the resistivity whenl;d was considered a
universal behavior.3

In a semiclassical picture, this behavior may be expec
It may seem that the worst that could happen is that an e
tron is scattered at every atom. We would then expectl;d to
be fulfilled. This argument is, however, not convincing.
the semiclassical theory, it is assumed that an electron tra
through the solid with a well-definedk vector between the
scattering events. If, however,l;d, it is not possible to de-
fine k, and the theory breaks down.4 A proper theory of
saturation is therefore needed. A number of theories h
been put forward,5–7 but no theory has been generally a

FIG. 1. Resistivities of Cu and Nb3Sb ~Ref. 1!. The figure also
shows the Ioffe-Regel~Ref. 2! saturation resistivity for Nb3Sb, ob-
tained by assuming that the mean free pathl in Eq. ~1! is equal to
the the distance between the neighboring atoms. The figure i
trates that for Nb3Sb the resistivity saturates at roughly the val
expected from the Ioffe-Regel criterion~Ref. 2!.
©2002 The American Physical Society05-1
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cepted. Due to the break down of the semiclassical the
when l;d, the concept of a mean free path itself becom
questionable for such small values ofl. In this case we use
Eq. ~1! as a definition of the~apparent! mean free path.

More recently, several apparent exceptions to resisti
saturation have been found. In particular, this is the case
some strongly correlated systems, for instance the highTc
cuprates,8 and for the alkali-doped fullerenes.9,10 This is il-
lustrated in Fig. 2, where we show the resistivities
La1.93Sr0.07CuO4 and Rb3C60 together with the Ioffe-Rege
resistivities.11 Different experiments for alkali-doped C60
compounds show substantial differences, but this is not
sential for the present discussion. The Ioffe-Regel resist
ties of these two systems are very large, due to the
carrier density. The figure illustrates that the experimen
resistivities, nevertheless, greatly exceed the Ioffe-Rege
sistivities. It also illustrates that the resistivities of these t
compounds are very much larger than for Nb3Sb and other
systems, which shows saturation according to the Ioffe-Re
condition.

This shows that the semiclassical argument behind
Ioffe-Regel condition is not only questionable, but that
leads to wrong conclusions for the high-Tc cuprates and the
C60 compounds. This emphasizes the need for a pro
theory of why saturation happens for some systems but
for others. We also need to understand why saturation h
pens for most transition metal compounds whenl;d, al-
thoughl is not a well-defined concept any more.

We have earlier presented such a theory for transi
metal compounds in a short publication,12 and we here ex-
pand the arguments. We have also analyzed the reason
the lack of saturation in the alkali-doped C60 compounds,13

and we provide additional results here. Finally, we have p
sented results for a model of the high-Tc cuprates.14 We have
therefore considered models of three classes of systems:~i! a
model of weakly correlated transition metal compoun
which shows saturation in agreement with the Ioffe-Re
condition, ~ii ! a model of strongly correlated high-Tc com-
pounds, which shows saturation but at much larger val

FIG. 2. Resistivities of La1.93Sr0.07CuO4 ~Ref. 8! and Rb3C60

~Ref. 9! and the corresponding Ioffe-Regel~Ref. 2! saturation resis-
tivities ~Ref. 11!. The figure illustrates that the resistivity of thes
systems becomes much larger than predicted by the Ioffe-R
condition.
20510
ry
s

y
or

f

s-
i-
w
l

e-
o

el

e
t

er
ot
p-

n

for

-

,
l

s

than predicted by the Ioffe-Regel conditions, and~iii ! a
model of alkali-doped fullerenes, which shows no saturati

We assume that in cases~i! and~iii ! the important scatter-
ing is due to the electron-phonon interaction. In a mo
Hamiltonian approach, there are two natural types of c
pling to the phonons, either via the level energies~LE’s!
coupling or via the hopping matrix integrals~HI’s! coupling.
In most nonionic compounds the latter effect should be
dominating one. As the distance between two neighbor
atoms is changed due to the excitation of a phonon, the m
effect should be a change of the hopping integrals. We st
this for a model of transition metal compounds, referred to
the TM model.

In molecular solids, such as the alkali-doped fulleren
the situation is different. Due to the weak coupling betwe
the molecules, it is sensible to first calculate the levels o
free molecule, and then to study the weak hopping betw
these levels. In the alkali-doped fullerenes the main coup
is to intramolecular phonons. These phonons couple pri
rily to the level energies and only weakly to the hoppi
integrals between the molecules. We therefore study the
coupling for a model of alkali-doped C60 systems, in the
following referred to as the C60 model. The LE coupling may
also become important for strongly ionic systems.

We use a quantum Monte Carlo~QMC! method15 for cal-
culating the current-current correlation function for imag
nary times. A maximum entropy method16 is then applied to
analytically continue the response function to the real f
quency axis. This gives the frequency dependent optical c
ductivity s(v) and the resistivityr51/s(v50). Since the
QMC method has no sign problem for the models stud
here, we are able to obtain rather accurate results for
resistivity. In particular, we can establish whether or not
models we consider show resistivity saturation.

To interpret the results we use a simplified approxim
approach, treating the phonons~semi!classically. In this
method we assume that the phonons can be describe
random static displacements of the atoms with an aver
amplitude that increases withT. The remaining electronic
problem can then easily be solved quantum mechanica
This approach is in contrast to the Boltzmann equati
where the electrons are treated semiclassically. The main
vantage of this method, compared with the QMC calculati
is that it is simple enough to allow an interpretation of t
results. By comparing with the QMC results we establish
range of applicability of the semiclassical method for t
models of interest here.

In our semiclassical treatment, the excitation of phono
leads to a static variation of the level energies in the C60
model and of the hopping integrals in the TM model. In t
context of disordered systems, this is referred to as diago
and off-diagonal disorder, respectively. Past work has prim
rily studied diagonal disorder, which in some respects
technically simpler.

Traditionally, transport is described within the Boltzman
theory. The Bloch-Boltzmann17 theory starts from the per
fectly periodic system, and treats the scattering mechani
as small perturbations. This can be considered as a th
which is valid to lowest order in 1/(kFl ).4 This further em-

el
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ELECTRICAL RESISTIVITY AT LARGE . . . PHYSICAL REVIEW B 66, 205105 ~2002!
pahsizes that the Boltzmann equation becomes question
when l;d. Furthermore, the Ziman approximation18 to the
Boltzmann equation leads tor(T);T for largeT, i.e., there
is no saturation in contrast to what is found experimenta
for many systems. It is then natural to look for extensions
the Boltzmann equations, which would extend the range
perturbation strengths that can be treated.5,6 We find, how-
ever, that in, e.g., theA15 compounds the thermally excite
phonons even at relatively smallT tend to largely remove the
effects of periodicity. In the semiclassical treatment of t
phonons, the momentum conservation in the electronic
tem is lost already for temperatures of the order of a f
hundred K. We therefore consider the opposite limit to
Boltzmann equation, where we assume that thermal exc
tions have completely destroyed periodicity. At lowT there is
a Drude peak in the optical conductivitys(v) due to intra-
band transitions between states with similark vectors. AsT
is increased,k conservation is lost, the meaning of intraba
transitions is blurred, and the Drude peak disappears.
therefore focus on the limit where there is no pronounc
structure ins(v) at smallv.

We have earlier used current and charge conservatio
obtain simple upper estimates for the resistivity of a meta12

Here we show how the same result can be derived by u
the~related! f-sum rule. This approach has the advantage
it can also be used to discuss the high-Tc cuprates,14 and that
it is convenient for discussing the fullerenes. The appro
based on thef-sum rule therefore provides the most conv
nient framework for analyzing the different classes of ma
rials.

We combine thef-sum rule with the assumption that th
Drude peak is lost. This naturally leads to an upper limit
the resistivity, which usually has a weakT dependence. If the
initial slope ofr(T) is very large,r(T) reaches this limiting
value already for experimentally available values ofT. At
this point saturation normally happens, as is illustrated in
TM model. The removal of the Drude peak could be due
any scattering mechanism, e.g., electron-phonon~HI or LE
coupling!, electron-electron, or disorder scattering. For t
TM model considered here, we show in a quantum mech
cal treatment that saturation should happen roughly when
Ioffe-Regel criterion is satisfied. This is somewhat acciden
and it is not true for a model of the high-Tc cuprates, where
strong correlation effects leads to a larger saturation resis
ity.

While a pronounced saturation is observed for theA15
compounds Nb3Sb or Nb3Sn, other systems, such as N
show a weaker saturation or no saturation at all. Here
study a simple model ofA15 compounds, referred to as th
Nb3* model,19 where we include thed orbitals of the Nb
atoms, put on the appropriateA15 lattice, but where the re
maining atom~e.g., Sn in Nb3Sn) is neglected. This is com
pared with Nb, where the atoms are put on a bcc latt
These two models then only differ with respect to the latt
structure. This difference leads to a smaller plasma freque
for Nb3Sb and a steeper slope ofr(T). This leads to a much
more pronounced saturation for Nb3Sb.

Even after ‘‘saturation’’ has happened,r(T) tends to con-
tinue to grow, but at a slower rate. In this respect there
20510
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sometimes an essential distinction between LE and HI c
pling. This can be best discussed using thef-sum rule. We
show that the upper limit of the resistivity is obtained fro
the ratio of the band width and the kinetic energy. These t
quantities keep growing without limit withT, due to the Bose
nature of the phonons and the lack of limitation on the nu
ber of phonons. The changes of these two quantities w
together for the LE coupling, but tend to compensate e
other for the HI coupling. As a result the resistivity grow
more slowly after ‘‘saturation’’ for the HI coupling and th
saturation is more pronounced. This distinction is fairly cle
cut for the C60 model. For this model, disorder leads to su
a strong scattering, that ‘‘saturation’’ can be considered
have happened already atT50. Due to the LE coupling and
the small band width, however,r(T) grows so rapidly after
‘‘saturation’’ that the concept of saturation becomes me
ingless. For HI coupling, on the other hand, the resistiv
shows a clear change in slope, even for the C60 model.

In Sec. II we present the TM and C60 models and in Sec
III the QMC and semiclassical methods are described. T
results are presented in Sec. IV and discussed in Sec. V
Sec. VI we summarize the present results as well as ea
results for the high-Tc cuprates in the framework of th
f-sum rule.

