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Quantum mechanical image potential theory
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We present a quantum-mechanical image-potential theory by determining analytically the Kohrik&)am
exchange-correlation potential.(z) in the classically forbidden region of the metal-vacuum interface. The
asymptotic structure of the image potential is determined te-beys«+ 1/4)/z, whereaysy depends upon
the Fermi energy and barrier height of the metal. The structure is obtained from exact expressions derived for
vy(r) in the asymptotic region in terms of the electron self-energy. The KS exchange potential is determined
asvy(z) ~— agsx/z, thereby confirming previous work. The correlation part of the self-energy employed is
that of the plasmon-pole approximation, and leads to the KS correlation potegpt®l~ —1/(4z). The
guantum image potential derived therefore, differs from the commonly accepted classical ferti(df).

The import of this result to both the theory of image states and the density-functional theory is also discussed.
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It is well known that in classical physics, the image po-sponds ta ~4.1, for which the approximate, value of the
tential has the form of-1/(4z). In this paper, we derive jellium metal is stablegays4.=0.5. The significance of this
analytically the quantum-mechanical image-potential strucdifferent result for both the density-functional theory and the
ture in the asymptotic classically forbidden region of a metaltheory of surface states is discussed following the derivation.
surface. This structure is of importance in its own right and [N his pioneering paper on the application of Hartree-Fock
governs intrinsic metal surface properties such as the imagéDeory to the metal surface problemith Coulomb correla-
potential-bound surface states. These image states can Bgns included parametrically Bardeei® assumed the
probed experimentally by scanning tunneling miscroscopy, 2Symptotic structure of each orbital-dependent potential to be
inversé? and two-photon photoemissidrfrom which there ~ the image potentiat-1/(4z). In the original Lang-Kohh'
exists data on their binding energy and lifetifia the the- calculation within the LDA for the xc energy, the potential

oretical interpretations of such data, the classical image p x(2) decays exponentially, consistent with the structure

tential structure is usually assumed. We show that the correQf the density. Subsequently the_se aut.FForBtroduc.ed an
sponding quantum-mechanical image-potential coefficient isexternal test charge and obtained its potential to be
ponding 9 ge-p > (1/4)/(z—2,), wherez, is the centroid of the induced

ap_proxima.tely twice as large, and depends explicitly on th(?:harge. Almbladh and von Batthstate(without proof that
Wigner-Seitz radius of the metal.. _ _for macroscopic systems, the exchange potentjér) de-
The quantum image potential is also of importance iNcays exponentially and thus the asymptotic structure of
Kohn-Sham(Ks) .theory? which is extensively employed in "7y is 3 Coulomb correlation or polarization effect. Then
surface electronic structure calculations. The approximat@etermining this polarizatiorclassically they obtain the
exchange-correlation(xc) energy functionals commonly asymptotic structure of,(z) to be —1/(4z). The calcula-
used, lead to an asymptotic decay for the potential that i§on of Shami® is based on Rudnick’s wotk on the self-
exponential. Thus, the result derived here constitutes a rig'energy, in which approximations such as the use of the free
orous constraint on the construction of approximate xc eNparticle Green’s function for the inhomogeneous electron

ergy functionals and potentids. _ _ system and the infinite barrier modféfor the metal surface,
From gquantum-mechgnlcgl point of view, the Image po-re employed. Thusp,.(z) at large z is obtained as
tential arises from a combination of the externét), static —1/(4z) and attributed to Coulomb correlations, while the

Hartreev,,(z), and KS exchange-correlatian(z) poten-  eychange potential decays agz)~ 1/z% and does not con-
tials. In the classically forbidden region(z) +vy(z) decays tripute to the leading order.

expotentially, and it i®,.(z) that makes the contribution of Harbola and SahHi were the first to show that,(z)
O(1/z). We derivev,((2) at a charge neutral semi-infinite contributes tov,(z) by calculating numerically the work
jelium metal surface to be ch§2—>°°):2_ “Ks,xclg doneW,(z) in the field of the dynamic Fermi hol€.They

