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Capture numbers in the presence of repulsive adsorbate interactions
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Capture numbers are used in models of nucleation and growth on surfaces, and have been widely applied to
predict nucleation densities and other quantities via rate equations. In conventional nucleation theory, much
effort has historically been expended on obtaining good expressions for capture numbers in the diffusion-
limited case. However, recent experiments and calculations have shown that weak repulsive interactions be-
tween adsorbate atoms on relatively smooth~e.g., close-packed metal! surfaces may shift nucleation kinetics
towards the attachment-limited case. This paper clarifies the distinctions between diffusion- and attachment-
limited kinetics, and emphasizes the increased importance of the transient nucleation regime in the latter case,
which is due to a combination of delayed nucleation and reduced capture. The consequences of long-range
repulsive adsorbate interactions for the form and values of the capture numbers are explored, and the effects of
attachment-limited kinetics in relation to low-temperature deposition and annealing experiments are demon-
strated. An approximate interpolation scheme between attachment- and diffusion-limited kinetics is proposed,
and tested against kinetic Monte Carlo simulations. Using this scheme to interpret recent scanning-tunneling
microscopy results on Cu/Cu~111!, lower and upper bounds on the maximum adatom-adatom potential repul-
sive energy of 10 and 14 meV are deduced.

DOI: 10.1103/PhysRevB.66.195404 PACS number~s!: 68.55.Ac, 82.20.Kh, 82.20.Pm, 81.15.Kk
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I. INTRODUCTION

The processes involved in nucleation and growth on s
faces have received widespread attention over the last t
years. It is now well known that individual atomic events c
strongly influence and even dominate the final micro-
nanostructure of epitaxial thin films.1 Scanning-tunneling
microscopy2 ~STM! and field-ion microscopy3,4 ~FIM! ex-
periments are able to follow such individual events. The d
obtained on uniform~single-crystal! substrates can be ana
lyzed in detail to obtain diffusion mechanisms, and amo
other quantities, energies for adsorption (Ea), diffusion
(Ed), and binding (Eb) of adatoms.

Rate equations have been used successfully to ana
data, notably of the nucleation densitynx , as a function of
experimental variables, usually the fluxF ~or equivalently,
deposition rateR! and the substrate temperatureT. The reac-
tion rates in each equation, e.g., for the single-adatom d
sity n1 , are of the form 2s1D1n1

2 ~for the rate of adatoms
forming pairs! or sxD1n1nx ~for the rate of adatoms joining
stable clusters!. In these termss1 andsx arecapture num-
bers, the subject of this paper, andD1 is the single-adatom
diffusion coefficient.

Throughout the whole field of materials science, there
typically two extreme types of kinetics: diffusion-limited an
attachment-limited.5 The purpose of the present paper is
examine capture numbers used for nucleation and growt
surfaces, and to derive quantitative expressions for both
its and interpolation schemes for intermediate cases. In
ticular, several recent STM experiments at low temperatu
on smooth metal surfaces6,7 and associatedab initio
calculations8,9 have highlighted attachment-limited behavio
due to the presence of repulsive barriers between adat
Here it shown that these effects modify the results of c
0163-1829/2002/66~19!/195404~16!/$20.00 66 1954
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ventional ~sometimes called classical! nucleation theory
~CNT!, by extending the transient nucleation regime
higher dose. New formulas are given for the capture numb
on the assumption of radial symmetry. These expressions
tested against kinetic Monte Carlo~KMC! simulations. As a
result, the maximum repulsive interaction energies can
reliably extracted from recent experiments on close-pac
metal surfaces; here we concentrate on Cu/Cu~111!, but the
methods developed may also be applied to other system

II. MEAN-FIELD SELF-CONSISTENT CAPTURE
NUMBERS

Capture numbers for particular processes express
probability of the corresponding reaction, and need to
evaluated self-consistently in order to obtain quantitative
lutions to models. The need for self-consistency arises
cause adatom-adatom, adatom-cluster, and cluster-clu
correlations, all forms of self-organization, appear as grow
proceeds; this necessity was recognized in early papers10,11

and continues to attract much interest.
Two diffusion solutions were found almost thirty yea

ago,10 the first being the uniform depletion approximatio
here the other clusters that deplete the adatom concentr
around a given cluster are uniformly distributed. The oth
solution, where the clusters were placed regularly on a g
leads to the lattice approximation.12 In time, it was realized
that the uniform depletion solution was in fact a mean-fie
approximation, analogous to such approximations used
many other fields; this label has often been used since.

The self-consistent label was introduced more recently
an important paper that compared KMC simulations w
rate equations.13 In this paper, which discussed the ca
when adatom pairs are always stable~the critical nucleus size
©2002 The American Physical Society04-1
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J. A. VENABLES AND H. BRUNE PHYSICAL REVIEW B66, 195404 ~2002!
i 51), the comparison was excellent for the monomer a
nucleation densities. In particular, as we emphasize be
the mean-field self-consistent capture numbers are the s
as those produced by the uniform depletion approxima
for this restrictive case, when no complicating factors@ada-
tom evaporation, small cluster instability (i .1), or cluster
diffusion# are considered. As shown earlier,10 an exact solu-
tion for the capture number is available when evaporatio
dominant. Moreover, it was also shown that intermedi
cases could be treated by defining the adatom lifetimet,
where the various components oft add inversely. This idea
of competitive capture1,14 was then developed quantitative
to allow for individual processes in the equation for the a
tom densityn1 , namely,

dn1 /dt5F~12Z!2n1 /t,

with

t215ta
211tn

211tc
211... . ~1!

Hereta is the adsorption lifetime, andtn the nucleation life-
time, andtc the lifetime due to capture of monomers b
stable clusters;Z is the coverage of the substrate by~stable
and unstable! clusters, not including monomers. The adva
tage of this formulation is that other processes@ . . . , in Eq.
~1!# can be added as required in the same fashion.

If evaporation is not important, we may divide through
F, so that the independent variable becomesu5Ft, the dose
deposited on the substrate. For the case ofi 51, we have

dn1 /du5~12Z!2~2s1n1
21sxn1nx!.~D1 /F !. ~2!

Comparing Eq.~2! with Eq. ~10! of Ref. 13, we see that the
are the same, since the stable cluster densitysxnx is the sum
of ssns for all sizess>2. We have included in Eq.~2! the
main direct impingement~called direct capture in Ref. 13!
term, resulting from deposition onto stable clusters, but
have omitted the other one, resulting from deposition o
monomers, for simplicity. Both are generally unimportant
low dose@see, e.g., Fig. 1~b! of Ref. 2!. For a discussion of
direct impingement see Ref. 10, where the subscripts is k,
and Ref. 12.

Following Refs. 1, 10, and 14, we may write the nuc
ation rate of stable clusters in the general case as

dnx /dt5s iD1n1ni2Uc , ~3!

whereni is the density of critical clusters. By transforming
u we obtain the nucleation rate for critical sizei,

dnx /du5s i~D1 /F !Cin1
~ i 11! exp~bEi !2Uc /F, ~4!

whereb5(kT)21, and the Walton equilibrium relation ha
been used to expressni in terms ofn1 and the cluster energ
Ei ; Ci is a statistical weight, andUc is a term due to coa
lescence of islands.1,10,14When i .1, the nucleation term in
Eq. ~2! needs some modification, as it represents the los
adatoms in the nucleation event itself; often this term is
important numerically, but we need to retain it here. T
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CNT adatom and nucleation densities follow from the int
play of Eqs.~2! and ~4!, or equivalently, the general form
~1! and ~3!.

The above nucleation equations need to be coupled w
some form of cluster growth rate equation@e.g., uniform
growth of circular two-dimensional ~2D! or 3D
islands1,10,14,15# or capture area argument, such as those ba
on the size distribution of Voronoi polyhedra around ind
vidual islands.11,15The common feature of these equations
that the calculation of each capture number involves the
lution of a diffusion equation, at the given densitie
(n1 ,ni ,nx), which also contains the various capture numb
s1 , s i , andsx in the argument of the solution. These ca
ture number equations can then be solved self-consistent
functions ofn1 , ni , andnx by numerical iteration.

