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Microscopic models for fractionalized phases in strongly correlated systems

T. Senthil and O. Motrunich
Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139

~Received 12 February 2002; published 19 November 2002!

We construct explicit examples of microscopic models that stabilize a variety of fractionalized phases of
strongly correlated systems in a spatial dimension larger than one, and in a zero external magnetic field. These
include models of charge fractionalization in boson-only systems, and various kinds of spin-charge separation
in electronic systems. We determine the excitation spectrum, and show the consistency with that expected from
field theoretic descriptions of fractionalization. Our results are further substantiated by direct numerical calcu-
lation of the phase diagram of one of the models.
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I. INTRODUCTION

Considerable theoretical effort has gone into understa
ing the possibility of obtaining fractional quantum numbe
for the excitations of strongly correlated systems in two
more spatial dimensions, and in weak or zero magn
fields. Though much of the original interest arose
theories1–3 of the high temperature superconductors, ide
based on fractionalization have since been proposed to
count for the properties of a number of other poorly und
stood strongly correlated systems.4–9 Field theoretic methods
have enabled enormous progress in obtaining a descrip
of fractionalization.3,10–12A number of exotic fractionalized
phases have been accessed. The structure of the distinc
sible excitations and the effective theory of their interactio3

has been elucidated in some detail. A crucial feature is
presence of discrete gapped vortexlike excitations—dub
visons—apart from the excitations with fractional quantu
numbers. It has become clear11,13 that fractionalized phase
may be given a precise theoretical characterization thro
the notion of ‘‘topological order’’—a concept elucidate
clearly by Wen14 in work on the quantum Hall effect.

Scepticism has been voiced in some quarters over th
developments due to the almost complete lack of mic
scopic models that can be shown to display the phenom
mentioned above. Specifically, consider a model of a ma
particle system with short-ranged interactions, and no spe
symmetries other than the global charge and/or spin con
vation. Can fractionalization be shown to be obtained in s
a model? Apart from its conceptual value, answering t
question will also help to clarify the nature of the micr
scopic conditions that make it favorable for fractionalizati
to occur in a strongly correlated system.

There has been limited~though important! progress in a
direct answer to this question. Numerical studies6 of a par-
ticular triangular lattice quantum spin-1/2 Heisenberg m
net with ring exchange interactions provide evidence o
state with a spin gap and a fourfold degenerate ground s
on a torus as expected in a topologically ordered ‘‘spin l
uid’’ with fractionalized ‘‘spinon’’ excitations. In the contex
of quantum dimer models,15 Moessner and Sondhi16 argued
for a stable topologically ordered ‘‘liquid’’ phase on a tria
gular lattice. The standard interpretation of the dimer mo
views the dimers as caricatures of singlet bonds formed
0163-1829/2002/66~20!/205104~9!/$20.00 66 2051
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tween underlying Heisenberg spins on the lattice. From
point of view, the work of Ref. 16 provides supporting ev
dence, though not definitive proof, that models of Heisenb
antiferromagnets on triangular lattices do support a fracti
alized spin liquid phase. However, as is well known,17 the
quantum dimer model is exactly equivalent to a gau
theory—thus one may worry that establishing a topologica
ordered phase in the dimer model still does not convinc
skeptic that such phases can result in microscopic mo
with no special symmetries or a gauge structure.

Recently, Balentset al.18 argued that a particular easy ax
quantum spin-1/2 model on a Kagome´ lattice with short
ranged~albeit complicated! interactions has a topologicall
ordered ground state with fractionalized excitations. T
was done by reinterpreting it as a soluble point of the qu
tum dimer model on a triangular lattice but with three dime
rather than one dimer emerging from each site, and follow
the same arguments as in Ref. 16.~Also see Ref. 19 for a
somewhat similar perspective.! However, some features o
this model, such as the presence of two distinct visons,
pear to be nongeneric~from the point of view of the effective
field theory of fractionalized phases!. This model also has an
infinite number of local symmetries, and hence violates
requirement that fractionalization be demonstrated in mod
with no special symmetries. However, Balentset al.18 made
the important observation that perturbing the model sligh
to get rid of the local symmetries will preserve the fractio
alized phase.

Finally, we note that a recent paper by Ioffeet al.20 pro-
posed a physical realization of the triangular lattice quant
dimer model in its topologically ordered phase in a Jose
son junction array. This too relies on the idea that sm
perturbations of the quantum dimer Hamiltonian~even if
they destroy the microscopic gauge structure! do not desta-
bilize the topologically ordered phase.

