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Capture numbers are used in models of nucleation and growth on surfaces, and have been widely applied to
predict nucleation densities and other quantities via rate equations. In conventional nucleation theory, much
effort has historically been expended on obtaining good expressions for capture numbers in the diffusion-
limited case. However, recent experiments and calculations have shown that weak repulsive interactions be-
tween adsorbate atoms on relatively smo@ly., close-packed metaurfaces may shift nucleation kinetics
towards the attachment-limited case. This paper clarifies the distinctions between diffusion- and attachment-
limited kinetics, and emphasizes the increased importance of the transient nucleation regime in the latter case,
which is due to a combination of delayed nucleation and reduced capture. The consequences of long-range
repulsive adsorbate interactions for the form and values of the capture numbers are explored, and the effects of
attachment-limited kinetics in relation to low-temperature deposition and annealing experiments are demon-
strated. An approximate interpolation scheme between attachment- and diffusion-limited kinetics is proposed,
and tested against kinetic Monte Carlo simulations. Using this scheme to interpret recent scanning-tunneling
microscopy results on Cu/ClLl), lower and upper bounds on the maximum adatom-adatom potential repul-
sive energy of 10 and 14 meV are deduced.
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I. INTRODUCTION ventional (sometimes called classi¢ahucleation theory
(CNT), by extending the transient nucleation regime to

The processes involved in nucleation and growth on surhigher dose. New formulas are given for the capture numbers
faces have received widespread attention over the last thirtgn the assumption of radial symmetry. These expressions are
years. It is now well known that individual atomic events cantested against kinetic Monte CaflkMC) simulations. As a
strongly influence and even dominate the final micro- orresult, the maximum repulsive interaction energies can be
nanostructure of epitaxial thin filmls.Scanning-tunneling reliably extracted from recent experiments on close-packed
microscopy (STM) and field-ion microscopy* (FIM) ex-  metal surfaces; here we concentrate on C(ICD, but the
periments are able to follow such individual events. The datamethods developed may also be applied to other systems.
obtained on uniform(single-crystal substrates can be ana-
lyzed in detail to obtain diffusion mechanisms, and among
other quantities, energies for adsorptiok,), diffusion
(Eq), and binding E,) of adatoms.

Rate equations have been used successfully to analyze Capture numbers for particular processes express the
data, notably of the nucleation density, as a function of probability of the corresponding reaction, and need to be
experimental variables, usually the fli (or equivalently, evaluated self-consistently in order to obtain quantitative so-
deposition rateR) and the substrate temperatdreThe reac-  |utions to models. The need for self-consistency arises be-
tion rates in each equation, e.g., for the single-adatom dercause adatom-adatom, adatom-cluster, and cluster-cluster
sity n;, are of the form 2,Dn? (for the rate of adatoms correlations, all forms of self-organization, appear as growth
forming pairg or o,D1n,n, (for the rate of adatoms joining proceeds; this necessity was recognized in early pdpers
stable clusteps In these termsr; and o, arecapture num- and continues to attract much interest.
bers the subject of this paper, ardl; is the single-adatom Two diffusion solutions were found almost thirty years
diffusion coefficient. agol? the first being the uniform depletion approximation;

Throughout the whole field of materials science, there ardere the other clusters that deplete the adatom concentration
typically two extreme types of kinetics: diffusion-limited and around a given cluster are uniformly distributed. The other
attachment-limited. The purpose of the present paper is tosolution, where the clusters were placed regularly on a grid,
examine capture numbers used for nucleation and growth oieads to the lattice approximatidhln time, it was realized
surfaces, and to derive quantitative expressions for both limthat the uniform depletion solution was in fact a mean-field
its and interpolation schemes for intermediate cases. In pagpproximation, analogous to such approximations used in
ticular, several recent STM experiments at low temperaturemany other fields; this label has often been used since.
on smooth metal surfaces and associatedab initio The self-consistent label was introduced more recently, in
calculation&® have highlighted attachment-limited behavior, an important paper that compared KMC simulations with
due to the presence of repulsive barriers between adatomste equation$® In this paper, which discussed the case
Here it shown that these effects modify the results of conwhen adatom pairs are always statile critical nucleus size

Il. MEAN-FIELD SELF-CONSISTENT CAPTURE
NUMBERS
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i=1), the comparison was excellent for the monomer andCNT adatom and nucleation densities follow from the inter-
nucleation densities. In particular, as we emphasize belowlay of Eqgs.(2) and (4), or equivalently, the general forms
the mean-field self-consistent capture numbers are the sani®) and(3).

as those produced by the uniform depletion approximation The above nucleation equations need to be coupled with
for this restrictive case, when no complicating facttada-  some form of cluster growth rate equatige.g., uniform
tom evaporation, small cluster instability>1), or cluster growth of circular two-dimensional (2D) or 3D
diffusion] are considered. As shown earl?@ran exact solu- is|and§'lovl4'1ﬁ or capture area argument, such as those based
tion for the capture number is available when evaporation i$n the size distribution of Voronoi polyhedra around indi-
dominant. Moreover, it was also shown that intermediate;idual islands:**° The common feature of these equations is
cases could be treated by defining the adatom lifetime that the calculation of each capture number involves the so-
where the various components ofdd inversely. This idea |ution of a diffusion equation, at the given densities
of competitive capture'* was then developed quantitatively (n, n; n,), which also contains the various capture numbers
to allow for individual processes in the equation for the ada+, ¢, , ando, in the argument of the solution. These cap-

tom densityn;, namely, ture number equations can then be solved self-consistently as
functions ofn, n;, andn, by numerical iteration.
dny/dt=F(1-2)—n,/r, Given this intrinsic complexity, it is natural to look for the

simplest formulation first. For 2D problems on a substrate a
radial diffusion equation is constructed as a functionr of
neglecting any azimuthdkp) variables, and the flux into an
individual island is calculated to obtain the capture numbers.
This, of course, may limit the physics, and it is known, es-
pecially from FIM studies on individual crystalline
substrates:* that such¢ dependencies do exist and can be
strong. However, for the case of Cu/Ql) to be considered

in Sec. V, azimuthal isotropy is a very good first approxima-
tion, as shown by isotropic nearest-neighbor distance
histograms.

There is some possibility of confusion in the notatieh:
cannot be used as an angle here, because it denotes the dose.
When evaporation is unimportand, and Z are often used
interchangeably, as both are measured in monolajéts.

But here we maintain the distinction, because the difference

Comparing Eq(2) with Eq. (10) of Ref. 13, we see that they (0—2) can be .|mportant; for example, for 2D ML-thick is-
are the same, since the stable cluster density, is the sum lands and =1, it represents the coverage of the sub;tratg by
of o¢n, for all sizess=2. We have included in Eq2) the adatt_)ms. For 3D islands _of a given shape the rel_at|onsh|p is
main direct impingementcalled direct capture in Ref. 13 Specific, but more complicatéd.We also have writterD,
term, resulting from deposition onto stable clusters, but wdor the adatom diffusion coefficient, in contrast to the more
have omitted the other one, resulting from deposition ontd'Sual D; this is because we wish to define more than one
monomers, for simplicity. Both are generally unimportant attyP€ of diffusion coefficient.

low dose[see, e.g., Fig. (b) of Ref. 2. For a discussion of The Bessel function form of the capture numbers for the

with

7'71=T;1+T;1+7'C_1+.... (1)
Here 7, is the adsorption lifetime, and, the nucleation life-
time, and 7, the lifetime due to capture of monomers by
stable clustersZ is the coverage of the substrate (stable
and unstableclusters, not including monomers. The advan-
tage of this formulation is that other procesges., in Eq.
(1)] can be added as required in the same fashion.