II. MODELS

A. TM model

We first consider a model appropriate for a transiti
metal ~compound!, referred to as the TM model. Each tra
sition metal atom has a fivefold degenerate (n55) level. It
couples to the other atoms via hopping matrix elementstmn ,
wheren[(m,i ) is a combined label for a orbital indexm
and a site indexi. Thus the electronic Hamiltonian is

Hel5«0(
ms

cms
† cms1 (

mns
tmncms

† cns , ~2!

wherecm
† creates an electron in the stateum&. As discussed in

the Introduction, we consider two different models where
atoms are put on a bcc or anA15 lattice, describing a tran
sition metal~Nb! or anA15 compound, respectively. As dis
cussed above, in the case of theA15 compound we only
consider the transition metal atoms and, for instance, neg
Sb in Nb3Sb.19 This is referred to as the Nb3* model.

To describe the hopping integrals, we essentially follo
Harrison,20 and assume that the radial part of the integr
has a power dependence on the separation of the at
However, instead of the power five, used by Harrison, we
the power 3.6, more appropriate for Nb.21 Using Harrison
notation for the radial part between two atomicd energy
levels

Vdd,s5hdd,s

\2r d
1.6

m

1

uRi2Rj u3.61a0
3.6

~3!

where hdd,s5216.2,hdd,p58.75, andhdd,d50 and m is
the electron mass. The parameterr d has been chosen in orde
to reproduce the band with as obtained from LDA calcu
5-3
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M. CALANDRA AND O. GUNNARSSON PHYSICAL REVIEW B66, 205105 ~2002!
tions for Nb3* ,19 namely,r d50.7. Since the atoms vibrate
their separation can occasionally become very small.
avoid that the hopping integrals then become very large,
have introduced the term containinga0 in the denominator.
We usea052 Å. Equation~3! shows the distance depen
dence. In addition there are angular factors, depending
which m-quantum numbers are involved, as described
Harrison.20 In the model of Nb we only consider neare
neighbor hopping, while in theA15 model (Nb3* ) also sec-
ond nearest neighbor hopping is included, since the sec
nearest neighbors are not much further away then the ne
neighbors.

We consider the case when the phonons couple to
hopping integrals~HI’s!. The phonons are approximated
Einstein phonons. The frequencyvph50.014 eV was ob-
tained from the average frequency of Nb metal.22 For each
Nb atom we introduce one such phonon in each coordin
direction. Thex coordinate of atomi is then given by

Rix5Rix
0 1A \

2Mvph
~bix1bix

† !, ~4!

whereRix
0 is the unperturbedx coordinate of the atomi, bix

†

creates a phonon in thex direction on sitei, and M is the
mass of a Nb atom. These vibrations couple to the hopp
matrix elements.

To obtain the conductivity we calculate the curren
current correlation function. This requires a definition of t
matrix elements of the current operator. In our model Ham
tonian approach, it is not appropriate to calculate these
expectation values of the current operator between some
sis functions, since the basis functions underlying our mo
Hamiltonian are not explicitly defined. Instead one can u
charge and current conservation, i.e., the requirement tha
change of density inside some small volume is equal to
current entering this volume. This leads to the result

ĵmn5
ie

\
~Ri2Rj !tmn , ~5!

wherem[(m,i ) andn[(m8, j ).

B. C60 model

We next consider a model appropriate for alkali-dop
fullerenes, referred to as the C60 model. In these systems th
t1u band is partly occupied, and we therefore conside
model with a threefold degeneratet1u orbital on each C60
moleculei. These orbitals are connected by nearest neigh
hopping matrix elements. For the electronic part we theref
use the same form of the Hamiltonian as above@Eq. ~2!#, but
the orbitals are now threefold degenerate and placed on a
lattice.

The hopping integrals are obtained from a tight-bindi
description.23,24For each of the 60 C atoms in a C60 molecule
we introduce one 2p orbital pointing radially out from the
molecule. We then generate orbitals oft1u character by form-
ing linear combinations of the 60 2p orbitals. The hopping
between thet1u orbitals on different molecules is then dete
20510
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mined by the hopping between 2p orbitals on different mol-
ecules. The 2p orbitals couple vias and p hopping inte-
grals. We use

Vs5V0de2(d2d0)/L, ~6!

Vp52Vs/4, ~7!

whereV059.85 eV,d051.43 Å, andL50.505 Å. The cal-
culations were performed for the lattice parameter 14.24
In most calculations we take into account23,25 the orienta-
tional disorder26 of the C60 molecules.

The important electron-phonon coupling is due to the
tramolecular phonons of Hg symmetry. There are eight suc
phonons in C60, each one being a five-fold degenerate Ja
Teller mode. Here we only include one degenerate Hg mode
per site. We use the Hamiltonian

Hel-ph5
g

2
A2Mvph

\ (
g51

5

(
is

(
m51

3

(
m851

3

Vmm8
(g) c ims

† c im8sxig ,

~8!

wherexig is the phonon coordinate for a phonon with qua
tum numberg on sitei, g is an overall coupling strength, an
Vmm8

(g) are dimensionless coupling constants27,28 given by
symmetry. The dimensionless electron-phonon coupling c
stant is given by

l55
g2

vph
N~m!, ~9!

where N(m) is the density of states per spin, orbital, a
molecule at the Fermi energy. The current matrix eleme
are given by Eq.~5! with Ri5Ri

0 .
As a comparison, we also consider a C60 model where the

intermolecular phonons couple to the hopping integrals~HI
coupling!, instead of the LE coupling considered above. T
coupling is obtained by displacing the molecules from th
ideal positions of the fcc lattice due to the excitations
intermolecular phonons. For large values ofT, the molecules
come unrealistically close to each others in our semiclass
theory, neglecting the strongly repulsive interaction for sm
separations, and the hopping integrals become unrealistic
large. For this reason we introduce a modification of t
hopping integrals between the 2p orbitals in the case of the
HI coupling . The exponente2(d2d0)/L is replaced by

e2(d12d0)/L
e(d12d0)/L1e(d22d0)/L

e(d2d0)/L1e(d22d0)/L
, ~10!

whered153.1 Å is the separation of the nearest C atoms
neighboring molecules in the equilibrium position andd2
52 Å. For d@d2, the hopping integrals are essentially u
changed, and ford5d1 they are exactly unchanged, whil
for d!d2 the hopping integral is cut off at a value which
factor 10 larger than in equilibrium.
5-4
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III. METHODS

A. Quantum Monte Carlo method

To establish the properties of our models, we use a qu
tum Monte Carlo~QMC! approach.15 For these models, the
QMC method has no so-called sign problem, thanks to
absence of a repulsive Coulomb interaction. In the calcu
tion of response functions for imaginary times there are t
only statistical errors which can be made arbitrarily small
improving the sampling. These response functions are a
lytically continued to the real frequency axis by using
maximum entropy method.16 Although it is nontrivial to con-
trol the errors in this method, it should still be quite accur
for the response functions considered here, due to the sim
form of their spectra. Thus we are able to quite accura
establish the largeT behavior of the resistivity for model
with coupling to phonons.

In the QMC approach used here,15 the starting point is the
partition function

Z5Tr e2H/T, ~11!

where Tr is a trace over all states. An imaginary timet is
introduced, 0<t<b51/(kBT). The partition function can
then be expressed as a functional integral over the pho
coordinates as a function oft. For given values of the pho
non coordinates, the electronic part of the Hamiltonian i
one-particle Hamiltonian. The electronic degrees of freed
can then be integrated out and be expressed as a determ
Finally, the phonon coordinates are sampled in a Mo
Carlo approach.

For the LE coupling, the phonons are local and only
fluence the levels on the molecule of the phonon. For the60
model, this corresponds to a 333 block in the determinan
obtained in the approach above. The change of the dete
nant when one phonon coordinate is changed can then e
be obtained in an updating approach.15 For the HI coupling,
on the other hand, each phonon influences the hopping
grals to the neighbors of the atom of the phonon. Differ
phonons then couple to partly ‘‘overlapping’’ blocks. It
then not possible to introduce the simple block form used
the C60 model. This leads to a substantially more comp
cated updating approach, which is discussed in Appendix

B. Semiclassical method

While the QMC method above is very useful in establis
ing the properties of our models, its complexity means tha
is hard to interpret the results. We therefore introduce a m
simpler method, where the phonons are treated semicla
cally. We demonstrate that this method is quite accurate
the TM model with HI coupling, by showing that it agree
quite well with the accurate QMC calculations. For the C60
model with LE coupling, the accuracy is less good, in p
ticular for largeT. The method is, nevertheless, useful for t
interpretation.

We consider a large supercell withL unit cells,K atoms
per unit cell and a total ofN5KL atoms. Periodic boundar
20510
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conditions are used. Each phonon coordinate is given a
dom displacement according to a Gaussian distribution c
tered at zero and the width

^x2&5
\

Mvph
nB~T!, ~12!

where

nB~T!5
1

e\vph /(kBT)21
, ~13!

is the occupation of the phonon mode. In this way, a se
displaced coordinates are obtained. These define a
particle Hamiltonian for the electrons. In the case of HI co
pling, we simply calculate the hopping matrix elements us
the displaced atomic positions. For the LE coupling, we
sert the phonon displacements in Eq.~8!. Since the coupling
contains a factorAM , the Hamiltonian is independent ofM
for a givenl andvph in the case of the LE coupling.

To calculate optical conductivity, we find the eigensta
u l & and eigenvalues« l of this Hamiltonian. The optical con
ductivity is then given by

s~v!5
2p

NVv (
l l 8

u^ l u ĵ xu l 8&u2~ f l2 f l 8!d~\v2« l 81« l !,

~14!

whereV is the volume per atom andf l is the Fermi function
for the energy« l . The prefactor 2 comes from the summ
tion over spin. We have assumed that the system is isotro
so that it is no limitation to consider the conductivity in thex
direction.

