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Microscopic models for fractionalized phases in strongly correlated systems
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We construct explicit examples of microscopic models that stabilize a variety of fractionalized phases of
strongly correlated systems in a spatial dimension larger than one, and in a zero external magnetic field. These
include models of charge fractionalization in boson-only systems, and various kinds of spin-charge separation
in electronic systems. We determine the excitation spectrum, and show the consistency with that expected from
field theoretic descriptions of fractionalization. Our results are further substantiated by direct numerical calcu-
lation of the phase diagram of one of the models.
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[. INTRODUCTION tween underlying Heisenberg spins on the lattice. From this
point of view, the work of Ref. 16 provides supporting evi-
Considerable theoretical effort has gone into understanddence, though not definitive proof, that models of Heisenberg
ing the possibility of obtaining fractional quantum numbersantiferromagnets on triangular lattices do support a fraction-
for the excitations of strongly correlated systems in two oralized spin liquid phase. However, as is well knot{rithe
more spatial dimensions, and in weak or zero magnetiquantum dimer model is exactly equivalent to a gauge
fields. Though much of the original interest arose intheory—thus one may worry that establishing a topologically
theoried™® of the high temperature superconductors, ideamrdered phase in the dimer model still does not convince a
based on fractionalization have since been proposed to askeptic that such phases can result in microscopic models
count for the properties of a number of other poorly under-with no special symmetries or a gauge structure.
stood strongly correlated systefhis.Field theoretic methods Recently, Balentst al1® argued that a particular easy axis
have enabled enormous progress in obtaining a descriptioquantum spin-1/2 model on a Kagonhattice with short
of fractionalization®'°~12A number of exotic fractionalized ranged(albeit complicateflinteractions has a topologically
phases have been accessed. The structure of the distinct pasedered ground state with fractionalized excitations. This
sible excitations and the effective theory of their interactions was done by reinterpreting it as a soluble point of the quan-
has been elucidated in some detail. A crucial feature is théum dimer model on a triangular lattice but with three dimers
presence of discrete gapped vortexlike excitations—dubberather than one dimer emerging from each site, and following
visons—apart from the excitations with fractional quantumthe same arguments as in Ref. 18Iso see Ref. 19 for a
numbers. It has become cléht® that fractionalized phases somewhat similar perspectiyeHowever, some features of
may be given a precise theoretical characterization througthis model, such as the presence of two distinct visons, ap-
the notion of “topological order—a concept elucidated pear to be nongenerifrom the point of view of the effective
clearly by Weri* in work on the quantum Hall effect. field theory of fractionalized phased his model also has an
Scepticism has been voiced in some quarters over thesefinite number of local symmetries, and hence violates the
developments due to the almost complete lack of microrequirement that fractionalization be demonstrated in models
scopic models that can be shown to display the phenomenaith no special symmetries. However, Baleetsal1® made
mentioned above. Specifically, consider a model of a manythe important observation that perturbing the model slightly
particle system with short-ranged interactions, and no speciab get rid of the local symmetries will preserve the fraction-
symmetries other than the global charge and/or spin consealized phase.
vation. Can fractionalization be shown to be obtained in such Finally, we note that a recent paper by lo#eal?° pro-
a model? Apart from its conceptual value, answering thigposed a physical realization of the triangular lattice quantum
guestion will also help to clarify the nature of the micro- dimer model in its topologically ordered phase in a Joseph-
scopic conditions that make it favorable for fractionalizationson junction array. This too relies on the idea that small
to occur in a strongly correlated system. perturbations of the quantum dimer Hamiltonigeven if
There has been limitethough importantprogress in a they destroy the microscopic gauge structude not desta-
direct answer to this question. Numerical stufliesa par-  bilize the topologically ordered phase.
ticular triangular lattice quantum spin-1/2 Heisenberg mag- In this paper, inspired by these prior developments, we
net with ring exchange interactions provide evidence of axplicitly construct microscopic models that stabilize a wide
state with a spin gap and a fourfold degenerate ground stateriety of fractionalized phases. These include models for
on a torus as expected in a topologically ordered “spin lig-charge fractionalization in boson-only systems and various
uid” with fractionalized “spinon” excitations. In the context kinds of spin-charge separation in electronic systems. Our
of quantum dimer modefS, Moessner and Sondfliargued models involve only short-ranged interactions, and do not
for a stable topologically ordered “liquid” phase on a trian- have any special symmetries other than global charge and/or
gular lattice. The standard interpretation of the dimer modebpin conservation. We determine the excitation spectrum in
views the dimers as caricatures of singlet bonds formed behe fractionalized phases, and explicitly show the consis-
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tency with that expected from the effective field theories. b \|[
Our results complete the answer to the question of principle ° 4 rr’ ° °
posed above, and will hopefully guide efforts to find materi-
als and other even simpler models that realize these phases.
We begin by illustrating our construction with a simple
Bose-Hubbard-type model of a system of bosdmsth
chargeq,) with short ranged interactions. The model has a
global U1) symmetry reflecting the conserved total boson
number. We explicitly demonstrate the presence of two dis-
tinct Mott insulating phases in this model. In one, the exci-
tations carry charges that are integer multiples of the under-
lying boson chargey,. In the other, there are excitations
with boson numbeqy/2, i.e., the bosons have fractionalized.
This phase also has discrefg vortices, the visons, which
are gapped. Upon tuning a parameter in the model, it is pos-
sible to drive transitions from either of the two Mott insulat-  FIG. 1. Face-centered square lattice on which our mode(Hg.
ing phases to a superfluid phase. We further substantiate oisrdefined.
arguments by performing a quantitative numerical calcula-
tion of the phase diagram of this model. The presence of H=H,+Hpongt Hiingt Huy.s
topological order in one of the Mott insulating phases is
detected numerically by the flux-trapping experiment dis-
cussed in Ref. 21. We explicitly derive the effective field
theory of the fractionalized phase and show that it is a theory
of bosonic charge,/2 fields coupled to &, gauge field in