Given this intrinsic complexity, it is natural to look for th
simplest formulation first. For 2D problems on a substrat
radial diffusion equation is constructed as a function ofr,
neglecting any azimuthal~f! variables, and the flux into an
individual island is calculated to obtain the capture numbe
This, of course, may limit the physics, and it is known, e
pecially from FIM studies on individual crystalline
substrates,3,4 that suchf dependencies do exist and can
strong. However, for the case of Cu/Cu~111! to be considered
in Sec. V, azimuthal isotropy is a very good first approxim
tion, as shown by isotropic nearest-neighbor distan
histograms.7

There is some possibility of confusion in the notation:u
cannot be used as an angle here, because it denotes the
When evaporation is unimportant,u and Z are often used
interchangeably, as both are measured in monolayers~ML !.
But here we maintain the distinction, because the differe
(u2Z) can be important; for example, for 2D ML-thick is
lands andi 51, it represents the coverage of the substrate
adatoms. For 3D islands of a given shape the relationshi
specific, but more complicated.10 We also have writtenD1
for the adatom diffusion coefficient, in contrast to the mo
usual D; this is because we wish to define more than o
type of diffusion coefficient.

The Bessel function form of the capture numbers for
diffusion-limited case has been well known since the 197
but has not been uniformly applied in subsequent papers.16,17

As a result it has sometimes been assumed that concern
self-consistency began in 1994 with Ref. 13; this topic h
been carefully evaluated more recently in Ref. 16, which
clarified the record and made many useful observations
comparisons. As shown in Appendix A, the formulation
Ref. 13 for i 51 is the same as the uniform depletion a
proximation given in Ref. 10, where the contribution of th
nucleation event itself to growth was neglected as being
merically unimportant. Thus the early and later rate equat
formulations are in practice identical, and treatments ba
on Eq.~1! above can be more general.

What is particularly new in Ref. 13, and in many subs
quent papers, is the comparison with KMC simulations15,16

and more recently with level set methods,18 especially for
cluster size distributionsns(s) and spatial distributions
While the rate equations used in CNT yield essentially p
fect agreement for average quantities such asn1 andnx , it is
4-2
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CAPTURE NUMBERS IN THE PRESENCE OF . . . PHYSICAL REVIEW B 66, 195404 ~2002!
by now well known that they fail to account adequately f
size and spatial distributions, because of the statistical na
of nucleation, and the fact that cluster growth depends on
local environment, i.e., on adatom-cluster correlations. Th
is also an intrinsic time dependence of the capture num
themselves, dependent on initial spatial distributions. Th
features are the subject of ongoing work by seve
authors;15,18 the time dependence is not addressed in the
sections of the present paper, but is discussed in Sec. IV
largely in relation to specific results for Cu/Cu~111!.

III. DIFFUSION- VERSUS ATTACHMENT-LIMITED
KINETICS

Although the distinction between diffusion-limited an
attachment-limited kinetics is generally well known in ma
rials science,5 there have not been many publications in t
subfield of epitaxial crystal growth, and the situation is rath
confused. Thus, for example, it was concluded from a
tailed first-principles theoretical study9 that repulsive interac-
tions between adatoms rendered nucleation theory ‘‘inap
cable.’’ As shown below, this conclusion is too strong, a
should be replaced by the weaker statement, ‘‘a theory ba
on diffusion-limited kinetics alone may be inapplicable
systems where the repulsive interactions are of the same
der of magnitude as the diffusion barrier’’. Attachmen
limited kinetics has only been explored with rate equations
the authors’ knowledge in one paper,19 and the formulation
and conclusions are reexamined below. In particular, i
found that the problem can be formulated more genera
and that there are two subcases leading to rather simila
sults. Attachment-limited kinetics has been addressed m
recently via KMC simulations8,9,20 and one aim here is to
compare the two approaches. As the present paper was
ized, another paper21 was published with similar interests t
our own. Some brief comments are made in Sec. IV.

The first case is that there is an additional attachm
barrier, of heightEB , at the interface of the growing island
as illustrated schematically in Fig. 1~a!. This case was treate
explicitly but not very generally in Ref. 19, and led to
change in scaling law for the nucleation density in t
steady-state regime. The scaling law derived in Ref. 19
confirmed here in Appendix B, using a simpler argume
and preserving all the preexponential terms in the lo
coverage regime. This case constitutes a modification to
capture numbersk ~i.e., k51, i, s, or x, leading tosx for the
average-sized cluster! by an attachment-barrier capture num
ber sB , which adds inversely as

sk
215sD

211sB
21, ~5!

wheresD is the diffusion-limited capture number. The ca
ture numbersD is just thesk given in Eq.~A2! in the uni-
form depletion approximation. These capture numbers
inversely because the diffusion flux across the barrier is c
served. In Ref. 19 the steady-state formula is derived in
low-coverage limit of the lattice approximation forsk , but
Eq. ~5! above shows that the result holds more generally
this formulation, the extra barrier energyEB is incorporated
19540
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into sB , rather than into a modified diffusion coefficient a
in Ref. 19. The details are spelled out in Appendix B.

The specific case of complete condensation withi 51 and
2D islands is illustrated in Fig. 2 for two representati
(D1 /F) values. Each plot shows the capture numberssx and
s i , as a function of dose, for both the diffusion-limited ca
~no barrier! and for three values of the barrier parameterB
52p exp(2bEB). Note principally that as the value ofB is
reduced, the capture numbers are reduced and become
dependent on dose, becoming dominated by the barrier
ture numbersB in Eq. ~5!. In addition, Fig. 2 shows more
subtle changes of value and shape, which are dependen
the (D1 /F) values chosen. More detailed comments on th
points are made later in the text, in the figure caption, and
Appendix B.

The second case arises when the individual adato
and/or clusters have repulsive potential-energy fieldsV(r )
around them, with a range exceeding one lattice distance
illustrated schematically in Fig. 1~b!, where the diffusion
barriers are not shown. Here it is primarily the change
energy landscape that is crucial in reducingn1(r ) in the
neighborhood of other adatoms and clusters, though
could also influence the adatom diffusion constantD1 ,
which can then depend onr. For this case, a different startin
point is needed, as spelled out in Sec. IV. As shown bel
the quantityV05V(r k1r 0)2V, where the maximum is a
r 5r k1r 0 andV is the value at larger, plays a role similar to
EB in the first case, if for different reasons.

FIG. 1. Schematic energy-position diagrams of~a! diffusion
over a uniform terrace with energyEd , where the last step to join a
k cluster, radiusr k , has an additional barrierEB ; ~b! energy land-
scape due to a long-range repulsive interaction, whose maximu
at r 5r k1r 0 , with the value ofV(r )5V at larger; the important
energy difference indicated isV05V(r k1r 0)2V. Here the radial
scale is presumed larger than in~a!, and individual diffusion steps
are not indicated.
4-3
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However, in both cases, an important point, apparen
missed in Ref. 19, is that steady-state nucleation can be
siderably delayed. This occurs because, with any or all of
capture numbersreducedby factors such as exp(2bEB) or
exp(2bV0), the capture and/or nucleation times arein-
creasedby exp(1bEB) or exp(1bV0) to some power. This
can be seen by inspection of Eqs.~1! and ~2! above. The
transient regimen15F(12Z)t5u(12Z) ends only when
the sum of the later terms balances this term, i.e., beco
equal tou(12Z) in Eq. ~1! or (12Z) in Eq. ~2!. Thus if the
capture numbers (s1 andsx in the i 51 case! are exponen-
tially small, the transient regime can approach 1 ML. Sim
larly, for larger critical sizes (i .1), if the nucleation rate
@Eqs.~3! or ~4!# becomes exponentially small via a reducti

FIG. 2. Capture numberssx ~full lines! ands i ~dashed lines, for
i 51) as a function of dose@i.e., log10(u)], for three values of the
barrier parameterB52p exp(2bEB)52p, 1, and 0.1, for ~a!
(D1 /F)5105 and ~b! (D1 /F)5103. See text for discussion an
Appendix B for detailed conditions. For the capture numbers w
no barrier, the curves are as indicated, and the correspondence
the caseB52p is discussed in Appendix B.
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in s i , this regime, where all the deposit is in th
form of monomers and subcritical clusters, becomes gre
lengthened.

We therefore need to explore how the nucleation den
depends on dose in the transient regime in general, and in
various limiting cases; the details are given in Appendix
The delayed onset of the steady-state regime with increa
EB causes most of the shape changes insx and s i as a
function of doseu, shown in Fig. 2.

