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Systematic generation of finite-range atomic basis sets for linear-scaling calculations
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Basis sets of atomic orbitals are very efficient for density functional calculations but lack a systematic
variational convergence. We present a method to optimize numerical atomic orbitals variationally, using a
single parameter to control their range. The efficiency of the basis generation scheme is tested and compared
with other schemes for multiplé basis sets. The scheme is shown to be comparable in quality to other widely
used schemes albeit offering better performance for linear-scaling computations.
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The last few years have seen the development of imple- Our basis orbitals are products of spherical harmonics
mentations of the density functional thed®FT)* in which  times numerical radial functions centered on atoms. The
the computer time and memory scale linearly with the num-quantum chemistry literature typically distinguishes between
ber N of atoms in the system studiéd. These so-called core, valence, polarization, and diffuse basis orbitals. In our
orderN [O(N)] methods have increased considerably thecase, core states are eliminated by the use of norm-
need of accurate and efficient basis sets of finite range. Whilgonserving pseudopotentidfs.The explicit description of
high accuracy can be achieved with flexible linear combinasemicore electrons as valence is performed with the same
tions of atomic orbitalyLCAQ’s), high efficiency requires ‘methods described here, but using a pseudopotential for

the orbitals to be as localized as possible. Numerical atomigiqp, the semicore electrons occupy the ground state and the
orbitals (NAO’s) are well suited to linear scaling methods alence electrons occupy the first excited statéh a radial

because they are very flexible, can be strictly localized, an

few of them are needed for accurate results. Their mair) odg. In previous works we have designed a specific nu-

drawback is the lack of a systematic procedure to ensure g]encal method for polarization orbitafshut he_re we W'”.
rapid variational convergence with respect to the number ofise the same m_ethod_s for vale_nce gnd polanzatlon L
basis orbitals and to the range and shape of each orbital. Ve Will not consider diffuse orbitals in this work.

In the context of theab initio pseudopotential method for When several basis orbitals with the same center and an-
solids, an early proposal was offered by Sankey and Nigular momentum are used to expa_nd the v_alence states, we
klewski: solutions of the radial Schuinger equation for an follow the standard quantum chemical terminology and call
isolated pseudoatom confined in a spherical hard potentidhem first{ orbital, second orbital, etc., even though there
box? Subsequent works proposed different recipes to findire nog exponent coefficients in our orbitals. We use a dif-
multiple-f and polarization orbital®:” In a recent worl, a  ferent method to generate the figsbrbitals than that for the
method was proposed to optimize the shape of the orbitals bjubsequent- orbitals. For the firs¢ orbitals we solve the
substituting the hard box by a soft confining sphericalradial Schrdinger equation for a potential given by the sum
potential®~*! This confining potential, which may be differ- of the full (screenefinonlocal pseudopotential correspond-
ent for each atomic orbital, depends on a series of parametei3g to the angular momentum of the orbital, and a confining
which determine the orbital’s shape. The parameters are the@ptential of the formV(r)=Veexg —(rc—r)/(r—r)(rc—r)
adjusted to minimize the energy of a prototype molecule otwhich depends on three parameteys V,, and the cutoff
solid. We will refer to this as “variational” basis optimiza- radiusr.. These parameters are different for each basis or-
tion. If the confining potentials diverge at given cutoff radii, bital and define its range as well as its shape by allowing a
the orbitals become strictly zero beyond those radii. How-depression of the tail. Other confinement schemes have been
ever, if the cutoff radii themselves are included as variationapropose®°and are compared with this one in Ref. 8. To
parameters, without constraints to impose a small range, tngenerate the second and subsequentbitals we will use
resulting orbitals tend to become very extended, with longand compare two possible methods. The first one is based on
tails that generally have no particular significance for thethe concept of chemical hardneSH) and defines the dif-
condensed system, but which limit severely their efficiencyferent{ orbitals as the derivatives of the ground-state wave
In the present work, we propose a simple procedure to confunction of the potentiafpseudo plus confiningvith respect
press the orbital radii by introducing a fictitious pressure.to the charge of the atomin this scheme, there are no in-
This allows us to balance efficiency versus accuracy in alependent parameters to fix the shape of the higher-than-
continuous and well controlled way. In addition, we evaluatefirst-{ orbitals.
the variational completeness of the resulting orbital shapes, The second scheme to generate higherbitals was in-
by adding additional degrees of freedom, and by exploringspired by the “split valence(SV) method which is standard
alternative generation procedures and comparing their relan quantum chemistry, where orbitals are given by fixed lin-
tive merits. ear combination of GaussiafsThe second: (or triple etg
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FIG. 2. CPU time which depends on the cutoff radii of the basis
orbitals (except diagonalizationof a calculation of bulk Si(16
atoms per cellversus the fictitious pressuReused to compress the
cutoff radii of the DZP basis orbitals.