= —[akgxt 1/4]/z, whereays=[(B°—1)/28°][1-In(B°  next determinel v,(z) numerically for a high density metal
—1)Im(B~1)"?], B=\Wler, W is the barrier heighter  via the integral equation of the optimized potential method
=KkE/2 is the bulk Fermi energye=1/(ary) is the Fermi  (OPM), and showed its structure to be image-potential-like, a
momentum, ande~ *=(97/4)'3, The structure is, therefore, few Fermi wavelengths from the surface. In the jellium-slab
different from the commonly accepted conclusion thatmetal, calculations of,.(z) based on th&W approximation
vxo(z—%)=—1/(4z). With the relationship betweef and  to the electron self-energy,., Eguiluzet al® numerically
the Wigner-Seitz radius; determined through self-consistent showed thaw,(z) ~ — 1/z? andv(z) ~ — 1/(4z) asymptoti-
calculation$ within the local-density approximatiofLDA) cally.

for the xc energy, we have for metallic densities<{& The claim thatv,(z) contributes to the asymptotic struc-
<6) that 0.445% ayxg,<0.524. Forf=\/2, which corre- ture ofv.(z) was confirmed by Solomatin and Saligs,°
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who showedanalytically via the OPM integral equation that [yo(ry,ro)
vy(z—®)=—ays,/z. They also explained the work of ch(rl)_vxc(rz):(r—r)-
Eguiluz et al. by showinganalytically that for jellium-slab Yol
metal, v,(z) must decay as-1/z°. SS, however, did not \yhere Lyo(rg,r) =T (r1,r2) +Te(ry,ry) and Ty o(r1,r5)
consider the asymptotic structure wf(z) in their work. =T®(ry,r)—T8(r,,r,), with '

In this paper, we obtain a unified picture of the asymptotic ~ ¢ ' wer e

©)

structure ofv,.(z) by using exact expressions for(r) in

. 4 . . 1 :
the classically forbidden region derived from the Dyson rg(lc)(rl,rz): _f e'“’”dwf Gy(ry,r; )
equation. Employing the most general form of the KS orbit- ' ml
als, whose asymptotic structure is derived from the KS equa- X3 o(F T w)dr’ 6)

tion, we show analytically that,(z— =)= —aysy/z, con-
firming the work of SS. Within the same framework, we gng
obtain the KS correlation potential.(z—)=—1/(4z) in
the plasmon-pole approximation. 1 _
The Dyson equation relating the Green'’s functions for the Fffc)(rl,rz): —J e'“’”de 2c(ry,r’;m)
real and KS systems is &

XGg(r',ry;m)dr’. (7)
G(rl!rZ;w):GS(rlurZ;w)+f Gs(rl,r';w)i(r’,r”;w) Apparently, from Eq/(5), one also has

XG(r",ry;w)dr’dr”, (1) Ty o(Fy,r)
~ V(1) =vxc(r2) = ————.

where  S(r,r';w)=3,(r,r";0)— 8(r—r")ve(r) and Ys(r1.r2)
2.(r,r'";) is the xc part of the self-energBy(rq,r,; )
satisfies the equation of motiofiw—hg(r{)]1Gg(rq,r2; )
=58(r;—r,), where hy(r)=—3V2+u(r)+ovy(r)+o(r).
Operating byD(rq,r,)=hg(r;) —hg(r,) on Eq.(1) leads to

®

Equations(5) and(8) are, to the leading order, exact results
in the classically forbidden region.

We first evaluatev,(z). The exchange part of the self-
energy, 2,(r,ro,w)=—vy4(r,,r1)/2r;—r,|, can be ex-
pressed in terms of KS orbitals via the relatig(r,r,)

D(r1.r)[G(ri.ra;@) = Gy(r1,r2;0)] =22,<EF¢,*(r1)¢,(r2). Substituting,(r,,r,,w) into Eq.