Hy=-w > (b/¥,. +H.c),

rr’er

its deconfined phase. Hyond™ —Jbondz [(\IfrTr,)z(brbr/)JrH.c.],
Next we consider models of electrons coupled to super- (rr’)

conducting phase fluctuations. These may be thought of as

models of charge electrons interacting with spinless charge Hying= — Krmg%: (VLW 0l W, +H.c),

2e bosonic Cooper pairs. We show how the boson only mod-
els above may be extended to include coupling to electrons
to provide a realization of various spin-charge separated H — by2 ¢ \2 2

. 2 e =u n’)“+u n_,)°+u Nr-. 1
phases. These models therefore provide explicit realizations ! bZ (ne) ¢<§> (M) Er ' @
of the routes explored in Refs. 12 and 3 for spin-charge _ - _
separation. These spin-charge separated phases have spin-GHere b/ =¢e'’r are bosons residing on the corner sites of
chargee bosonic excitationgchargons or holonsspin-1/2  the lattice, andlfrTr,Ie'¢rr’ are bosons on the bond-centered
charge neutral fermionic spinons, and a gapped vison. sites, which we identify by the end points of the correspond-
liquid®** (alias d,2.,2 RVB) phase—this has gapless fermi- bq_. - v )
onic nodal spinons, and has played an important role in thecL.Hr Ny ]=10r, and similarly for'¥,., andn,,, . For tech

ries of the cuprate materials. While recent experinf@rits nical convenience, we have chosen a rotor representation of
are not very encouraging on the possibility of fractionaliza—the bosongthough this is not essenalThe operatoN, is

tion in the cuprates, it still is of theoretical interest to dem_defmed through

onstrate models that realize the nodal liquid phase. Another

theoretically controversial possibility is that of ordered mag- N,=2nf+ > n”,. )
netic phases that nevertheless are spin-charge separated. This r'er

was also first discuss&®in the context of cuprate physics, The total boson number of the system is given by

but is possibly relevant to a variety of other systems. We

show how a model that stabilizes such ordered magnetic 1

fractionalized phases may readily be obtained. This settles Ntot:§ Er: N . ©)
any doubts that may have been harbored on the possibility of

such coexistence between magnetism and fractionalization. Thew term is a boson hopping between the corner and the

We then conclude with a brief discussion. bond-centered sites, amd er sums over all such bonds
emanating fronr. The termK,;,q is a ring exchange among
Il. FRACTIONALIZATION IN BOSON ONLY MODELS four bond-centered sites belonging to the same square

plaquette], while the termJy,,qis a similar ring-exchange-
like boson interaction, but among three sites associated with
Consider a system of bosons on the “face-centered’a given bondrr’). The importance of ring exchange terms
square lattice in two dimensions shown in Fig. 1 modeled byfor promoting fractionalization is strongly suggested by the
the Hamiltonian various field theoretic descriptiodsand by previous studies

A. Model and general arguments
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nP=enp. (6)
Similarly, leta,, = ¢, if reA,r'eB anda,,,=— ¢, if
Deconfined Higgs reB,r’ eA. Considera as a vector field, ,=a, ;. , with

a=x, y, and perform the corresponding transformation

nr‘/;,—>Em to the vector fielcg, , conjugate ta,, . We have

J bond

N, = (A-E+2nP). 7

The Hamiltonian then becomes

Confined

Kring

FIG. 2. Phase diagram of the 21)-dimensional compact QED
coupled to a charge 2 scalar.