If evaporation is not important, we may divide through by
F, so that the independent variable becoried-t, the dose

deposited on the substrate. For the case=of, we have

dn,/d6=(1—2)—(204n3+ on1n,).(D1/F).  (2)

and Ref. 12. but has not been uniformly applied in subsequent pajjéfs.
Following Refs. 1, 10, and 14, we may write the nucle-As a resqlt it has sometimes been_assumed that'concc'ern over
ation rate of stable clusters in the general case as self-consistency began in 1994 with Ref. 13; this topic has
been carefully evaluated more recently in Ref. 16, which has
dn,/dt=o;D;n;n;— Uy, 3) clarified the record and made many useful observations and

comparisons. As shown in Appendix A, the formulation in
wheren; is the density of critical clusters. By transforming to Ref. 13 fori=1 is the same as the uniform depletion ap-
6 we obtain the nucleation rate for critical size proximation given in Ref. 10, where the contribution of the

nucleation event itself to growth was neglected as being nu-

dn,/déo= O'i(DllF)Cing_i+1) exp(BE)—U./F, (4 merically unimportant. Thus the early and later rate equation

formulations are in practice identical, and treatments based
where 8= (kT) 1, and the Walton equilibrium relation has on Eq.(1) above can be more general.
been used to express in terms ofn,; and the cluster energy What is particularly new in Ref. 13, and in many subse-
E;; C; is a statistical weight, antl, is a term due to coa- quent papers, is the comparison with KMC simulatiori§
lescence of islands!®*Wheni> 1, the nucleation term in and more recently with level set methodsespecially for
Eq. (2) needs some modification, as it represents the loss dfluster size distributionsng(s) and spatial distributions.
adatoms in the nucleation event itself; often this term is unWhile the rate equations used in CNT vyield essentially per-
important numerically, but we need to retain it here. Thefect agreement for average quantities suchaandn,, itis
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by now well known that they fail to account adequately for a)
size and spatial distributions, because of the statistical nature T
of nucleation, and the fact that cluster growth depends on the Eg

local environment, i.e., on adatom-cluster correlations. There
is also an intrinsic time dependence of the capture numbers
themselves, dependent on initial spatial distributions. These
features are the subject of ongoing work by several

authorst>8the time dependence is not addressed in the first
sections of the present paper, but is discussed in Sec. IV-VI,

&k

largely in relation to specific results for Cu/Qd1). AN
’ r=ry+rg
Ill. DIFFUSION- VERSUS ATTACHMENT-LIMITED r=rg
KINETICS

Although the distinction between diffusion-limited and
attachment-limited kinetics is generally well known in mate-
rials science, there have not been many publications in the
subfield of epitaxial crystal growth, and the situation is rather
confused. Thus, for example, it was concluded from a de-
tailed first-principles theoretical stutithat repulsive interac-
tions between adatoms rendered nucleation theory “inappli-
cable.” As shown below, this conclusion is too strong, and
should be replaced by the weaker statement, “a theory based ) B ] o
on diffusion-limited kinetics alone may be inapplicable to  F!G: 1. Schematic energy-position diagrams (ef diffusion
systems where the repulsive interactions are of the same cfYe" & uniform terrace with enerdy; , where the last step to join a
der of magnitude as the diffusion barrier”. Attachment- < GlUSter, radius,, has an additional barridts ; (b) energy land-
limited kinetics has only been explored with rate equations {geare due to a long-range repulsive interaction, whose maximum is

, - . atr=r,+rgy, with the value ofV(r)=V at larger; the important
the authors’ knowledge in one pad@rand the formmatlon . energy difference indicated ¥,=V(r +ro)—V. Here the radial

Scale is presumed larger than , and individual diffusion steps
found that the problem can be formulated more generally,.q ot igdicated. g ® P

and that there are two subcases leading to rather similar re-
sults. Attachment-limited kinetics has been addressed mori@to oy, rather than into a modified diffusion coefficient as
recently via KMC simulatiorfs>?® and one aim here is to in Ref. 19. The details are spelled out in Appendix B.
compare the two approaches. As the present paper was final- The specific case of complete condensation witii and
ized, another pap€rwas published with similar interests to 2D islands is illustrated in Fig. 2 for two representative
our own. Some brief comments are made in Sec. IV. (D /F) values. Each plot shows the capture numherand

The first case is that there is an additional attachmeng,  as a function of dose, for both the diffusion-limited case
barrier, of heightEg, at the interface of the growing island, (no barriey and for three values of the barrier parameser
as illustrated schematically in Fig(&. This case was treated =27 exp(—8Eg). Note principally that as the value & is
explicitly but not very generally in Ref. 19, and led to a reduced, the capture numbers are reduced and become less
change in scaling law for the nucleation density in thedependent on dose, becoming dominated by the barrier cap-
steady-state regime. The scaling law derived in Ref. 19 igyre numberog in Eq. (5). In addition, Fig. 2 shows more
confirmed here in Appendix B, using a simpler argumentsyptle changes of value and shape, which are dependent on
and preserving all the preexponential terms in the low+he (D, /F) values chosen. More detailed comments on these
coverage regime. This case constitutes a modification to thﬁoints are made later in the text, in the figure caption, and in
capture numbes (i.e.,.k=1,1, s, or x, leading too, for the Appendix B.
average-sized clusteby an attachment-barrier capture num-  The second case arises when the individual adatoms

r=rp+rg LA

ber og, which adds inversely as and/or clusters have repulsive potential-energy fialgs)
around them, with a range exceeding one lattice distance, as
o =05 ot (5) illustrated schematically in Fig. (), where the diffusion

barriers are not shown. Here it is primarily the change in
whereop is the diffusion-limited capture number. The cap- energy landscape that is crucial in reducing(r) in the
ture numberoy is just theo given in Eq.(A2) in the uni-  neighborhood of other adatoms and clusters, though this
form depletion approximation. These capture numbers addould also influence the adatom diffusion constén,
inversely because the diffusion flux across the barrier is conwhich can then depend anFor this case, a different starting
served. In Ref. 19 the steady-state formula is derived in th@oint is needed, as spelled out in Sec. IV. As shown below,
low-coverage limit of the lattice approximation for,, but  the quantityV,=V(r+rg)—V, where the maximum is at
Eq. (5) above shows that the result holds more generally. Ir=r,+r, andV is the value at large, plays a role similar to
this formulation, the extra barrier ener@y is incorporated Eg in the first case, if for different reasons.
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i ) FIG. 3. Log-log plots ofn; andn, as a function of dosé, for
_ FIG. 2. Captqre numberz_sx (full lines) ando; (dashed lines, for the same two values of); /F) as in Fig. 2:(@ (D, /F)=10° and
':1_) as a function of dosfi.e., log(6)], for three values of the (b) (D, /F)=10°, with a wider range oB values as indicated. Note
barrier parameterB =2m exp(-fEg)=2m, 1, and 0.1, for@ 0 increased importance of the transient regime for lower values of
(D;/F)=10° and (b) (D, /F)=10". See text for discussion and B, wheren,= 6, andn, is roughly proportional ta® for i=1. See

Appendix B for detailed conditions. For the capture numbers W'th_t%xt for discussion and Appendices B and C for detailed conditions.
no barrier, the curves are as indicated, and the correspondence wit

the caseB= 2 is discussed in Appendix B. ) ) ) o
in o, this regime, where all the deposit is in the

. ) ) form of monomers and subcritical clusters, becomes greatly
However, in both cases, an important point, apparem'Mengthened.

rr_lissed in Ref. 19, is t_hat steady-state nucl_eation can be con- \we therefore need to explore how the nucleation density
siderably delayed. This occurs because, with any or all of th%epends on dose in the transient regime in general, and in the
capture numberseducedby factors such as exp(BEg) or  various limiting cases; the details are given in Appendix C.
exp(—BVy), the capture and/or nucleation times dre  The delayed onset of the steady-state regime with increasing
creasedby exp(+ BEg) or exp(*BVy) to some power. This Eg causes most of the shape changesrinand o; as a
can be seen by inspection of Eq4) and (2) above. The function of dosed, shown in Fig. 2.
transient regimen;=F(1—-2)t=6(1—2) ends only when The longer transient regime is illustrated directly in the
the sum of the later terms balances this term, i.e., becomgsdots of n; and n, as a function ofé in Fig. 3, for the
equal to#(1—2Z) in Eq.(1) or (1-2) in Eq.(2). Thus ifthe  same two values of §;/F), and a wider range oB
capture numbersof; and o, in thei=1 casg are exponen- =2 exp(—BEg) values. It is seen that the transient regime
tially small, the transient regime can approach 1 ML. Simi-(i.e., before then; maximum, wheredn,/d§=0) can be
larly, for larger critical sizesi(>1), if the nucleation rate dominant for quite modest values Bf especially at lower
[Egs.(3) or (4)] becomes exponentially small via a reduction values of O, /F). In Fig. 3a) for (D;/F)=10, the tran-
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sient regime extends up t%=0.01 ML for B<0.1; in Fig. anq(r)lat=G—ny(r)/7=V.j(r), (6)
f D,/F)=1 h i limit f
:i(?)),l I\/(I)[ ié Bli 0)01 (f-m; t?encao;]r::pk?engr:n%”(;vrcgd géfh to wherej(r) is the diffusive flux at radius. The source tern®

higher ©,/F=10’) and particularly to lower D, /F = 10) is equal toF during deposition and typically zero during
values, where it is well known that the transient regime is

annealing. All variables in E(6) are, in principle, functions

extensive even without barriet$?°Values of¢>0.1 ML are thr arBJI t E‘e frl]ux _terrzjj_érr) 1S deflnetd ?S;r?vnth(r)l, )
unrealistic in the simplest model, as we would need to con¥’"€"® EIS 6 ec em'lch'V;JS'o” .CfOBS. an d dus et ats
sider coalescence and second layer formation in detalil, ne}_ecrjm In dq.(t) |fs qut"?‘ q rtm_l(r) It 1S indeed constant,

ther of which forms the main point of this paper. indepenadent of position and ime. o .