In this paper, inspired by these prior developments,
explicitly construct microscopic models that stabilize a wi
variety of fractionalized phases. These include models
charge fractionalization in boson-only systems and vari
kinds of spin-charge separation in electronic systems.
models involve only short-ranged interactions, and do
have any special symmetries other than global charge an
spin conservation. We determine the excitation spectrum
the fractionalized phases, and explicitly show the cons
©2002 The American Physical Society04-1
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tency with that expected from the effective field theorie
Our results complete the answer to the question of princ
posed above, and will hopefully guide efforts to find mate
als and other even simpler models that realize these pha

We begin by illustrating our construction with a simp
Bose-Hubbard-type model of a system of bosons~with
chargeqb) with short ranged interactions. The model has
global U~1! symmetry reflecting the conserved total bos
number. We explicitly demonstrate the presence of two d
tinct Mott insulating phases in this model. In one, the ex
tations carry charges that are integer multiples of the un
lying boson chargeqb . In the other, there are excitation
with boson numberqb/2, i.e., the bosons have fractionalize
This phase also has discreteZ2 vortices, the visons, which
are gapped. Upon tuning a parameter in the model, it is p
sible to drive transitions from either of the two Mott insula
ing phases to a superfluid phase. We further substantiate
arguments by performing a quantitative numerical calcu
tion of the phase diagram of this model. The presence
topological order in one of the Mott insulating phases
detected numerically by the flux-trapping experiment d
cussed in Ref. 21. We explicitly derive the effective fie
theory of the fractionalized phase and show that it is a the
of bosonic chargeqb/2 fields coupled to aZ2 gauge field in
its deconfined phase.

Next we consider models of electrons coupled to sup
conducting phase fluctuations. These may be thought o
models of chargee electrons interacting with spinless char
2e bosonic Cooper pairs. We show how the boson only m
els above may be extended to include coupling to electr
to provide a realization of various spin-charge separa
phases. These models therefore provide explicit realizat
of the routes explored in Refs. 12 and 3 for spin-cha
separation. These spin-charge separated phases have s
chargee bosonic excitations~chargons or holons!, spin-1/2
charge neutral fermionic spinons, and a gapped vison.

Of special interest are models that stabilize the no
liquid3,12 ~alias dx2-y2 RVB! phase—this has gapless ferm
onic nodal spinons, and has played an important role in th
ries of the cuprate materials. While recent experiments22,23

are not very encouraging on the possibility of fractionaliz
tion in the cuprates, it still is of theoretical interest to de
onstrate models that realize the nodal liquid phase. Ano
theoretically controversial possibility is that of ordered ma
netic phases that nevertheless are spin-charge separated
was also first discussed12,13 in the context of cuprate physics
but is possibly relevant to a variety of other systems.
show how a model that stabilizes such ordered magn
fractionalized phases may readily be obtained. This se
any doubts that may have been harbored on the possibilit
such coexistence between magnetism and fractionaliza
We then conclude with a brief discussion.

II. FRACTIONALIZATION IN BOSON ONLY MODELS

A. Model and general arguments

Consider a system of bosons on the ‘‘face-centere
square lattice in two dimensions shown in Fig. 1 modeled
the Hamiltonian
20510
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H5Hw1Hbond1H ring1Hu ,

Hw52w (
r ,r 8Pr

~br
†C rr 81H.c.!,

Hbond52Jbond(
^rr 8&

@~C rr 8
†

!2~brbr 8!1H.c.#,

H ring52K ring(
h

~C12
† C23C34

† C411H.c.!,

Hu5ub(
r

~nr
b!21uc (

^rr 8&
~nrr 8

c
!21U(

r
Nr

2 . ~1!

Here br
†5eiur are bosons residing on the corner sites

the lattice, andC rr 8
†

5eifrr 8 are bosons on the bond-center
sites, which we identify by the end points of the correspon
ing bond;nr

b andnrr 8
c are the corresponding boson numbe

@u r ,nr 8
b

#5 id rr 8 , and similarly forC rr 8 andnrr 8
c . For tech-

nical convenience, we have chosen a rotor representatio
the bosons~though this is not essential!. The operatorNr is
defined through

Nr52nr
b1 (

r 8Pr

nrr 8
c . ~2!

The total boson number of the system is given by

Ntot5
1

2 (
r

Nr . ~3!

Thew term is a boson hopping between the corner and
bond-centered sites, andr 8Pr sums over all such bond
emanating fromr. The termK ring is a ring exchange amon
four bond-centered sites belonging to the same squ
plaquetteh, while the termJbond is a similar ring-exchange
like boson interaction, but among three sites associated
a given bond̂ rr 8&. The importance of ring exchange term
for promoting fractionalization is strongly suggested by t
various field theoretic descriptions,3 and by previous studies

FIG. 1. Face-centered square lattice on which our model Eq.~1!
is defined.
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MICROSCOPIC MODELS FOR FRACTIONALIZED . . . PHYSICAL REVIEW B66, 205104 ~2002!
of microscopic models.6,18 ub and uc are the usual on-site
Hubbard terms. We have also included the Hubbard-U term
for the boson numberNr .