H=—2Jyone> COSA 6, +28,,)— 2K ing>, COSAXa)
ra O

U (MM)2+u,2 (Ery)?, ®)
of microscopic model§® u, and u, are the usual on-site ' e
Hubbard terms. We have also included the Hubddrterm  while the constrainN, =0 is simply the “Gauss law”

for the boson numbeN, . _

Despite the possibly unfamiliar form of the terms in the A-E+2n7=0. 9
Hamiltonian, the following features are apparent. The modek
clearly has a global (1) charge conservation symmetry as-
sociated with a global phase rotation of all the bosons. Not
that if b bosons are assigned a chagge then the? bosons
also have a charg®,. There are no other special symmetries

for general value; of the parameters. In par.ticular, 'there arbhase, all excitations carrying “gauge charge” are confined.
no local symmetries. Furthermore, all the interactions are;

n the “deconfined Higgs” phase, static external objects with
short ranged We argue below that this model has a stable ! 998 P 1© X ) W

fractionalized insulati h ith ch ) e gauge charge 1 are not confined. Furthermore, there is a
ractionalized insulating phase with ¢ argg/ excitations  giaple gapped, vortex (which we may identify with the
and charge 0 visons above a ground state with no conve

‘onal brok . Wison). A number of different perspectives are available on
tlonsa roken syfmmetrles. fh del b d .ihese results. A useful physical one is to regard the decon-
At | ome gr?]ssbeaturis of the mo ed can be gues(,jseh €asifhed Higgs phase as a “condensate” of the charge-2 scalar.
t arg.tﬁV\t/), the osorf1| _'geg\c eperg)é orglnahtes an_”tbe SySNaiver, such a condensate will have gapped vortices quan-
tem will be a superfluid. Asv is reduced, there will be a ;0 jn ynits ofsr. However, due to the compactness of the
transition to an insulating phase. The nature of this insulatin auge field, space-time monopoles are allowed in the theory
phase depgnds on the_ ather parameters in the model. In p&fpege correspond to events where the vorticity changes by
ticular, the insulator will be fractionalized fafong, Kring, 2m7—consequently the vortices acquireZg character.
andU Iqrge Comp?fed ta, an_dul,,. In the oppgsne_llmlt,_ a It is also clear that the deconfined Higgs phase has a to-
conventional Mott insulator with charge quantized in units of o ical order: e.g., the ground state is fourfold degenerate
Qo Wil Obta'f‘- - . on a torus. These are simply obtained by threading no or one
To establish these resullts, it is useful to consider the spe&;isn, through the two holes of the torus
cial limit w=0; in this case| N, ,H]=0 for every siter, and Consider now the excited states of the original Hamil-
tonianH(w=0) for large but finiteU. Consider states such

we can fix the value o, for everyr. Thus, in this limit, the
model does have an infinite number of local symmetnesthatl\]ro=1 at some site, andN, =0 everywhere else. Such
a state can be regarded as a static gauge chafgetr,

Later we will move away from this special limit, thereby
destroying these local symmetries. For latgj@t w=0, the . ) g
ground state hall,=0 everywhere. Thev=0 model in the _(ags.umlngoeA). In Fh‘? c;onfmed phase this sector costs an
sectorN,=0 for everyr is readily understood as it can be 'Pf'”'te energy in an infinite system'. However, in the decon-
regarded as the well-stud®@d3D compact Wl) gauge flned ng_g_s phase it costs only a finite energy. Remarkably,
theory coupled to a charge 2 scalar field. Indeed, divide thd the original boson model, such a state has a t“.]e electric
underlying square lattice of Fig. 1 inth and B sublattices. charge' Obe/Z. [recall thatQtOf(qb/Z)E.fo]' Thus, in the

~ . deconfined Higgs phase, excitations with fractional quantum
Let 6r— ;= € 6; with numbers for the true electric charge are allowed. In contrast,

in the confined phase, finite energy excitations have gauge

s promised,H(w=0) is the same Hamiltonian as for the
2+1)-dimensional compact QED coupled to a charge 2 sca-
ar. This permits us to take over the classic results of Fradkin
and Shenker on this model which determined the phase dia-
ram to be of the form shown in Fig. 2. In the “confined”

eg=+1 if reA (40 charge O—this requires that, sN,=3,_gN,. Conse-
quently, the excitations carry true electric charge that are
=-1 if reB. (5) integer multiples ofy,, and hence are not fractionalized.