Figure 3 compares the QMC~circles! and semiclassica
~broken curve! methods for Nb3* with N536 atoms in the
supercell. The QMC calculation has been limited to rath
large values ofT, which is the range of particular interes
here, and which is also the range ofT where the calculation
can be performed with a reasonable numerical effort. T

FIG. 3. Resistivityr(T) as a function of temperatureT for
Nb3* . The figure compares the semiclassical@broken (N536) and
full ( N5648) curves# and QMC~circles,N536) calculations. The
figure also shows the small@Eq. ~25!# and large@Eq. ~21!# tempera-
ture results. The figure illustrates that the resistivity of the T
model saturates at largeT. Comparison with the QMC results
shows that the semiclassical calculation is quite accurate, at
for largeT.
5-5
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figure illustrates that the semiclassical calculation is qu
accurate at largeT for the TM model. By comparing the
semiclassical calculation forN536 andN5648 we also il-
lustrate that at largeT the result does not change much if th
size of the supercell is increased. For small values ofT,
however, the discreteness of the levels forN536 would pre-
vent a reliable semiclassical calculation for this super c
size.

Figure 4 compares the semiclassical theory~dotted curve!
with the QMC~full curve! and the Boltzmann~broken curve!
theories for the C60 model with LE coupling, assuming or
dered C60 molecules. The small-T behavior is discussed in
detail in Sec. V F. Here we just notice that the semiclass
theory agrees with the Boltzmann theory for very smalT
and that it agrees approximately with the QMC results
small and intermediate values ofT. There is, however, a
qualitative disagreement for largeT. The reason is that the
strong static diagonal disorder introduced by the phonon
the semiclassical theory for largeT leads to localization. This
is discussed in more detail in Sec. V H. While the semicl
sical theory for the C60 model with LE coupling is suffi-
ciently accurate to analyze the results for small and inter
diate values ofT, it is less accurate than for the TM mod
with HI coupling, in particular for largeT. This is further
discussed in Sec. V H.

IV. RESULTS

A. TM model

The full curve in Fig. 3 shows the semiclassical results
the Nb3* model. It illustrates how the resistivity shows a ve
pronounced saturation already at quite small temperatu
The calculated resistivity at largeT agrees rather well with
the experimentally results, e.g., about 0.12 mV cm at T
5900 K ~0.08 eV!.1 This agreement with experiment is im
portant, since, as we discuss below, our saturation resist
@Eq. ~21!# essentially only depends on the nearest-neigh
distance, the orbital degeneracyn, the filling and the lattice

FIG. 4. Resistivityr(T) as a function of temperatureT in the
ordered C60 model for vph50.00001 eV andl50.6. The figure
compares the QMC~full curve!, the semiclassical~dotted curve!,
and the Boltzmann~broken curve! results. The phonon frequenc
was chosen to be so small thatr(T);T in the Boltzmann theory for
all T of interest.
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structure. This illustrates that our TM model is appropria
for describing resistivity saturation. For smallT, the resistiv-
ity grows slower than what is found experimentally, which
probably due to the electron-phonon interaction being so
what underestimated in our simple model.

Figure 5 compares the semiclassical results for Nb w
experimental results. The figure shows a surprisingly go
agreement between theory and experiment, given the s
plicity of the model and the absence of adjustable para
eters. The figure illustrates that saturation also happens
Nb, but at a much larger temperature scale than for Nb3* .
The reason for this difference is discussed in Sec. V D.

B. C60 model

Figure 6 shows QMC calculations for the resistivity of th
C60 model. It illustrates that there is no sign of saturatio
Actually the curves tend to bend slightly upwards for largeT.
The x indicates the resistivity due to the orientational diso
der. ThisT50 resistivity was calculated from Eq.~14!, i.e.,
independently of the QMC formalism. The curve forl
50.80 shows signs of superconductivity at smallT, since the
curve turns sharply downwards asT is lowered, due to su-
perconducting fluctuations. For a still larger value ofl the
system behaves as an insulator, as illustrated by the neg
slope ofr(T) for small T.

The solid curve show the result forl50. In this case the
resistivity is entirely due to the orientational disorder of t
C60 molecules. It is interesting that this ‘‘T-independent’’
scattering mechanism gives rise to a weakT dependence.
The reason for this are discussed in Sec. V E.

The results for Rb3C60 in Fig. 2 were measured at a con
stant pressure and show an approximately quadratic de
dence onT. If these results are converted to a constant v
ume measurement, however, an approximately lin
dependence onT is found down toT;1002200 K. In
agreement with this, Fig. 6,r(T) shows a rather linear de

FIG. 5. Resistivityr(T) as a function of temperatureT for Nb
according to a semiclassical calculation. The figure compares
semiclassical~full curve! calculation forN5640 with experimental
results~circles! ~Ref. 29!. It shows the small@Eq. ~25!# and large
@Eq. ~21!# temperature results. The figure illustrates that there
saturation also for Nb at largeT in good agreement with experi
ment.
5-6
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pendence forl<0.8 until the superconductivity fluctuation
set in. The reason for this behavior have been discus
earlier.13

C. Comparison of HI and LE coupling

The results for the TM and C60 models differ drastically.
While the TM model shows saturation, the C60 model does
not. It is interesting to ask to what extent this is due to
difference in the electron-phonon coupling~HI versus LE
coupling! and to what extent it is due to other difference
such as the size of the unit cell, the lattice structure and
band width. For this reason we have also studied the60
model assuming a HI coupling.

The HI coupling in C60 is due to intermolecular phonons
describing the rigid vibrations of the C60 molecules relative
to each other. The coupling to these phonons has usu
been assumed to be weak.30 This is also what we find here
We therefore artificially increase the coupling untill be-
comes the same as for the intramolecular coupling. Sincl
;vph

22 for intermolecular phonons, we can obtain the
creased coupling by artifically reducing the phonon f
quencyvph. Experimentally, the intermolecular frequenci
fall in the range from zero and up to almost 7 meV.31 We
have used a value ofvph51.8 meV which is substantially
smaller than the average frequency of the experimental s
trum. The resultingl;0.6 should therefore be substantial
larger than the experimental value.

We compare the resistivity in semiclassical calculatio
for the C60 model with LE and HI coupling in Fig. 7. The
same values ofl;0.6 andvph51.8 meV were used in both
cases. The molecules are orientationally ordered. While
resistivity shows now sign of saturation for the LE coupli
~full curve!, the model with HI coupling shows a weak sat
ration ~broken curve!. This becomes even more pronounc
if we neglect the rather trivial temperature dependence of
Fermi-functions in Eq.~14!. The resistivity then become

FIG. 6. Resistivityr(T) as a function of temperatureT and
electron-phonon couplingl for the C60 model according to QMC
calculations. The phonon frequency isvph50.1 eV. The figure il-
lustrates the lack of saturation. Forl50.80 the onset of supercon
ductivity can be seen as a sharp downturn inr(T) asT is lowered,
due to superconducting fluctuations. Forl51.06 and 1.32, the re
sistivity has a negative slope for smallT, indicating an insulating
system. Thex shows the resistivity due to orientational disorder.
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almost constant for HI coupling and largeT ~dotted curve!.
For the TM model we find a change of slope inr(T) for both
HI and LE coupling, but the change is more pronounced
HI coupling.

V. DISCUSSION

A. Loss of Drude peak

We mainly focus on temperatures which are so large t
the Drude peak is essentially lost. The Drude peak is rela
to intraband transitions between states with similark vectors.
In Appendix B we illustrate that for Nb3Sb in the semiclas-
sical approximation,k conservation is lost already at rath
small values ofT and that the concept of intraband trans
tions becomes rather ill defined. Indeed, for large values
T, it becomes a good approximation to assume that all st
couple with the same strength via the current operator to
other states,12 as is illustrated in Appendix C and in Fig. 8
The Drude peak is then completely lost. Figure 8 shows t
for Nb3Sb the Drude peak is almost completely gone aT
50.1 eV.

B. f-sum rule

In the large-T limit, the f-sum rule provides a very usefu
tool for analyzing the resistivity. For model Hamiltonians
the type considered here, thef-sum rule takes the form32 ~for
a derivation, see Appendix D!

2

pE0

`

s~v!dv52
1

3

d2e2

NV\2 ^0uT̂Ku0&, ~15!

where T̂K is the kinetic energy operator,d is the nearest-
neighbor distance, andV is the volume per atom. As dis
cussed above, we assume thatT is large enough that the
Drude peak has been smeared out and thats(v) is a smooth
function. We furthermore assume thats(v)50 for \uvu

FIG. 7. Resistivityr(T) as a function ofT for the C60 model
considering coupling to the level energies~full line, LE coupling!
and coupling to the hopping integrals~broken line, HI coupling!
according to semiclassical calculations. The C60 molecules are or-
dered. The figure also shows results for the case when the tem
tureTF of the Fermi functions in Eq.~14! is put equal to zero. The
figure illustrates that there is a large difference between LE and
coupling for the C60 model.
5-7
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.W, whereW is the band width. This is exactly true in th
semiclassical treatment and approximately true in the Q
treatment. Ifs(v)[s(0) for \uvu<W, the integral on the
left-hand side of Eq.~15! would be Ws(0)/\ and s(0)
would simply be given by this integral multiplied by\/W.
This is shown schematically in Fig. 9. For a more gene
shape ofs(v) we write

s~v50!5
g

WE
0

`

s~v!\dv, ~16!

whereg depends on the shape ofs(v). To estimateg we
assume a certain density of states~DOS! N(«) and constant
matrix elements of the current operator, as discussed in
pendix C. In Table I we give the value ofg for different
shapes ofN(«), namely, a constant

N~«!5H 1

W
, if u«u<W/2,

0, otherwise,

~17!

a Gaussian

N~«!5
2

WAp
e2(2«/W)2

~18!

and a semielliptical

N~«!5H 8A~W/2!22«2/~pW2!, if u«u<W/2,

0, otherwise.
~19!

DOS. The Table illustrates thatg does not depend strongl
on the shape of the DOS. In the following we assume
semielliptical DOS.

It is also interesting to study the filling dependence. T
is shown in Table II. The dependence is weak around h
filling, but g becomes larger for a small filling.