However, low values oB are perfectly realistic: such But W|th.nonzeroV(r) this starting point is not appropri-

values imply that a very high density of adatoms can peAte: There is much and somewhat confusing literature on this
maintained in a long term, but metastable, state. In that casF)p'C' We need to evaluate the response to concentration

the approximation tha andZ are interchangeable fails dras- Ve(r)] and pote_ntia[VV(r)] gradie.nt.s, via co_nsideration
tically; then steady-state formulas for the densitigsand of phenomenolog}ch traqspo_rt coefficients, Wh'Ch. Iead; toa
n,, and also for the capture numbars and o, are inap- more general definition df(r) in terms of Vu(r). This defi-

iate. h effect for th luati f ition can be couched in terms of eitHeror D*, thetracer
propriate. Such effects are needed for the evaluation o dalgf‘fusion coefficient. It is acknowledgétithat it may be dif-

taken at suitably low temperatures with strong enough at:, : S -

tachment barriers’ Once formulated. such a treatment is ficult to calculate either diffusion coefficient accurately, but
k , . " i

also suitable to follow annealing, including thereversiblg t_hat u?dei\r certalr? r_easlonable Cond't'?ﬁs’(D/D. )

formation of clusters when the temperature is high enough- A19%/dLIN(Q)];. The simplest expression fg(r), using

for the attachment barries) to be surmounted. this ratio, is
j(r)=—(D*c)BVu. (7a)
IV. CAPTURE NUMBERS WITH LONG-RANGE
REPULSIVE INTERACTIONS We now need the expression fai(r) for a nonideal ad-

sorbed gas, which ig(r)=ue+ V(r)+ B8~ 1In(yc), wherey
Recent STM work at low temperatdréhas demonstrated is the activity. For this form ofu(r), the original definition

fche_ e_xistence of oscillatory long-range interactions betv_ve_etaf i(r) can be written 324
individual adatoms on close-packed metal surfaces. This in-
teraction has been explailjed by Friedel oscillations in th i(r)=—(Dc){1+8In(y)/8[In(c)]} 18V u; (7b)
surface-state electrons, since it shows the characteristic

asymptoticE(r) = — A sin(2r +28)/r?> dependenc& Here, the term{1+5In(y)/dIn(c)]} is known as the thermody-
Ais the amplituder the radial distancekg the surface-state namic factor. This form(7b) generalizes to include nonzero
Fermi wave vector, and the scattering phase of the surface- V(r), but in any case these two expressions ) are
state electrons at the adsorbate. This asymptotic form ofonsistent, since for the assumed form qi(r),

E(r) is, when focusing on pair interactions, found to be valid Su/ 5[ In(c)]=8"11+8In(y)/S[In(c)]}.

down tor =1 nm for Cu and Co/C@11).” While this oscil- To calculate capture numbers in our mean-field model, we
latory long-range interaction never exceeds 2 meV, there is Beed the expression fqu(r) in the neighborhood of the
short-range repulsion for<0.7 nm, which has been esti- adatom or cluster under considerati@tr=0), in the pres-
mated to have a maximum of £E,,,<19 meV, localized ence of all the other adatoms and clusters. Thus the average,
atr=1 to 1.5 nearest-neighbor distandésle return to this  Spatial independent can be subtracted off to giva(r)
system in Sec. V. —u=V(r)=V+ B HIn[®r)c(r)/(yc)]}. HereV is the po-

To describe the effect of such interactions on capturdential due to all the other adatoms and clusters at the mean
numbers, we need to start from a general position, whictdlensity, so the large-limit of V(r)=V; the logarithmic
allows for an arbitrary, but in our case, radial-symmetric,concentration-dependent term depends on the ratio of the
potential-energy landscapé(r) around each adatom and local value of (yc) to its mean value. Pooling the above
cluster. These interactions are mediated by electrons in thexpressiong?7), and usingc=ny(r), we find that
surface states of the substrate, and at very short range pre-
sumably also by elastic and direct interactions. These inter- j(r)==DVny(r)—[ny(r)D*]BVV(r). 8

actions are attached to the individuatoving adatoms, so The derivative ofy(r) is needed to obtaib in the first term

they are different in kind from those due to substrate defects, * T
Indeed, due to the repulsion, their effect is just the oppos,ite"n Egs. (8) from (7a), butD* remains in the second terff

. . Moreover, if we assumegl(r)= vy in the model, the thermo-
they act to suppress nucleation rather than enhance it. . . '
. . . e . dynamic factor would be unity, so th&x andD* would be
We are interested in solutions of a diffusion equation for

the adatom concentratiom(r), when there are sources and the same, but the following treatment is kept general for as

sinks at various positions. The steady-state solution witAonSS?r? pESSEg;e.E (6) becomes
V(r)=0 is typically known'?1°The simplest case to think 9 £q.(9), £Q.

about is when we have a loss term governed by a character- any(N)/at=G—ny(r)/7+V.[DVny(N)]
istic lifetime 7. The governing partial differential equation ! ! ' !
(PDE) is then +V.{[ny(r)D*]BVV(r)}. 9
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Equation(9) is to be solved in various approximations. Note first, we consider D7) to be slowly varying spatially, so
that although the dependence is written out explicitly foy ~ that the function needed to solve E@O) has a similar form
andV and there is an implied time dependence, the “con-to Eq. (A1), namely,

stants” G, 7, D, andD* may also be functions of position

(e.g., via concentration or a diffusion eneyggr in the cases N(r)=Gro[1—f(r).Ko(X)/Ko(X)]1, (12
of G, 7, of time (e.g., during deposition or annealjpgvith-
out changing Eq(9). where the functiorf(r) is to be determined. Note that this

WhenV(r)#0 andD=D*, Eq. (9) can usefully be re- equation still allows for time dependence, via the relation
written with ny=n.exd — BV(r)], because then the last term betweem; andGr,, and in the argumen®$ and X, , which
in Eq. (9) is canceled by part of the expansion of the previ-are of the formr/(D 7)Y or equivalently (/£), see Appen-
ous term. Now we are restricted to one diffusion coefficientdix A. If we now demand that there is a perfect sink at the
notionally the tracer diffusion coefficient. But real simplifi- boundary of ak-sized islandr, and convert back tm,(r),
cation is not possible unle€d* is independent of position, we find that the only solution of this form is
in which case it is simplest to take* =D, . It is, however,
otherwise not necessary to assume low concentrations, or ni(r)=G7—Gry.exd — BV(r)].Ko(X)/Ko(Xy) (13)
that y=1. Equation(9) then yields a differential equation for

n, rather tham,, which can be reordered to give or equivalently Eq.(12), with f(r)=expgBV(r)—V(r)l}.
From the definition of the capture number in terms of the
V2n(r)—n(r)/(Dy7)=[an(r)/at]/D,+Vn(r).BV(r) flux [o(r)niDy=—2mrj(r)], taking the limitr—ry, we

can show using Eq8) that the capture number correspond-
—(G/Dy).exd BV(r)], (100 ingto Eq.(13) is

where in two dimensionsy?n=(d?n/ar2+r~1on/ar). In o ={2mr ] — BYV(r)]+ 27X, [K1 (X )/ Ko(X) T}
passing, we note that essentially the same continuum prob-
lem in the presence of a radial symmetric potential has been xXexp{—BLV(ry —VI}. (14

studied independently very recentlyyia an atomistic for-

mulation on a square |attice, y|e|d|ng terms equiva|ent toNOte that the capture number is reduced, relative to the stan-

Egs.(9) and (10). dard diffusion expressiorfA2), by the Boltzmann factor
Equation(10) is clearly a form of Bessel equation, but €Xp—A[V(r)—V]}; this reduction can be substantial for high

with nonconstant coefficients, and nonzero terms on th&alues ofg[V(r,) —V]. The first term in Eq(14) is strictly

right-hand side. Two limiting solutions are worth highlight- zero if V(r) has a maximum at=r,; however, there are

ing. contributions too, of order 2zr | exp{— B[ V(r,)—V]} lurking
The first is the equilibrium case, where bdim(r) and if these conditions are not strictly fulfilled. In particular, this
V2n=0. Then in steady state, term has the form of an attachment-limited teroy