~ 6) yield
=—J 2(rq,r"o)G(r',ry;w)dr’ (6) yields
S r®r r)=—2f !
+fG(rl,r’;w)E(r’,rz;w)dr’. (2 x V102 e [r—r]
By carrying through the frequency integration, one obtains X gi(r)ér (r') ol (rp)(r"Hdr’. (9)

from Eq. (2),
For both jellium® and structureless pseudopoterifial
D(ry,ra)[y(ra,r2)—vs(ra,r2)] models of a metal surface, there is translational symmetry in
the plane parallel to the surface. Therefore, the KS orbitals
are of the formey(r) = V2N X ¢y (2), where ;,x)) are
the momentum and position vectors parallel to the surface,
and (k,z) are the components perpendicular to it. Employing

1 _
= HJ dwe"'”ff [C(ryr;m)2y(r',ry;w)

—Zxelr1, 1 @)G(r' ;@) Idr the KS orbitals in Eq(9), one obtains
Fvxe(r1) —vxe(r2) 17(r1,r2), ©)
) 1 (ke Ke |
where y(ry,r5)=(Lmi)[”.G(ry,f,;0)e*dw, with 7 F§1)(r1,rz)=—4—sfo dkfo dk’' ¢u(21) b (22)
=0+. A similar relation also holds betweep(r,,r,) and 7
Gy(rq,rp;w) for the KS system. Since, to leading order, N J&? "
7 ik (xq) = Xg))
V(1 12)=ys(r1,12) and y(ry,r2) = v(r1,r2) < vs(r1.r2) Xfo " dkufo P dkjerira
in the classically forbidden region, one has
—qlzp—=2'|
D(rlvrz)[y(rlarZ)_’ys(rlarZ)] Xj dzl¢k(z’)*¢k’(z,)T! (10)
<[vye(r1) =vxc(r2) 1ys(ra,ro). (4)

where q=Kk;—k| . It is well known'**>*that only k,k’
Thus, the term on the left side of E®) can be dropped. For ~kg region in the above integral contributeslfél)(rl,rz)
the same reasoG(r,r’;w) — G4(r,r’; w)<Gq(r,r';w) forr at largez,, z,. Therefore, we can put; =X, in Eq. (10)
in the classically forbidden region. Therefore, one has and rewrite it as
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1) 1 (ke ke
FX (21,22):__4 dk dk
47%Jo 0

X ¢u(21) b (2)G(kK'\2),  (1D)

where

G(k,k',z2)=2f dz'¢:<z')¢kf<z'>f dge 9%2-71F(q),
(12)

with  F(gq)=SdKo(A—|K+q/2) o\ —|K—a/2]), A

= VKE—Kk? N'=\kZ—Kk'2, andK=(k+k)/2. The func-
tion G(k,k’,z,) at largez, was calculated by S&Ref. 19
and it was shown that the contribution®{(k,k’,z,) at large

z, arises only from the deep bulk region of the metal. We
now confirm their result by using the most general form of

the one-particle orbital at the metal surface,

¢(z) =siNkz+ 6(k)]6(—z—d,)+ T (z)[0(z+dy)

—0(z—d,)]+Dyz%sxc/*e™2g9(z—d,), (13
where k= 2W—k? and f,(z) is some finite function of,
whose explicit form is not assumed. In E3), the orbital is
expressed in three regions: bulk regibs —d,, surface re-
gion —d;<z=d,, and asymptotic regionz=d,, with
d;,d,>1/kg. To derive the asymptotic term of E(L3), we
have usedvy(z—>)=—agsxc./z, With the coefficient
agsxc to be determined.It is commonly accepted that the
asymptotic decay ob,.(z) is O(1/z)]. The phase factor
S8(k) and the coefficienD are determined by continuity of
the wave function az= —d; andz=d,. Substitution of Eq.
(13) into Eqg.(11) leads to

(1) 1
I(z1,20)=— Z_zaKS,x')’s(Zl,ZZ)v (14

where agsy is defined previously and ys(z;,2)
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Fgl)(rl-rz):ws )
J<ke

333

<kg ] |

XJ dr' ¢y (ry) o (r') ¢ (r) ¢y(r')

1 1 18
—osta—e -y
Operating byD(r4,r,) on Eq.(16) leads to
D(ry,r)T{(rg,r2)
0|5 3-3 3 |
I<kg ] I j<kg
Xfdr’¢|(r1)¢f(r’)¢f(rz)¢,-(r’)
- + oM (ry,rp)
r"—ra
+ | higher order terms with factoIV1| 1 . (A7)
ra—r,

Again the term on the left side of the above equation can be
dropped, sinc®(r;,r,)I'M(ry,r)<w ' M(rq,r,). There-
fore,

s z—z;kp}

j<kg 1 ]