FIG. 8. The optical conductivity as a function of the frequen
v for the ~a! A15 and~b! C60 models in the semiclassical calcula
tion. The frequency has been scaled by theT50 band widthW. ~a!
also shows~broken curve! the result of approximating all curren
matrix elements by their average@Eq. ~C4!#.
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C. Large T behavior

As above, we consider temperatures which are so la
that the Drude peak is gone, but we furthermore assume
the temperatures are small compared with the band wi
This applies, in particular to many transition metal com
pounds, e.g., theA15 compounds. We consider noninterac
ing electrons, which should be a reasonable assumption
broad band transition metal compounds. To apply the an
sis above, we have to calculate the kinetic energyTK . Since
T!W, we can assumeT50 in the calculation ofTK . We
find that

TK52nE
2W/2

m

«N~«!d«[22naWN ~20!

is proportional to the band widthW and the orbital degen
eracy. The shape of the DOSN(«) and the filling enter via
the parametera. This parameter is given in Table I for dif
ferent shapes of the DOS for half filling and in Table II fo
different fillings and a semielliptical DOS. Inserting the r
sult forTK in thef-sum rule@Eq. ~15!# and using Eq.~16!, we
obtain

FIG. 9. Schematic picture ofs(v). The average over the ban
width is given bys(0)/g.

TABLE I. The quantity g @Eq. ~16!# and a @Eq. ~20!# for a
constant@Eq. ~17!#, a Gaussian@Eq. ~18!# and a semielliptical@Eq.
~19!# density of states~DOS! and for half filling.

Constant Gaussian Semielliptical

a 0.125 0.141 0.106
g 1.44 1.81 1.91
ag 0.180 0.255 0.202

TABLE II. The quantitiesg @Eq. ~16!# and a @Eq. ~20!# for a
semielliptical DOS@Eq. ~19!# as a function of the fractional filling
p. The results are symmetrical around half filling (p50.5).

p 0.1 0.2 0.3 0.4 0.5

a 0.041 0.070 0.090 0.102 0.106
g 2.63 2.19 2.02 1.93 1.91
ag 0.108 0.153 0.182 0.197 0.202
5-8
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s~0!5
pag

3

d3

V

ne2

\d
. ~21!

Here pag/3 depends on the details of the electronic str
ture and is of the order of 0.2,d3/V depends on the lattice
structure~see Table III!, but is of the order 1.

The result~21! is independent of the band width. Th
follows, since the kinetic energy~20! is proportional toW
and is cancelled by theW in Eq. ~16!.

The quantityne2/(\d) has the dimension of a conductiv
ity and it contains the essential material parametersn andd.
Here\a0/e2522 mVcm, wherea0 is the Bohr radius. For a
transition metal compound, withn55 and d;3 Å, this
leads to an upper limit for the resistivity of the order
0.1–0.2 mV cm. This agrees with the saturation resistiviti
observed for these systems.

It is interesting to study the filling dependence, indicat
by Table II. We consider Sc, which is the first element in t
3d series. According to a band structure calculation, Sc
about 1.8 3d electrons.33 Compared with a system close
half filling, such as Nb3Sb, we then expect the saturatio
resistivity to be about a factor 1.4 larger. This filling effect
somewhat reduced by the different geometries of the c
pounds. Indeed, while the saturation resistivity is estima
to be 0.15 mV cm for Nb3Sb,1 it is well over 0.2 mV cm for
Sc,34 in agreement with the expectations. Similar results
also found for Y.35 For the other end members of the 3d, 4d,
and 5d series clear saturation does not seem to have b
observed.

Using the definition of the mean free pathl in the intro-
duction @Eqs. ~1!#, we can convert the conductivity in Eq
~21! to a mean free path

l 5cn1/3d, ~22!

where for simplicity we have assumed that there is only o
spherical Fermi surface. For a semielliptical DOS and h
filling c50.74 ~fcc!, 0.72 ~bcc!, and 0.60 (A15). Thus the
quantity cn1/3 is close to unity forn55, as appropriate here
This provides a quantum-mechanical derivation of the Iof
Regel condition for weakly correlated systems.

In particular for theA15 lattice, the second nearest neig
bor hopping plays a rather important role. The separa
(0.612a) is not much larger than for the nearest neighb
(0.5a), but there are eight second nearest neighbors but
two nearest neighbors. For this reason, we also define a
tanced which is a weighted average of these distances.
weight factors we use the hopping matrix elements. Thus
define

TABLE III. The quantityV/d3 for different lattices, whered is
the nearest-neighbor distance andV is the volume per atom.

fcc bcc A15 sc

V/d3 1

A2
50.707

4

3A3
50.770

4

3
51.333 1
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^d2&5
(mns^0udmn

2 tmncms
† cnsu0&

(mns^0utmncms
† cnsu0&

, ~23!

wherednm is the distance between the atoms with the orbit
n andm. At T50 this increasesd from 0.5a to about 0.57a
for the A15 structure. For a semielliptical DOS and fillin
0.4, this leads to a larger saturation conductivity and
smaller resistivity of about 0.11 mV cm instead of
0.14 mV cm if the nearest-neighbor separation is used. T
is in better agreement with the calculated resistivity.

In a similar way we can use thef-sum rule to estimate the
resistivity for the C60 model, although the assumptionT
!W is now much more questionable, as discussed in S
V E. Considering a fcc lattice, usingg51.91 andd510 Å,
we obtain

r~T!5
0.288

TK~T!/~NW!
mV cm. ~24!

Using the band widthW50.6 eV and obtainingTK(T) from
semiclassical calculations for the C60 model, we find the
saturation resistivity 0.4 mV cm. The calculatedl50 and
T50 resistivity (0.29 mV cm) is below this value, while the
results for larger values ofl andT strongly exceed the satu
ration resistivity. The reasons for this are discussed in S
V E.

D. Small T behavior

In view of the discussion above, we expect the resistiv
to have an upper limit for models with noninteracting ele
trons scattered by phonons, unlessT is very large. In many
metals, however, the resistivity increases so slowly withT,
that the corresponding conductivity is much large than
limit ~21! even at the melting temperature. The issue
whether or not the resistivity saturates is then not raised.
therefore of interest to study the low-T behavior ofr(T).
For T.vph we expect18

r~T!58p2
lTkB

\Vpl
2

, ~25!

wherekB is the Boltzmann constant andl is the dimension-
less electron-phonon coupling constant. For the TM mo
with HI coupling we definel5l̃(m,m), where

l̃~«,«8!5
1

nKMN~m!vph
2 (

l l 8 ia
U^ l u ]H

]Ria
u l 8&U2

d~« l2«!

3d~« l82«82vph!, ~26!

whereK is the number of atoms in a unit cell, thea sum-
mation is over the three coordinates,M is the atomic mass
u l & is an eigenstate ofH, and i labels the atoms in the uni
cell. Vpl is the plasma frequency

~\Vpl!
25

e2

3p2 (
n
E

Bz
d3kF]«nk

]k G2

d~«nk2m!, ~27!

where«nk is the energy of a state with the band indexn and
the wave vectork and m is the chemical potential.Vpl de-
pends on the average Fermi velocity.
5-9
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The straight lines corresponding to Eq.~25! and Eq.~21!
are shown in Fig. 3. If these lines cross in the experiment
accessible temperature range we expect saturation.

It is now interesting to compare our models for Nb a
Nb3* . We obtain similar values ofl for the two casesl
51.0 (Nb3* ) andl50.9 ~Nb!. A larger value ofl51.7 for
Nb3* was estimated by Allen3 while a rather similar value
was obtained for Nb (l51.0) from ab initio calculations.36

We observe thatl;1/vph
2 depends quite sensitively onvph.

Since we have replaced the whole phonon spectrum by t
Einstein phonons per atom, obtained as the average o
phonon spectrum of Nb,22 one should not expect very accu
rate values ofl in our calculation. For the plasma frequen
we obtain Vpl53.6 eV(Nb3* ) and 8.2 eV~Nb!, in rather
good agreement withab initio calculations 3.4 eV (Nb3* )
~Ref. 37! and 9.5 eV~Nb!.36

The difference in values ofVpl for Nb3* and Nb alone
then leads to a difference by a factor of five in the slope
the line from Eq.~25!. As a result Nb3* shows a very pro-
nounced saturation already at smallT, while Nb only shows
sign of saturation at rather largeT. The difference is due to
the fact that Nb3* has a large unit cell with many bands an
many forbidden crossings. This leads to quite flat bands
to small electron velocities. The result is a small plas
frequency@Eq. ~27!# and a steep line from Eq.~25!.

An even more dramatic example isa-Mn, which has a
unit cell with 58 atoms.38 One should therefore expect a ve
small plasma frequency and a correspondingly early sat
tion. Indeed, it is found that the resistivity saturates at ab
T560 K.39

In view of the discussion above, Fig. 8~a! and Eq.~25!, it
is tempting to write

s~v50,T!5
\Vpl

2

8p2lTkB

1ssat, ~28!

where the first term describes the Drude peak@Eq. ~25!# and
the second term is the conductivity in Eq.~21! at saturation.
This formula is correct for smallT and for T which are so
large that the Drude peak is gone but very much smaller t
the band width. Eq.~28! is the ‘‘parallel resistor’’ formula of
Wiesmannet al.40

E. Very large T behavior

We have so far discussed temperatures which are so l
that the Drude peak have been washed out, but which
small compared with the band width. We now focus on v
ues of T which are large enough that the coupling to t
phonons causes a substantial change in the band width.
effects are not very important for typical transition me
compounds, which have large band widths. They are, h
ever, of substantial interest for the C60 model, for which the
fluctuations in the level position become comparable to
band width at values ofT which can be reached experime
tally.

At such large values ofT, there is a rather trivialT depen-
dence due to the electron temperatureTF entering in the
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Fermi functions of Eq.~14!. This can be seen by considerin
the resistivity due to static disorder. Although this scatter
mechanism isT independent, the resistivity is, nevertheles
T dependent. Expanding the Fermi functions in Eq.~14! in
1/T, we obtain thats(0);1/T andr(T);T for very largeT.
A similar dependence also enters for the the electron-pho
scattering, and it tends to mask some interesting differen
between level energy~LE! and hopping integral~HI! cou-
plings. In the following, we therefore freeze the electr
temperature,TF50, and consider the limit of a very larg
phonon temperatureTB , i.e., we consider a largeT but re-
place the Fermi functions byQ functions in Eq.~14!.

The band width entering Eq.~16! can be approximately
expressed in terms of the second moment of the densit
states@Eq. ~C9!#. The same is also approximately true for th
kinetic energy. We therefore focus on the second mom
which can expressed in terms of the Hamiltonian

^«2&5
1

nN (
mn

Hmn
2 , ~29!

whereN is the number of atoms in the system.
We first consider the case of the HI coupling. In our sem

classical formalism we can write

(
mn

Hmn~T!2(
mn

Hmn~T50!