=27r, exp(—BEg), discussed in more detail in Sec. Ill and
Appendix B, Eq.(B3). During the transient stage, before any
spatial correlations have developed, this form of the capture
) ) ) ) ) numbers is dominant. Over time, correlations develop with
This equation is only consistent it=ro.ex{—pBV(r)],  the diffusion solution becoming dominant.
wherer exp(—AV) is the constant value ofat larger. Then The next stage is to consider application of equations such
during deposition, wittG=F, ny(r)=Froexd —pV(r)] and a5 Eqgs(12)—(14) for specific forms of/(r), and the effect
ny(r—o)=Froexp(-pV). Thus, under these circum- on the nucleation density via the capture numbeys o,
stancesn, simply reflects the Boltzmann distribution for the g9 o, , i.e., viagy in general. Some physical arguments are
potentialV(r). This limit is easily visualized for the evapo- given in the text, and some comments on the mathematics
ration dominant case, where=7,. Then, at long timesn;  are made in Appendix D. The main point is that Ea4)
=Fr,, with 7, dependent on the adsorption eneffy as  shows an exponentially reduced capture number over the
v, ' exp(BE,), where v, is the appropriate frequency uysual diffusion solution. IV(r) peaks at=r,, the solution
factor it follows that with the repulsive energy(r), the s still typically diffusion limited. The radial distribution
expression i, ' exp{B[E.—V(r)]}, which at larger has the  ny(r) evaluated according to E¢L3) is shown in Fig. 4, for
expected limit Vglexp[,B(Ea—V)], corresponding to a re- the specific case of a Lorentziaf(r). Thus in Fig. 4a) we
duced adsorption energy. At finite coverage of the substratehow the case ofif; /F)=10° and#=0.01 ML, plotted as a
by islands,G=F(1—Z) in the above expressions; the argu- function of (r —r,), with decreasing values of the parameter
ment generalizes to all times by considering EG®) and  By=2m.exg— B[ V(r,)—V]}; note that the higher curves cor-
(1) together, giving the differential equation fgmq(r) respond to the lower values &, . It is clear that, although
—n4] in the same manner as Ref. 13. this is a diffusion solution, the form is very similar to that
The scaling oh4(r) with exd —BV(r)] might be expected considered in the previous section for the attachment barrier
in the general case also, though this is certainly not obviousyith parameteB. But note that the reason is different; the
and indeedr may be considered to be an independent variimain reason for the reduced capture number is thermody-
able, to be determined iteratively alongside andn,. At  namic, not kinetic, due to the reduction af{(r,) in the

n(r)/(D,7)=(G/Dy).exd BV(r)]. (11
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0.01 —V]}, as illustrated in Fig. @) for (D,/F)=1C°, 6

] T _' s T -: T
3) (D/F) = 10°, dose = 0.01 ML =0.1 ML, andry=2. Note that the solution of the rate equa-
8 Lorentzian 0.1 1 tions does not need these radial plots, which are included for
JVV(NKT ] illustration; only the capture numbets, are needed, which

are functions of oy andr,, as set out in Appendix D. When

7 the capture number involves both diffusion- and attachment-
limited terms they combine essentially as in Ef). This
point is illustrated using a single experimental example in the
4 T next section.

Parameter B, = 1

! V. NUCLEATION, ANNEALING, AND ENERGY BARRIERS

Adatom density, n (r) (10° ML)

29 ] ON CLOSE-PACKED METAL SURFACES
‘. No barrier (B, = 2r) _ _ _
S In order to compare with experiment, we still need to
0 T — e e ; " program the equations described in this paper, and to take
10 care of all the material and numerical constants with suffi-

4 6
Radius (r-r . - - . .
() cient accuracy. We illustrate this here with a single example,

; . . . . . . . Cu/Cu111), for which recent deposition and annealing data
1b)(D,/F) = 10°, dose = 0.1 ML, r, = 2 0.01 ] are availablé;” and for which it is known we are dealing

] ] with complete condensation and small 2D islands. Two types
o020 VIOKT 0.1 4 of program have been developedNATLAB ® 5.3 (student

] edition) to model:

0.025

-' (i) deposition processes, where output consistglag-

] log) graphs of densities versus dose, and a file of the
1! quantitieso, oy, ny, andn,, and the coverage of

0.0104 7 stable clusters4=n,w,) at the final dose,

A ' ; (i) annealing processes, using the output file from the

1V ) ] deposition program as input. The output consists of

0.005 + A No barrier (B, = 2n) ] similar files and graphs, as a function of annealing

> ) time, V(ro), andry.

Rl e - . ] The deposition program has been used to produce illustrative
4 6 10 graphs of radial distributions,(r), as, for example, Fig. 4.
Radius (r-r)) In order to use the minimum number of parameters, these
runs have been restricted te- 1, for which the parameters
during deposition arel{, /F) and eitherB or B/, and the
independent variable is the do8eln the annealing program
G=0, and the calculation runs as a function @& ¢)°®,

0.015

!
1
'
'
'
+
i
1
'

]
1
'
1
1
)
1}
1
1
]
\
1}

Parameter B, = 1

Adatom density, n, (r) (ML)

0.000

FIG. 4. lllustrative radial profiles fon,(r) and[V(r)—VI]/kKT
(dashed ling for four values of the potential parametd,,
=2 exg{—BV(r)—V]}=27 (no barrie}, 1, 0.1, and 0.01(a)

(D,/F)=10°, 6=0.01 ML; (b) (D,/F)=10°, 6=0.1 ML, and icinating the slowd | i dth |
ro=2. Note that the higher curves correspond to the lower values o?nt'C'patmg the slowdown at longer times, and the main pa-

By, and that the profiles to the left of, are modified by attach- 'ameter is eitheB or B,,. Minor parameters include,, and
ment. The potential illustrated schematically is Lorentzian with@dditional binding-energy parameters would be needed for

width b=0.5. See text for discussion and Appendix D for detailedP0th programs if > 1. The width parametes does not enter
conditions. at the level of approximation represented by Egj).

Material and deposition parameters known from experi-
potential[ V(r,) — V]. There are no qualitative changes if we ment are then used to choose appropriate values ahd
choose otheflargen doses at which to make this compari- D;. The output of the comparison with experiment is the
son. deduced value oB or By, and hence the enerdsyg or V.

However, if the maximum o¥/(r) occurs ar,+r,, then  In parallel with this comparison based on the rate equations,
Eg. (13) can go negative, yielding an unphysical result fora KMC study has been done to test consistency between the
n.(r) in the regiorr —r,<r,. This corresponds to a solution two approaches.
that is attachment limited at a larger radius; in other words, The KMC simulations have been carried out on a hexago-
we have assumed a diffusion solution that cannot be mainmal lattice of fcc sited” This is a good approximation for Cu
tained at a smaller radius. The real physical solution can bgonomer diffusion on the trigonal C1d1) surface, since
restored by considering a reduced diffusion gradient suchoth experimeritand theor§?° find diffusion to occur be-
that n4(r) is still positive atr=ry+r,. A single jump is tween fcc sites only; i.e., the hcp site is as unstable as the
typically all that is needed for the adatom to reach the sink abridge site. The simulations involve, apart from substrate
ry, since the potential aids capture of adatoms ferr, ~ temperature and deposition flux or annealing time and the
<rgy. Then Eq.(14) can be recalculated substituting this fact that growth is irreversible € 1), the same three param-
larger radiusry+ry in the argumeniX and in exp—B[V(r)  eters as in Sec. llI: the diffusion ener@y and attempt fre-
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guencyv for monomer diffusion, and the additional energy — 1 - r -1
barrier Ez for lateral attachment to an island or another )
monomer. The attempt frequency of the attachment process
which is the last jump towards an island or an adatom, is !
assumed also to be; the total barrier for this process is
(Eq+Eg). The repulsive potential has its maximum atél.5
and is felt by atoms approaching an island or monomer from
2a (a=nearest-neighbor distancétoms further away than
this, or atoms diffusing away from, or parallel to, the island
starting at distance&, diffuse with the unperturbed terrace
barrier. Atoms deposited on top of an island, or a monomer,
are allowed to descend the step and atoms deposited onto
site with a neighbor atom are stabilized there. To produce - ]
statistically meaningful results the simulations were per- ~ T—~ Deposition with (D,/F) = 30
formed several times on a large lattice (16Q0L55 site, —
each time with a different initializing valuéseed of the -0 -38 -36
random number generatd. Log,,(dose (ML)
In the limit of slow attachment, and sharp barriers, our

two approaches should be identical. Specific features of low G- 5 Predictedn,(¢) curves for deposition with [, /F)
dose, low-temperature experiments, which may not be very -2 and reasonabtg values 1, 1.5, and 2. Lines f@, =2 (no
! ' %arrier) and 0.187, corresponding to a 5-meV barrier at 16.5 K are