Despite the possibly unfamiliar form of the terms in t
Hamiltonian, the following features are apparent. The mo
clearly has a global U~1! charge conservation symmetry a
sociated with a global phase rotation of all the bosons. N
that if b bosons are assigned a chargeqb , then theC bosons
also have a chargeqb . There are no other special symmetri
for general values of the parameters. In particular, there
no local symmetries. Furthermore, all the interactions a
short ranged. We argue below that this model has a sta
fractionalized insulating phase with chargeqb/2 excitations
and charge 0 visons above a ground state with no con
tional broken symmetries.

Some gross features of the model can be guessed e
At large w, the boson kinetic energy dominates and the s
tem will be a superfluid. Asw is reduced, there will be a
transition to an insulating phase. The nature of this insula
phase depends on the other parameters in the model. In
ticular, the insulator will be fractionalized forJbond, K ring ,
andU large compared toub anduc . In the opposite limit, a
conventional Mott insulator with charge quantized in units
qb will obtain.

To establish these results, it is useful to consider the s
cial limit w50; in this case,@Nr ,H#50 for every siter, and
we can fix the value ofNr for everyr. Thus, in this limit, the
model does have an infinite number of local symmetri
Later we will move away from this special limit, thereb
destroying these local symmetries. For largeU at w50, the
ground state hasNr50 everywhere. Thew50 model in the
sectorNr50 for every r is readily understood as it can b
regarded as the well-studied24 3D compact U~1! gauge
theory coupled to a charge 2 scalar field. Indeed, divide
underlying square lattice of Fig. 1 intoA andB sublattices.
Let u r→ ũ r5e ru r with

e r511 if r PA ~4!

521 if r PB. ~5!

To preserve the commutation relations, define the co
sponding conjugate variables

FIG. 2. Phase diagram of the (211)-dimensional compact QED
coupled to a charge 2 scalar.
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Similarly, let arr 85f rr 8 if r PA,r 8PB and arr 852f rr 8 if
r PB,r 8PA. Considera as a vector fieldara[ar ,r 1â , with
â5 x̂, ŷ, and perform the corresponding transformati
nrr 8

c →Era to the vector fieldEra conjugate toara . We have

Nr5e r~D•E12ñr
b!. ~7!

The Hamiltonian then becomes

H522Jbond(
r ,a

cos~Daũ r12ara!22K ring(
h

cos~D3a!

1ub(
r

~ ñr
b!21uc(

r ,a
~Era!2, ~8!

while the constraintNr50 is simply the ‘‘Gauss law’’

D•E12ñr
b50. ~9!

As promised,H(w50) is the same Hamiltonian as for th
~211!-dimensional compact QED coupled to a charge 2 s
lar. This permits us to take over the classic results of Frad
and Shenker on this model which determined the phase
gram to be of the form shown in Fig. 2. In the ‘‘confined
phase, all excitations carrying ‘‘gauge charge’’ are confin
In the ‘‘deconfined Higgs’’ phase, static external objects w
gauge charge 1 are not confined. Furthermore, there
stable gappedZ2 vortex ~which we may identify with the
vison!. A number of different perspectives are available
these results. A useful physical one is to regard the dec
fined Higgs phase as a ‘‘condensate’’ of the charge-2 sca
Naively, such a condensate will have gapped vortices qu
tized in units ofp. However, due to the compactness of t
gauge field, space-time monopoles are allowed in the the
These correspond to events where the vorticity changes
2p—consequently the vortices acquire aZ2 character.

It is also clear that the deconfined Higgs phase has a
pological order: e.g., the ground state is fourfold degene
on a torus. These are simply obtained by threading no or
vison through the two holes of the torus.

Consider now the excited states of the original Ham
tonianH(w50) for large but finiteU. Consider states suc
thatNr 0

51 at some siter 0 andNr50 everywhere else. Suc

a state can be regarded as a static gauge charge11 at r 0
~assumingr 0PA). In the confined phase this sector costs
infinite energy in an infinite system. However, in the deco
fined Higgs phase it costs only a finite energy. Remarka
in the original boson model, such a state has a true elec
charge ofqb/2 @recall thatQtot5(qb /2)( rNr ]. Thus, in the
deconfined Higgs phase, excitations with fractional quant
numbers for the true electric charge are allowed. In contr
in the confined phase, finite energy excitations have ga
charge 0—this requires that( r PANr5( r PBNr . Conse-
quently, the excitations carry true electric charge that
integer multiples ofqb , and hence are not fractionalized.

