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Systematic generation of finite-range atomic basis sets for linear-scaling calculations
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Basis sets of atomic orbitals are very efficient for density functional calculations but lack a systematic
variational convergence. We present a method to optimize numerical atomic orbitals variationally, using a
single parameter to control their range. The efficiency of the basis generation scheme is tested and compared
with other schemes for multiplez basis sets. The scheme is shown to be comparable in quality to other widely
used schemes albeit offering better performance for linear-scaling computations.
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The last few years have seen the development of im
mentations of the density functional theory~DFT!1 in which
the computer time and memory scale linearly with the nu
ber N of atoms in the system studied.2,3 These so-called
order-N @O(N)# methods have increased considerably
need of accurate and efficient basis sets of finite range. W
high accuracy can be achieved with flexible linear combi
tions of atomic orbitals~LCAO’s!, high efficiency requires
the orbitals to be as localized as possible. Numerical ato
orbitals ~NAO’s! are well suited to linear scaling method
because they are very flexible, can be strictly localized,
few of them are needed for accurate results. Their m
drawback is the lack of a systematic procedure to ensu
rapid variational convergence with respect to the numbe
basis orbitals and to the range and shape of each orbita

In the context of theab initio pseudopotential method fo
solids, an early proposal was offered by Sankey and
klewski: solutions of the radial Schro¨dinger equation for an
isolated pseudoatom confined in a spherical hard pote
box.4 Subsequent works proposed different recipes to fi
multiple-z and polarization orbitals.5–7 In a recent work,8 a
method was proposed to optimize the shape of the orbital
substituting the hard box by a soft confining spheri
potential.8–11 This confining potential, which may be differ
ent for each atomic orbital, depends on a series of parame
which determine the orbital’s shape. The parameters are
adjusted to minimize the energy of a prototype molecule
solid. We will refer to this as ‘‘variational’’ basis optimiza
tion. If the confining potentials diverge at given cutoff rad
the orbitals become strictly zero beyond those radii. Ho
ever, if the cutoff radii themselves are included as variatio
parameters, without constraints to impose a small range
resulting orbitals tend to become very extended, with lo
tails that generally have no particular significance for
condensed system, but which limit severely their efficien
In the present work, we propose a simple procedure to c
press the orbital radii by introducing a fictitious pressu
This allows us to balance efficiency versus accuracy i
continuous and well controlled way. In addition, we evalu
the variational completeness of the resulting orbital shap
by adding additional degrees of freedom, and by explor
alternative generation procedures and comparing their r
tive merits.
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Our basis orbitals are products of spherical harmon
times numerical radial functions centered on atoms. T
quantum chemistry literature typically distinguishes betwe
core, valence, polarization, and diffuse basis orbitals. In
case, core states are eliminated by the use of no
conserving pseudopotentials.12 The explicit description of
semicore electrons as valence is performed with the s
methods described here, but using a pseudopotential
which the semicore electrons occupy the ground state and
valence electrons occupy the first excited state~with a radial
node!. In previous works we have designed a specific n
merical method for polarization orbitals,7 but here we will
use the same methods for valence and polarization orbi
We will not consider diffuse orbitals in this work.

When several basis orbitals with the same center and
gular momentum are used to expand the valence states
follow the standard quantum chemical terminology and c
them first-z orbital, second-z orbital, etc., even though ther
are noz exponent coefficients in our orbitals. We use a d
ferent method to generate the first-z orbitals than that for the
subsequent-z orbitals. For the first-z orbitals we solve the
radial Schro¨dinger equation for a potential given by the su
of the full ~screened! nonlocal pseudopotential correspon
ing to the angular momentum of the orbital, and a confin
potential of the formV(r )5V0exp@2(rc2ri)/(r2ri)#/(rc2r)
which depends on three parametersr i , V0, and the cutoff
radiusr c . These parameters are different for each basis
bital and define its range as well as its shape by allowin
depression of the tail. Other confinement schemes have b
proposed4,9,10 and are compared with this one in Ref. 8. T
generate the second and subsequentz orbitals we will use
and compare two possible methods. The first one is base
the concept of chemical hardness~CH! and defines the dif-
ferentz orbitals as the derivatives of the ground-state wa
function of the potential~pseudo plus confining! with respect
to the charge of the atom.5 In this scheme, there are no in
dependent parameters to fix the shape of the higher-th
first-z orbitals.

The second scheme to generate higher-z orbitals was in-
spired by the ‘‘split valence’’~SV! method which is standard
in quantum chemistry, where orbitals are given by fixed l
ear combination of Gaussians.13 The second-z ~or triple etc!
©2002 The American Physical Society01-1
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orbitals are obtained by ‘‘splitting’’ the slowest-decayin
Gaussian~s! to act as independent basis orbital~s!. The SV
was adapted to numerical atomic orbitals by constructin
double-z orbital as one that reproduces the tail of the firsz
from a matching radius outwards, and runs smoot
inwards.6–8 Higher-z orbitals are obtained repeating the pr
cedure at different radii.