ImpO:.tantt in ?ene{al’ have bﬁer} mcorporated I.?rt]ot;heKlr\?glotted, but fall essentially on top of each other; higher barriers give
egua |o.n reaimen ', as aresulto Compa”sc?” W' e egligible further changes. The data points are the result of a KMC
simulations. These include the role of direct impingement o, ation with Cu/C(1l) parameters Ey=40 meVy=1 TH2).
monomers during deposition, and of transient contributionggngjstent with densities inferred from experiment, these simula-
to capture numbers during the initial stages of annealing. tions produced 357 dimers and6.4x10* monomers até
Deposition of Cu atoms onto Cl41) was performedn =0.0014 ML. Atoms deposited on top of an island or monomer

situ in a low-temperature STM, af=16.5K at a fluxF  \ere allowed to descend and attach laterally to the island or mono-
=5x10"2 ML/s for a fraction of a seconfiThe diffusion  mer.

energyEy4 of Cu adatoms has been measured at somewhat
higher temperatures as #0 meV, with a preexponential (D;t)%® with parameteB, . Again, the absolute values of
frequency factor »=10'*"%5s17 yielding D; ny, n,, and especially the ratia(/n,) are sensitive tests of
=0.156 ML/s. These values giveD¢/F) approximately the parameters in the rate equation model.
equal to 30 during deposition. Figure 5 shows the evolution The steady-state mean-field capture numbers were ini-
of n; andn, to the final dosgg=0.0014 ML. At such a low tially used with this range oB,, values, corresponding to 0
dose and value oftf; /F), bothn, andZ are very small, and <Ez<10 meV. As seen in Fig. (8), dashed curves, this
almost all of the deposited material is in the form of mono-leads us to underestimate the amount of annealing, f@all
mers, and the few existing clusters are in the form of dimersvalues. The basic reason is clear: steady-state capture num-
The ratio (,/n;) is a sensitive test, not d8 or By, bers are appropriate when spatial correlations are fully de-
which only modify the already small diffusion terms, but of veloped, which they are certainly not in the early stages of
direct impingement on monomers. Direct attachment entersither deposition or annealing. In the “completely uncorre-
through the radius,, at whichV(r) has its maximum. In lated” limit, before a diffusion field has developed, the cap-
the rate equation solution behind Fig. 5, direct impingementure number is given by the pure attachment limit, derived in
adds to or creates a cluster, if the atoms fall within a radiu®\ppendix B [Eq. (B3)]. For the case where,>1 and a
(rotry) or(ro+ry), respectively, where we takeg=0.5. A potential barrieV, we have used the form
radius ro=1.5 (measured from the originwas suggested
from the KMC simulations, and the ratio{/n;) determined og=(rg+ro9)By=2m(r+rg)exp — BVoy). (15
as (4+2)x 10 3; this point is the highest point plotted on
Fig. 5. Given the uncertainties in experimental parameters, a The curves folVo=Eg=5 and 10 meV are in essential
value ofr in the rate equation@neasured from the edge of agreement with this simple formula over the whole range of
the cluster in the range 1-1.5 predicts the ratio,(n,), annealing conditions shown in Fig(e§. By extension, they
essentially independent & or B,,. Small values of these would also be in perfect agreement with E45) for all
parameters serve merely to make diffusion even less impotarger values oVy or Eg, but of course for larger energy
tant than it is already at low{, /F) values. values there is almost no annealing over the rang®gf)°°
Using the above values at the end of deposition, progresshown.
of n;, n,, and other quantities can be followed during an- At the other end of the scale, E(L5) gives far too much
nealing, as illustrated in Fig.(8 for ro=1.25, chosen to annealing wheiVo=Eg=0, most obviously seen in Fig(#®
agree precisely with the initial values in the KMC simulation by the gross discrepancy in the predictionmf. Thus, for
data shown. The extent of cluster formation can be seen bthe lower values o¥/ or Eg, or for longer annealing times,
the rise inn, that accompanies the fall im; as a function of an interpolation scheme is needed, which will take the value

-5

Log,(n,n)

ns

T T T

T T T
-3.4 -3.2 -3.0 -2.8
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<25

4 ) M T 4 ) v
| a) attachment (full), diffusion (dash); r, = 1.25 ]
AT BT 10 1.0

g Parameter"g
N T (K 17

(n+n)i(n_ initial)

0.4

0.3

20 s 10 s ' 0
Barrier height V, (meV)

FIG. 7. Predicted annealing curves as a function of barrier
heightV,, at temperatures ¥T,<23 K. Plotted is the ratior(;
+n,) after a 2-min anneal, divided by the initial valug,=(n;
+n,) after deposition. The full curves use the time-dependent cap-
ture number expression fog= 1.5, with the dotted curves having
ro=1.25 as in Fig. 6; the dashed curves fby=19 and 21 K
correspond to attachment-limited capture numbers, which are a
good approximation for all anneals initially. The curves for 19 and
21 K are also compared with the KMC simulatiofsgjuares with
error bar$. Additionally a curve for annealing at 22 K for 20 min is
given. See text for discussion of how these curves apply to STM
experiments on Cu/C11), and Appendix D for details of the al-
gorithms used.

0 " 5 C 0 .05 1520 tion to time-dependent equations for the capture numbers, we
) have experi ith justifi i
perimented with justifiable formsqf, our best fit to
FIG. 6. Predictech, andn, annealing curves as a function of date is given in Fig. @). The physical argument used is that
(D,t)°5, for B, values which correspond to annealing at 16.5 k the transient is due to capture from a dlffu3|o_n_zone around
with attachment barrierz=0, 5, and 10 meV, compared to KMC the adatom or cluster considered, whose radjucreases
simulations(squares with error bars(a) capture numbers corre- With time as some function of;t) andB,, . The details are
sponding to attachment-limited solutioffsill lines) and diffusion  discussed in Appendix D.
solutions (dashed lines (b) capture numbers based on the time- In the corresponding annealing experiment for
dependent interpolation scheme between attachment and diffusiddu/Cu111),” no further cluster formation was observed dur-
solutions, showing essential agreement with the KMC simulationsing annealing at 16.5 K for 20 min. On the other hand, al-
The initial data file corresponds to the final values displayed in Figmost all the monomers formed clusters during annealing at
5, withry=1.25. See text for discussion of how these curves apply22 K for a comparable time. Thus we can put upper and
to STM experiments on Cu/Qid1). lower bounds on the value @, and hence bounds on the
o maximum value ofV(r), i.e.,Vy. From Fig. 6, we can de-
of the capture number from an initial uncorrelated value t0 &y ce, usingP,t)%®at 20 min=13.4, that the lower bound to
final diffusive value over the correct range dD{t). By v is around 10 meV. The upper bound can be estimated
examination of the coupled rate equations for annealingsom Fig. 7. This figure shows the ration{+n,)/(Nyy,
analogous to Eqg¢2) and(4) for deposition, we can see that \yheren,, is the initial sum of ,+n,) after deposition at
the independent variable iDgt), and that the only other 165 K, as a function of barrier heigh, using the above
parameter i3y, which enters via Eq(15). The details are jnerpolation scheme with the KMC simulations fdr

given in Appendix D. _ _ . =120-s anneals & =19 and 21 K. The rate equation ratios

A particular set of the resulting curves is shown in Fig. 5.0 given for 17, 19, 21, and 23 K, and for 22 K for 20 min:
6(b), based on the formula the constants are the same as in Fig. 6, so the fit is a good test
of the interpolation scheme proposed. Note that, according to

o= (oaf)fit o(1- 1)), (16 P prop I

the rate equation integration shown in Fig. 7, annealing at 22
where 0,4 is the diffusive contribution given by Ed14), K for 20 min is comparable to annealing at around 23.8 K for

andf, is a transient factor, such that @ {t)=0, f;=1, and 2 min; this could not be checked by KMC simulations be-

as D t)—», f,—0. Short of a complete closed-form solu- cause of the excessive amount of computer time needed.
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From the reported onset of dimer formation far APPENDIX A: DIFFUSION SOLUTIONS FOR CAPTURE
=0.003 ML between 19 and 21 Kwe can infer that 9 NUMBERS
<Vo<14 meV from Fig. 7. This result assumes that the on- e \yniform depletion solution for the radial dependence
set of dlmgr formation corresponds to a 10@ decrease in thﬁl(r) on a 2D substrate, with a perfect sink mtr,, is
t_otal density 0, +n,) after 2-min ar_1r_1eallng. _Smcg, however, given by (Ref. 10, whereR=F)
time and coverage were not specified precisely in Ref. 7, we
prefer to retain the estimate derived from the considerations Ny(r)=F7r(1-2Z)[1-Ko(X)/Ko(X)1; (A1)
in the previous paragraph. This maximuWry), lies be-
tween 10 and 14 meV, and is not very sensitive to the exa o _
) . . o : equationJ=—D,Vn,(r) evaluated at=r,, asoDinq,
choice of the radius,. This lack of sensitivity ta, arises iving
because direct impingement terms are not active during ang-
nealing, and diffusion terms are modified only sligh_tl_yrtay o= (27X) K1 (X )/ Ko (Xy). (A2)
The energy values deduced are, however, sensitive to the

— 1/2 — 1/2
choice of capture number expression, and do require the in-1€ argumentX=r/(D,7)=* and X,=r/(D,7)™* of the

clusion of transient effects in the capture numbers themBgstsel fgnctlgzns?<odan(|j Pt<1ds.ett;[]he I_e_ngtth sii:alle \;vhe[;ahthe
selves, as discussed above. adatom density is depleted in the vicinity okaluster. The

self-consistency condition arises because these arguments are
themselves a function dbthel capture numbers.