These results on the=0 Hamiltonian thus follow as a
To preserve the commutation relations, define the correstraightforward application of the standard Fradkin-Shenker
sponding conjugate variables analysis of the phase diagram of gauge theories. However,
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they acquire even further importance here when we consider L0 J=2.0

the Hamiltonian away from the/=0 limit whenH no longer ’ ' ' '

has an infinite number of local symmetries. Consider a small 08l _
w. This introduces fluctuations which mix states with differ- Superconductor (SC)

ent values oN, at the same site. However, for smallthese 0.6 .
will not be capable of closing the gap to excitations about the W

ground state. Consider, in particular, the deconfined Higgs 04r 1
phase in the presence of a smallThe fractionally charged 0.2 Conventional ) |
excitations are now allowed to hop from site to site and will ’ Insulator Fractionalized (J* )
acquire a kinetic energy of order. However, they will sur- 0 . Insulator,

vive as meaningful excitations. The other independent exci- 0 05 Lo L5 2
tation, namely, th&, vortex, will also survive the introduc- K

tion of a smallw. Thus the original model has, for nonzero  gig. 3. phase diagram of the classical model &6) at fixed
but smallw, a genuine fractionalized phas@Ve can also  j=2.0. we label the phases using the language of the original quan-
add other more general boson hopping terms; clearly, the&im model Eq.(1): SuperconductoSC is an XY ordered phase,
fractionalized phase will survive as long as these terms arghile insulatorsZ and7* are two magnetically disordered but to-
weak) In the subsequent subsections, we provide several dpologically distinct phases of the classical problem.
rect confirmations of these arguments. In particular, we pro-
vide an explicit derivation of the effective field theory of the the model using direct Monte Carlo simulations. To avoid
fractionalized phase and show that it is a theory of chargeinimportant complications, we will consider a particular
gw/2 chargons coupled to &, gauge field in its deconfined choice of coupling constants whe® =2eJy,,=J, K™
phase. This will also serve to make obvious our assertions o 2€K =K, andW"=2ew=W. Our choices of couplings
the properties of the model. J, K, and W are such that the resulting classical statistical
We emphasize that despite the ease with which this resuthechanical system is relatively isotropic in space-tfthe.
has been obtained, it has enormous significance. The Hamil- When W=0, the model is easily seen to reduce to the
tonian forw#0 has no special symmetries other than globalclassicalthree-dimensional3D) compact QED coupled to a
charge conservation, and has only short ranged interactionsharge 2 scalar. This has two phases, neither of which has
Nevertheless, it possesses a fractionalized phase with charer order(which implies insulating behavior for the original
gp/2 excitations and a gapped vison consistent with that exquantum mode| but which are topologically distinct. Turn-
pected from earlier field theoretic descriptions of fractional-ing on a small nonzerdV does not induceXY order, but
ization. preserves the topological distinction between the two phases.
Upon increasingV, there is eventually a transition to afY
B. Numerical calculation of the phase diagram ordered phase. Thus we expect that a cut through the phase

In this subsection, we substantiate our results by a direcg'agram In the<-W plane for large but finitd will look as in

numerical calculation of the phase diagram of the model. To 9. 3.

that end, it is useful first to consider a path integral represen- We verify this expectation by direct simulations of the
tation of’the model. The Euclidean ac?ion ma gbe wri?cten classical model Eq(10) on cubic lattices of sizes up to 12
' Y with periodic boundary conditions. We use heat-bath local

updates and run over 5000 Monte Carlo iterations per each
S= 62 (Hw+Hpongt Hiing) degree of freedom. We measure K& order parameter in
T the original physical angle@.g.,M =X €' %) and the super-
fluid stiffnesspg associated with the direct boson hoppimng
—J7> COKOprs1— O, +2N,,) (ps is defined in a standard way—see, e.g., Ref. Bbth
" quantities can be used to identify transitions into the super-
fluid phase. We also measure the specific heat of the classical

—K7 2 €0 ¢y ri1— brer it Nt Ay system; this serves as an unbiased indication of the thermo-

(rr')r dynamic phase transitions and their order. From these studies
performed at fixed moderately large=2.0, we obtain the

—2W"Y cog\,,). (100 phase diagram shown in Fig. 3, where we find three phases:

rr

an XY ordered phase§C) and two distinct disordered
Here\,,e[0,27) is a phase variable living on the temporal phases T andZ*). We should point out one detail about our
links. To arrive at this form of the action, we first decoupledscans through the parameter space: To perform an accurate
the Hubbardd term in the path integral and replaced all the study of theSCto Z* transition, we always start from a fully
Villain forms by cosines. The lattice spacing in the time di- ordered state inside tHeC phase. We found that if we start
rection is e, and the various couplings a®=1/(2uye), from a completely disordered state in the phase, the sys-
K™=1/(2u,€), andW'=1/(4U¢). tem often traps a vison and subsequently a vortex when go-
The action represents eassical three-dimensionaKY  ing into theSC phase(also see our discussion belpwhich
model with a global 1) symmetry. As all the Boltzmann significantly affects the measurements in our systems.
weights are positive, we may analyze the phase diagram of We analyze the transitions using finite-size scaling. The
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J=2.0. K=1.6 Egﬁidr%pSZTr in this direction. As we decrea$¥ toward the