5 (
mn ia

]Hmn

]Ria
dRia~T!

1
1

2 (
mn ia

(
j b

]2Hmn

]Ria]Rj b
dRia~T!dRj b~T!1•••,

~30!

where the summation overi extends over all atoms. Since th
displacementsdRia are random, we can assume that

^dRia~T!&50 ^dRia~T!dRj b~T!&5d i j dab^R2&, ~31!

where^R2&5kBT/(Mvph
2 ). We then obtain

(
mn

Hmn
2 ~T!2(

mn
Hmn

2 ~T50!

5^R2& (
iamn

S ]Hmn

]Ria
D 2

1^R2& (
mn ia

Hmn

]2Hmn

]Ria
2

1•••.

~32!

Explicit calculations for the TM model show that the seco
term tend to partially cancel the first term, while for the C60
model it adds to the first term. As a crude approximation
neglect the second term. The first term can be approxima
related to the electron-phonon couplingl. Integrating Eq.
~26! we obtain

NW2l'
1

nMN~m!vph
2 (

iamn
S ]Hmn

]Ria
D 2

, ~33!
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where we have assumed thatl̃(«,«8)[l. AssumingN(m)
51/W, we obtain

(
mn

Hmn
2 ~T!2(

mn
Hmn

2 ~T50!5nNlW~T50!kBT.

~34!

Assuming that̂ «2&5W2/12, as is appropriate for a consta
density of states, we obtain

W~T!5W~0!A11cHIl
kBT

W~T50!
, ~35!

wherecHI512.
We next consider the kinetic energyTK . As discussed in

Sec. V B @Eq. ~20!#, the kinetic energy is closely related t
the band width via the quantitya. As T is increased, how-
ever, the shape ofN(«) changes somewhat, and there is n
a perfect proportionality betweenW(T) andTK(T). This is
illustrated in Fig. 10, where the curves describing theT de-
pendence of these two quantities differ slightly. Neverth
less, from Eqs.~15!, ~16!, it follows that theT dependence o
these two quantities largely cancel in the calculation
s(v50) andr(T). This is illustrated in Fig. 10, wherer(T)
has only a weakT dependence, once the resistivity h
‘‘saturated’’ ~at aboutT50.06 eV). The remainingT depen-
dence is due to theT dependence ofa andg.

We next consider the case of the LE coupling for the C60
model. In this case the second moment is the sum of
contribution from the hopping~off-site elements! of Hmn in
Eq. ~29! and one contribution from the fluctuations of th
level energies~on-site terms! in Eq. ~29!. Then, at largeT,

^«2&T5^«2&T501
l

N~0!
T, ~36!

FIG. 10. r(T), TK(T), W(T), and g(T) divided by theirT
50.06 eV values for the case of a a coupling to the hopping inte
grals ~HI! in the C60 model for l50.6 andvph50.0018 eV. The
figure illustrates that that theT dependence ofTK(T) andW(T) are
similar and therefore to a substantial extent cancel in Eqs.~15!, ~16!
for HI coupling in the C60 model, leading to a weakT dependence
of r(T) for largeT. The electron temperatureTF50 and only the
phonon temperatureTB is varied.
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where the first term is the off-site and the second the on-
contribution. Assuming a constantN(«), we estimate that
TK(T50)/N'22.6̂ «2&T50

1/2 . For largeT, the coupling to
the phonons leads to large separations of the levels, and
can use perturbation theory for calculating the kinetic ene

TK~T!52(
m

occ

(
n

unocc tmn
2

«m2«n
'

1

2

Nn^«2&T50

^«m2«n&
, ~37!

where we have replaced the denominator by an average
nominator^«m2«n& and the limitations on the sums to oc
cupied and unoccupied states introduce a factor of 1/4
simple estimate of̂«m2«n& is obtained by assuming that th
levels have the energies6D«/2. Then the separation of th
levels isD«52^«2&T

1/2, where only the on-site contribution
to ^«2& should be included. At largeT, however, the on-site
contribution dominates and we have dropped this restrict
Then

TK~T!'22.6N
^«2&T50

^«2&T
1/2

, ~38!

where we have used the same prefactor 2.6 as below
~36!. This gives a better agreement with the numerical res
than the prefactor~3/4! derived from the arguments abov
which is substantially too small, as one would expect. T
averaging in Eq.~37! greatly favors small values of the de
nominator, while our simple estimate focuses on large v
ues. The estimate in Eq.~38! is also a good estimate forT
50, as shown above, and actually for the whole tempera
range. As usual, we relate the band width to the second
ment. Assuming a constant DOS, Eqs.~15!, ~16! give

s~0!5
2.6pg

6A12

e2d2

V\

^«2&T50

^«2&T

, ~39!

where one factor̂«2&T
1/2 comes from the band width and on

factor from the kinetic energy. Since^«2&T grows withT @Eq.
~36!#, both the kinetic energy and the band width work t
gether to reduces(0) and to increaser(T) asT is increased.
Thus we obtain

r~T!5
0.8

g~T!S 11cLEl
T

WDmVcm, ~40!

by using parameters appropriate for A3C60.
From the derivation we obtaincLE512. A better fit to the

data is obtained fromcLE515. In addition we observe tha
there is also an appreciableT dependence ing(T). These
results are illustrated in Fig. 11. In particular, we notice th
W(T) andTK(T) have the oppositeT dependence, and there
fore work together in the expressions in in Eqs.~15!, ~16!.
This is in strong contrast to the case of HI coupling, whe
the twoT dependencies largely cancel each other.

F. Lack of saturation in the C60 model

By using thef-sum rule, we showed in Sec. V B that on
should expect the resistivity of the alkali-doped fullerenes
saturate at about 0.4 mV cm. Actually, this value is almos
reach already atT50 (0.3 mV) due to the orientationa
5-11
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M. CALANDRA AND O. GUNNARSSON PHYSICAL REVIEW B66, 205105 ~2002!
disorder. One can therefore consider the C60 model as a case
where saturation has already happened atT50.

This can be further illustrated by considering the resis
ity for a model where all the C60 molecules have the sam
orientation, i.e., a system without disorder. The results
compared with the resistivity expected from the Boltzma
equation in Fig. 12. The phonon frequency has been cho
very small, so that the Boltzmann equation gives a lin
behavior for all T of interest. For small values ofT the
Boltzmann equation and the semiclassical theory ag
However, whenr(T) becomes of the order of 0.3 mV cm,
shortly before saturation might have been expected, the
curves start to deviate. At this point we may consider
system has having saturated, and the theory in Sec. V
very largeT applies. This theory also predicts a linear beha

FIG. 11. r(T), TK(T), W(T), and g(T) divided by their T
50.06 eV values for the case of a a coupling to the level energie
~LE! in the C60 model withl50.6 andvph50.0018 eV. The figure
illustrates that that theT dependence ofTK(T) and W(T) are the
opposite and therefore work in the same direction in Eqs.~15!, ~16!
for the LE coupling in the C60 model, leading to a strongT depen-
dence ofr(T). The electron temperatureTF50 and only the pho-
non temperatureTB is varied.

FIG. 12. Resistivity of the ordered C60 model for vph

50.00001 eV,l50.6 and LE coupling. The figure illustrates th
the semiclassical~full curve! and the Boltzmann~dashed curve!
agree well for smallT, but deviates whenr(T) becomes compa
rable to the hypothetical saturation resistivity~horizontal dotted
curve!. The figure shows that there is no real saturation in this c
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ior, but not necessarily with the same slope as at smalT.
Simple arguments suggest that the two slopes might be o
same order of magnitude, as found in Fig. 12. The smaT
slope is, however, related to the properties around the Fe
energy, while the very largeT slope refers to properties in
tegrated over all states. The two slopes should therefore
be expected to be the same. The Boltzmann equation is
qualitatively wrong for largeT in this case, but the relatively
good agreement for largeT is somewhat accidental.

For the disordered C60 model, the disorder itself leads to
resistivity comparable to the ‘‘saturation resistivity, and t
very largeT’’ limit in Sec. V E applies already for any finite
T. This theory predicts thatr(T) has a linear dependence o
T, as is also approximately seen~see Fig. 6!. The resistivity
could be considered to have ‘‘saturated,’’ but this concep
meaningless for the C60 model, since the resistivity grow
linearly, with a large slope, also after ‘‘saturation.’’

We observe that the boson character of the phonon
important for the arguments in this section and in Sec. V E13

Because of this, the number of phonons grow without lim
asT is increased, leading to the corresponding growth in
phonon amplitudêR2&. This leads to a continuing growth o
the band width and reduction of the kinetic energy for t
case of LE coupling. As a result the resistivity does not sa
rate.

This is different from the case of electron-electron sc
tering, where Fermi occupation numbers enter the theory
a result, we have found that there is saturation of the re
tivity in a simple one-band, symmetric, half-filled Hubba
model, at least in the dynamical mean-field theory.13 In view
of this, it is interesting that the high-Tc cuprates are usually
considered as examples of systems where the resistivity
not saturate, although electron-electron scattering is often
lieved to be the dominating mechanism. This issue is
dressed in the next section.

G. Saturation for high-Tc cuprates

The resistivity in some of the high-Tc cuprates is substan
tially larger than one would expect from the Ioffe-Reg
criterion.14 It has therefore been assumed that these c
pounds are examples of systems where the resistivity d
not saturate. Using thef-sum rule, however, we have foun
that the resistivity saturation is to be expected at much hig
resistivities than predicted by the Ioffe-Regel criterion
what is found for, e.g., theA15 compounds.14 The reason is
that the kinetic energy is strongly reduced in these syste
This is partly due to the strong Coulomb interaction reduc
hopping, in particular for systems with a small dopingx.
Furthermore, only thex22y2 orbital is believed to play an
essential role, leading to a small degeneracyn51. As a re-
sult, for La22xSrxCuO4 we find14

r~T!5
0.4

x~12x!
mV cm. ~41!