These results on thew50 Hamiltonian thus follow as a
straightforward application of the standard Fradkin-Shen
analysis of the phase diagram of gauge theories. Howe
4-3
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T. SENTHIL AND O. MOTRUNICH PHYSICAL REVIEW B66, 205104 ~2002!
they acquire even further importance here when we cons
the Hamiltonian away from thew50 limit whenH no longer
has an infinite number of local symmetries. Consider a sm
w. This introduces fluctuations which mix states with diffe
ent values ofNr at the same site. However, for smallw, these
will not be capable of closing the gap to excitations about
ground state. Consider, in particular, the deconfined Hi
phase in the presence of a smallw. The fractionally charged
excitations are now allowed to hop from site to site and w
acquire a kinetic energy of orderw. However, they will sur-
vive as meaningful excitations. The other independent e
tation, namely, theZ2 vortex, will also survive the introduc
tion of a smallw. Thus the original model has, for nonze
but small w, a genuine fractionalized phase.~We can also
add other more general boson hopping terms; clearly,
fractionalized phase will survive as long as these terms
weak.! In the subsequent subsections, we provide severa
rect confirmations of these arguments. In particular, we p
vide an explicit derivation of the effective field theory of th
fractionalized phase and show that it is a theory of cha
qb/2 chargons coupled to aZ2 gauge field in its deconfined
phase. This will also serve to make obvious our assertion
the properties of the model.

We emphasize that despite the ease with which this re
has been obtained, it has enormous significance. The Ha
tonian forwÞ0 has no special symmetries other than glo
charge conservation, and has only short ranged interact
Nevertheless, it possesses a fractionalized phase with ch
qb/2 excitations and a gapped vison consistent with that
pected from earlier field theoretic descriptions of fraction
ization.

B. Numerical calculation of the phase diagram

In this subsection, we substantiate our results by a di
numerical calculation of the phase diagram of the model.
that end, it is useful first to consider a path integral repres
tation of the model. The Euclidean action may be written

S5e(
t

~Hw1Hbond1H ring!

2Jt(
r t

cos~u r t112u r t12l r t!

2Kt (
^rr 8&t

cos~f rr 8,t112f rr 8,t1l r t1l r 8t!

22Wt(
r t

cos~l r t!. ~10!

Herel r tP@0,2p) is a phase variable living on the tempor
links. To arrive at this form of the action, we first decoupl
the Hubbard-U term in the path integral and replaced all t
Villain forms by cosines. The lattice spacing in the time d
rection is e, and the various couplings areJt51/(2ube),
Kt51/(2uce), andWt51/(4Ue).

The action represents aclassical three-dimensionalXY
model with a global U~1! symmetry. As all the Boltzmann
weights are positive, we may analyze the phase diagram
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the model using direct Monte Carlo simulations. To avo
unimportant complications, we will consider a particul
choice of coupling constants whereJt52eJbond[J, Kt

52eK ring[K, andWt52ew[W. Our choices of couplings
J, K, and W are such that the resulting classical statisti
mechanical system is relatively isotropic in space-time.26

When W50, the model is easily seen to reduce to t
classicalthree-dimensional~3D! compact QED coupled to a
charge 2 scalar. This has two phases, neither of which
XY order~which implies insulating behavior for the origina
quantum model!, but which are topologically distinct. Turn
ing on a small nonzeroW does not induceXY order, but
preserves the topological distinction between the two pha
Upon increasingW, there is eventually a transition to anXY
ordered phase. Thus we expect that a cut through the p
diagram in theK-W plane for large but finiteJ will look as in
Fig. 3.

We verify this expectation by direct simulations of th
classical model Eq.~10! on cubic lattices of sizes up to 123

with periodic boundary conditions. We use heat-bath lo
updates and run over 5000 Monte Carlo iterations per e
degree of freedom. We measure theXY order parameter in
the original physical angles~e.g.,M5( je

iu j) and the super-
fluid stiffnessrs associated with the direct boson hoppingw
(rs is defined in a standard way—see, e.g., Ref. 27!. Both
quantities can be used to identify transitions into the sup
fluid phase. We also measure the specific heat of the clas
system; this serves as an unbiased indication of the ther
dynamic phase transitions and their order. From these stu
performed at fixed moderately largeJ52.0, we obtain the
phase diagram shown in Fig. 3, where we find three pha
an XY ordered phase (SC) and two distinct disordered
phases (I andI* ). We should point out one detail about ou
scans through the parameter space: To perform an acc
study of theSC to I* transition, we always start from a fully
ordered state inside theSC phase. We found that if we star
from a completely disordered state in theI* phase, the sys-
tem often traps a vison and subsequently a vortex when
ing into theSCphase~also see our discussion below!, which
significantly affects the measurements in our systems.

We analyze the transitions using finite-size scaling. ThI

FIG. 3. Phase diagram of the classical model Eq.~10! at fixed
J52.0. We label the phases using the language of the original q
tum model Eq.~1!: SuperconductorSC is an XY ordered phase,
while insulatorsI andI* are two magnetically disordered but to
pologically distinct phases of the classical problem.
4-4
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to SC transition for smallK<0.6 and theI* to SC transition
exhibit a 3DXY critical behavior; these are shown with ope
symbols in Fig. 3. For example, we can use the finite-s
scaling relation,rsL5g(L1/nt), to locate the transitions an
determine the correlation length exponentn. Using this stan-
dard procedure, we also observe an important distinction
tween the two disordered phases: The universal va
(rsL)crit at theI* to SC transition is found to be one-fourt
that at theI to SC transition, consistent with the charg
fractionalization in theI* phase.