/M)_v\%E T* phase, the vortex remains trapped all the way to the tran-
sition, and the magnitude of the superfluid current is set by
ps. IntheZ* phase, the superfluid current is, of course, zero,
Wi but when we cycle the system back into t8€ phase, the
10 superfluid current reappears with full initial strength but with
a random sign. For comparison, if we create a double vortex
and perform a similaSG-Z* cycle (not shown, on similar
4 . . time scales, the double vortex “tunnels out” before we reach
0 10° 2x10°, 3x10° the Z* phase and never reappears again. Similarly, a single
Monte Carlo Iteration or a double vortex created in tf&C phase both disappear
when we approach th& phase and never reappear again
FIG. 4. Flux trapping experiment a=2.0 andK=1.6. The  Upon subsequer@8CZ cycling.
system(of size &) is prepared with a single vortex in the annulus ~ In terms of the effective degrees of freedom of the
encircled by the,, deep in theSCphase W=0.7; cf. Fig. 3. The ~ phase, the physical vortex is formed bymavortex in the
vortex is detected by measuring the circulatiQrof the superfluid  chargon field and a vison. Bringing the system into e
current(solid line). The system is cycled between tB& and 7* phase, the vison remains gapped and is trapped in the annu-
phases. The “sawtooth” dotted line is the Monte Carlo time varia-Jus. Cycling the system back into tf&C phase, the vison
tion of W drawn so that the criticalV,;; coincides with the zero of  pinds asr vortex in the chargon field, thus creating a physical

Ix. For atrapped vortex, the magnitudel gfs set by the superfluid  yortex in the annulus but with a random sign.
stlffness and is expected to bep 27. The latter is shown with a

dashed line for the first two cycles; the fact that the two quantities

coincide indicates that the vortex remains trapped across the transi-

tion. We now provide a mappirfgof the model Hamiltonian to

a Z, gauge theory that will make obvious the results men-

tioned before. In addition, this yields an explicit derivation of

the effective field theory for the fractionalized phase.
Consider the Hamiltonian Eql). To bring out the possi-

3
1,
Wl

of

C. Effective field theory

to SCtransition for smalK <0.6 and theZ* to SCtransition

exhibit a 3DXY critical behavior; these are shown with open
symbols in Fig. 3. For el>§ample, we can use the finite-Sizgyyi of 5 fractionalized phase, define the operattes
scaling relationpsL =g(L~"t), to locate the transitions and b and BT — el th h
determine the correlation length exponentJsing this stan- —erand¥, =€ roug
dard procedure, we also observe an important distinction be- )
tween the two disordered phases: The universal value bl=se®2 ¥, =wl b.b . (13)
(psL) it @t theZ* to SCtransition is found to be one-fourth
that at theZ to SC transition, consistent with the charge Here s;==*1 so thaté.,€[0,2m). The field b;, may be
fractionalization in theZ* phase. thought of as the “square root” of the operatby and to
TheZ to SCtransition for larger values df approaching Carry a chargey,/2, and may be interpreted as a chargon
the 7* phase, 0.¥K=<1.0, seems to be first order; this is operator. The field,,. , on the other hand, is charge neutral.
indicated with filled symbols and a heavy line in the same Clearly, the boson numbd\&lr is conjugate tod., and
figure. Our evidence for this is the observed strong sharpen-ommutes Wlthd’rr , while n ', is conjugate tog,,, and
ing of the specific heat peak for the larger systems, with the. o mmutes Withd,
maximum value growing very strongly with the system size.
The Z to Z* transition (marked by crosses in Fig.) 3s

most easily identified by observing the specific heat. This is [Ocr:NeJ=1, [érrr N ]=0,
a true thermodynamic transition, but is not accompanied by _
any conventional ordering. Rather, it is associated with the [Deer ,n:”r,]=i, [Ocr ,n ,]=0. (12

onset of the topological order that characterizes the fraction- _ o _
alized phase. The universal properties of this transition mayVe can now write the Hamiltonian in terms of
be described by a pure classical Zpgauge theory whichin (6., ,N,, é,,, nrr ), rather than the original variables. How-

turn is dual to the global 3D Ising model. In our numerical ever, to recover the original physical Hilbert space, we need
calculations, the finite-size scaling of the specific heat peako impose the constraint

is consistent with the 3D Ising universality class.