For example, in the complete condensation case, where
the dominant contribution tor ! is 7, '=o,D;n,, X2

We have examined the form of capture numbers, and pre= oxNyf. So if Eq. (A2) is evaluated for the average size
sented rate equations for deposition and annealing, includingluster k=X, r,=r,) we can writeX;= o, ;=0 Z/ m,
the effects of additional attachment barriers, both for extrsand the capture number depends onlyZorgimilarly, if we
diffusion barriers and for potential fields of longer range, inconsider the capture by clusters in the presence of all the
the neighborhood of adatoms and clusters. We have derivegfher clusters,y is only a function ofZy/Z=(ry/r,)%
the form of the adatom and nucleation density as a functio hese features have been illustrated in the capture number
of material parameters in various subcases. We have shovfiglculations of Ref. 10, Fig. 2, where the independent vari-
that such barriers extend the transient regime in the ear/@P€ iSZ. Note that in almost all subsequent papers, quanti-
stages of deposition. Analytic expressions for these captur es are plotted as z;éunctlor? abses. :
numbers predict cluster densities in essentially perfect agre?érr?]zleo? :ggag::rtzristielzcr:glgk:ﬁdsc;{glisziwaet Ezeg%mu;nei tm
ment with kinetic Monte Carlo simulations during low- . o . :

o . o Xin Eq. (Al) is just (r/¢). The expression foo, (k=sin

temperature deposition. However, direct impingement, eve

S . EVeher. 13 is Eq. (A2), and from the correspondencé?
onto individual adatoms, can be an important process, 'fd'f'=D17-. These authors included all the terms relevant for
fusion capture is hindered by attachment barriers.

. ) complete condensation whér 1, including the two diffu-
Tran3|e_nt effects_on capture number_s in the presence ive terms given here in the text in E€@), and the small
the repulsive potential(r) have been estimated for the case yjroct impingement ternfatoms falling directly onto ada-
of Cu/Cu11l). For the experimental doses and annealingtoms). Without this last term¢~2 is given by

times, they increase the capture numbers initially, and reduce

in importance during annealing. A suitable interpolation £72=20.n;+ oy (A3)
scheme is proposed, which spans the transient regime. . . .
have used this scheme to obtain lower and upper boundsV\tﬁoehus Eq.(A3) can be incorporated mt_o E%Z)’ with the

the maximum in the repulsive potential 4¥ ;<14 meV added complexny thaty now depends "T‘P"C'“V on bothry
somewhat lower than a previous estimate of 13—19 frigy. ?nc: (ITEL ?;)m %ener(te\hkri t EthJanon(ﬁE) |sdthles§me atl)s the
quoting relatively wide error bars, we have ensured that an f[( . qd T’hW ere et' Wo ermtin atl)n Tct ;Vdet egnl q
remaining uncertainties in the capture numbers do not affe ﬁhalne - hese eqUSI:IOI’]S can l:.s € e;( ?n ed oailrcu €
our quantitative conclusions about energies in the cuyfther processes, such as evaporation, and for gene

Cu(112) system. There may still be some further avenues td'€S: but if .sever.al processes are important S|multanepu_sly,
be explored, but these are probably best approached in t mpleT scaling with material parameters will be lost; this is
context of particular experimental results, since otherwiséN€ Price of completeness.

the number of underdetermined parameters can become too
large. APPENDIX B: STEADY-STATE EFFECTS

OF ATTACHMENT BARRIERS

Ctpe corresponding capture number is obtained from the flux

VI. DISCUSSION AND CONCLUSIONS

1. Introduction and summary

ACKNOWLEDGMENTS . . . .
Kandel® has given a discussion of the effect of island

Discussions with A. V. Sobolev on differential equations, edge barriers, for 2D circular islands, with no reevaporation
and a detailed reading of the paper by C. Ratsch, were helmr coalescence, and a general value of the critical cluster size
ful and are much appreciated. i. He showed that in steady-state conditions, the nucleation
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density scaling could be changed from the diffusion-limited
valuei/(i+2) to the larger attachment-limited value/g

PHYSICAL REVIEW B 66, 195404 (2002

(vg/d)exd — B(Egt+Ey)]. The rate at which adatoms join the
cluster is by definitionrogD1n;, so for circular clusters

+3). This exponent is confirmed here by a more transparent

argument, which does not depend on the particular form o
capture number he used, which was equivalent to the lattic

approximation at low coverage. It is also shown here tha{ﬁ’
when there is an attachment barrier, the capture numbers for

diffusion o and for the barrieozg combine inversely as in
Eq. (5); this equation is valid in general, as it rests on the
continuity of the diffusion flux across the barrier.

We start here from Eq$2) and(4), in the case where the
nucleation ternfe.g., 2171D1n§ in Eq. (2)] and coalescence
term[U, in Eq. (4)] are numerically negligible. In steady-
state conditions, we then have from E@®) n;=F7.(1
-27), whererc’lz oyxD1ny, as in Appendix A. Inserting this
value of n; into Eq. (4) yields in the limit of low island
coverage Z<1),

dn,/dg=(a;C)).(oyn,) """V .(D,/F) " exp BE)).
(B1)

We can integrate EqB1) to obtain

[N 2/(i+2)]

=(D1/F)—iexp(ﬂEi).J {(¢iC).0 "™V .d6}.
(B2)

From the form of Eq(B2), we can see that the normaj
power-law scaling with £/D,), i/(i+2) is obtained pro-
vided that the integral over the capture numbers in (Bg)

is well defined, and does not contain any material param

f
e

(B3)

here we have used the usual form, in ML uni3;

(vq/4)exp(- BEy).

When both diffusion and attachment barriers are impor-
tant, the adatom density is depressed part of the way toward
the diffusion solution, but the flux across the interface region
must be consistent with the interface concentratm(r
+1). Thus there are two expressions for the diffusion flux.
Forr=(r,+1), we have the diffusion solution analogous to
Eq. (Al),

og=2m(r +1)exp— BEg),

Ny(r)=n;—{[n;—ny(r+1)]1.Ko(X)/Ko(Xp)}, (B4)

with n;=F7(1—2Z). The effective diffusive capture number
is, analogous to EqA2),

0pe=(1—1g).(27X1) . K1 (X)) /Ko(Xi)) =(1—fg)op,
(B5)

where the factofg=[n,(ry+21)]/n;.

However, there is also the solution derived from ERR).
Here the effective capture number isg[ny(r+21)]/ny
=ogfg. Since both this quantity and E(B5) constitute the
sameo,, we can determine the factofg=op/(op+ o)
and oy=ogop/(op+og). This last expression shows that
the diffusive and barrier capture numbers add inversely as
o '=0p5t+ 03!, which is given in the text as E@5).

Note, as a detail, that the argumefy; of Eq. (B5) should
be evaluated at=(r,+ 1), not atry, as in Eq.(A2). In Fig.

2, we have experimented with this detail, and found that the
calculation is a bit sensitive to the exact choice of boundary

eters. This is the case for complete condensation, where t%ndition; overinterpretation of a continuum model is of

capture numbers are slowly varying Bessel functions as ou
lined in Appendix A. A full discussion of various numerical
possibilities was given in Ref. 16.

2. Power-law modification by attachment barriers

In the presence of an attachment energy baEigr there
are various ways that the above equations could be modifie
We can change either, or o; or both. In Ref. 19 new
variablesS= D exp(— BEg) and S* =D exp(— BEg) were in-
troduced to modify stable and critical cluster capture pro
cesses, respectively, but the definitionsrgfando; were left
as before. That ansatz associates the barrier uniquely wi

diffusion in the mind of the reader; specific examples were

given only forEf =Eg. Here, we prefer to incorporate the
barrier properties into the definition of the general captur
numbero,, as the different limits then arise naturally.

