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Quantum mechanical image potential theory
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~Received 4 September 2002; published 13 November 2002!

We present a quantum-mechanical image-potential theory by determining analytically the Kohn-Sham~KS!
exchange-correlation potentialvxc(z) in the classically forbidden region of the metal-vacuum interface. The
asymptotic structure of the image potential is determined to be2(aKS,x11/4)/z, whereaKS,x depends upon
the Fermi energy and barrier height of the metal. The structure is obtained from exact expressions derived for
vxc(r ) in the asymptotic region in terms of the electron self-energy. The KS exchange potential is determined
asvx(z);2aKS,x /z, thereby confirming previous work. The correlation part of the self-energy employed is
that of the plasmon-pole approximation, and leads to the KS correlation potentialvc(z);21/(4z). The
quantum image potential derived therefore, differs from the commonly accepted classical form of21/(4z).
The import of this result to both the theory of image states and the density-functional theory is also discussed.
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It is well known that in classical physics, the image p
tential has the form of21/(4z). In this paper, we derive
analytically the quantum-mechanical image-potential str
ture in the asymptotic classically forbidden region of a me
surface. This structure is of importance in its own right a
governs intrinsic metal surface properties such as the im
potential-bound surface states. These image states ca
probed experimentally by scanning tunneling miscroscop1

inverse2,3 and two-photon photoemission,4 from which there
exists data on their binding energy and lifetime.5 In the the-
oretical interpretations of such data, the classical image
tential structure is usually assumed. We show that the co
sponding quantum-mechanical image-potential coefficien
approximately twice as large, and depends explicitly on
Wigner-Seitz radiusr s of the metal.

The quantum image potential is also of importance
Kohn-Sham~KS! theory,6 which is extensively employed in
surface electronic structure calculations. The approxim
exchange-correlation~xc! energy functionals commonly
used, lead to an asymptotic decay for the potential tha
exponential.7 Thus, the result derived here constitutes a r
orous constraint on the construction of approximate xc
ergy functionals and potentials.8,9

From a quantum-mechanical point of view, the image p
tential arises from a combination of the externalv(z), static
HartreevH(z), and KS exchange-correlationvxc(z) poten-
tials. In the classically forbidden region,v(z)1vH(z) decays
expotentially, and it isvxc(z) that makes the contribution o
O(1/z). We derivevxc(z) at a charge neutral semi-infinit
jellium metal surface to be vxc(z→`)52aKS,xc /z
52@aKS,x11/4#/z, whereaKS,x5@(b221)/2b2#@12 ln(b2

21)/p(b221)1/2#, b5AW/eF, W is the barrier height,eF

5kF
2/2 is the bulk Fermi energy,kF51/(ar s) is the Fermi

momentum, anda215(9p/4)1/3. The structure is, therefore
different from the commonly accepted conclusion th
vxc(z→`)521/(4z). With the relationship betweenb and
the Wigner-Seitz radiusr s determined through self-consiste
calculations7 within the local-density approximation~LDA !
for the xc energy, we have for metallic densities (2<r s

<6) that 0.445<aKS,xc<0.524. Forb5A2, which corre-
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sponds tor s'4.1, for which the approximater s value of the
jellium metal is stable,aKS,xc50.5. The significance of this
different result for both the density-functional theory and t
theory of surface states is discussed following the derivat

In his pioneering paper on the application of Hartree-Fo
theory to the metal surface problem~with Coulomb correla-
tions included parametrically!, Bardeen10 assumed the
asymptotic structure of each orbital-dependent potential to
the image potential21/(4z). In the original Lang-Kohn7

calculation within the LDA for the xc energy, the potenti
vxc(z) decays exponentially, consistent with the structu
of the density. Subsequently these authors11 introduced an
external test charge and obtained its potential to
2(1/4)/(z2z0), where z0 is the centroid of the induced
charge. Almbladh and von Barth12 state~without proof! that
for macroscopic systems, the exchange potentialvx(z) de-
cays exponentially, and thus the asymptotic structure
vxc(z) is a Coulomb correlation or polarization effect. The
determining this polarizationclassically, they obtain the
asymptotic structure ofvxc(z) to be 21/(4z). The calcula-
tion of Sham13 is based on Rudnick’s work14 on the self-
energy, in which approximations such as the use of the
particle Green’s function for the inhomogeneous elect
system and the infinite barrier model10 for the metal surface,
are employed. Thus,vxc(z) at large z is obtained as
21/(4z) and attributed to Coulomb correlations, while th
exchange potential decays asvx(z);1/z2 and does not con-
tribute to the leading order.