To illuminate the topological order in th&* phase, we (N —E NP
perform flux trapping “experiments” as described in Ref. 21 ' /=1 (13
(also see Ref. 28We summarize these experiments in Fig.

4. The system is prepared deep in tA€ phase with one this ensures thatib (N, =2, ern )12 is an integeforigi-
vortex inside the annulus encircled by the periodig the  nal b-boson number operator.

physical angle® and ¢ accumulate phase/2going around Making this (exac) change of variables, for the parts of
the L, and there is a superfluid current with circulatibn  the Hamiltonian Eq(1) we obtain
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Hy=-w > (bl ¥, b +H.c), (14)
rrler
Hbond:_‘]bondz [(qf:rr)2+H-C-]a (15
(rr’)
Hringz_Kring%: (V1,050 L0 1+ H.c). (16)

PHYSICAL REVIEW B66, 205104 (2002

Conventionali.e., nonfractionalizedinsulating states are of
course possible in other limits. All of these cases are readily
studied using the methods of the Sec. Il C. Indeed, a nonzero
Ny is trivially incorporated with no essential change leading
to an effective Hamiltonian Eq17) but with the modifiedJ

term above. As a special case of some interest, conblger
=1. The resulting model was previously sugge$téfias an
effective model of frustrated easy-plane spin-1/2 quantum
antiferromagnets in two dimensions. A recent study by Park
and Sachdel explicitly demonstrated the presence of the

Note that theH,,qterm acts as an Ising anisotropy on the expected two insulating phases: a bond density wave crystal
. field. Considerable simplification is possible in the limit With confined excitations and a fractionalized phase. The
of large J,ong and smalluy, to which we now specialize. The fractionalized phase is more stable in thig=1 case due to

potential “seen” by the phasé,,, has two deep equivalent

z

_ Al
rr’_eqﬁ”’

minima ¢,,,=0 or m, which we label byo

==*1. The kinetic term l(ur‘”r ,)? causes tunneling between the

additional frustration coming from the Berry phase terms.

Ill. MODELS FOR SPIN-CHARGE SEPARATION

two wells. At each link, there are two Iow-energy states sepa- In this section, we generalize the models of Sec. Il to
rated from all other states by a gap, leading to an effectivgonstruct models that display spin-charge separated phases.

. . . P
two-state system. In ther,, basis, we identifye ™

=a;‘r, since this operator translates,. by . Also, the

We follow the route to spin-charge separation explored in
Refs. 12 and 3 by considering models of electrons coupled to
superconducting phase fluctuations. These may be thought of

inati 2 i ; . ; .
kinetic termu,(n,,,)” is replaced by an effective transverse 55° models of spin-1/2 charge electrons interacting with

field ha;‘r,. In this largeJygng limit, the effective Hamil-
tonian becomes

Halbe,ol=—2w>, (o7 bl b +H.c)+UD N?
(rr'"y f

- 2I‘(rinQE Uiz"'és"'éﬂ"il_ h E 0';:; )
E (')
(17
while the constrainfEq. (13)] is written as

(—DN T o) =1 (18)

r'er

at each site.

spin-0 charge & Cooper pairs. As shown below, the inde-
pendent excitations of the spin-charge-separated phasie are
a spin-0 charges chargon,(ii) a spin-1/2 charge 0 spinon,
and (iii) a spinless charge neutrdl, vortex—the vison.
When either a chargon or spinon is taken all the way around
a vison, the system acquires a phaserofThis structure is
exactly what is expected on the basis of the effective field
theories of stable spin-charge-separated phases. Indeed, as
shown below, it is possible to provide an explicit derivation
of the effective field theory as the correct description of our
models in appropriate limits.

In the models presented below, the spinons are fermions
while the chargons are bosons. An important property of the
spinons is that their number is not conserved. There are
“pairing” terms in the Hamiltonian describing the spinon
dynamics. Different spin-charge-separated phases obtain

This effective model is precisely the quantum problem ofbased on the pairing symmetry of the spinons. Below we will

chargons coupled to a fluctuatiry gauge field in two di-

discuss two different pairing symmetries as illustrative ex-

mensions introduced and analyzed in Ref. 3. This model iamples.
known to have a phase diagram of the kind shown in Fig. 3.

In particular, there is an insulating fractionalized phase
where the chargon fields are deconfined and there is a gapped

vison (which occurs for largé,,g, and smaliw).