TheI to SC transition for larger values ofK approaching
the I* phase, 0.7<K<1.0, seems to be first order; this
indicated with filled symbols and a heavy line in the sa
figure. Our evidence for this is the observed strong sharp
ing of the specific heat peak for the larger systems, with
maximum value growing very strongly with the system siz

The I to I* transition ~marked by crosses in Fig. 3! is
most easily identified by observing the specific heat. This
a true thermodynamic transition, but is not accompanied
any conventional ordering. Rather, it is associated with
onset of the topological order that characterizes the fract
alized phase. The universal properties of this transition m
be described by a pure classical 3DZ2 gauge theory which in
turn is dual to the global 3D Ising model. In our numeric
calculations, the finite-size scaling of the specific heat p
is consistent with the 3D Ising universality class.

To illuminate the topological order in theI* phase, we
perform flux trapping ‘‘experiments’’ as described in Ref. 2
~also see Ref. 28!. We summarize these experiments in F
4. The system is prepared deep in theSC phase with one
vortex inside the annulus encircled by the periodicLx ; the
physical anglesu andf accumulate phase 2p going around
the Lx , and there is a superfluid current with circulationI x

FIG. 4. Flux trapping experiment atJ52.0 andK51.6. The
system~of size 83) is prepared with a single vortex in the annul
encircled by theLx , deep in theSCphase (W50.7; cf. Fig. 3!. The
vortex is detected by measuring the circulationI x of the superfluid
current~solid line!. The system is cycled between theSC andI*
phases. The ‘‘sawtooth’’ dotted line is the Monte Carlo time var
tion of W drawn so that the criticalWcrit coincides with the zero of
I x . For a trapped vortex, the magnitude ofI x is set by the superfluid
stiffness and is expected to be'rs2p. The latter is shown with a
dashed line for the first two cycles; the fact that the two quanti
coincide indicates that the vortex remains trapped across the tr
tion.
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[r jW•dlW'rs2p in this direction. As we decreaseW toward the
I* phase, the vortex remains trapped all the way to the tr
sition, and the magnitude of the superfluid current is set
rs . In theI* phase, the superfluid current is, of course, ze
but when we cycle the system back into theSC phase, the
superfluid current reappears with full initial strength but w
a random sign. For comparison, if we create a double vo
and perform a similarSC-I* cycle ~not shown!, on similar
time scales, the double vortex ‘‘tunnels out’’ before we rea
the I* phase and never reappears again. Similarly, a sin
or a double vortex created in theSC phase both disappea
when we approach theI phase and never reappear aga
upon subsequentSC-I cycling.

In terms of the effective degrees of freedom of theI*
phase, the physical vortex is formed by ap vortex in the
chargon field and a vison. Bringing the system into theI*
phase, the vison remains gapped and is trapped in the a
lus. Cycling the system back into theSC phase, the vison
binds ap vortex in the chargon field, thus creating a physic
vortex in the annulus but with a random sign.

C. Effective field theory

We now provide a mapping25 of the model Hamiltonian to
a Z2 gauge theory that will make obvious the results me
tioned before. In addition, this yields an explicit derivation
the effective field theory for the fractionalized phase.

Consider the Hamiltonian Eq.~1!. To bring out the possi-
bility of a fractionalized phase, define the operatorsbcr

†

5eiucr andC̃ rr 8
†

5ei f̃rr 8 through

bcr
† 5sre

iur /2, C̃ rr 8
†

5C rr 8
† bcrbcr8 . ~11!

Here sr561 so thatucrP@0,2p). The field bcr may be
thought of as the ‘‘square root’’ of the operatorbr and to
carry a chargeqb/2, and may be interpreted as a charg
operator. The fieldC̃ rr 8 , on the other hand, is charge neutra

Clearly, the boson numberNr is conjugate toucr and
commutes withf̃ rr 8 , while nrr 8

c is conjugate tof̃ rr 8 and
commutes withucr :

@ucr ,Nr #5 i , @f̃ rr 8 ,Nr #50,

@f̃ rr 8 ,nrr 8
c

#5 i , @ucr ,nrr 8
c

#50. ~12!

We can now write the Hamiltonian in terms o
(ucr ,Nr ,f̃ rr 8 ,nrr 8

c ), rather than the original variables. How
ever, to recover the original physical Hilbert space, we ne
to impose the constraint

eip(Nr2 (
r 8Pr

n
rr 8
c

)51; ~13!

this ensures thatnr
b5(Nr2( r 8Prnrr 8

c )/2 is an integer~origi-
nal b-boson! number operator.

Making this ~exact! change of variables, for the parts o
the Hamiltonian Eq.~1! we obtain

-

s
si-
4-5
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Hw52w (
r ,r 8Pr

~bcr
† C̃ rr 8bcr81H.c.!, ~14!

Hbond52Jbond(
^rr 8&

@~C̃ rr 8
†

!21H.c.#, ~15!