Rc (Bohr)

5L rameters shown in Fig. 1 and, to a lesser extent, in the re-

4f sulting magnitudes of Fig. 3.

3l Figure 1, shows the cutoff radii of the firgtorbitals of

oL T , Si, Au, and Pb as a function of the pressure parantetéhe

0 02 04 06 08 1 12 14 basis optimizations were performed in their corresponding
P (GPa) bulk solids, with a so-called doublgpolarized(DZP) basis

set: in Si there are doublg-s and p shells and singl€-d
orbitals; in Au there are doublés andd, and singleZ p; in
Pb the 51 semicore electrons are included in the valence as
double{, as are thes and p shells, while the @ have a
orbitals are obtained by “splitting” the slowest-decaying single<. The second: orbitals were generated with the SV
Gaussiafs) to act as independent basis orlfisal The SV scheme. Polarization orbitals are obtained in the same man-
was adapted to numerical atomic orbitals by constructing @er as the other atomic orbitals but they are generally less
double{ orbital as one that reproduces the tail of the fifst- relevant energetically and therefore “softer” and more sen-
from a matching radius outwards, and runs smoothlysitive to small changes in other parameters. This is particu-
inwards®~8 Higher< orbitals are obtained repeating the pro- larly apparent for the Pbd orbitals.
cedure at different radii. To give an idea of how the orbital radii affect the basis
An optimization of a basis set to minimize the energy asefficiency, Fig. 2 shows the CPU time which depends on the
described above can give orbitals with too long cutoff radii
r.. In order to reduce their range in a systematic way we TABLE I. Comparison of structural properties of different sys-
introduce a paramet& with dimensions of pressuféhat we  tems as a function of the pressure paramédin GPa used to
will call “pressure” henceforth and minimize the “en- generate their basis sets. Lattice parameaarsA, bulk moduli B
thalpy” E+ PV, whereE is the total energy of some refer- in GPa and cohesive energi€s in eV. The bulk moduli were
ence system and= (4W/3)2MrgM is the sum of the volumes obtained by fitting the total energy with a Murnaghan equation of

. . state(Ref. 19. A double{ plus polarization basis was used in all
of the _ba5|s_ orbitalsp,, . The_ convergence of calculated cases. In Pb semicore states where also used.
properties with respect to orbital range is thus controlled by
a single parameter. We emphasize tRas a fictitious pres-

sure, without any physical meaning, other than reducing the

FIG. 1. Cutoff radii of the first¢ basis orbitals of Si, Au, and Pb,
as a function of the fictitious pressure paraméter

Exp PW P=0 02 04 08 12 14

computational effort. Si a 543 538 540 538 538 537 536 5.35
The reference system for whi&h PV is minimized is a B 99 96 97 98 100 103 107 108
molecule or solid in which the atoms considered have a E. 463 540 536 530 525 512 499 494

prominent role, and which is small enough to allow many

self-consistent calculations with different basis parametersﬁ?‘u a 408 405 406 406 4.05 402 402 4.00
The derivatives ofE with respect to those parameters are B 195 198 206 210 211 220 239 242
generally not available, and we use the downhill-simplex Ec 413 436 404 3.96 395 3.80 377 3.66

method* to minimize it. The basis orbitals depend on the Pb 495 488 490 487 483 479 481 480

. . . a
dgsprlbed p?ramjtgrs in a nonllne%(/Wﬁy, anfd sedv?;alt I&gal B 43 54 51 60 64 71 70 75
minima are found in many cases. We have found that tnis ¢ =, oy 377 368 363 348 337 332 3.29
occurs when different combinations of parameters produce
nearly the same optimal shape. Since our parameters have MyO a 4.21 4.10 4.11 4.10 4.10 4.11 4.09 4.06

special physical significance, any low local minimum is in
principle equally acceptable, even though the multiple
minima produce a somewhat unpleasant “noise” in the pa

us]

152 164 182 205 209 205 214 230
10.30 12.39 12.18 12.10 12.00 11.86 11.92 11.66
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FIG. 4. Optimal value of the split-norm parameter, which deter-
mines the inner matching radius of the secdndebitals of silicon
generated with the split-valence scheme.