A. Model for d-wave paired spinons

Consider the following model:

D. Generalization to arbitrary commensurate filling Howave= Het Ha+Hy+Hpongt HiingtHu, (20
Our results are readily generalized to arbitrary commen-
surate values of the total average number of bosons per unit H=—-t> (c ¢ ., +H.c) (21)
cell. Consider a modification of the Hamiltonian where the ‘ (' ravra '
term is replaced by
U(N;—No)?, (19 Ha= 2 Ap [T (¢ —cp i) +HE], (22
with Ny a constant. At such commensurate dengigfional )
values ofNg), insulating phases of the bosons will be pos-
sible. Again, in the limit of largelpong,King, and U and Hu:U¢2 (nz,)2+uz (N, —Ng)Z2. (23)

small u,,u,, andw, this insulator will be fractionalized. (') r
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Herec,, represents the destruction operator for an electron N «

at siter and spina. The electron is taken to have charge (=D h rH o =1 (32

The operato®¥,,, may, in this model, be considered a Coo- rer

Cooper pairs on the bonds are coupled to other Cooper pagpin-charge-separated phase. We first note that the Hamil-
corresponding boson-only ternt$,,, Hpong, @ndHying @reé  chargons coupled to thg, gauge field. As such, for large

the same as before. The operatgris defined through Kiing>h, its structure is almost identical to the effective
theory of a spin-charge-separated phase of Ref. 3. The main
N,=2nP+ >, ”ﬁ”“z ¢l Cra. (24)  difference is in the nature of the spinon hopping tethe

termH,) which seems to couple together the spinons and the
chargons. However, this is readily seen to be an unimportant

r'er
Clearly, the total charg®,,;=e=,N,. The numbeml, is a

constant that sets the average charge per site. We take tHiference. der the limit of L (b |
“pairing amplitude” A, to have ad,2_,2 symmetry. First, consider the limit of small,w (butt<w) at large

If U'is large, the system will be in an insulating phéfee repulsionU. In this limit, the chargons will lock into a Mott

commensurate densjtyThe properties of this insulator de- "Sulating phaseat integerNo). At t=w=0, the chargon

pend on the values of the other parameters in the Hamillumber will be fixed atN, per site. Going slightly away

tonian. In particular, for largéyeng andK,,y, We argue that from this limit, we may treat botlti; and the chargon hop-

the insulator will be spin charge separated. The spinons af¥Nd {erm in perturbation theory to eliminate virtual charge

fermionic and havel,.. > pairing symmetry fluctuations. The result will be an effective Hamiltonian de-
x2-y -

We proceed as before and define the chargon Bglénd scribing the spinon and gauge degrees of freedom. To second

the neutral field¥,, through Egs(11). It will also be ex- order, the generated terms take the form
tremely convenient to define a spinon fidlg, through v+ vt
— 22 TS (33
Cra=Derfra (25) (rr’) 2U

As before, the total charge associated with eachNjtds  with V=tf[f,,+2wo? . Expanding, we obtain two non-

conjugate to the chargon phagg and commutes with both  trivial terms: the first is simply spinon hopping coupled to

W, andf,,: the Z, gauge field, while the second is a spinon four fermion
interaction. The effective Hamiltonian then becomes

6., N1=i, [¥, N/]=[f,,,N,]=0. (26

[ cr r] [ rr r] [ r r] H:Hsp,t‘*'Hsp,int‘l‘HA+H|GT[0'], (34)
As expected, thé, , fields are formally charge neutral. Equa-
tions (12) also continue to hold. We further have 2 et

Hepi=—tsp 2 oy (f i +H.C), (35
[frayy 1=0, 27) rr’)

and the equalitg/ ¢, =f/,f,, We may work with the set of Ho oo S L) (F £+ (£ 6. (£,
variables b, ,N,, ¥, ,n", f,) instead of the original set sp.in i
(b, ,nf’ i n’ Cr.)- As with the boson-only models, this (36)

rr/ 1
requires imposing a constraint on the Hilbert space, whictHere the spinon hopping,=2tw/U and the spinon interac-

now takes the form tion strength\ =t2/(2U). Furthermore, in this largd limit,
v the constraint simply reduces to
(_1)N,7’2 M~ fefr=1, (29
rer
(—D)ffeNo=TT o, (37)

r'er

Continuing with the same steps as in Sec. Il, we find that in
the largedyong limit, the Hamiltonian reduces to the follow-

ing: As a function ofKj,q, this Hamiltonian undergoes a decon-

finement transition. In particular, for lard&;,g, the fluctua-
H=H+H,+H{b.,o], (29  tions of the gauge field may be ignored and the spinons are
free to propagate. The nature of the spinon dispersion is eas-
ily found by considering the limiK;,g= . In this limit, we
may setafr,= +1 on every bond. The quadratic part of the
spinon Hamiltonian is then formally the same as that describ-
) ing noninteracting quasiparticles indgz.,2 superconductor,
Ha= 2 Aqilon (ff = f)+Hel. (3D  and therefore describes gapless nodal spinons. The spinon
(rr") interaction is a formally irrelevant perturbation at this free
H.lb.,o] is the same as befof&q. (17)]. The constraint  spinon theory. As we are specifically in the limit thagw,
reduces to we have\ <tgs—thus the interaction term may be safely