H ring52K ring(
h

~C̃12
† C̃23C̃34

† C̃411H.c.!. ~16!

Note that theHbond term acts as an Ising anisotropy on t
C̃ rr 8 field. Considerable simplification is possible in the lim
of largeJbond and smallub to which we now specialize. The
potential ‘‘seen’’ by the phasef̃ rr 8 has two deep equivalen
minima f̃ rr 850 or p, which we label by s rr 8

z
5ei f̃rr 8

561. The kinetic term (nrr 8
c )2 causes tunneling between th

two wells. At each link, there are two low-energy states se
rated from all other states by a gap, leading to an effec

two-state system. In thes rr 8
z basis, we identifyeipn

rr 8
c

5s rr 8
x since this operator translatesf̃ rr 8 by p. Also, the

kinetic termuc(nrr 8
c )2 is replaced by an effective transver

field hs rr 8
x . In this largeJbond limit, the effective Hamil-

tonian becomes

Hch@bc ,s#522w (
^rr 8&

~s rr 8
z bcr

† bcr81H.c.!1U(
r

Nr
2

22K ring(
h

s12
z s23

z s34
z s41

z 2h (
^rr 8&

s rr 8
x ,

~17!

while the constraint@Eq. ~13!# is written as

~21!Nr )
r 8Pr

s rr 8
x

51 ~18!

at each siter.
This effective model is precisely the quantum problem

chargons coupled to a fluctuatingZ2 gauge field in two di-
mensions introduced and analyzed in Ref. 3. This mode
known to have a phase diagram of the kind shown in Fig
In particular, there is an insulating fractionalized pha
where the chargon fields are deconfined and there is a ga
vison ~which occurs for largeK ring , and smallw).

D. Generalization to arbitrary commensurate filling

Our results are readily generalized to arbitrary comm
surate values of the total average number of bosons per
cell. Consider a modification of the Hamiltonian where theU
term is replaced by

U~Nr2N0!2, ~19!

with N0 a constant. At such commensurate density~rational
values ofN0), insulating phases of the bosons will be po
sible. Again, in the limit of largeJbond,K ring , and U and
small ub ,uc , and w, this insulator will be fractionalized
20510
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Conventional~i.e., nonfractionalized! insulating states are o
course possible in other limits. All of these cases are rea
studied using the methods of the Sec. II C. Indeed, a nonz
N0 is trivially incorporated with no essential change leadi
to an effective Hamiltonian Eq.~17! but with the modifiedU
term above. As a special case of some interest, consideN0
51. The resulting model was previously suggested29,30as an
effective model of frustrated easy-plane spin-1/2 quant
antiferromagnets in two dimensions. A recent study by P
and Sachdev31 explicitly demonstrated the presence of t
expected two insulating phases: a bond density wave cry
with confined excitations and a fractionalized phase. T
fractionalized phase is more stable in thisN051 case due to
additional frustration coming from the Berry phase terms

III. MODELS FOR SPIN-CHARGE SEPARATION

In this section, we generalize the models of Sec. II
construct models that display spin-charge separated pha
We follow the route to spin-charge separation explored
Refs. 12 and 3 by considering models of electrons couple
superconducting phase fluctuations. These may be thoug
as models of spin-1/2 chargee electrons interacting with
spin-0 charge 2e Cooper pairs. As shown below, the ind
pendent excitations of the spin-charge-separated phase a~i!
a spin-0 chargee chargon,~ii ! a spin-1/2 charge 0 spinon
and ~iii ! a spinless charge neutralZ2 vortex—the vison.
When either a chargon or spinon is taken all the way aro
a vison, the system acquires a phase ofp. This structure is
exactly what is expected on the basis of the effective fi
theories of stable spin-charge-separated phases. Indee
shown below, it is possible to provide an explicit derivatio
of the effective field theory as the correct description of o
models in appropriate limits.

In the models presented below, the spinons are fermi
while the chargons are bosons. An important property of
spinons is that their number is not conserved. There
‘‘pairing’’ terms in the Hamiltonian describing the spino
dynamics. Different spin-charge-separated phases ob
based on the pairing symmetry of the spinons. Below we w
discuss two different pairing symmetries as illustrative e
amples.

A. Model for d-wave paired spinons

Consider the following model:

Hdwave5Ht1HD1Hw1Hbond1H ring1Hu , ~20!

Ht52t (
^rr 8&

~cra
† cr 8a1H.c.!, ~21!

HD5 (
^rr 8&

D rr 8@C rr 8
†

~cr↑cr 8↓2cr↓cr 8↑!1H.c.#, ~22!