The longer transient regime is illustrated directly in t
plots of n1 and nx as a function ofu in Fig. 3, for the
same two values of (D1 /F), and a wider range ofB
52p exp(2bEB) values. It is seen that the transient regim
~i.e., before then1 maximum, wheredn1 /du50) can be
dominant for quite modest values ofB, especially at lower
values of (D1 /F). In Fig. 3~a! for (D1 /F)5105, the tran-

h
ith

FIG. 3. Log-log plots ofn1 andnx as a function of doseu, for
the same two values of (D1 /F) as in Fig. 2:~a! (D1 /F)5105 and
~b! (D1 /F)5103, with a wider range ofB values as indicated. Note
the increased importance of the transient regime for lower value
B, wheren15u, andnx is roughly proportional tou3 for i 51. See
text for discussion and Appendices B and C for detailed conditio
4-4



to

i

on
ne

b
as
s-

da
a
is

ug

ee
i

th
is

e-

lid

is
i-

ur
ic
ic
d
t
p
te

ct
it

fo
d
it

k
ct
n

g

t
,

-
this
tion

o a

ut

-
o

we

age,

ean

the
e

as

CAPTURE NUMBERS IN THE PRESENCE OF . . . PHYSICAL REVIEW B 66, 195404 ~2002!
sient regime extends up tou50.01 ML for B,0.1; in Fig.
3~b!, for (D1 /F)5103, the corresponding limit foru
50.1 ML is B,0.01. This trend has been followed both
higher (D1 /F5107) and particularly to lower (D1 /F510)
values, where it is well known that the transient regime
extensive even without barriers.16,26Values ofu@0.1 ML are
unrealistic in the simplest model, as we would need to c
sider coalescence and second layer formation in detail,
ther of which forms the main point of this paper.

However, low values ofB are perfectly realistic: such
values imply that a very high density of adatoms can
maintained in a long term, but metastable, state. In that c
the approximation thatu andZ are interchangeable fails dra
tically; then steady-state formulas for the densitiesn1 and
nx , and also for the capture numberss1 andsx , are inap-
propriate. Such effects are needed for the evaluation of
taken at suitably low temperatures with strong enough
tachment barriers.6,7 Once formulated, such a treatment
also suitable to follow annealing, including the~irreversible!
formation of clusters when the temperature is high eno
for the attachment barrier~s! to be surmounted.

IV. CAPTURE NUMBERS WITH LONG-RANGE
REPULSIVE INTERACTIONS

Recent STM work at low temperature6,7 has demonstrated
the existence of oscillatory long-range interactions betw
individual adatoms on close-packed metal surfaces. This
teraction has been explained by Friedel oscillations in
surface-state electrons, since it shows the character
asymptoticE(r )52A sin(2kFr12d)/r2 dependence.22 Here,
A is the amplitude,r the radial distance,kF the surface-state
Fermi wave vector, andd the scattering phase of the surfac
state electrons at the adsorbate. This asymptotic form
E(r ) is, when focusing on pair interactions, found to be va
down to r 51 nm for Cu and Co/Cu~111!.7 While this oscil-
latory long-range interaction never exceeds 2 meV, there
short-range repulsion forr ,0.7 nm, which has been est
mated to have a maximum of 13<Emax<19 meV, localized
at r 51 to 1.5 nearest-neighbor distances.7 We return to this
system in Sec. V.

To describe the effect of such interactions on capt
numbers, we need to start from a general position, wh
allows for an arbitrary, but in our case, radial-symmetr
potential-energy landscapeV(r ) around each adatom an
cluster. These interactions are mediated by electrons in
surface states of the substrate, and at very short range
sumably also by elastic and direct interactions. These in
actions are attached to the individual~moving! adatoms, so
they are different in kind from those due to substrate defe
Indeed, due to the repulsion, their effect is just the oppos
they act to suppress nucleation rather than enhance it.

We are interested in solutions of a diffusion equation
the adatom concentrationn1(r ), when there are sources an
sinks at various positions. The steady-state solution w
V(r )50 is typically known.1,2,10 The simplest case to thin
about is when we have a loss term governed by a chara
istic lifetime t. The governing partial differential equatio
~PDE! is then
19540
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]n1~r !/]t5G2n1~r !/t2¹.j ~r !, ~6!

wherej (r ) is the diffusive flux at radiusr. The source termG
is equal toF during deposition and typically zero durin
annealing. All variables in Eq.~6! are, in principle, functions
of r and t. The flux term j (r ) is defined as2D¹n1(r ),
where D is the chemicaldiffusion constant. Thus the las
term in Eq.~6! is equal toD¹2n1(r ) if D is indeed constant
independent of position and time.

But with nonzeroV(r ) this starting point is not appropri
ate. There is much and somewhat confusing literature on
topic. We need to evaluate the response to concentra
@¹c(r )# and potential@¹V(r )# gradients, via consideration
of phenomenological transport coefficients, which leads t
more general definition ofj ~r ! in terms of¹m~r !. This defi-
nition can be couched in terms of eitherD or D* , the tracer
diffusion coefficient. It is acknowledged23 that it may be dif-
ficult to calculate either diffusion coefficient accurately, b
that under certain reasonable conditions,24 (D/D* )
5b$dm/d@ ln(c)#%. The simplest expression forj (r ), using
this ratio, is

j ~r !52~D* c!b¹m. ~7a!

We now need the expression form(r ) for a nonideal ad-
sorbed gas, which ism(r )5m01V(r )1b21 ln(gc), whereg
is the activity. For this form ofm(r ), the original definition
of j (r ) can be written as23,24

j ~r !52~Dc!$11d ln~g!/d@ ln~c!#%21b¹m; ~7b!

the term $11d ln(g)/d@ln(c)#% is known as the thermody
namic factor. This form~7b! generalizes to include nonzer
V(r ), but in any case these two expressions forj (r ) are
consistent, since for the assumed form ofm(r ),
dm/d@ ln(c)#5b21$11d ln(g)/d @ln(c)# % .

To calculate capture numbers in our mean-field model,
need the expression form(r ) in the neighborhood of the
adatom or cluster under consideration~at r50), in the pres-
ence of all the other adatoms and clusters. Thus the aver
spatial independentm can be subtracted off to givem(r )
2m5V(r )2V1b21$ ln@g(r)c(r)/(gc)# %. Here V is the po-
tential due to all the other adatoms and clusters at the m
density, so the large-r limit of V(r )5V; the logarithmic
concentration-dependent term depends on the ratio of
local value of (gc) to its mean value. Pooling the abov
expressions~7!, and usingc5n1(r ), we find that

j ~r !52D¹n1~r !2@n1~r !D* #b¹V~r !. ~8!

The derivative ofg(r ) is needed to obtainD in the first term
in Eqs.~8! from ~7a!, but D* remains in the second term.24

Moreover, if we assumedg(r )5g in the model, the thermo-
dynamic factor would be unity, so thatD andD* would be
the same, but the following treatment is kept general for
long as possible.

Using Eq.~8!, Eq. ~6! becomes

]n1~r !/]t5G2n1~r !/t1¹.@D¹n1~r !#

1¹.$@n1~r !D* #b¹V~r !%. ~9!
4-5
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J. A. VENABLES AND H. BRUNE PHYSICAL REVIEW B66, 195404 ~2002!
Equation~9! is to be solved in various approximations. No
that although ther dependence is written out explicitly forn1
and V and there is an implied time dependence, the ‘‘co
stants’’ G, t, D, andD* may also be functions of positio
~e.g., via concentration or a diffusion energy!, or in the cases
of G, t, of time ~e.g., during deposition or annealing!, with-
out changing Eq.~9!.

When V(r )Þ0 andD5D* , Eq. ~9! can usefully be re-
written with n15n.exp@2bV(r)#, because then the last ter
in Eq. ~9! is canceled by part of the expansion of the pre
ous term. Now we are restricted to one diffusion coefficie
notionally the tracer diffusion coefficient. But real simplifi
cation is not possible unlessD* is independent of position
in which case it is simplest to takeD* 5D1 . It is, however,
otherwise not necessary to assume low concentrations
thatg51. Equation~9! then yields a differential equation fo
n, rather thann1 , which can be reordered to give

¹2n~r !2n~r !/~D1t!5@]n~r !/]t#/D11¹n~r !.b¹~r !

2~G/D1!.exp@bV~r !#, ~10!

where in two dimensions,¹2n5(]2n/]r 21r 21]n/]r ). In
passing, we note that essentially the same continuum p
lem in the presence of a radial symmetric potential has b
studied independently very recently,21 via an atomistic for-
mulation on a square lattice, yielding terms equivalent
Eqs.~9! and ~10!.

Equation ~10! is clearly a form of Bessel equation, bu
with nonconstant coefficients, and nonzero terms on
right-hand side. Two limiting solutions are worth highligh
ing.