An optimization of a basis set to minimize the energy
described above can give orbitals with too long cutoff ra
r c . In order to reduce their range in a systematic way
introduce a parameterP with dimensions of pressure~that we
will call ‘‘pressure’’ henceforth! and minimize the ‘‘en-
thalpy’’ E1PV, whereE is the total energy of some refe
ence system andV5(4p/3)(mr cm

3 is the sum of the volumes
of the basis orbitalsfm . The convergence of calculate
properties with respect to orbital range is thus controlled
a single parameter. We emphasize thatP is a fictitious pres-
sure, without any physical meaning, other than reducing
computational effort.

The reference system for whichE1PV is minimized is a
molecule or solid in which the atoms considered have
prominent role, and which is small enough to allow ma
self-consistent calculations with different basis paramet
The derivatives ofE with respect to those parameters a
generally not available, and we use the downhill-simp
method14 to minimize it. The basis orbitals depend on t
described parameters in a nonlinear way, and several l
minima are found in many cases. We have found that
occurs when different combinations of parameters prod
nearly the same optimal shape. Since our parameters hav
special physical significance, any low local minimum is
principle equally acceptable, even though the multi
minima produce a somewhat unpleasant ‘‘noise’’ in the

FIG. 1. Cutoff radii of the first-z basis orbitals of Si, Au, and Pb
as a function of the fictitious pressure parameterP.
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rameters shown in Fig. 1 and, to a lesser extent, in the
sulting magnitudes of Fig. 3.

Figure 1, shows the cutoff radii of the first-z orbitals of
Si, Au, and Pb as a function of the pressure parameterP. The
basis optimizations were performed in their correspond
bulk solids, with a so-called double-z polarized~DZP! basis
set: in Si there are double-z s and p shells and single-z d
orbitals; in Au there are double-z s andd, and single-z p; in
Pb the 5d semicore electrons are included in the valence
double-z, as are thes and p shells, while the 6d have a
single-z. The second-z orbitals were generated with the S
scheme. Polarization orbitals are obtained in the same m
ner as the other atomic orbitals but they are generally
relevant energetically and therefore ‘‘softer’’ and more se
sitive to small changes in other parameters. This is part
larly apparent for the Pb 6d orbitals.

To give an idea of how the orbital radii affect the bas
efficiency, Fig. 2 shows the CPU time which depends on

TABLE I. Comparison of structural properties of different sy
tems as a function of the pressure parameterP ~in GPa! used to
generate their basis sets. Lattice parametersa in Å, bulk moduli B
in GPa and cohesive energiesEc in eV. The bulk moduli were
obtained by fitting the total energy with a Murnaghan equation
state~Ref. 19!. A double-z plus polarization basis was used in a
cases. In Pb semicore states where also used.

Exp PW P50 0.2 0.4 0.8 1.2 1.4

Si a 5.43 5.38 5.40 5.38 5.38 5.37 5.36 5.3
B 99 96 97 98 100 103 107 108
Ec 4.63 5.40 5.36 5.30 5.25 5.12 4.99 4.9

Au a 4.08 4.05 4.06 4.06 4.05 4.02 4.02 4.0
B 195 198 206 210 211 220 239 242
Ec 4.13 4.36 4.04 3.96 3.95 3.80 3.77 3.6

Pb a 4.95 4.88 4.90 4.87 4.83 4.79 4.81 4.8
B 43 54 54 60 64 71 70 75
Ec 2.04 3.77 3.68 3.63 3.48 3.37 3.32 3.2

MgO a 4.21 4.10 4.11 4.10 4.10 4.11 4.09 4.0
B 152 164 182 205 209 205 214 230
Ec 10.30 12.39 12.18 12.10 12.00 11.86 11.92 11.

FIG. 2. CPU time which depends on the cutoff radii of the ba
orbitals ~except diagonalization! of a calculation of bulk Si~16
atoms per cell! versus the fictitious pressureP used to compress the
cutoff radii of the DZP basis orbitals.
1-2
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cutoff radii of the orbitals~except diagonalization! of a cal-
culation of bulk silicon, as a function of the pressureP used
to generate the basis. The accuracy of the results, as
orbitals contract, is addressed in Table I, which shows
variation in lattice parameter, bulk modulus, and cohes
energy withP. The results were obtained using theSIESTA
method,7,15with a well converged real-space integration gr
They are compared to experiment and to well-conver
plane wave calculations, performed with a specific progr
designed to use exactly the same pseudopotential,12,16 ex-
change correlation functional,17 and k-grid sampling18 used
in SIESTA. The cohesive energy is calculated as the differe
between the bulk total energy per atom~with the chosen
basis set! and an atomic calculation in which the radi
Schrödinger equation is solved numerically, without any co
straint to the shape or range of the orbitals. With this defi
tion the cohesive energy carries the variational characte
the total energy~higher binding energies for better bas
sets!.