This result is much larger than the saturation resistivity of
order of 0.1 mV cm for theA15 compounds, in particular fo
small x. Experimental resistivities are smaller than Eq.~41!,
but for small values ofx not much smaller.8 For these casese.
5-12
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ELECTRICAL RESISTIVITY AT LARGE . . . PHYSICAL REVIEW B 66, 205105 ~2002!
signs of saturation are indeed seen.8 We therefore conclude
that the data are consistent with saturation. Actually, the d
show signs of saturation when the experimental resisti
comes close to the expected saturation resistivity~41!.

H. Relation to Mott’s minimum conductivity

Within the semiclassical theory, the phonons cause a s
disorder. The problem discussed here therefore has som
lations to the conduction in disordered system. Thus the
and HI couplings correspond to diagonal and off-diago
disorder, respectively. While the disordered systems are
ally studied for smallT, we are here interested in the largeT
behavior. In the semiclassical theory, however, apart fr
causing disorder,T only enters via the Fermi functions, and
does not play an important role for the qualitative behav
Below we therefore compare our work with the treatment
disordered systems.

Diagonal disorder can lead to an Anderson metal-insula
transition atT50.42 For the case of off-diagonal disorde
however, Antoniou and Economou43 have found that there is
no metal insulator transition if the Fermi energy is located
some finite region around the middle of the band. Our se
classical calculations agree with these results, i.e., we
localization for LE but not for HI coupling asT is increased.

In the QMC calculation of the resistivity, however, we s
no sign of localization for LE coupling, just a lack of sat
ration. This is natural. Localization depends sensitively
the phase factors, which are not destroyed in the elastic s
tering in an disordered system. In the inelastic scattering
phonons at finiteT these phase factors are, however, lost, a
localization is not expected.42 The effects of the inelastic
scattering is properly included in the QMC but neglected
the semiclassical treatment, and therefore localization sh
up in the semiclassical but not in the QMC treatment.

Mott41 has argued that as the disorder increases, there
discontinuous transition from a metal to an insulator atT
50. He therefore introduced the concept of the minimu
conductivity

smin50.026
e2

\d
, ~42!

whered is the nearest-neighbor atomic distance. Later w
has argued that the transition from a metal to an insula
actually is continuous, but thatsmin may still have some
relevance for low but nonzero temperatures.42 We therefore
make a comparison ofsmin to the resistivity in the TM and
C60 models. Converting Eq.~42! to a resistivity, we obtain

rmax51.6d mV cm, ~43!

whered is measured in Å. Based on experiment, Mott d
duced a somewhat larger minimum conductivity for syste
containing transition metal atoms, resulting in the maxim
resistivity

rmax51 mV cm. ~44!

Mott derived his result for diagonal disorder. His res
can most naturally be compared with our saturation resis
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ity for HI coupling ~off-diagonal disorder!, since saturation is
most pronounced in this case. The resistivityrmax is much
larger than the saturation resistivity obtained above@Eq.
~21!# for the TM model with a fivefold degenerate orbit
(n55). For a fcc lattice and a half-filled semielliptical ban
it takes the form

rsat5
0.14d

n
mV cm, ~45!

which is of the order of 0.1 mV cm.

I. Alternative explanations

Cote and Meisel6 proposed an interesting explanation
saturation. They argued that the electrons would not
phonons with a wave lengthL that is much longer than the
mean free path. They therefore assumed that an electron
only be scattered by a phonon ifl .L. As T is increased and
l is reduced, an increasing fraction of the phonons beco
inefficient as scattering sources. The result is thatr(T) in-
creases much slower thanT at largeT, in rather good agree
ment with experiment.6 We are now in the position to tes
this assumption.

Above, we have studied a model with three local Einst
phonons on each atom, describing the vibrations in the th
coordinate directions. This is equivalent to study Einst
phonons inq space. We then write the displacement of t
atom at the unperturbed positionRi

0 as

dRl5
1

AN
(
j a

uj aeiqj •Rl
0
, ~46!

where j 51, . . . ,N labels theN q vectors anda labels the
three modes for eachq vector. The corresponding phono
amplitude is uj a . We perform a calculation where th
phonons are treated semiclassically as before, but where
amplitudesuj a are treated as random variables. This giv
the same resistivity as before. We then gradually turn off
long wave length phonons, putting the corresponding am
tudesuj a50. For smallT we expect this to reduce the resi
tivity. For large T, however, the arguments of Cote an
Meisel6 suggests that this should not influence the resistiv
if L. l for the phonons turned off.

We group theq vectors with equal length in shells. Shel
with q vectors of similar length are further grouped togeth
in such way that each group contains a similar number oq
vectors. Then the groups of phonons are successively tu
off. The results are shown in Fig. 13. The figure illustrat
that as a group of phonons is turned off there is a drop in
resistivity. This is not only true for smallT but for all T
studied here. Consider for instance the curve with
phonons included andT50.4 eV. The resistivity r
;0.1 mV cm corresponds tol;3.5 Å. The theory of Cote
and Meisel then assumes that all phonons withL.3.5 Å can
be turned off withoutr changing. The figure illustrates tha
this is far from the result of our calculation. This illustrate
that also phonons with a relatively long wave length contr
ute substantially to the large-T resistivity, althoughL. l .
5-13
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M. CALANDRA AND O. GUNNARSSON PHYSICAL REVIEW B66, 205105 ~2002!
Figure 13 illustrates that phonons with a very long wa
length make a small contribution to the resistivity for anyT.
The reason is that a long wave length phonon does
change the relative separation of two neighboring atoms v
much, which means that the corresponding hopping ma
element is not changed very much.

It has also been argued44 that resistivity saturation can b
understood in a Holstein model, somewhat similar to our60
model. For smallT and largel the Holstein model shows a
‘‘excess’’ resistivity. Similar effects are observed in our C60
model, as is seen in Fig. 6 forl50.80. The result is that the
slope of ther(T) curve is reduced asT is increased. To
analyze this, we compare the calculatedr(T) with the resis-
tivity

r~T!50.29117lT mV cm, ~47!

in Fig. 14. The value 0.29 comes from the orientational d
order and the term;lT is the type of behavior we expec
for a normal nonsaturating system~e.g., from Boltzmann
theory!. The slope was adjusted to the results forl50.26.
For such a small value ofl there is no sign of saturation i
Fig. 6. If the system shows saturation for larger values ofl,
we would then expect the calculated resistivity to be bel
Eq. ~47!. We find, however, that QMC results for largeT stay
above these results for all values ofl that we have studied
In the figure this is illustrated forl50.8. As pointed out in
Ref. 44, the resistivity in this model actually does not sa
rate, and it was concluded that ‘‘saturation’’ is a misnom
As we have shown above, however, the TM model is a m
better model of saturation, both because it is much m
realistic for systems showing saturation, and because it
gives results much more similar to experiment.

In a semiclassical treatment of the type used by Mi
et al.44 the ‘‘excess’’ resistivity for largel and smallT is due
to the formation of a highly anharmonic potential well f

FIG. 13. The resistivity of Nb as a function ofT. The scattering
from phonons of successively shorter and shorter wave lengthsL is
suppressed. For the uppermost curve all phonons are consider
the lower curves the phonons corresponding to theM shortestq
vectors~longest wave lengths! were suppressed, whereM is marked
at the curve. The figure illustrates that the long wave len
phonons contribute about equally much both to the smallT resis-
tivity and largeT resistivity.
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the phonons. This leads to a larger vibration amplitude a
an increased resistivity. Similar results are found in our QM
calculation, as discussed above. In a more realistic mo
the electrons would couple to many phonon modes, e
typically with a substantially weaker coupling. Even if th
total l may be large, each phonon would in such a mo
have a more harmonic potential well, and we would not e
pect a large ‘‘excess’’ resistivity. This further supports o
belief that this type of model is not appropriate for descr
ing resistivity saturation.

VI. SUMMARY

We have studied models of weakly correlated transit
metal compound~TM model! and of alkali-doped fullerenes
(C60 model!. These models were studied using Quantu
Monte Carlo~QMC! and semiclassical methods. The resu
as well as earlier results for the high-Tc cuprates, were ana
lyzed by using thef-sum rule. We assumed thatT is so large
that the Drude peak has been smeared out. Then@Eqs.~15!,
~16!# an approximate lower limit tos(0) is given by

1

r~T!
5s~0!;

1

WE
0

`

s~v!dv;
uTK~T!u
dW~T!

, ~48!

whereTK(T) is the kinetic energy,W(T) is the band width,
andd is the nearest neighbor distance.

We first consideredT!W. For the TM model of nonin-
teracting electrons, it then followed thatTK;W. This leads
to the simple upper limit

;
\d

ne2 ~49!

. In

h

FIG. 14. Resistivityr(T) as a function of temperatureT and
electron-phonon couplingl for the C60 model according to QMC
calculations. The phonon frequency isvph50.1 eV. The straight
lines show the resistivityr(T)50.29117lT mV cm, where 0.29
is the resistivity due to the orientational disorder. The figure illu
trates that there is some ‘‘excess’’ resistivity at moderateT and large
l but no saturation for this model.
5-14
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ELECTRICAL RESISTIVITY AT LARGE . . . PHYSICAL REVIEW B 66, 205105 ~2002!
for the resistivity, wheren55 is the orbital degeneracy o
the d level. This agrees rather well with the saturation res
tivity of many transition metal compounds, and it corr
sponds to a mean free pathl;d.

For the high-Tc compounds, the kinetic energy is strong
reduced by correlation effects. There is a strong reductio
the hopping probability of an electron to a neighboring site
there already is an electron on this site. This leads touTKu
;x(12x), wherex is the doping. The corresponding upp
limit for the resistivity is then

;
\c

e2x~12x!
, ~50!

where c is the distance between two CuO2 planes. Since
essentially only thex22y2 orbital is involved, the degen
eracy factor isn51. This resistivity is much larger than fo
the TM model, both because ofn51 and because of facto
x(12x). This limit is therefore apparently never exceed
for any high-Tc compound. There are only a few cases wh
the resistivity gets close to this limit, and in these cases
resistivity shows signs of saturation.