The first is the equilibrium case, where both¹n(r ) and
¹2n50. Then in steady state,

n~r !/~D1t!5~G/D1!.exp@bV~r !#. ~11!

This equation is only consistent ift5t0 .exp@2bV(r)#,
wheret0 exp(2bV) is the constant value oft at larger. Then
during deposition, withG5F, n1(r )5Ft0 exp@2bV(r)# and
n1(r→`)5Ft0 exp(2bV). Thus, under these circum
stances,n1 simply reflects the Boltzmann distribution for th
potentialV(r ). This limit is easily visualized for the evapo
ration dominant case, wheret5ta . Then, at long times,n1
5Fta , with ta dependent on the adsorption energyEa as
na

21 exp(bEa), where na is the appropriate frequenc
factor;14 it follows that with the repulsive energyV(r ), the
expression isna

21 exp$b@Ea2V(r)#%, which at larger has the
expected limit na

21 exp@b(Ea2V)#, corresponding to a re
duced adsorption energy. At finite coverage of the subst
by islands,G5F(12Z) in the above expressions; the arg
ment generalizes to all times by considering Eqs.~10! and
~1! together, giving the differential equation for@n1(r )
2n1# in the same manner as Ref. 13.

The scaling ofn1(r ) with exp@2bV(r)# might be expected
in the general case also, though this is certainly not obvio
and indeedt may be considered to be an independent v
able, to be determined iteratively alongsiden1 and nx . At
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first, we consider (D1t) to be slowly varying spatially, so
that the function needed to solve Eq.~10! has a similar form
to Eq. ~A1!, namely,

n~r !5Gt0@12 f ~r !.K0~X!/K0~Xk!#, ~12!

where the functionf (r ) is to be determined. Note that thi
equation still allows for time dependence, via the relati
betweenn1 andGt0 , and in the argumentsX andXk , which
are of the formr /(Dt)1/2 or equivalently (r /j), see Appen-
dix A. If we now demand that there is a perfect sink at t
boundary of ak-sized islandr k and convert back ton1(r ),
we find that the only solution of this form is

n1~r !5Gt2Gt0 .exp@2bV~r k!#.K0~X!/K0~Xk! ~13!

or equivalently Eq.~12!, with f (r )5exp$b@V(r)2V(rk)#%.
From the definition of the capture number in terms of t
flux @s(r )n1D1522pr j (r )#, taking the limit r→r k , we
can show using Eq.~8! that the capture number correspon
ing to Eq.~13! is

sk5$2pr k@2b¹V~r k!#12pXk .@K1~Xk!/K0~Xk!#%

3exp$2b@V~r k!2V#%. ~14!

Note that the capture number is reduced, relative to the s
dard diffusion expression~A2!, by the Boltzmann factor
exp$2b@V(rk)2V#%; this reduction can be substantial for hig
values ofb@V(r k)2V#. The first term in Eq.~14! is strictly
zero if V(r ) has a maximum atr 5r k ; however, there are
contributions tosk of order 2pr k exp$2b@V(rk)2V#% lurking
if these conditions are not strictly fulfilled. In particular, th
term has the form of an attachment-limited termsB
52pr k exp(2bEB), discussed in more detail in Sec. III an
Appendix B, Eq.~B3!. During the transient stage, before an
spatial correlations have developed, this form of the capt
numbers is dominant. Over time, correlations develop w
the diffusion solution becoming dominant.

The next stage is to consider application of equations s
as Eqs.~12!–~14! for specific forms ofV(r ), and the effect
on the nucleation density via the capture numberssx , s1 ,
ands i , i.e., viask in general. Some physical arguments a
given in the text, and some comments on the mathema
are made in Appendix D. The main point is that Eq.~14!
shows an exponentially reduced capture number over
usual diffusion solution. IfV(r ) peaks atr 5r k , the solution
is still typically diffusion limited. The radial distribution
n1(r ) evaluated according to Eq.~13! is shown in Fig. 4, for
the specific case of a LorentzianV(r ). Thus in Fig. 4~a! we
show the case of (D1 /F)5105 andu50.01 ML, plotted as a
function of (r 2r x), with decreasing values of the paramet
BV52p.exp$2b@V(rx)2V#%; note that the higher curves co
respond to the lower values ofBV . It is clear that, although
this is a diffusion solution, the form is very similar to tha
considered in the previous section for the attachment ba
with parameterB. But note that the reason is different; th
main reason for the reduced capture number is thermo
namic, not kinetic, due to the reduction ofn1(r k) in the
4-6
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CAPTURE NUMBERS IN THE PRESENCE OF . . . PHYSICAL REVIEW B 66, 195404 ~2002!
potential@V(r k)2V#. There are no qualitative changes if w
choose other~larger! doses at which to make this compa
son.

However, if the maximum ofV(r ) occurs atr 01r k , then
Eq. ~13! can go negative, yielding an unphysical result f
n1(r ) in the regionr 2r k,r 0 . This corresponds to a solutio
that is attachment limited at a larger radius; in other wor
we have assumed a diffusion solution that cannot be m
tained at a smaller radius. The real physical solution can
restored by considering a reduced diffusion gradient s
that n1(r ) is still positive at r 5r 0 1r k. A single jump is
typically all that is needed for the adatom to reach the sin
r k , since the potential aids capture of adatoms forr 2r k
,r 0 . Then Eq. ~14! can be recalculated substituting th
larger radiusr 01r k in the argumentX and in exp$2b@V(r)

FIG. 4. Illustrative radial profiles forn1(r ) and @V(r )2V#/kT
~dashed line! for four values of the potential parameterBV

52p exp$2b@V(rx)2V#%52p ~no barrier!, 1, 0.1, and 0.01:~a!
(D1 /F)5105, u50.01 ML; ~b! (D1 /F)5103, u50.1 ML, and
r 052. Note that the higher curves correspond to the lower value
BV , and that the profiles to the left ofr 0 are modified by attach-
ment. The potential illustrated schematically is Lorentzian w
width b50.5. See text for discussion and Appendix D for detai
conditions.
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2V#%, as illustrated in Fig. 4~b! for (D1 /F)5103, u
50.1 ML, andr 052. Note that the solution of the rate equ
tions does not need these radial plots, which are included
illustration; only the capture numberssk are needed, which
are functions ofr 0 and r k , as set out in Appendix D. When
the capture number involves both diffusion- and attachme
limited terms they combine essentially as in Eq.~5!. This
point is illustrated using a single experimental example in
next section.

V. NUCLEATION, ANNEALING, AND ENERGY BARRIERS
ON CLOSE-PACKED METAL SURFACES

In order to compare with experiment, we still need
program the equations described in this paper, and to
care of all the material and numerical constants with su
cient accuracy. We illustrate this here with a single examp
Cu/Cu~111!, for which recent deposition and annealing da
are available,6,7 and for which it is known we are dealin
with complete condensation and small 2D islands. Two ty
of program have been developed inMATLAB ® 5.3 ~student
edition! to model:

~i! deposition processes, where output consists of~log-
log! graphs of densities versus dose, and a file of
quantitiess1 , sx , n1 , and nx , and the coverage o
stable clusters (Z5nxwx) at the final doseu;

~ii ! annealing processes, using the output file from
deposition program as input. The output consists
similar files and graphs, as a function of anneali
time, V(r 0), andr 0 .

The deposition program has been used to produce illustra
graphs of radial distributionsn1(r ), as, for example, Fig. 4
In order to use the minimum number of parameters, th
runs have been restricted toi 51, for which the parameters
during deposition are (D1 /F) and eitherB or BV , and the
independent variable is the doseu. In the annealing program
G50, and the calculation runs as a function of (D1t)0.5,
anticipating the slowdown at longer times, and the main
rameter is eitherB or BV . Minor parameters includer 0 , and
additional binding-energy parameters would be needed
both programs ifi .1. The width parameterb does not enter
at the level of approximation represented by Eq.~14!.

Material and deposition parameters known from expe
ment are then used to choose appropriate values ofF and
D1 . The output of the comparison with experiment is t
deduced value ofB or BV , and hence the energyEB or V0 .
In parallel with this comparison based on the rate equatio
a KMC study has been done to test consistency between
two approaches.