The diffusion limitop in the mean-field approximation is
just o given in Eq.(A2). It remains to estimate the attach-
ment limit oz. We can see qualitatively that when the at-
tachment limit is needed nee#r,, there will be little long-
range diffusion field, andn,(r +1)~n;, the average
value?® The number of sites around the periphery of the
cluster is of order z-(r+1); from these sites, adatoms can
jump towards the cluster with probability per unit time

Bourse suspect for clusters of atomic size. Thus the line for

B=2 (i.e.,Eg=0) should fall on top of the no-barrier line
if all boundary conditions were exact. Figure 2 shows the
case where the argument is evaluated(r,+0.5), but a
range of constants give very similar resi#tg.he divergence
between the “no-barrier” and =2 curves at high dose is

ai‘ue to the need to change other boundary conditions, includ-

ing modifying direct impingement terms. Since there are sev-
eral constants that could be changed marginally, with no
guarantee of self-consistency, we have left Fig. 2 unchanged.

Such changes have negligible effects on Fig. 3, where the

{' es forB= 27 and the “no-barrier” essentially coincide, so

only one is shown.
We are now in a position to see that Kandel's i)

arises whenrg<op, so thato,=og. If we use expression

e(BB) for both o; and o, in Eq. (B2), we have

ooy UV =(ri+1).(re+1) "0 Y [ 27 exp( BEg) '
(B6)

I
This is not yet in the right form, but note the termiip,
which is coverage dependent. In complete condensation at
island coverageZ= wnxri. If we neglect both the difference
betweenZ and § and the extra terms of order 1, and assume

ri~i*?in Eq. (B6), then we have
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ooy Y= (Y24 1) (0/n) "0 Y2 [ 27 exp(BEg) ] integral in Eq.(C3) is simply o;C;6{ /(i +2), and, taking
(B7)  theterms im,(r.) to the left-hand side of E4C3), we have

By transferring the term im, ( *1)2 to the left-hand side of [N 7)1 =[0Ci /(i +2)].[oy(75)] 12

Eq. (B1) and integrating, we obtain )
a. (BD) grating X (FID,)"* Y exp BE)). (C4

ni+321 (i +3) 21V =(D. /F) | ex E.+iE f i2  This result with scalingi(+ 1)/(i + 3) has been known for a
n A /213 =(D./F) HACE o)l | long time(see, e.g., Ref. 10, p. 711, and the first of Ref, 12
+1)C. 27 (0l -1t D2dev. (B8 gnq is not quite the same as thg normal steady-state scaling
)Ci-2m.(0lm) 0. (B8) i/(i+2). This means that materials parameters can only be

Equation (B8) shows the 2/(i+3) power-law scaling strictly_separated out in the IimitHoo., when bpth I_aws be-
with (F/D,) for the nucleation density, confirming Kandel’s c0Me linear. These avykward, but minor, details will not con-
limit 1l for steady-state attachment-limitddnetics, while ~ C€rM us here. The primary question is what happens if the
retaining all the numerical constants. It is also clear from EqC@Ptureé numbers are modified by attachment-limited kinet-
(B7) that the power law is due te,, not too, ; if there were €57, . . .
no barrier term ino;, Eq. (B8) would remain the same ex- _ Fi'st, we can see that ifr(7) is attachment lim-
cept for the slightly modified Arrhenius dependenceit€d: as in Eq. (B_S()ilrz) then Eq. (C4) scales as
exp{2BE+iEq+(i+1)Egl(i+3)}. If there were a barrier [27(rxt1)exp-pBEg)] " 2. This is a strong Arrhenius
term in oy but not ina,, then the power-law scaling would S€&liNg, nx(7c)~exd +A(i+2)Eg/(i+3)], dependent on
be “normal,” i.e., as in Eq(B2), but with Arrhenius depen- 0.758Eg fori=1. The end of the transient regime canb&
dence expB(E +iE4—Eg)/(i+2)]. Note that in this caseEg ML even for modest va_llues @Eg. Second, we can see th_at
reduces the nucleation density somewhat, whereas in E{.Poth oi ando, are hindered by the same barrier, the situ-

(B8) Eg increases it substantially. ation considered by Kandé&l,the scaling goes as expf(i
+1)Eg/(i+3)], so that the important parameter is BE; for

i=1, and the effect is still relatively strong in the same
sense. Only in the case that is hindered, butr, is unhin-
Although we have shown that Kandel's steady-state fordered, does the effect go in the other direction, more weakly
mula is functionally correct, the formula may be of limited as exp—BEg/(i+3)]. Thus, the effects of transient nucle-
usefulness. The reduced capture numbers due to barriers leadon tend to undermine the quantitative comparisons with
to increased importance of the transient regime, for whichhe experiment given in Ref. 19, based on steady-state ex-
his formula is not applicable. Thei/Li +3) power-law re- pressions only. lllustrative examples for1 are given in
sults from the equality oZ and 6 in Eq. (B7) which is only  Fig. 3. The effects are even stronger for largealues, as

valid for large 2D islands and small values mf. Both of  noted previously in the case of no energy barriérs.
these conditions are violated in the transient regime.

3. Conclusion

APPENDIX D: BESSEL-TYPE EQUATIONS

APPENDIX C: TRANSIENT NUCLEATION WITH NONCONSTANT COEFFICIENTS
The nucleation rate in the transient regime is given from We are interested in solutions of a radial symmetric 2D
Egs.(3) or (4), neglecting the coalescence term, as diffusion equation for the adatom concentratiof{r) in the
‘ presence of a sink of radiug at the origin with potential
dn,/d6=0i(D1/F)C;6" "V exp BE;). (C1)  energyV(r) around it. The steady-state diffusion solution

with V(r)=0 is known (see Appendix A The governing
PDE is Eg. (9, and with the transformationn,
=n.exd —BV(n)], Eqg.(10) becomes the equation we need to
solve forn(r), with suitable boundary conditions, repeated
[nx]z(Dl/F)exp(ﬁEi).f oiC;0"*Vdg.  (C2)  here as Eq(DY):

V2n(r)—n(r)/(Dy7)=[an(r)/t]/ID,+Vn(r).BVV(r)

Within the transient regimen,=Ft=#6, so the nucleation
density is given as

The end of the transient regime occurs at tinrgiven in Eq.

(1), so the details dgperjd on the cqndensation regime. For —(G/Dy).exd BV(r)]. (D1)
complete condensation,is 7. or, equivalently,f.. At this o o )
stage, Although the problem is, in principle, time dependent, we

start from the time-independent formulation. Then, this is a
, standard Bessel function equation, except for two extra terms
nx(Tc):(DllF)quﬂEi)-f 0iCi0""d6e, (C3  on the right-hand side. The steady-state solution for slowly
varying (D;7), with 7= rgexp[—B[V(r)—V]} as explained
where the upper limit i®.=F 7,=(F/D;)(oyn,) "%, and the  below, is given in the text, leading to Eg4.3) for n; and
lower limit is zero. The power-law scaling far,(7.) de-  (14) for the capture number,.
pends in detail howr; depends ond, but for reasonable The purpose of this Appendix is
illustrative purposes, let us take to be constant. Then, the (i) to explore the next level of approximation for general
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(D7) and expBV(r)], and to see if the slowly varying so- has its maximum value nearr, so Eq.(13) has the cor-
lution is likely to be valid for cases of practical interest; ~ 'ect form in both these limits. However, this term is best
(i) to spell out algorithms for the diffusion-limited, incorporated into the left-hand side of E@1), such that it
attachment-limited, and interpolated capture numigréor modifies the ternn ~1on/ar contained within the 2D Laplac-

putational examples of Secs. IV and V. be significant in a small region wher& V(r) is numerically

greatest. In effect, this term locally changes the shape of the

Bessel functiordiffusionprofile in the direction of becoming

a modified spherical Bessel function of the third kind—the
The first approximation to E4D1) arises from neglecting relevant solution of the 3D Laplacian, where the first-order

the first two terms on the right-hand side and treating thaerm is 2 ~1on/dr.?° This solution has a simple analytic

third term as a constant, from which the solution fgr) is  form, (w/2X)e %, which is somewhat smaller thaf,(X)

1. The slowly varying case and beyond

as in Appendix A, namely, for X>2, and vice versa foX<2. Thus the shape of the
n.(r) curve deviates from that discussed here by a small
n(r)=A-B.Ky(X), (D2)  wobble at intermediate values ¥f in the direction of mak-

ing the curves nearer to step functions. But for the larger
values ofV(r), including those illustrated in Fig.(d), the
n,(r) curves are dominated by thequilibrium constant
n(r) profile, except close to~r; the diffusion component
is sharply reduced, as emphasized in &) and in the text
discussion.