It can be seen that a moderate pressure of;0.2 GPa pro-
duces a drastic reduction of the orbital radii, with a cor
spondingly large reduction of CPU time, without a signific
tive change in the results~compared, say, to the initia
difference between theP50 and PW results!. Larger pres-
sures produce additional, though more moderate gains in
sis efficiency, but at the expense of considerably lar
changes in the results. That small pressure of 0.2 GPa se
to be a threshold up to which only the very low, not signi
cant, tails are removed.

FIG. 3. Equilibrium lattice constant (a), bulk modulus (B), and
cohesive energy~Ec! of bulk silicon as a function of the fictitious
pressure parameterP. A double-z plus polarization basis was use
The second-z orbitals were generated using the chemical-hardn
~CH! and split-valence~SV! schemes. For the latter, results a
shown for orbitals whose inner matching radii were generated w
a constant split-norm parameter of 0.15 or optimized variation
for each value ofP ~which resulted in the split-norm paramete
shown in Fig. 4!.
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The relative merits of the SV and CH methods to gener
the second-z orbitals are considered in Fig. 3. For the S
case, two curves are plotted. In one of them, the inner ma
ing radius of the second-z orbitals is optimized for every
value of P. In the other one, it is determined by a standa
automatic criterion,7 by which the norm of the first-z orbital
beyond the matching radius has to be equal to a given ‘‘sp
norm’’ parameter value of 0.15. Figure 4 shows the op
mized value of this parameter, which does not differ mu
from the standard value. As a consequence, it is not surp
ing that Fig. 3 shows a similar quality of the results using t
optimized and standard values. The quality is also similar
the CH method, which does not depend on any variatio
parameter. Again, this is not surprising, in view of the sim
larity of the resulting shapes of the second-z orbitals, which
are compared in Fig. 5 to our SV orbitals and to a typic
quantum-chemistry Gaussian-based polarization orbita13

We may then conclude that the different generating sche
of second-z orbitals compared here yield basis sets of simi
quality. Our SV scheme, however, offers higher efficien
for linear-scaling computations since the range of the high
z orbitals may be restricted to their inner matching radi
without any reduction of the variational freedom.7

Finally, we explore to what extent the orbital shapes g
erated with the described schemes differ from optimal.
this end, we have added spherical Bessel functions to
generated orbitals, not as additional basis functions bu
change the shape of the orbitals in a DZP basis, introduc

s

h
y

FIG. 4. Optimal value of the split-norm parameter, which det
mines the inner matching radius of the second-z orbitals of silicon
generated with the split-valence scheme.

FIG. 5. Radial shape of the first and secondz p orbitals of Si.
The second-z orbital was generated using the chemical-hardn
~CH! and split-valence~SV! approaches described in the text.
addition, we show the second-z Gaussian orbital of Huzinaga~Ref.
13!. The second-z orbitals have been orthogonalized to the firstz
one to facilitate the comparison.
1-3
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the coefficients of the linear combination as the parame
to be optimized. Table II shows the effect in the total ene
for bulk silicon as subsequent Bessel functions are adde
optimize different orbitals. The energy reduction is qu

TABLE II. Test of the quality of the DZP optimized basis set
silicon. Second-z orbitals were generated with the split-valen
method. The energiesDE are per atom and relative to the co
verged plane wave result. TheF stands for the addition of af an-
gular momentum shell. The 2 in the DZ2P denotes the addition
secondz to thed polarization orbital. The nonoptimized basis w
obtained with a hard potential~Ref. 4! ~the radii are as long as in
the DZP optimized case! and a standard split-norm parameter
0.15. A zero pressure parameterP was used in all the cases.

Basis size DE ~meV!

DZP not optimized 230
DZP optimized 40
DZP 4 Bessels in firstz 33
DZP 4 Bessels in secondz 33
DZP1F 22
DZ2P1F 16
ys

.M

jo

h
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moderate, and considerably smaller than that obtained
introducing additional basis orbitals. This is true even in t
case of the higher-z orbitals, whose shape depends on ju
one parameter. It can be thus concluded that the radial sh
of the basis orbitals are indeed well optimized by the var
tional freedom contained in the confining potential, and
the physically motivated schemes used to generate
higher-z orbitals.

In conclusion, we have developed a systematic metho
construct accurate and efficient atomic basis orbitals
linear-scaling DFT calculations. The range of the basis se
controlled by a single parameter, that allows to monitor th
convergence with range in a simple and systematic way.
comparing different generation schemes, and by studying
effect of additional variational freedom, we have found th
our method produces nearly optimal shapes in multiplz
polarized basis sets.
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