Hu5uc (
^rr 8&

~nrr 8
c

!21U(
r

~Nr2N0!2. ~23!
4-6
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Here cra represents the destruction operator for an elect
at siter and spina. The electron is taken to have chargee.
The operatorC rr 8 may, in this model, be considered a Co
per pair living on the bonds of the lattice. In addition, the
Cooper pairs on the bonds are coupled to other Cooper
degrees of freedombr residing on the sites of the lattice. Th
corresponding boson-only termsHw , Hbond, and H ring are
the same as before. The operatorNr is defined through

Nr52nr
b1 (

r 8Pr

nrr 8
c

1(
a

cra
† cra . ~24!

Clearly, the total chargeQtot5e( rNr . The numberN0 is a
constant that sets the average charge per site. We tak
‘‘pairing amplitude’’ D rr 8 to have adx22y2 symmetry.

If U is large, the system will be in an insulating phase~for
commensurate density!. The properties of this insulator de
pend on the values of the other parameters in the Ha
tonian. In particular, for largeJbond andK ring , we argue that
the insulator will be spin charge separated. The spinons
fermionic and havedx2-y2 pairing symmetry.

We proceed as before and define the chargon fieldbcr and
the neutral fieldC̃ rr 8 through Eqs.~11!. It will also be ex-
tremely convenient to define a spinon fieldf ra through

cra5bcr f ra . ~25!

As before, the total charge associated with each siteNr is
conjugate to the chargon phaseucr and commutes with both
C̃ rr 8 and f ra :

@ucr ,Nr #5 i , @C̃ rr 8 ,Nr #5@ f ra ,Nr #50. ~26!

As expected, thef ra fields are formally charge neutral. Equ
tions ~12! also continue to hold. We further have

@ f ra ,nrr 8
c

#50, ~27!

and the equalitycra
† cra5 f ra

† f ra We may work with the set of

variables (bcr ,Nr ,C̃ rr 8 ,nrr 8
c , f ra) instead of the original se

(br ,nr
b ,C rr 8 ,nrr 8

c ,cra). As with the boson-only models, thi
requires imposing a constraint on the Hilbert space, wh
now takes the form

~21!Nr2 (
r 8Pr

n
rr 8
c

2 f r
†f r51. ~28!

Continuing with the same steps as in Sec. II, we find tha
the largeJbond limit, the Hamiltonian reduces to the follow
ing:

H5Ht1HD1Hch@bc ,s#, ~29!

Ht52t (
^rr 8&

~ f r
†f r 8bcr

† bcr81H.c.!, ~30!

HD5 (
^rr 8&

D rr 8@s rr 8
z

~ f r↑ f r 8↓2 f r↓ f r 8↑!1H.c.#. ~31!

Hch@bc ,s# is the same as before@Eq. ~17!#. The constraint
reduces to
20510
n

air
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n

~21!Nr2 f r
†f r )

r 8Pr

s rr 8
x

51. ~32!

We now argue that forN0 an integer, there is a stabl
spin-charge-separated phase. We first note that the Ha
tonian above describes aZ2 gauge theory of spinons an
chargons coupled to theZ2 gauge field. As such, for large
K ring@h, its structure is almost identical to the effectiv
theory of a spin-charge-separated phase of Ref. 3. The m
difference is in the nature of the spinon hopping term~the
termHt) which seems to couple together the spinons and
chargons. However, this is readily seen to be an unimpor
difference.

First, consider the limit of smallt,w ~but t!w) at large
repulsionU. In this limit, the chargons will lock into a Mott
insulating phase~at integerN0). At t5w50, the chargon
number will be fixed atN0 per site. Going slightly away
from this limit, we may treat bothHt and the chargon hop
ping term in perturbation theory to eliminate virtual char
fluctuations. The result will be an effective Hamiltonian d
scribing the spinon and gauge degrees of freedom. To sec
order, the generated terms take the form

2 (
^rr 8&

V̂†V̂1V̂V̂†

2U
, ~33!

with V̂5t f r
†f r 812ws rr 8

z . Expanding, we obtain two non
trivial terms: the first is simply spinon hopping coupled
theZ2 gauge field, while the second is a spinon four fermi
interaction. The effective Hamiltonian then becomes

H5Hsp,t1Hsp, int1HD1H IGT@s#, ~34!

Hsp,t52tsp(
^rr 8&

s rr 8
z

~ f r
†f r 81H.c.!, ~35!

Hsp, int52l (
^rr 8&

@~ f r
†f r 8!~ f r 8

† f r !1~ f r 8
† f r !~ f r

†f r 8!#.

~36!

Here the spinon hoppingtsp52tw/U and the spinon interac
tion strengthl5t2/(2U). Furthermore, in this largeU limit,
the constraint simply reduces to

~21! f r
†f r1N05 )

r 8Pr

s rr 8
x . ~37!