F(cl)(rl-rz):[

Xfdf'¢|(r1)¢f(r')¢f(rz)¢j(f’)

|r/_r2i|.
(18)

By using the closure reIatioEjgz’)}*(rz)gbj(r’):5(r2—r’),
we have

= - imi (2)
=v5(21,22:X1= X)) - Similarly, I'(z1,2,) (1) B 1 1 "
= —(1/z1) s x¥s(21.,22). Substituting forl'{M(z;,2,) and Feirra)= [ri—ra  Irp=ral j<2kp Pilr (T2,
I'®(z,,2,) into Eq.(8), one obtains (19
which yields
vx(Z1) —vK(Zp) = — AKS,x Z_l - 2_2 (15 " 1 1 17
I'g (Zlyzz)zz 2 +2. 27, ¥s(21,22). (20)
The fact thatz, andz, are independent yields the final result L1717 "2 2]
that v,(z)=—agsx/z. This confirms in an independent Similarly, one obtains
manner, the results of SS. .
Next, we calculater.(z). We make use of the plasmon- @ 11
pole approximation for the correlation part of the self-energy. ¢ (Z22)= 2|z1+2, 2z4] Ys(Z1,22).

It is based on the assumption that the response of the electron o ) )
system at a metal surface can be described by a frequencx\le note that no approximation for the one-particle orbital

dependent dielectric constant, which has a zero pointsat  1as been made in obtaining these results. Substituting
wherew, is the surface plasmon frequency. The self-energy s (21,22) and'?(z1,2,) into Eq.(8) then leads to

under this  assumption is S(r,r';w)=(ws/2|r

—ri[)G(r,r';w—ws), wherexj=x| andz =—z'. Substi-
tuting 2 (r,r’;w) into Eg.(6), one obtains

4z,’ (21)

ve(Z1) —ve(Z2) =~ iz
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which also mean® .(z)= —1/4z. Thus, the final result for existing data on image states to incorporate the result derived
the asymptotic structure is,.(z) = — axsxc/Z, With axsy. IS beyond the scope of the present paper and is not consid-
=[(B2—1)/282][1— In(B2— 1)/m(B>—1)"2] + 1/4. ered here. However, the following remarks indicate how the
The result derived has implications for the constructionlong-range—Z/z structure of the image potential affects the
and interpretation of the approximate xc energy functionalsRydberg states. The basic expression for the energy spectrum
For example, the nonlocal weighted density approximitionis of the general form?®2’
(WDA) is known to give an asymptotic structure of
—1/(2z), and this has been considered a shortcoming of the 1 5 z?
approximation. A consequence of modifyfig®the WDA so E=Vot+ 3 [k~ 2/ (22
that it gives a—1/(4z) asymptotic structure then leads to
unphysical results for the position of the image pfirend  with Vg the vacuum level{=n+§,, wheren=1,23 ...,
unreasonable surface energié®ur result explains this dis- and g, represents the quantum defect. It is this expression
crepancy and shows that the original WDA does vyield thethat is usually employed for comparison with experiments.
essentially exact asymptotic structure at a metal surfac€dur new understanding &= aysyc(8) instead ofZ=1/4,
However, as derived, the decay coefficients ..(8) is not  therefore, modifies the above result. In addition to the coef-
constant but depends upaeg. This then pos'es a stringent ficientZ being different, the Rydberg series is now a function
condition on approximate functionals. of rg:E=E(B). The localization property as given by the
The quantum image potential in the classically forbiddenrelative probability function P(z)=|#y(2)|%/| $k(0)|?,
region corresponds to an electron that belongs to chargevherez=0 corresponds to the crystal surface, would also be
neutralN-electron metal system. For probes that involve ex-different for each metal and image state.
ternal test charges such as ions or positrons, one obtains the In conclusion, we have derived the structure of the
classical—1/(4z) image potential as there are no correla-quantum-mechanical image potential analytically. This struc-
tions due to the Pauli exclusion principle between thesdure depends explicitly on the parameters defining the metal
charges and the electrons. However, the quantum image pand is different from the commonly accepted classical form
tential is critical to the interpretation of data on image state®f —1/(4z). We have also discussed the consequent impli-
measured by experiments such as two-photon photaosations of this result on both the theory of image states and
emissioR® and inverse photoemissiériThe analysis of the density-functional theory.
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