The relative merits of the SV and CH methods to generate
the second- orbitals are considered in Fig. 3. For the SV
case, two curves are plotted. In one of them, the inner match-
ing radius of the second-orbitals is optimized for every
0 0:2 : 0i4 : 0I,6 : 018 12 14 value of.P. Ir) th.e other one, it is determined py a st{andard

P (GPa) automatic crlterloﬁ, by Wh_lch the norm of the f|rsg-9rb|tal _
beyond the matching radius has to be equal to a given “split-

FIG. 3. Equilibrium lattice constang], bulk modulus B), and ~ norm” parameter value of 0.15. Figure 4 shows the opti-
cohesive energyEc) of bulk silicon as a function of the fictitious mized value of this parameter, which does not differ much
pressure paramet@:. A double{ plus polarization basis was used. from the standard value. As a consequence, it is not surpris-
The second- orbitals were generated using the chemical-hardnessng that Fig. 3 shows a similar quality of the results using the
(CH) and split-valence(SV) schemes. For the latter, results are optimized and standard values. The quality is also similar for
shown for orbitals whose inner matching radii were generated witithe CH method, which does not depend on any variational
a constant split-norm parameter of 0.15 or optimized variationallyparameter. Again, this is not surprising, in view of the simi-
for each value ofP (which resulted in the split-norm parameters larity of the resulting shapes of the secahdrbitals, which
shown in Fig. 4. are compared in Fig. 5 to our SV orbitals and to a typical
cutoff radii of the orbitalsexcept diagonalizatiorof a cal-  duantum-chemistry Gaussian-based polarization orbital.
culation of bulk silicon, as a function of the press@resed e may then conclude that the different generating schemes
to generate the basis. The accuracy of the results, as ti$ Second¢ orbitals compared here yield basis sets of similar
orbitals contract, is addressed in Table I, which shows th&uality. Our SV scheme, however, offers higher efficiency
variation in lattice parameter, bulk modulus, and cohesivdor linear-scaling computations since the range of the higher-
energy withP. The results were obtained using theEsTa  { orbitals may be restricted to their inner matching radius,
method’*®with a well converged real-space integration grid. without any reduction of the variational freeddm.

They are compared to experiment and to well-converged Finally, we explore to what extent the orbital shapes gen-
plane wave calculations, performed with a specific progranerated with the described schemes differ from optimal. To
designed to use exactly the same pseudopotéftifllex-  this end, we have added spherical Bessel functions to our
change correlation functiondl,and k-grid sampling® used  generated orbitals, not as additional basis functions but to

in SIESTA The cohesive energy is calculated as the differencehange the shape of the orbitals in a DZP basis, introducing
between the bulk total energy per atdmith the chosen

basis set and an atomic calculation in which the radial 08 . .
Schralinger equation is solved numerically, without any con- 06-
straint to the shape or range of the orbitals. With this defini- '"’

4,6_ | s | s 1]

— 1z Huzinaga
-— 2z Huzinaga

. . X e 0.4
tion the cohesive energy carries the variational character of E 02
the total energy(higher binding energies for better basis B
sets. =00
It can be seen that a moderate pressure 6f2 GPa pro- -0~21 | e
duces a drastic reduction of the orbital radii, with a corre- 047 7 . 1
spondingly large reduction of CPU time, without a significa- Y 2 4(B . 6 8 10
tive change in the resultscompared, say, to the initial r (Bohr)
difference between th®=0 and PW resulfs Larger pres- FIG. 5. Radial shape of the first and secang orbitals of Si.

sures produce additional, though more moderate gains in bahe second: orbital was generated using the chemical-hardness
sis efficiency, but at the expense of considerably large(CH) and split-valencgSV) approaches described in the text. In
changes in the results. That small pressure of 0.2 GPa seeragdition, we show the secorndGaussian orbital of Huzinag&ef.

to be a threshold up to which only the very low, not signifi- 13). The second: orbitals have been orthogonalized to the fifst-
cant, tails are removed. one to facilitate the comparison.
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TABLE II. Test of the quality of the DZP optimized basis set of moderate, and considerably smaller than that obtained by
silicon. Second: orbitals were generated with the split-valence introducing additional basis orbitals. This is true even in the
method. The energieAE are per atom and relative to the con- case of the highef-orbitals, whose shape depends on just
verged plane wave result. Thestands for the addition of Aan-  one parameter. It can be thus concluded that the radial shapes
gular momentum shell. The 2 in the DZ2P denotes the addition of &f the basis orbitals are indeed well optimized by the varia-
second; to thed polarization orbital. The nonoptimized basis was tional freedom contained in the confining potential, and by
obtained with a hard potentigRef. 4 (the radii are as long as in tphe physically motivated schemes used to generate the
the DZP optimized cageand a standard split-norm parameter of higher< orbitals.

0.15. A zero pressure paramefewas used in all the cases. In conclusion, we have developed a systematic method to
construct accurate and efficient atomic basis orbitals for

Basis size AE (meV) linear-scaling DFT calculations. The range of the basis sets is
DZP not optimized 230 controlled by a single parameter, that allows to monitor their
DZP optimized 40 convergence with range in a simple and systematic way. By
DZP 4 Bessels in first 33 comparing different generation schemes, and by studying the
DZP 4 Bessels in secongl 33 effect of additional variational freedom, we have found that
DZP+F 22 our method produces nearly optimal shapes in multiple-
DZ2P+E 16 polarized basis sets.
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