He=—t3 (flf blbe+H.c), (30
(rr’)
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ignored. MakingK ;4 finite also only leads to irrelevant per- consists of a square lattice of Heisenberg spins Bithl/2
turbations to the free spinon theory so that the long distanc@escribed by the Heisenberg antiferromagnetic model
spin physics of the spin-charge-separated phase is described

by nodal fermionic spinons. HMO =3 .S, 40
The argument above considered the limit of latgend 1<§> S S 40

Kring but smallt andw. It is also instructive to consider the _ ) o
We assume that layer 2 is described by the Hamiltonian

limit t,w>U. In this limit, the chargons are expected to X ) i
Bose condense leading to an ordinaly.,» superconductor. Hdwave IN EG. (20) above, and that the interaction between
ihe two layers is given by

The long distance physics of this superconducting phase |
readily captured by a continuum theory which keeps a con-

tinuum chargon phase field and the nodal spinons. The elec- H(lZ)IJLE slr.(cgrgcm), (41)
tron kinetic energy ternH; is then readily written as a r

spinon kinetic energy modified by the usual “Doppler shift”
term coupling the gradient of the pha&ke superfloywto a
bilinear in the spinons. Vortices are permitted in this phas
and have flux quantized in multiples bft/2e. In the large
Kiing limit, it is easy to see that the core energy oftesi2e
vortex will include a contribution proportional 8 ,q. On
the other hand, the core energy lo€/e vortices does not
diverge asKi,q goes to infinity. Now consider decreasing
to induce a transition to the insulator. At lar¢@;ng, it is
clear that this will occur due to proliferation bfc/e vortices
rather than due thic/2e vortices. Following the general ar-
guments in Refs. 3, 12, we will obtain a spin-charge- |n this paper, we have discussed several concrete ex-
separated phase. Note that, as argued in Ref. 12, the Dopplgiples of microscopic models in two spatial dimensions that
shift term coupling the chargons and spinons is formally ir-display quantum phases with fractionalized excitations.

with J, <J;. We assume that &t =0, the layer 2 is in its
spin-charge-separatedand hence topologically ordered
%hase. In this limit, layer 1 will order antiferromagnetically.
Turning on a weak coupling, will induce antiferromag-
netic ordering in layer 2, but cannot destroy the vison gap.
Consequently, the full model Hamiltonian will be in a phase
that has magnetic long range order but nevertheless is spin-
charge separated.

IV. SUMMARY

relevant, and one obtains a nodal liquid phase. These models possess no special symmetries other than those
associated with global charge or spin conservation and also
B. Model for s-wave paired spinons have only short ranged interactions, and thus confirm that

fractionalization is a theoretically acceptable possibility for
strongly interacting many particle systems in spatial dimen-
sions larger than 1. These models explicitly realize earlier
field theoretic descriptions of fractionalization phenomena.
A number of generalizations of our results are possible.
Our models are easily generalized to arbitrary spatial dimen-
Hy=AX blcc +H.c. (38  sion, and provide concrete examples of fractionalized phases
' in any spatial dimensiord>1. For spin-charge-separated
Proceeding exactly as above, it is easily established that fgghases of electronic systems, we have chosen to describe
large Jpona, U, andKing, such a spin-charge-separated phasamodels with fermionic spinons and bosonic chargons. Fol-

It is straightforward to modify the model above to obtain
one that stabilizes a spin-charge separated phaseswittve
paired fermionic spinons with a spin gap. We merely modify
the pairing term above to

is indeed realized. lowing the ideas in Ref. 29, these are readily modified to
construct spin-charge-separated phases with fermionic char-
C. Model for spin-charge-separated magnetically ordered gons and bosonic spinortat least with easy plane spin an-
phases isotropy). An additional upshot of our results is the construc-

The effective field theories for spin—charge—separateéIon of topologically orderedtlassical3D XY models?

. I -~ Finally, we mention that quantum phases with topological
phases strongly sugge;t _the theoretlcal p055|b|I|ty of SPIN5der have also been suggestem be suitable states of in-
_charge separation coexisting with magnetic long range Ordetrerest to quantum computation. The topological structure
in a quantum phase. In th's. SUbseCt'O.n’ we ShOW. .hOW th aturally protects the system from decoherence. This very
models above may be readily generalized to stabilize suc

reliminary applicatiof”*° may also benefit from the results

phasgs. Con3|der a system consisting of two layers and iR this paper.
Hamiltonian of the form
H=HDO4+H®@ 4+H1, (39) ACKNOWLEDGMENTS
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