The KMC simulations have been carried out on a hexa
nal lattice of fcc sites.27 This is a good approximation for Cu
monomer diffusion on the trigonal Cu~111! surface, since
both experiment7 and theory8,20 find diffusion to occur be-
tween fcc sites only; i.e., the hcp site is as unstable as
bridge site. The simulations involve, apart from substr
temperature and deposition flux or annealing time and
fact that growth is irreversible (i 51), the same three param
eters as in Sec. III: the diffusion energyEd and attempt fre-

of
4-7
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J. A. VENABLES AND H. BRUNE PHYSICAL REVIEW B66, 195404 ~2002!
quencyn for monomer diffusion, and the additional energ
barrier EB for lateral attachment to an island or anoth
monomer. The attempt frequency of the attachment proc
which is the last jump towards an island or an adatom
assumed also to ben; the total barrier for this process i
(Ed1EB). The repulsive potential has its maximum at 1.a
and is felt by atoms approaching an island or monomer fr
2a (a5nearest-neighbor distance!. Atoms further away than
this, or atoms diffusing away from, or parallel to, the isla
starting at distance 2a, diffuse with the unperturbed terrac
barrier. Atoms deposited on top of an island, or a monom
are allowed to descend the step and atoms deposited o
site with a neighbor atom are stabilized there. To prod
statistically meaningful results the simulations were p
formed several times on a large lattice (100031155 sites!,
each time with a different initializing value~seed! of the
random number generator.28

In the limit of slow attachment, and sharp barriers, o
two approaches should be identical. Specific features of
dose, low-temperature experiments, which may not be v
important in general, have been incorporated into the
equation treatment, as a result of comparison with the KM
simulations. These include the role of direct impingement
monomers during deposition, and of transient contributio
to capture numbers during the initial stages of annealing

Deposition of Cu atoms onto Cu~111! was performedin
situ in a low-temperature STM, atT516.5 K at a fluxF
5531023 ML/s for a fraction of a second.7 The diffusion
energyEd of Cu adatoms has been measured at somew
higher temperatures as 4061 meV, with a preexponentia
frequency factor n5101260.5 s21,7 yielding D1
50.156 ML/s. These values give (D1 /F) approximately
equal to 30 during deposition. Figure 5 shows the evolut
of n1 andnx to the final doseu50.0014 ML. At such a low
dose and value of (D1 /F), bothnx andZ are very small, and
almost all of the deposited material is in the form of mon
mers, and the few existing clusters are in the form of dime

The ratio (nx /n1) is a sensitive test, not ofB or BV ,
which only modify the already small diffusion terms, but
direct impingement on monomers. Direct attachment en
through the radiusr 0 , at which V(r ) has its maximum. In
the rate equation solution behind Fig. 5, direct impingem
adds to or creates a cluster, if the atoms fall within a rad
(r 01r x) or (r 01r 1), respectively, where we taker 150.5. A
radius r 051.5 ~measured from the origin! was suggested
from the KMC simulations, and the ratio (nx /n1) determined
as (462)31023; this point is the highest point plotted o
Fig. 5. Given the uncertainties in experimental parameter
value ofr 0 in the rate equations~measured from the edge o
the cluster! in the range 1–1.5 predicts the ratio (nx /n1),
essentially independent ofB or BV . Small values of these
parameters serve merely to make diffusion even less im
tant than it is already at low (D1 /F) values.

Using the above values at the end of deposition, prog
of n1 , nx , and other quantities can be followed during a
nealing, as illustrated in Fig. 6~a! for r 051.25, chosen to
agree precisely with the initial values in the KMC simulatio
data shown. The extent of cluster formation can be seen
the rise innx that accompanies the fall inn1 as a function of
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(D1t)0.5, with parameterBV . Again, the absolute values o
n1 , nx , and especially the ratio (nx /n1) are sensitive tests o
the parameters in the rate equation model.

The steady-state mean-field capture numbers were
tially used with this range ofBV values, corresponding to 0
,EB,10 meV. As seen in Fig. 6~a!, dashed curves, this
leads us to underestimate the amount of annealing, for alBV
values. The basic reason is clear: steady-state capture n
bers are appropriate when spatial correlations are fully
veloped, which they are certainly not in the early stages
either deposition or annealing. In the ‘‘completely uncorr
lated’’ limit, before a diffusion field has developed, the ca
ture number is given by the pure attachment limit, derived
Appendix B @Eq. ~B3!#. For the case wherer 0.1 and a
potential barrierV0 we have used the form

sB5~r k1r 0!BV52p~r k1r 0!exp~2bV0!. ~15!

The curves forV05EB55 and 10 meV are in essentia
agreement with this simple formula over the whole range
annealing conditions shown in Fig. 6~a!. By extension, they
would also be in perfect agreement with Eq.~15! for all
larger values ofV0 or EB , but of course for larger energ
values there is almost no annealing over the range of (D1t)0.5

shown.
At the other end of the scale, Eq.~15! gives far too much

annealing whenV05EB50, most obviously seen in Fig. 6~a!
by the gross discrepancy in the prediction ofn1 . Thus, for
the lower values ofV0 or EB , or for longer annealing times
an interpolation scheme is needed, which will take the va

FIG. 5. Predictednx(u) curves for deposition with (D1 /F)
530, and reasonabler 0 values 1, 1.5, and 2. Lines forBV52p ~no
barrier! and 0.187, corresponding to a 5-meV barrier at 16.5 K
plotted, but fall essentially on top of each other; higher barriers g
negligible further changes. The data points are the result of a K
simulation with Cu/Cu~111! parameters (Ed540 meV,n51 THz!.
Consistent with densities inferred from experiment, these sim
tions produced 357 dimers and;6.43104 monomers atu
50.0014 ML. Atoms deposited on top of an island or monom
were allowed to descend and attach laterally to the island or mo
mer.
4-8
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CAPTURE NUMBERS IN THE PRESENCE OF . . . PHYSICAL REVIEW B 66, 195404 ~2002!
of the capture number from an initial uncorrelated value t
final diffusive value over the correct range of (D1t). By
examination of the coupled rate equations for anneal
analogous to Eqs.~2! and~4! for deposition, we can see tha
the independent variable is (D1t), and that the only othe
parameter isBV , which enters via Eq.~15!. The details are
given in Appendix D.

A particular set of the resulting curves is shown in F
6~b!, based on the formula

sk5~sBf t! f t1skd~12 f t!, ~16!

where skd is the diffusive contribution given by Eq.~14!,
and f t is a transient factor, such that at (D1t)50, f t51, and
as (D1t)→`, f t→0. Short of a complete closed-form solu

FIG. 6. Predictedn1 and nx annealing curves as a function o
(D1t)0.5, for BV values which correspond to annealing at 16.5
with attachment barriersEB50, 5, and 10 meV, compared to KMC
simulations~squares with error bars!: ~a! capture numbers corre
sponding to attachment-limited solutions~full lines! and diffusion
solutions ~dashed lines!; ~b! capture numbers based on the tim
dependent interpolation scheme between attachment and diffu
solutions, showing essential agreement with the KMC simulatio
The initial data file corresponds to the final values displayed in F
5, with r 051.25. See text for discussion of how these curves ap
to STM experiments on Cu/Cu~111!.
19540
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tion to time-dependent equations for the capture numbers
have experimented with justifiable forms off t ; our best fit to
date is given in Fig. 6~b!. The physical argument used is th
the transient is due to capture from a diffusion zone arou
the adatom or cluster considered, whose radiusr d increases
with time as some function of (D1t) andBV . The details are
discussed in Appendix D.

In the corresponding annealing experiment f
Cu/Cu~111!,7 no further cluster formation was observed du
ing annealing at 16.5 K for 20 min. On the other hand,
most all the monomers formed clusters during annealing
22 K for a comparable time. Thus we can put upper a
lower bounds on the value ofBV and hence bounds on th
maximum value ofV(r ), i.e., V0 . From Fig. 6, we can de-
duce, using (D1t)0.5 at 20 min513.4, that the lower bound to
V0 is around 10 meV. The upper bound can be estima
from Fig. 7. This figure shows the ratio (n11nx)/(ntot),
wherentot is the initial sum of (n11nx) after deposition at
16.5 K, as a function of barrier heightV0 , using the above
interpolation scheme with the KMC simulations fort
5120-s anneals atT519 and 21 K. The rate equation ratio
are given for 17, 19, 21, and 23 K, and for 22 K for 20 mi
the constants are the same as in Fig. 6, so the fit is a good
of the interpolation scheme proposed. Note that, accordin
the rate equation integration shown in Fig. 7, annealing a
K for 20 min is comparable to annealing at around 23.8 K
2 min; this could not be checked by KMC simulations b
cause of the excessive amount of computer time needed

ion
s.
.

ly

FIG. 7. Predicted annealing curves as a function of bar
height V0 , at temperatures 17,Ta,23 K. Plotted is the ratio (n1