Whether or not saturation is actually observed, depe
on how rapidly the resistivity grows for smallT’s. In this
limit we haver(T);lT/Vpl

2 for the TM model. For theA15
compounds, e.g., Nb3Sn, l is fairly large andVpl is very
small, due to the large unit cell and the quite flat bands. T
result is that the resistivity grows very rapidly for smallT
and gets close to the limiting value for rather smallT. The
resistivity then shows a pronounced saturation. For Nb,
the other hand,Vpl is much larger and the resistivity grow
much more slowly withT, and there is only a weak satura
tion. For most metals, the limiting resistivity would only b
reached far above the melting temperature, due to the s
increase ofr(T) for small T.

We also considered very large values ofT, whereT be-
comes comparable to the band width. Then bothTK and W
have strongT dependences. It is important to distingui
between the case when the phonons couple to the leve
sitions ~LE coupling! and to the hopping integrals~HI cou-
pling!. In the former case,TK decreases withT, since the
different levels have different energies, and hopping is
duced. In the latter case,TK is increased, since the square
the hopping integrals increases withT. In both casesW in-
creases withT. In the LE case, both effects work togeth
@Eq. ~48!# to reduces(0) and to increase the resistivity. I
the HI case, on the other hand, the two effects partly co
pensate each other, and the increase in the resistivit
smaller.

These considerations are very relevant for the C60 case.
Due to the orientational disorder, the saturation limit can
considered to have been reached already forT50. Because
of the the small band width, however, theT dependence o
the band width and the kinetic energy become very imp
tant. Furthermore, the coupling is of the LE type, so that
T dependence of these two quantities cooperate in increa
the resistivity. The result is a drastic increase in the resis
ity, beyond the ‘‘saturation resistivity,’’ and little or no sig
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of saturation. We may therefore consider C60 to belong to a
different class than theA15 and high-Tc compounds.

This is illustrated in Fig. 15, which shows the resistivi
for Cu, Nb3Sb, La1.93Sr0.07CuO4, and hole-doped C60, where
the resistivities of the latter three metals have been redu
by factors 5, 100, and 100. The resistivities of Nb3Sb and
La1.93Sr0.07CuO4 stay below the expected saturation resist
ities, while the resistivity of C60 is far above the ‘‘saturation’’
resistivity, shown in the lower left corner of the figure. Th
suggests that the systems studied here fall in three diffe
classes, namely,~i! weakly correlated transition metal com
pounds, showing saturation in agreement with the Iof
Regel condition,~ii ! strongly correlated high-Tc cuprates,
showing saturation but at much larger values than predic
by the Ioffe-Regel condition, and~iii ! alkali-doped C60 com-
pounds, showing no saturation.
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APPENDIX A: QMC FOR THE TM MODEL

The Hamiltonian of the TM model can be written as

H5(
m,n

Hm,n5 (
h51

Nb

Hh , ~A1!

whereh labels a given ordering of theNb5zNn2 bonds,z
being the number of atoms connected to a given site by
Hamiltonian operator.

DefiningDt5b/L, using Trotter decomposition at lowes
order and breaking up the Hamiltonian inNb terms, the par-
tition function is,45

FIG. 15. Resistivity of Cu, Nb3Sb ~multiplied by a factor 1/5!
~Ref. 1!, La1.93Sr0.07CuO4 ~multiplied by 1/100! ~Ref. 8!, and alkali-
doped C60 ~multiplied by 1/100! ~Ref. 9!. The figure also shows ou
estimated saturation resistivities for the latter three cases. The fi
illustrates that the resistivity saturates for Nb3Sb and
La1.93Sr0.07CuO4 but not for alkali-doped C60.
5-15
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Z5TrF)
l 51

L

e2DtHG.TrF)
l 51

L

)
h5Nb

1

e2DtHhG . ~A2!

Integrating out the electron degrees of freedom15 leads to

Z5@det~11BLBL21•••B1!#2 ~A3!
n

d

ho
te

in-
be
d

r

b-

20510
with

Bl5 )
h5Nb

1

bh
l 5 )

h5Nb

1

e2DtHh. ~A4!

The matricesbh
l have dimensionNn and have the following

form:
bh
l 5S 1 .. 0 .. 0 .. 0

: : : : : : :

0 .. cosh~DtHh! .. sinh~2DtHh! .. 0

: : : : : : :

0 .. sinh~2DtHh! .. cosh~DtHh! .. 0

: : : : : : :

0 .. 0 .. 0 .. 1

D . ~A5!
-
Eq.

as
ate
this

as

ng

-

.

It can be shown15 that the electron Green function is writte
as

g5~11BL•••B2B1!21. ~A6!

During the simulation,g and g21 are constantly stored an
updated.

A quantum Monte Carlo move is a displacement of a p
non coordinate for a given slice. The move is then accep
or rejected according to the Metropolis algorithm which
volves the calculation of the square determinant ratio
tween the electron Green functions after and before the
placement,R25@det(g8)/det(g)#2.

Without loss of generality let us suppose that an atomi is
displaced in the first slice~so that we can omit the highe
index in bh

1). This will involve a change inB1→B18 or Nc

5zn2 changes in the factors

bi k
°bi k

8 5bi k
D i k

, k51,2, . . . ,Nc ~A7!

with $ i 1, i 2,•••, i Nc
%. In the case only onebi 1

factor is

changed (Nc51) the determinant ratio can be easily o
tained as

R5
det~11BL•••B2bNb

•••bi 1
D i 1

•••b1!

det~11BL•••B2B1!
~A8!

5det@11~12ḡ1!~D i 1
21!#, ~A9!

where ḡ15(11bi 1
•••b1BL•••B2bNb

•••bi 1
)21 is a modi-

fied electron Green function and is obtained fromg as

ḡ15~bi 121•••b1!g~bi 121•••b1!21. ~A10!
-
d

-
is-

The matrix (D j21) is symmetric and has only four ma
trix elements different from zero, as can be seen from
~A5!, ~A7!, so that the products in Eq.~A9! can be performed
in orderNn operation.

So far it is known how to calculate the determinant
long as a single bond is changed. In the more complic
case of several bonds, the problem can be reduced to
simpler one by noting that the determinant is expressed

R5RNc ,Nc21RNc21,Nc22•••R1,0 ~A11!

and Rj , j 21 is the ratio between two determinants havi
changed only the firstj and j 21 bonds, respectively,

Rj , j 21

5
det~11BL•••B2bNb

•••bi j
D i j

•••bi 1
D i 1

•••b1!

det~11BL•••B2bNb
•••bi j 21

D i j 21
•••bi 1

D i 1
•••b1!

.

~A12!

Each of theseNc determinant ratios is given by Eq.~A9!
with the Green functiong replaced by the new one

ḡ j 215~11bi j 21•••bi j 21
8 •••bi 1

8 •••b18BL•••b2bL•••bi j
!21

~A13!

which has only the firstj 21 bonds updated.
Once the determinantRj , j 21 has been obtained, it is nec

essary to update the Green functionḡ j 21 to the new oneḡ j
which will be used to evaluateRj 11,j . This update is done in
two steps and requires the knowledge ofḡ j

21 so that the
function g21 has to be bookkeeped during the simulation

The first step is to define the new Green functiong̃ j as

g̃ j5~11bi j 21•••bi j 21
8 •••bi 1

8 •••b18BL•••b2bL•••bi j
8 !21.

~A14!
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g̃ j differs from ḡ j 21 only by the substitutionbi j
→bi j

8 . It can

be obtained using the Green function updating in the sim
case of a single bond change,15 namely,

g̃ j5@ ḡ j 21
21 1~ ḡ j 21

21 21!~D i j
21!#21. ~A15!

The matrixA5(ḡ j 21
21 21)(D i j

21) is zero everywhere a pa
from two columns. As a consequence, Eq.~A15! can be ef-
ficiently performed with the Shermann-Morrison formula46

applied toḡ j 21
21 so that the calculation ofg̃ j involves order

(Nn)2 operations.
The second step is then to obtain fromg̃ j the Green func-

tion ḡ j as follows:

ḡ j5~bi j 1121•••bi j 11bi j
8 !g̃ j~bi j 1121•••bi j 11bi j

8 !21.

~A16!

Once ḡ j is known it is clearly possible to obtainRj 11,j fol-
lowing the same steps we have outlined before.

For a given Trotter slice and a given phonon coordin
the algorithm can be summarized as follows

~1! Displace coordinateRi→Ri8 and identify the bonds
i 1, i 2,•••, i Nc

which will be affected by the atomic dis
placement.

~2! Set g̃05g and g̃0
215g21, computeḡ0 and ḡ0

21 using

Eq. ~A16! and the similar one forḡ0
21.

~3! Perform loopj 51, . . . ,Nc over the previously iden-
tified bonds.

~4! Calculate the matrixD i j
.

~5! CalculateRj , j 21 using ḡ j 21 and Eq.~A9!.
~6! Updateḡ j 21→ḡ j and ḡ j 21

21 →ḡ j
21 using Eqs.~A15!,

~A16!.
~7! End loop overj.
~8! ComputeR and check if the proposal move is a

cepted.
~9! If the proposal is accepted updateḡNc21→g̃Nc

from
Eq. ~A15!.

After the proposed displacement for atomi has been ac-
cepted by the Metropolis condition, the most straightforwa
way to proceed would be to obtain the new Green funct
g8 @Eq. ~A6!#, with all thebh factors updated, as

g85~bi Nc
•••b1!21g̃Nc

~bi Nc
•••b1! ~A17!

and then from step 2 of the algorithm obtain the newḡ08 for
the atomj 5 i 11. Note anyway that these two steps can
efficiently condensed in one if a particular order for the si
is chosen. If the sites are ordered in such a way thai 1
increase monotonically withi, e.g., $11,21,•••,Nc1

%,
then Eq.~A17! becomes

g̃085~bi Nc
•••bj 1

!21g̃Nc
~bi Nc

•••bj 1
! ~A18!

involving 2j i 1
products bybh factors less than the mos

straightforward procedure.
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APPENDIX B: LOSS OF MOMENTUM CONSERVATION

At large T the phonon vibrations become very large.
the semiclassical treatment of the phonons, this tends to
stroy the periodicity and therefore it tends to violate mome
tum conservation within the electronic system. Below we t
how this violation increases withT in the TM model using a
HI coupling. Qualitatively similar results are, however, o
tained also in the other models. We first calculate the sta
of the Hamiltonian atT50. The system is then perfectl
periodic and all the statesunk,T50& can be labeled by a
wave vectork and a band indexn. We use a unit cell with six
Nb atoms and the band index therefore runs over 30 sta
Next the states at a finiteT are calculated. These statesu l ,T&
are labeled by an indexl. These states can be expanded in
complete set ofT50 states

u l ,T&5(
kn

unk,T50&^nk,T50u l ,T&. ~B1!