As a function ofK ring , this Hamiltonian undergoes a deco
finement transition. In particular, for largeK ring , the fluctua-
tions of the gauge field may be ignored and the spinons
free to propagate. The nature of the spinon dispersion is
ily found by considering the limitK ring5`. In this limit, we
may sets rr 8

z
511 on every bond. The quadratic part of th

spinon Hamiltonian is then formally the same as that desc
ing noninteracting quasiparticles in adx2-y2 superconductor,
and therefore describes gapless nodal spinons. The sp
interaction is a formally irrelevant perturbation at this fr
spinon theory. As we are specifically in the limit thatt!w,
we havel!tsp—thus the interaction term may be safe
4-7
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T. SENTHIL AND O. MOTRUNICH PHYSICAL REVIEW B66, 205104 ~2002!
ignored. MakingK ring finite also only leads to irrelevant pe
turbations to the free spinon theory so that the long dista
spin physics of the spin-charge-separated phase is desc
by nodal fermionic spinons.

The argument above considered the limit of largeU and
K ring but smallt andw. It is also instructive to consider th
limit t,w@U. In this limit, the chargons are expected
Bose condense leading to an ordinarydx2-y2 superconductor.
The long distance physics of this superconducting phas
readily captured by a continuum theory which keeps a c
tinuum chargon phase field and the nodal spinons. The e
tron kinetic energy termHt is then readily written as a
spinon kinetic energy modified by the usual ‘‘Doppler shif
term coupling the gradient of the phase~the superflow! to a
bilinear in the spinons. Vortices are permitted in this pha
and have flux quantized in multiples ofhc/2e. In the large
K ring limit, it is easy to see that the core energy of anhc/2e
vortex will include a contribution proportional toK ring . On
the other hand, the core energy ofhc/e vortices does not
diverge asK ring goes to infinity. Now consider decreasingw
to induce a transition to the insulator. At largeK ring , it is
clear that this will occur due to proliferation ofhc/e vortices
rather than due tohc/2e vortices. Following the general ar
guments in Refs. 3, 12, we will obtain a spin-charg
separated phase. Note that, as argued in Ref. 12, the Do
shift term coupling the chargons and spinons is formally
relevant, and one obtains a nodal liquid phase.

B. Model for s-wave paired spinons

It is straightforward to modify the model above to obta
one that stabilizes a spin-charge separated phase withs-wave
paired fermionic spinons with a spin gap. We merely mod
the pairing term above to

HD5D(
r

br
†cr↑cr↓1H.c. ~38!

Proceeding exactly as above, it is easily established tha
largeJbond,U, andK ring , such a spin-charge-separated pha
is indeed realized.

C. Model for spin-charge-separated magnetically ordered
phases

The effective field theories for spin-charge-separa
phases strongly suggest the theoretical possibility of s
charge separation coexisting with magnetic long range o
in a quantum phase. In this subsection, we show how
models above may be readily generalized to stabilize s
phases. Consider a system consisting of two layers an
Hamiltonian of the form

H5H (1)1H (2)1H (12). ~39!

Here H (1) and H (2) refer to parts of the Hamiltonian tha
depend only on the degrees of freedom residing in layer
and 2, respectively. The interactions between the two lay
are contained in the termH (12). We assume that layer 1
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consists of a square lattice of Heisenberg spins withS51/2
described by the Heisenberg antiferromagnetic model

H (1)5J1 (
^rr 8&

S1r•S1r 8 . ~40!

We assume that layer 2 is described by the Hamilton
Hdwave in Eq. ~20! above, and that the interaction betwe
the two layers is given by

H (12)5J'(
r

S1r•~c2r
† sc2r !, ~41!

with J'!J1. We assume that atJ'50, the layer 2 is in its
spin-charge-separated~and hence topologically ordered!
phase. In this limit, layer 1 will order antiferromagneticall
Turning on a weak couplingJ' will induce antiferromag-
netic ordering in layer 2, but cannot destroy the vison g
Consequently, the full model Hamiltonian will be in a pha
that has magnetic long range order but nevertheless is s
charge separated.

IV. SUMMARY

In this paper, we have discussed several concrete
amples of microscopic models in two spatial dimensions t
display quantum phases with fractionalized excitatio
These models possess no special symmetries other than
associated with global charge or spin conservation and
have only short ranged interactions, and thus confirm t
fractionalization is a theoretically acceptable possibility f
strongly interacting many particle systems in spatial dim
sions larger than 1. These models explicitly realize ear
field theoretic descriptions of fractionalization phenomen

A number of generalizations of our results are possib
Our models are easily generalized to arbitrary spatial dim
sion, and provide concrete examples of fractionalized pha
in any spatial dimensiond.1. For spin-charge-separate
phases of electronic systems, we have chosen to des
models with fermionic spinons and bosonic chargons. F
lowing the ideas in Ref. 29, these are readily modified
construct spin-charge-separated phases with fermionic c
gons and bosonic spinons~at least with easy plane spin an
isotropy!. An additional upshot of our results is the constru
tion of topologically orderedclassical3D XY models.26

Finally, we mention that quantum phases with topologi
order have also been suggested32 to be suitable states of in
terest to quantum computation. The topological struct
naturally protects the system from decoherence. This v
preliminary application19,20 may also benefit from the result
in this paper.
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