1nx) after a 2-min anneal, divided by the initial valuentot5(n1

1nx) after deposition. The full curves use the time-dependent c
ture number expression forr 051.5, with the dotted curves havin
r 051.25 as in Fig. 6; the dashed curves forTa519 and 21 K
correspond to attachment-limited capture numbers, which ar
good approximation for all anneals initially. The curves for 19 a
21 K are also compared with the KMC simulations~squares with
error bars!. Additionally a curve for annealing at 22 K for 20 min i
given. See text for discussion of how these curves apply to S
experiments on Cu/Cu~111!, and Appendix D for details of the al
gorithms used.
4-9
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J. A. VENABLES AND H. BRUNE PHYSICAL REVIEW B66, 195404 ~2002!
From the reported onset of dimer formation foru
50.003 ML between 19 and 21 K,7 we can infer that 9
,V0,14 meV from Fig. 7. This result assumes that the o
set of dimer formation corresponds to a 10% decrease in
total density (n11nx) after 2-min annealing. Since, howeve
time and coverage were not specified precisely in Ref. 7,
prefer to retain the estimate derived from the considerati
in the previous paragraph. This maximum,V(r 0), lies be-
tween 10 and 14 meV, and is not very sensitive to the ex
choice of the radiusr 0 . This lack of sensitivity tor 0 arises
because direct impingement terms are not active during
nealing, and diffusion terms are modified only slightly byr 0 .
The energy values deduced are, however, sensitive to
choice of capture number expression, and do require the
clusion of transient effects in the capture numbers the
selves, as discussed above.

VI. DISCUSSION AND CONCLUSIONS

We have examined the form of capture numbers, and
sented rate equations for deposition and annealing, inclu
the effects of additional attachment barriers, both for ex
diffusion barriers and for potential fields of longer range,
the neighborhood of adatoms and clusters. We have der
the form of the adatom and nucleation density as a func
of material parameters in various subcases. We have sh
that such barriers extend the transient regime in the e
stages of deposition. Analytic expressions for these cap
numbers predict cluster densities in essentially perfect ag
ment with kinetic Monte Carlo simulations during low
temperature deposition. However, direct impingement, e
onto individual adatoms, can be an important process, if
fusion capture is hindered by attachment barriers.

Transient effects on capture numbers in the presenc
the repulsive potentialV(r ) have been estimated for the ca
of Cu/Cu~111!. For the experimental doses and anneal
times, they increase the capture numbers initially, and red
in importance during annealing. A suitable interpolati
scheme is proposed, which spans the transient regime
have used this scheme to obtain lower and upper bound
the maximum in the repulsive potential 10,V0,14 meV,
somewhat lower than a previous estimate of 13–19 meV.7 By
quoting relatively wide error bars, we have ensured that
remaining uncertainties in the capture numbers do not af
our quantitative conclusions about energies in the
Cu~111! system. There may still be some further avenues
be explored, but these are probably best approached in
context of particular experimental results, since otherw
the number of underdetermined parameters can become
large.
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APPENDIX A: DIFFUSION SOLUTIONS FOR CAPTURE
NUMBERS

The uniform depletion solution for the radial dependen
n1(r ) on a 2D substrate, with a perfect sink atr 5r k , is
given by ~Ref. 10, whereR5F)

n1~r !5Ft~12Z!@12K0~X!/K0~Xk!#; ~A1!

the corresponding capture number is obtained from the
equationJ52D1¹n1(r ) evaluated atr 5r k , as skD1n1 ,
giving

sk5~2pXk!.K1~Xk!/K0~Xk!. ~A2!

The argumentsX5r /(D1t)1/2 and Xk5r k /(D1t)1/2 of the
Bessel functionsK0 and K1 set the length scale where th
adatom density is depleted in the vicinity of ak cluster. The
self-consistency condition arises because these argumen
themselves a function of~other! capture numbers.

For example, in the complete condensation case, wh
the dominant contribution tot21 is tc

215sxD1nx , Xk
2

5sxnxr k
2. So if Eq. ~A2! is evaluated for the average siz

cluster (k5x, r k5r x) we can writeXx
25sxnxr x

25sxZ/p,
and the capture number depends only onZ. Similarly, if we
consider the capture byk clusters in the presence of all th
other clusters,sk is only a function of Zk /Z5(r k /r x)

2.
These features have been illustrated in the capture num
calculations of Ref. 10, Fig. 2, where the independent v
able isZ. Note that in almost all subsequent papers, qua
ties are plotted as a function ofdoseu.

Bales and Chrzan13 described the same phenomena
terms of a characteristic length scalej, so that the argumen
X in Eq. ~A1! is just (r /j). The expression forsk (k5s in
Ref. 13! is Eq. ~A2!, and from the correspondence,j2

5D1t. These authors included all the terms relevant
complete condensation wheni 51, including the two diffu-
sive terms given here in the text in Eq.~2!, and the small
direct impingement term~atoms falling directly onto ada
toms!. Without this last term,j22 is given by

j2252s1n11sxnx . ~A3!

Thus Eq.~A3! can be incorporated into Eq.~A2!, with the
added complexity thatsk now depends implicitly on bothsx
and s1 , or in generals i . Equation~A3! is the same as the
text Eq. ~1!, where the two termstn

21 and tc
21 have been

retained. These equations can thus be extended to inc
other processes, such as evaporation, and for generali val-
ues, but if several processes are important simultaneou
simple scaling with material parameters will be lost; this
the price of completeness.

APPENDIX B: STEADY-STATE EFFECTS
OF ATTACHMENT BARRIERS

1. Introduction and summary

Kandel19 has given a discussion of the effect of islan
edge barriers, for 2D circular islands, with no reevaporat
or coalescence, and a general value of the critical cluster
i. He showed that in steady-state conditions, the nuclea
4-10
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CAPTURE NUMBERS IN THE PRESENCE OF . . . PHYSICAL REVIEW B 66, 195404 ~2002!
density scaling could be changed from the diffusion-limit
value i /( i 12) to the larger attachment-limited value 2i /( i
13). This exponent is confirmed here by a more transpa
argument, which does not depend on the particular form
capture number he used, which was equivalent to the la
approximation at low coverage. It is also shown here t
when there is an attachment barrier, the capture number
diffusion sD and for the barriersB combine inversely as in
Eq. ~5!; this equation is valid in general, as it rests on t
continuity of the diffusion flux across the barrier.

We start here from Eqs.~2! and~4!, in the case where the
nucleation term@e.g., 2s1D1n1

2 in Eq. ~2!# and coalescence
term @Uc in Eq. ~4!# are numerically negligible. In steady
state conditions, we then have from Eq.~2! n15Ftc(1
2Z), wheretc

215sxD1nx , as in Appendix A. Inserting this
value of n1 into Eq. ~4! yields in the limit of low island
coverage (Z!1),

dnx /du5~s iCi !.~sxnx!
2~ i 11!.~D1 /F !2 i exp~bEi !.

~B1!

We can integrate Eq.~B1! to obtain

@nx
~ i 12!/~ i 12!#

5~D1 /F !2 i exp~bEi !.E $~s iC!.sx
2~ i 11! .du%.

~B2!

From the form of Eq.~B2!, we can see that the normalnx
power-law scaling with (F/D1), i /( i 12) is obtained pro-
vided that the integral over the capture numbers in Eq.~B2!
is well defined, and does not contain any material para
eters. This is the case for complete condensation, where
capture numbers are slowly varying Bessel functions as
lined in Appendix A. A full discussion of various numerica
possibilities was given in Ref. 16.

2. Power-law modification by attachment barriers

In the presence of an attachment energy barrierEB , there
are various ways that the above equations could be modi
We can change eithersx or s i or both. In Ref. 19 new
variablesS5D exp(2bEB) andS* 5D exp(2bEB* ) were in-
troduced to modify stable and critical cluster capture p
cesses, respectively, but the definitions ofsx ands i were left
as before. That ansatz associates the barrier uniquely
diffusion in the mind of the reader; specific examples w
given only for EB* 5EB . Here, we prefer to incorporate th
barrier properties into the definition of the general capt
numbersk , as the different limits then arise naturally.

The diffusion limitsD in the mean-field approximation i
just sk given in Eq.~A2!. It remains to estimate the attach
ment limit sB . We can see qualitatively that when the a
tachment limit is needed nearr 5r k , there will be little long-
range diffusion field, andn1(r k11);n1 , the average
value.25 The number of sites around the periphery of t
cluster is of order 2p(r k11); from these sites, adatoms ca
jump towards the cluster with probability per unit tim
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(nd/4)exp@2b(EB1Ed)#. The rate at which adatoms join th
cluster is by definitionsBD1n1 , so for circular clusters

sB52p~r k11!exp~2bEB!, ~B3!

where we have used the usual form, in ML units,D1
5(nd/4)exp(2bEd).