Harbola and Sahni15 were the first to show thatvx(z)
contributes tovxc(z) by calculating numerically the work
doneWx(z) in the field of the dynamic Fermi hole.16 They
next determined17 vx(z) numerically for a high density meta
via the integral equation of the optimized potential meth
~OPM!, and showed its structure to be image-potential-like
few Fermi wavelengths from the surface. In the jellium-sl
metal, calculations ofvxc(z) based on theGWapproximation
to the electron self-energySxc , Eguiluzet al.18 numerically
showed thatvx(z);21/z2 and vc(z);21/(4z) asymptoti-
cally.

The claim thatvx(z) contributes to the asymptotic struc
ture ofvxc(z) was confirmed by Solomatin and Sahni~SS!,19
©2002 The American Physical Society03-1
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who showedanalytically via the OPM integral equation tha
vx(z→`)52aKS,x /z. They also explained the work o
Eguiluz et al. by showinganalytically that for jellium-slab
metal, vx(z) must decay as21/z2. SS, however, did no
consider the asymptotic structure ofvc(z) in their work.

In this paper, we obtain a unified picture of the asympto
structure ofvxc(z) by using exact expressions forvxc(r ) in
the classically forbidden region derived from the Dys
equation. Employing the most general form of the KS orb
als, whose asymptotic structure is derived from the KS eq
tion, we show analytically thatvx(z→`)52aKS,x /z, con-
firming the work of SS. Within the same framework, w
obtain the KS correlation potentialvc(z→`)521/(4z) in
the plasmon-pole approximation.

The Dyson equation relating the Green’s functions for
real and KS systems is

G~r1 ,r2 ;v!5Gs~r1 ,r2 ;v!1E Gs~r1 ,r 8;v!S̃~r 8,r 9;v!

3G~r 9,r2 ;v!dr 8dr 9, ~1!

where S̃(r ,r 8;v)5Sxc(r ,r 8;v)2d(r2r 8)vxc(r ) and
Sxc(r ,r 8;v) is the xc part of the self-energy.Gs(r1 ,r2 ;v)
satisfies the equation of motion,@v2hs(r1)#Gs(r1 ,r2 ;v)
5d(r12r2), where hs(r )52 1

2 ,21v(r )1vH(r )1vxc(r ).
Operating byD(r1 ,r2)[hs(r1)2hs(r2) on Eq.~1! leads to

D~r1 ,r2!@G~r1 ,r2 ;v!2Gs~r1 ,r2 ;v!#

52E S̃~r1 ,r 8;v!G~r 8,r2 ;v!dr 8

1E G~r1 ,r 8;v!S̃~r 8,r2 ;v!dr 8. ~2!

By carrying through the frequency integration, one obta
from Eq. ~2!,

D~r1 ,r2!@g~r1 ,r2!2gs~r1 ,r2!#

5
1

p i E dveivhE @G~r 1,r 8;v!Sxc~r 8,r2 ;v!

2Sxc~r1 ,r 8;v!G~r 8,r2 ;v!#dr 8

1@vxc~r1!2vxc~r2!#g~r1 ,r2!, ~3!

where g(r1 ,r2)5(1/p i )*2`
` G(r1 ,r2 ;v)eivhdv, with h

501. A similar relation also holds betweengs(r1 ,r2) and
Gs(r1 ,r2 ;v) for the KS system. Since, to leading orde
g(r1 ,r2)5gs(r1 ,r2) and g(r1 ,r2)2gs(r1 ,r2)!gs(r1 ,r2)
in the classically forbidden region, one has

D~r1 ,r2!@g~r1 ,r2!2gs~r1 ,r2!#

!@vxc~r1!2vxc~r2!#gs~r1 ,r2!. ~4!

Thus, the term on the left side of Eq.~3! can be dropped. Fo
the same reason,G(r ,r 8;v)2Gs(r ,r 8;v)!Gs(r ,r 8;v) for r
in the classically forbidden region. Therefore, one has
20510
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vxc~r1!2vxc~r2!5
Gxc~r1 ,r2!

gs~r1 ,r2!
, ~5!

where Gxc(r1 ,r2)5Gx(r1 ,r2)1Gc(r1 ,r2) and Gx,c(r1 ,r2)
5Gx,c

(2)(r1 ,r2)2Gx,c
(1)(r1 ,r2), with

Gx,c
(1)~r1 ,r2!5

1

p i E eivhdvE Gs~r1 ,r 8;v!