For a given state we determine the amount ofk character

ck~ l !5(
n

u^nk,T50u l ,T&u2 ~B2!

or the amount of mixing with states having the band inden

cn~ l !5(
k

u^nk,T50u l ,T&u2. ~B3!

From normalization it follows that(kck
( l )51 and (ncn

( l )

51. We define

Dk~ l !5nk(
k

@ck
( l )#2 ~B4!

and

Dn~ l !530(
n

@cn
( l )#2, ~B5!

wherenk is the number of allowedk vectors and 30 is the
number of band index. If the weight of a given statel is
equally distributed overnk /m different k vectors, Dk( l )
5m. In particular, if all effects of periodicity are lost, w
expect thatDk( l )51, since we then expect allnk k compo-
nents to have equal weight (m51). On the other hand, if a
state contains only onek vector,Dk( l )5nk . Typically in the
periodic system, several states with differentk vectors are
degenerate, e.g., states withk and 2k may be degenerate
Even at a very small amount of disorder, a state of the d
ordered system is then typically a linear combination
states with several differentk vectors, andDk( l ) is reduced
correspondingly. We consider a super cell with period
boundary conditions. The value ofnk then depends on the
size of the supercell. For a given amount of disorder,
expect that a given state will containk vectors from a certain
fraction of the Brillouin zone. The number ofk vectors in-
creases with the size of the supercell. However,m introduced
above should stay roughly constant. Thus we find that d
nition ~B4! gives results which are rather independent of
5-17
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super cell size for values ofT which are not very small. On
the other hand, forT'0, this definition gives results which
grow roughly linearly withnk . The definition is, however
sensible for the range ofT of interest here. In a similar way
it follows that Dn( l )51 if the conservation of the band in
dices is completely lost.

We average over all states

D i5(
l

D i~ l !/~Nn!, i 5k or n. ~B6!

Figure 16 showsDk for Nb3* and Nb, whereD is an average
over D( l ). The lineD51, corresponding to a complete los
of periodicity, is also shown. The figure illustrates that f
Nb3* much of the periodicity is lost already forT;200
2300 K. For Nb this happens at higherT, but also in this
case periodicity is lost fairly quickly.

The rapid loss of periodicity for Nb3* can be related to the
many flat bands. This means that there are states with ak
values within a rather small energy range. Then only a sm
perturbation is needed to mix all these differentk values,
implying a loss of momentum conservation.

In a similar way, Fig. 17 shows that the meaning of t

FIG. 16. The quantityDk in Eq. ~B6! for Nb3* and Nb as a
function of T for nk5256 allowedk vectors.Dk measures the los
of periodicity. The horizontal line (Dk51) represents complete los
of periodicity. The figure illustrates the rapid loss of periodicity a
momentum conservation for the Nb3* model, while this loss hap-
pens more slowly for Nb.

FIG. 17. The quantityDn in Eq. ~B6! for Nb3* as a function ofT
for nk5256 allowedk vectors.Dn measures how the conservatio
of the band index is lost, with the horizontal line (Dn51) showing
a complete loss. The figure illustrates how the meaning of the b
indices is lost relatively rapidly for the Nb3* model.
20510
ll

band indices is lost relatively quickly for Nb3* as T is in-
creased. Therefore the meaning of intraband and interb
transitions is lost.

APPENDIX C: CONSTANT CURRENT MATRIX
ELEMENTS

In view of the rapid loss of momentum conservation,
lustrated in Appendix B, it is interesting to consider the lim
where momentum conservation is completely lost due to
disorder. This is the opposite limit to the traditional Bloc
Boltzmann treatment, where the scattering is assumed t
so small thatk is a useful quantum number. In the comple
disorder limit studied here, all states are coupled to all sta
via the current operator. The calculations for the Nb3* model
show that these assumptions, taken literally, are not satis
We note, however, that the expression in Eq.~14! for the
optical conductivity can be rewritten as

s~v!5
2pn2

NVvE d«N~«!E d«8N~«8! j ~«,«8!

3@ f ~«!2 f ~«8!#d~\v2«81«!, ~C1!

where

j ~«,«8!5
1

n2N~«!N~«8!

3(
l l 8

u^ l u j xu l 8&u2L~«2« l !L~«82« l8!, ~C2!

N(«) is the density of states per atom, orbital, and spin, a
n is the orbital degeneracy.L(«)5(g/p)/(«21g2) is a
Lorentzian. The functionj («,«8) is shown in Fig. 18 for two
values ofT, using the broadeningg50.01 eV. The figure
illustrates that the functionj («,«8) has only a moderate de
pendence on the energies forT50.043 eV5500 K. We

FIG. 18. Averagej («,«8) of the current matrix elements ove
states with similar energies@Eq. ~C2!# for Nb3* . The units are arbi-
trary. The figure illustrates that forT50.0043, eV550 K j («,«8)
varies strongly with the energies while forT50.043, eV5500 K
this variation is much less pronounced.
d
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therefore now work out the consequences of assuming
the matrix elements of the current can be replaced by t
average.

This average is defined as

j av
2 5

1

~Nn!2 (
l l 8

u^ l u ĵ xu l 8&u2, ~C3!

where u i & are theNn eigenstates of the Hamiltonian. Th
expression~14! for the optical conductivity can then be wri
ten as

s~v!5
2p

NV
j av
2 (

l

occ

(
l 8

unocc
1

v
d~\v2« l 81« l !, ~C4!

where we have consideredv.0 and assumed thatT!W so
that we can replace the Fermi functions byQ functions. Fig-
ure 8~a! compares the actually calculateds(v) with the re-
sult of ~C4!, assuming a semielliptical DOS@Eq. ~C4!#. The
good agreement for largeT gives further justification for the
assumptions behind Eq.~C4!. This gives

s~v50!5
2pNn2\

V
j av
2 N~m!2, ~C5!

wherem is the chemical potential. We then need to find
relation betweenj av and N(m), which is obtained from
charge and current conservation. We first rewritej av as

j av
2 5

1

~Nn!2(
nm

u^nu ĵ xum&u2, ~C6!

whereun& is a basis state in a local representation. We th
use the charge and current conservation in Eq.~5!, relating
the current and hopping matrix elements. This gives

(
a5x,y,z

u^nu ĵ aum&u25
e2d2

\2 tnm
2 ~C7!

and for an isotropic system

j av
2 5

1

~Nn!2

e2d2

3\2 (
nm

tnm
2 . ~C8!

To relatej av
2 to N(«), we introduce the second moment

^«2&5E
2`

`

N~«!«2d«, ~C9!

where N(«) is normalized to unity. This quantity can b
related to the hopping integrals

n^«2&5
1

N(
nm

tnm
2 . ~C10!

We assume a specific form forN(«), calculatê «2& for this
form and then relate it toN(m). Table IV shows results for
different shapes of the DOS. The table illustrates that ther
not a drastic dependence on the shape ofN(«). In the fol-
lowing, we focus on the semielliptical DOS, which is pro
ably the most realistic one of the three cases considered
20510
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Expressing(tnm in terms of ^«2& in Eq. ~C8!, we can
rewrite Eq.~C5! as

s~0!5
2pn

3

d3

V
^«2&N~m!2

e2

d\
, ~C11!

whereV/d3 is shown in Table III. The quantitye2/(\d) has
the unit of conductivity and Eq.~C11! can be rewritten as

r5
1

s~0!
519.7

V/d3

^«2&N~m!2

d

n
mV cm, ~C12!

whered is now expressed in Å. As seen in Tables IV and I
^«2&N(m)2;0.1 andV/d3;1. For a transition metal, we
may use d;3 Å and n55, which leads to r
;100 mV cm. Such a resistivity is indeed typical for th
saturation resistivity of a transition metal compound.

APPENDIX D: DERIVATION OF THE f-SUM RULE

In this appendix we derive thef-sum rule, essentially fol-
lowing Maldague.32 We introduce the position operator

R̂x5(
ns

Rx
ncns

† cns . ~D1!

For tight-binding Hamiltonians and when the current ope
tor has no on-site matrix elements

ĵ x5
ie

\
@R̂x ,H#. ~D2!

For v.0, the optical conductivity is written as

s~v!5
p\

NV (
n

u^nu ĵ xu0&u2
d~\uvu2En1E0!

En2E0
, ~D3!

where un& is a many-body state with the energyEn . By
inserting Eq.~D2! in one of the two matrix elements ofĵ x ,
one obtains

2

pE0

`

s~v!dv5
e2

NV\2 ^0u@@H,R̂x#,R̂x#u0&. ~D4!

Performing the commutators, we find

(
a

@@H,R̂a#,R̂a#5 (
nms

dnm
2 tmncns

† cms , ~D5!

wherednm is the distance between the sites with the orbit
n andm anda labels the coordinate. This result is true f
the TM model in its semiclassical form, the C60 model and

TABLE IV. The quantity^«2&N(m)2 for a constant@Eq. ~17!#, a
Gaussian@Eq. ~18!# and a semielliptical@Eq. ~19!# density of states
~DOS! and for half filling.

Constant Gaussian Semielliptical

^«2&N(m)2 1

12
50.083

1

2p
50.159

1

p2 50.101
5-19
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the t–J model. We now assume only nearest-neighbor h
ping, replacingdnm by d. Furthermore, we assume the sy
tem to be isotropic, so that all directionsa are equivalent.
For a three-dimensional system, the commutator on the ri
hand side of Eq.~D4! is then one third of the result in Eq
~D5!. This gives

2

pE0

`

s~v!dv52
1

3

d2e2

NV\2 ^0uTKu0&, ~D6!
w

g

.

ion
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whereTK is the kinetic energy. For a two-dimensional sy
tem the factor 3 in the denominator is replaced by a facto
This result can also be generalized to a finite temperature
the case of the TM model, however, the atomic separati
cannot be treated as constants, since they vary as
phonons are excited. The coordinates in Eq.~D4! can then
not be taken outside the average^•••&. We can, neverthe-
less, recover an expression such as Eq.~D6! by defining an
appropriate average separationd(T).
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