When both diffusion and attachment barriers are imp
tant, the adatom density is depressed part of the way tow
the diffusion solution, but the flux across the interface reg
must be consistent with the interface concentrationn1(r k
11). Thus there are two expressions for the diffusion flu
For r>(r k11), we have the diffusion solution analogous
Eq. ~A1!,

n1~r !5n12$@n12n1~r k11!#.K0~X!/K0~Xk!%, ~B4!

with n15Ft(12Z). The effective diffusive capture numbe
is, analogous to Eq.~A2!,

sDe5~12 f B!.~2pXk1!.K1~Xk1!/K0~Xkl!5~12 f B!sD ,
~B5!

where the factorf B5@n1(r k11)#/n1 .
However, there is also the solution derived from Eq.~B3!.

Here the effective capture number issB@n1(r k11)#/n1
5sBf B . Since both this quantity and Eq.~B5! constitute the
samesk , we can determine the factorsf B5sD /(sD1sB)
and sk5sBsD /(sD1sB). This last expression shows tha
the diffusive and barrier capture numbers add inversely
sk

215sD
211sB

21, which is given in the text as Eq.~5!.
Note, as a detail, that the argumentXk1 of Eq. ~B5! should

be evaluated atr 5(r k11), not atr k , as in Eq.~A2!. In Fig.
2, we have experimented with this detail, and found that
calculation is a bit sensitive to the exact choice of bound
condition; overinterpretation of a continuum model is
course suspect for clusters of atomic size. Thus the line
B52p ~i.e., EB50) should fall on top of the no-barrier line
if all boundary conditions were exact. Figure 2 shows t
case where the argument is evaluatedr 5(r k10.5), but a
range of constants give very similar results.25 The divergence
between the ‘‘no-barrier’’ andB52p curves at high dose is
due to the need to change other boundary conditions, inc
ing modifying direct impingement terms. Since there are s
eral constants that could be changed marginally, with
guarantee of self-consistency, we have left Fig. 2 unchang
Such changes have negligible effects on Fig. 3, where
lines forB52p and the ‘‘no-barrier’’ essentially coincide, s
only one is shown.

We are now in a position to see that Kandel’s limit19 ~II !
arises whensB!sD , so thatsk5sB . If we use expression
~B3! for both s i andsx in Eq. ~B2!, we have

s isx
2~ i 11!5~r i11!.~r x11!2~ i 11!.@2p exp~bEB!# i .

~B6!

This is not yet in the right form, but note the term inr x ,
which is coverage dependent. In complete condensatio
island coverage,Z5pnxr x

2. If we neglect both the difference
betweenZ andu and the extra terms of order 1, and assu
r i; i 1/2 in Eq. ~B6!, then we have
4-11
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s isx
2~ i 11!5~ i 1/211!~u/pnx!

2~ i 11!/2.@2p exp~bEB!# i .
~B7!

By transferring the term innx
2( i 11)/2 to the left-hand side of

Eq. ~B1! and integrating, we obtain

$nx
~ i 13!/2/@~ i 13!/2#%5~D1 /F !2 i exp@b~Ei1 iEB!#.E $~ i 1/2

11!Ci .2p i .~u/p!2~ i 11!/2du%. ~B8!

Equation ~B8! shows the 2i /( i 13) power-law scaling
with (F/D1) for the nucleation density, confirming Kandel
limit II for steady-state attachment-limitedkinetics, while
retaining all the numerical constants. It is also clear from
~B7! that the power law is due tosx , not tos i ; if there were
no barrier term ins i , Eq. ~B8! would remain the same ex
cept for the slightly modified Arrhenius dependen
exp$2b@Ei1iEd1(i11)EB#/(i13)%. If there were a barrier
term in s i but not insx , then the power-law scaling woul
be ‘‘normal,’’ i.e., as in Eq.~B2!, but with Arrhenius depen-
dence exp@b(Ei1iEd2EB)/(i12)#. Note that in this case,EB
reduces the nucleation density somewhat, whereas in
~B8! EB increases it substantially.

3. Conclusion

Although we have shown that Kandel’s steady-state f
mula is functionally correct, the formula may be of limite
usefulness. The reduced capture numbers due to barriers
to increased importance of the transient regime, for wh
his formula is not applicable. The 2i /( i 13) power-law re-
sults from the equality ofZ andu in Eq. ~B7! which is only
valid for large 2D islands and small values ofn1 . Both of
these conditions are violated in the transient regime.

APPENDIX C: TRANSIENT NUCLEATION

The nucleation rate in the transient regime is given fr
Eqs.~3! or ~4!, neglecting the coalescence term, as

dnx /du5s i~D1 /F !Ciu
~ i 11! exp~bEi !. ~C1!

Within the transient regimen15Ft5u, so the nucleation
density is given as

@nx#5~D1 /F !exp~bEi !.E s iCiu
~ i 11!du. ~C2!

The end of the transient regime occurs at timet given in Eq.
~1!, so the details depend on the condensation regime.
complete condensation,t is tc or, equivalently,uc . At this
stage,

nx~tc!5~D1 /F !exp~bEi !.E s iCiu
~ i 11!du, ~C3!

where the upper limit isuc5Ftc5(F/D1)(sxnx)
21, and the

lower limit is zero. The power-law scaling fornx(tc) de-
pends in detail hows i depends onu, but for reasonable
illustrative purposes, let us takes i to be constant. Then, th
19540
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integral in Eq.~C3! is simplys iCiuc
( i 12)/( i 12), and, taking

the terms innx(tc) to the left-hand side of Eq.~C3!, we have

@nx~tc!#
~ i 13!5@s iCi /~ i 12!#.@sx~tc!#

2~ i 12!

3~F/D1!~ i 11! exp~bEi !. ~C4!

This result with scaling (i 11)/(i 13) has been known for a
long time~see, e.g., Ref. 10, p. 711, and the first of Ref. 1!,
and is not quite the same as the normal steady-state sc
i /( i 12). This means that materials parameters can only
strictly separated out in the limiti→`, when both laws be-
come linear. These awkward, but minor, details will not co
cern us here. The primary question is what happens if
capture numbers are modified by attachment-limited kin
ics?

First, we can see that ifsx(tc) is attachment lim-
ited, as in Eq. ~B3!, then Eq. ~C4! scales as
@2p(r x11)exp(2bEB)#2(i12). This is a strong Arrhenius
scaling, nx(tc);exp@1b(i12)EB /(i13)#, dependent on
0.75bEB for i 51. The end of the transient regime can be.1
ML even for modest values ofbEB . Second, we can see tha
if both s i andsx are hindered by the same barrier, the si
ation considered by Kandel,19 the scaling goes as exp@1b(i
11)EB /(i13)#, so that the important parameter is 0.5bEB for
i 51, and the effect is still relatively strong in the sam
sense. Only in the case thats i is hindered, butsx is unhin-
dered, does the effect go in the other direction, more wea
as exp@2bEB /(i13)#. Thus, the effects of transient nucle
ation tend to undermine the quantitative comparisons w
the experiment given in Ref. 19, based on steady-state
pressions only. Illustrative examples fori 51 are given in
Fig. 3. The effects are even stronger for larger-i values, as
noted previously in the case of no energy barriers.26

APPENDIX D: BESSEL-TYPE EQUATIONS
WITH NONCONSTANT COEFFICIENTS

We are interested in solutions of a radial symmetric
diffusion equation for the adatom concentrationn1(r ) in the
presence of a sink of radiusr k at the origin with potential
energyV(r ) around it. The steady-state diffusion solutio
with V(r )50 is known ~see Appendix A!. The governing
PDE is Eq. ~9!, and with the transformationn1
5n.exp@2bV(r)#, Eq. ~10! becomes the equation we need
solve for n(r ), with suitable boundary conditions, repeat
here as Eq.~D1!:

¹2n~r !2n~r !/~D1t!5@]n~r !/]t#/D11¹n~r !.b¹V~r !

2~G/D1!.exp@bV~r !#. ~D1!

Although the problem is, in principle, time dependent, w
start from the time-independent formulation. Then, this is
standard Bessel function equation, except for two extra te
on the right-hand side. The steady-state solution for slo
varying (D1t), with t5t0 exp$2b@V(r)2V#% as explained
below, is given in the text, leading to Eqs.~13! for n1 and
~14! for the capture numbersk .