Finally, there is the possibility that(r) has its maximum

with X?=r?/(D,7), whereA and B are to be determined.
The larger limit is just n=Grexp(BV). Since the large ar-
gument limit of Ko(X) is (7/2X)Y%e~X, the second term in
Eqg. (D2), which accounts for the diffusive flux, goes expo-
nentially to zero. Thus the termA must account for
(G7).exdpBV(r)] as well as possible over the important
range ofr. The uniform depletion approximation implies that . o
7is constant, but that is clearly inconsistent with the equilib-Value atr=>ry. Then, as show'n by calculayon of speqﬁp
fium case, as described in the text. 7 o exd — AV(r)], forms qf V(r), thg assumed diffusion s_oluthn can exhibit
then A=(G7).exd BV(r)|=GryexpBV) is indeed constant, unphysw_:al negative values afy(r). This arises, as ex-
thoughr varies. In the absence of a diffusion gradient then plamed in the text, because the assumed d|ffu5|vg contr!t?u-
is constant, anchy(r)=n.exd—AV(r)]. With a diffusion tion is too large, and needs to be reduced to remain positive
gradient, this value ofi{(r) is reduced to zero at=r,, but in the nglghborhood af~(ry+ro). As found in Ap.pendng B .
the diffusive contribution is reduced from the normal situa-also’ this case corresponds to attachment-limited kinetics,

. . where we have to consider the atomistic events taking place
Eoyrfwgi;igor exp- V(] Converting Bq(D2) back to around the maximum o¥(r). This is one of the special
1

cases that have been pursued by computation, as illustrated

ny(r)=Gr—Gryexd — BV(r)]-Ko(X)/Ko(Xy), in Fig. 4(b), and explained below.
(D3)
as given in the text as Eq13), and Eq.(14) for the capture 2. Capture number algorithms
number follows from Eq.8). The profilen,(r) for these The algorithms used for diffusion and annealing programs
equations is illustrated for a specific set of parameter valueBave been explained in outline in Sec. V, and only a few
in Fig. 4(a). points are elaborated here. The core of the codes is a simple,

Other approximations are possible, but they do not alteexplicit, integration routine fom,;, n,, and the coverage
our qualitative conclusions. For example, when the capturéZ=n,w,), which contains the capture numbersando, .
numbers are small, transient nucleation is more importanfThese few lines of code contain all the processes that lead to
and hence the first time-dependent term on the right-handhanges im;, n,, andZ; the integration dose or time scale
side of Eq.(D1) is not zero. In the limit of no nucleation (linear, logarithmic, or square root as illustrated heseset
n.(r) is initially equal toG/D, for all r>r,. Since in this by a single “At” parameter. Convergence of the code is
limit everything is linear, this term can then be combinedeasily checked by varying the step length by factors of 2 in
with the third term, and cancels it precisely. But this is mis-either direction; smaller step lengths lead to better accuracy,
leading, as the capture number results from the derivative girovided digitally induced noise is avoided, but to larger file
r=ry, and this is mathematically infinite in such an initial sizes; larger step lengths may decrease accuracy somewhat,
situation, if only att=0. Physically, the initiabr, is of order  but reduce file sizes markedly. In the cases illustrated here,
27rexp{—BV(r—V]} if V(r) is reasonably short ranged. file sizes were less than 100 kB, and files half this size would
Over time, shorter or longer, depending on the parametenot markedly decrease the accuradifferences less than the
values, correlations develop with the diffusion solution be-linewidth on the plots More sophisticated integration rou-

coming dominant. tines are available inATLAB® 5.3, but are not really
The second approximation concerns the fact that the seaecessary.
ond term on the right-hand side of E@1) is not in general The capture numbers themselves are iterated to self-

zero. This term depends on a product of derivativesonsistency at each dose or time step in a subroutine. For the
vn(r).BVV(r), so if eitherVn(r) or VV(r) is zero this case of an energy barri&f(r), the central equations are Eq.
term vanishes, but it is zero both at langeand whenV(r) (14) for both o and o, with the argumentX, given by
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Xﬁ:rﬁ(figinﬁgxnx), (D4) “problem” has gone away; the tra}nsi_ent contains a finite

) ) ~number of adatoms nucleating and joining clusters. However,
wheref; =2 for i=1, andf;=1 otherwise. When the maxi- it js relatively more important during annealing than during
mum of V(r) occurs ar =ro+ry, the term inr§ in Eq.(D4)  deposition. During annealing there is no replacement of the
is replaced by p+r¢—1)2. In this case, seen in Fig(l),  adatom concentration, sodf, is small via @/27)<1, then
the approximate radial distribution(r), given otherwise by n, stays at its initial value, and no annealing takes place.
Eq. (13), has exp—pV(ry] replaced by exp-BV(ro+ry  During deposition, however, the small valuesaf and o,
—1)]. Here the radial distribution is only valid far>(r,  mean that the value af; continues to increase, giving rise to
+r—1), and the corresponding attachment barrieg)(at  a compensation effect. This effect can be seen at work in the
(ro+r¢—1) is approximated by a single jump into the attrac- schematic radial distribution curves shown in Fig. 4.
tive region at smaller. During annealing, however, the capture number decreases

These capture number routines require an initial estimatas follows:
of o andoy, but it has been shown that the results are very
insensitive to this initial choice; in other words, the differen-
tial equation integration is stable. Thus by starting the inte- o= Tinitf i+ og(1— 1), (D7)
gration at a dose below the dose range of interest for the
output, only small changes are introduced. The smoothness ) o o )
of the curves produced, and closeness to known analyticdYnere oyq is the diffusive contribution given by Ed14),
forms, allow us to choose suitable initial conditions. oinit 1 the initial barrier form of the capture number, ands
There is an inherent uncertainty in choosing continuum@ transient factor, such that ab(t)=0, f;=1, and as

boundary conditions to describe atomistic events, such as tH&1t) ==, fi—0. Short of a complete closed-form solution
radius of attachment barriers, or the exact area for diredi© time-dependent equations for the capture numbers, we
impingement on monomers. For example, the continuum difhave experimented with justifiable forms f. Our best fits
fusion capture model will produce somewhat different capi0 date are given in Figs.(6) and 7, based omriy;=ogf,
ture numbers if the zero of concentration is at, say, 0.5 or put note that thif; doesn't have to be the same as fihen
atomic radii outside the cluster, but such a distinction is aEd- (D7). The physical argument used is that the transient is
the edge Of What iS meaningfu'_ For the deposition and andue to Capture from a diﬂ:usion Zone around the adatom or
nealing curves shown in Secs. IV and V, we have used &luster considered, whose radiug increases with time as
concentration zero atr{+0.5) or (,+1) in the absence of Some function of D;t) andB,,.
barriers, and with a barrier at(+r,). Rather than overad- ~ In that case, we can write by analogy with E41)
just these values to get exact agreement with KMC simula-
tions or other atomistic simulations, we prefer to take a range
of reasonable predictions into account when deducing mate- f1=Ko(Xg)/Ko(Xko), (D8)
rial parameters from comparison with the motfel.

_ _ where the new argumenXy=(r +ro+rq)/(D;7)"? and
3. Interpolation formulae for time-dependent capture numbers Xkoz(rk+r0)/(DlT)l/2- In the case ofV, or Eg=0, we
As explained in outline in the text, an interpolation know thatry will scale with (D,t)°° This range must be
scheme is needed, which will take the value of the capturgestricted wherV, or Eg>0. If n, is initially constant during
number from an initial uncorrelated value to a final diffusive annealing, the detailed time dependenca,oin Eq. (D6) is
value over the correct range. The capture number in thigiven byog, and this scales with a factoB(/2m) directly.
regime is a function of[@4t) andBy, via Eq.(15), as can be But also the initial valuer;,; decreases rapidly as diffusion
seen from the rate equations for initial annealing w@&h over several lattice distances replaces attachment by a single
=0: jump. This feature, and the presence of square-law terms in
Eqgs.(D5) and(D6), qualitatively justifies the inclusion of the
second factof, in Eq. (16); this equation is just the simplest
(D5)
form that works.
Figures 6b) and 7 show the near-perfect fit to the inter-
polation formula with

dnlld(Dlt) = 20'1n§_ oyNq Ny,
dn/d(D4t)=0n2. (D6)

The initial conditions §,0,) and (n,,o,) for annealing are

those appropriate to the end of deposition. In the low- rq=(0.5D,t)%5B/27. (D9)

temperature, low dose, deposition case of C@ICl con-

sidered, there is very little diffusion during deposition, so

that initial capture numbers are given by E5). The constant 0.5 in EqD9) is the result of trial and error
The coupled Eqgs(D5) and (D6) require time-dependent rather than detailed reasoning, and a full justification of Egs.

capture numbers, and one can see that, wignn,, the (D8) and(D9) may or may not merit further work. For the

first term on the right-hand side of E¢D5) is likely to be  present the above equations give a reasonable interpolation

larger than the second. By the time this situation is reversedscheme for making extrapolations to other temperatures, and

the diffusion solution will be appropriate, and the transientfor comparing with experiments.
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