3Sx,c~r 8,r2 ;v!dr 8 ~6!

and

Gx,c
(2)~r1 ,r2!5

1

p i E eivhdvE Sx,c~r1 ,r 8;v!

3Gs~r 8,r2 ;v!dr 8. ~7!

Apparently, from Eq.~5!, one also has

vx,c~r1!2vx,c~r2!5
Gx,c~r1 ,r2!

gs~r1 ,r2!
. ~8!

Equations~5! and ~8! are, to the leading order, exact resu
in the classically forbidden region.

We first evaluatevx(z). The exchange part of the sel
energy, Sx(r1 ,r2 ,v)52gs(r2 ,r1)/2ur12r2u, can be ex-
pressed in terms of KS orbitals via the relationgs(r1 ,r2)
52( l ,eF

f l* (r1)f l(r2). SubstitutingSx(r1 ,r2 ,v) into Eq.
~6! yields

Gx
(1)~r1 ,r2!522E (

i ,l ,eF

1

ur22r 8u

3f i~r1!f i* ~r 8!f l* ~r2!f l~r 8!dr 8. ~9!

For both jellium10 and structureless pseudopotentia20

models of a metal surface, there is translational symmetr
the plane parallel to the surface. Therefore, the KS orbi
are of the formfk(r )5A2/Veiki•xifk(z), where (ki ,xi) are
the momentum and position vectors parallel to the surfa
and (k,z) are the components perpendicular to it. Employi
the KS orbitals in Eq.~9!, one obtains

Gx
(1)~r1 ,r2!52

1

4p5E0

kF
dkE

0

kF
dk8fk~z1!fk8

* ~z2!

3E
0

AkF
2

2k2

dki E
0

AkF
2

2k82

dki8e
iki•(x1i2x2i)

3E dz8fk~z8!* fk8~z8!
e2quz22z8u

q
, ~10!

where q5ki2ki8 . It is well known12,15,19 that only k,k8
;kF region in the above integral contributes toGx

(1)(r1 ,r2)
at largez1 , z2. Therefore, we can putx1i5x2i in Eq. ~10!
and rewrite it as
3-2
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Gx
(1)~z1 ,z2!52

1

4p4E0

kF
dkE

0

kF
dk8

3fk~z1!fk8
* ~z2!G~k,k8,z2!, ~11!

where

G~k,k8,z2!52E dz8fk* ~z8!fk8~z8!E dqe2quz22z8uF~q!,

~12!

with F(q)5*dKu(l2uK1q/2u)u(l82uK2q/2u), l
5AkF

22k2, l85AkF
22k82, and K5(ki1ki8)/2. The func-

tion G(k,k8,z2) at largez2 was calculated by SS~Ref. 19!
and it was shown that the contribution toG(k,k8,z2) at large
z2 arises only from the deep bulk region of the metal. W
now confirm their result by using the most general form
the one-particle orbital at the metal surface,

fk~z!5sin@kz1d~k!#u~2z2d1!1 f k~z!@u~z1d1!

2u~z2d2!#1Dkz
aKS,xc /ke2kzu~z2d2!, ~13!

wherek5A2W2k2 and f k(z) is some finite function ofz,
whose explicit form is not assumed. In Eq.~13!, the orbital is
expressed in three regions: bulk regionz<2d1, surface re-
gion 2d1<z<d2, and asymptotic regionz>d2, with
d1 ,d2@1/kF . To derive the asymptotic term of Eq.~13!, we
have usedvxc(z→`)52aKS,xc /z, with the coefficient
aKS,xc to be determined.@It is commonly accepted that th
asymptotic decay ofvxc(z) is O(1/z)]. The phase factor
d(k) and the coefficientDk are determined by continuity o
the wave function atz52d1 andz5d2. Substitution of Eq.
~13! into Eq. ~11! leads to

Gx
(1)~z1 ,z2!52

1

z2
aKS,xgs~z1 ,z2!, ~14!

where aKS,x is defined previously and gs(z1 ,z2)
[gs(z1 ,z2 ;x1i5x2i). Similarly, Gx

(2)(z1 ,z2)
52(1/z1)aKS,xgs(z1 ,z2). Substituting forGx

(1)(z1 ,z2) and
Gx

(2)(z1 ,z2) into Eq. ~8!, one obtains

vx~z1!2vx~z2!52aKS,xF 1

z1
2

1

z2
G . ~15!

The fact thatz1 andz2 are independent yields the final resu
that vx(z)52aKS,x /z. This confirms in an independen
manner, the results of SS.

Next, we calculatevc(z). We make use of the plasmon
pole approximation for the correlation part of the self-ener
It is based on the assumption that the response of the ele
system at a metal surface can be described by a freque
dependent dielectric constant, which has a zero point atvs ,
wherevs is the surface plasmon frequency. The self-ene
under this assumption is Sc(r ,r 8;v)5(vs /2ur
2r i u)G(r ,r 8;v2vs), wherexi i8 5xi8 and zi852z8. Substi-
tuting Sc(r ,r 8;v) into Eq. ~6!, one obtains
20510
f
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Gc
(1)~r1 ,r2!5vsF (

l ,kF
(

j
2(

l
(

j ,kF
G

3E dr 8f l~r1!f l* ~r 8!f j* ~r2!f j~r 8!

3
1

2vs1e l2e j

1

ur 82r2i u
. ~16!

Operating byD(r1 ,r2) on Eq.~16! leads to

D~r1 ,r2!Gc
(1)~r1 ,r2!

5vsF (
l ,kF

(
j

2(
l

(
j ,kF

G
3E dr 8f l~r1!f l* ~r 8!f j* ~r2!f j~r 8!

3
1

ur 82r2i u
1vsGc

(1)~r1 ,r2!

1Fhigher order terms with factor¹1

1

ur12r i8u
G . ~17!

Again the term on the left side of the above equation can
dropped, sinceD(r1 ,r2)Gc

(1)(r1 ,r2)!vsGc
(1)(r1 ,r2). There-

fore,

Gc
(1)~r1 ,r2!5F (

j ,kF
(

l
2(

j
(

l ,kF
G

3E dr 8f l~r1!f l* ~r 8!f j* ~r2!f j~r 8!
1

ur 82r2i u
.

~18!

By using the closure relation( jf j* (r2)f j (r 8)5d(r22r 8),
we have

Gc
(1)~r1 ,r2!5F 1

ur12r2i u
2

1

ur22r2i u
G (

j ,kF

f j~r1!f j* ~r2!,

~19!

which yields

Gc
(1)~z1 ,z2!5

1

2 F 1

z11z2
2

1

2z2
Ggs~z1 ,z2!. ~20!

Similarly, one obtains

Gc
(2)~z1 ,z2!5

1

2 F 1

z11z2
2

1

2z1
Ggs~z1 ,z2!.

We note that no approximation for the one-particle orbi
has been made in obtaining these results. Substitu
Gc

(1)(z1 ,z2) andGc
(2)(z1 ,z2) into Eq. ~8! then leads to

vc~z1!2vc~z2!52
1

4z1
1

1

4z2
, ~21!
3-3
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which also meansvc(z)521/4z. Thus, the final result for
the asymptotic structure isvxc(z)52aKS,xc /z, with aKS,xc
5@(b221)/2b2#@12 ln(b221)/p(b221)1/2#11/4.

The result derived has implications for the construct
and interpretation of the approximate xc energy function
For example, the nonlocal weighted density approximati8

~WDA! is known to give an asymptotic structure
21/(2z), and this has been considered a shortcoming of
approximation. A consequence of modifying21,22the WDA so
that it gives a21/(4z) asymptotic structure then leads
unphysical results for the position of the image plane23 and
unreasonable surface energies.24 Our result explains this dis
crepancy and shows that the original WDA does yield
essentially exact asymptotic structure at a metal surfa
However, as derived, the decay coefficientaKS,xc(b) is not
constant but depends uponr s . This then poses a stringen
condition on approximate functionals.

The quantum image potential in the classically forbidd
region corresponds to an electron that belongs to cha
neutralN-electron metal system. For probes that involve e
ternal test charges such as ions or positrons, one obtain
classical21/(4z) image potential as there are no corre
tions due to the Pauli exclusion principle between th
charges and the electrons. However, the quantum image
tential is critical to the interpretation of data on image sta
measured by experiments such as two-photon ph
emission25 and inverse photoemission.2 The analysis of the

*Present address: Department of Physics and Astronomy, Un
sity of Missouri-Columbia, Columbia, MO 65211.
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