The purpose of this Appendix is
~i! to explore the next level of approximation for gener
4-12



-

,

-

th

.

o-

nt
at
ib

,
n

a

lue

lte
tu
an
an

ed
is
e
al

.
et
e

se

e

st

-

the

he
er

c

all

ger

c
it

-
ibu-
itive

tics,
lace
l
ated

ms
ew
ple,

d to
le

is
in

acy,
le

what,
ere,
uld
e
-

elf-
r the
.

CAPTURE NUMBERS IN THE PRESENCE OF . . . PHYSICAL REVIEW B 66, 195404 ~2002!
(D1t) and exp@bV(r)#, and to see if the slowly varying so
lution is likely to be valid for cases of practical interest;
~ii ! to spell out algorithms for the diffusion-limited
attachment-limited, and interpolated capture numberssk for
specific (D1t) and exp@bV(r)#, which are used for the com
putational examples of Secs. IV and V.

1. The slowly varying case and beyond

The first approximation to Eq.~D1! arises from neglecting
the first two terms on the right-hand side and treating
third term as a constant, from which the solution forn(r ) is
as in Appendix A, namely,

n~r !5A2B.K0~X!, ~D2!

with X25r 2/(D1t), whereA and B are to be determined
The large-r limit is just n5Gt exp(bV). Since the large ar-
gument limit ofK0(X) is (p/2X)1/2e2X, the second term in
Eq. ~D2!, which accounts for the diffusive flux, goes exp
nentially to zero. Thus the termA must account for
(Gt).exp@bV(r)# as well as possible over the importa
range ofr. The uniform depletion approximation implies th
t is constant, but that is clearly inconsistent with the equil
rium case, as described in the text. Ift5t0 exp@2bV(r)#,
then A5(Gt).exp@bV(r)#5Gt0 exp(bV) is indeed constant
thought varies. In the absence of a diffusion gradient then
is constant, andn1(r )5n.exp@2bV(r)#. With a diffusion
gradient, this value ofn1(r ) is reduced to zero atr 5r k , but
the diffusive contribution is reduced from the normal situ
tion by the factor exp@2bV(rk)#. Converting Eq.~D2! back to
n1(r ) we have

n1~r !5Gt2Gt0 exp@2bV~r k!#.K0~X!/K0~Xk!,
~D3!

as given in the text as Eq.~13!, and Eq.~14! for the capture
number follows from Eq.~8!. The profile n1(r ) for these
equations is illustrated for a specific set of parameter va
in Fig. 4~a!.

Other approximations are possible, but they do not a
our qualitative conclusions. For example, when the cap
numbers are small, transient nucleation is more import
and hence the first time-dependent term on the right-h
side of Eq.~D1! is not zero. In the limit of no nucleation
n1(r ) is initially equal toG/D1 , for all r .r k . Since in this
limit everything is linear, this term can then be combin
with the third term, and cancels it precisely. But this is m
leading, as the capture number results from the derivativ
r 5r k and this is mathematically infinite in such an initi
situation, if only att50. Physically, the initialsk is of order
2pr k exp$2b@V(rk)2V#% if V(r ) is reasonably short ranged
Over time, shorter or longer, depending on the param
values, correlations develop with the diffusion solution b
coming dominant.

The second approximation concerns the fact that the
ond term on the right-hand side of Eq.~D1! is not in general
zero. This term depends on a product of derivativ
¹n(r ).b¹V(r ), so if either ¹n(r ) or ¹V(r ) is zero this
term vanishes, but it is zero both at larger, and whenV(r )
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has its maximum value nearr 5r k , so Eq.~13! has the cor-
rect form in both these limits. However, this term is be
incorporated into the left-hand side of Eq.~D1!, such that it
modifies the termr 21]n/]r contained within the 2D Laplac
ian by adding the positive term2b¹V(r )]n/]r , which can
be significant in a small region wherer¹V(r ) is numerically
greatest. In effect, this term locally changes the shape of
Bessel functiondiffusionprofile in the direction of becoming
a modified spherical Bessel function of the third kind—t
relevant solution of the 3D Laplacian, where the first-ord
term is 2r 21]n/]r .29 This solution has a simple analyti
form, (p/2X)e2X, which is somewhat smaller thanK0(X)
for X.2, and vice versa forX,2. Thus the shape of the
n1(r ) curve deviates from that discussed here by a sm
wobble at intermediate values ofX, in the direction of mak-
ing the curves nearer to step functions. But for the lar
values ofV(r ), including those illustrated in Fig. 4~a!, the
n1(r ) curves are dominated by theequilibrium, constant
n(r ) profile, except close tor;r k ; the diffusion component
is sharply reduced, as emphasized in Eq.~13! and in the text
discussion.

Finally, there is the possibility thatV(r ) has its maximum
value at r .r k . Then, as shown by calculation of specifi
forms of V(r ), the assumed diffusion solution can exhib
unphysical negative values ofn1(r ). This arises, as ex
plained in the text, because the assumed diffusive contr
tion is too large, and needs to be reduced to remain pos
in the neighborhood ofr;(r k1r 0). As found in Appendix B
also, this case corresponds to attachment-limited kine
where we have to consider the atomistic events taking p
around the maximum ofV(r ). This is one of the specia
cases that have been pursued by computation, as illustr
in Fig. 4~b!, and explained below.

2. Capture number algorithms

The algorithms used for diffusion and annealing progra
have been explained in outline in Sec. V, and only a f
points are elaborated here. The core of the codes is a sim
explicit, integration routine forn1 , nx , and the coverage
(Z5nxwx), which contains the capture numberss i andsx .
These few lines of code contain all the processes that lea
changes inn1 , nx , andZ; the integration dose or time sca
~linear, logarithmic, or square root as illustrated here! is set
by a single ‘‘Dt ’’ parameter. Convergence of the code
easily checked by varying the step length by factors of 2
either direction; smaller step lengths lead to better accur
provided digitally induced noise is avoided, but to larger fi
sizes; larger step lengths may decrease accuracy some
but reduce file sizes markedly. In the cases illustrated h
file sizes were less than 100 kB, and files half this size wo
not markedly decrease the accuracy~differences less than th
linewidth on the plots!. More sophisticated integration rou
tines are available inMATLAB ® 5.3, but are not really
necessary.

The capture numbers themselves are iterated to s
consistency at each dose or time step in a subroutine. Fo
case of an energy barrierV(r ), the central equations are Eq
~14! for both s i andsx , with the argumentsXk given by
4-13
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Xk
25r k

2~ f is in11sxnx!, ~D4!

where f i52 for i 51, and f i51 otherwise. When the maxi
mum ofV(r ) occurs atr 5r 01r k , the term inr k

2 in Eq. ~D4!
is replaced by (r 01r k21)2. In this case, seen in Fig. 4~b!,
the approximate radial distributionn1(r ), given otherwise by
Eq. ~13!, has exp@2bV(rk)# replaced by exp@2bV(r01rk
21)#. Here the radial distribution is only valid forr .(r 0
1r k21), and the corresponding attachment barrier (sB) at
(r 01r k21) is approximated by a single jump into the attra
tive region at smallerr.

These capture number routines require an initial estim
of s i andsx , but it has been shown that the results are v
insensitive to this initial choice; in other words, the differe
tial equation integration is stable. Thus by starting the in
gration at a dose below the dose range of interest for
output, only small changes are introduced. The smoothn
of the curves produced, and closeness to known analy
forms, allow us to choose suitable initial conditions.

There is an inherent uncertainty in choosing continu
boundary conditions to describe atomistic events, such as
radius of attachment barriers, or the exact area for di
impingement on monomers. For example, the continuum
fusion capture model will produce somewhat different ca
ture numbers if the zero of concentration is at, say, 0.5 o
atomic radii outside the cluster, but such a distinction is
the edge of what is meaningful. For the deposition and
nealing curves shown in Secs. IV and V, we have use
concentration zero at (r k10.5) or (r k11) in the absence o
barriers, and with a barrier at (r k1r 0). Rather than overad
just these values to get exact agreement with KMC simu
tions or other atomistic simulations, we prefer to take a ra
of reasonable predictions into account when deducing m
rial parameters from comparison with the model.25

3. Interpolation formulae for time-dependent capture numbers

As explained in outline in the text, an interpolatio
scheme is needed, which will take the value of the capt
number from an initial uncorrelated value to a final diffusi
value over the correct range. The capture number in
regime is a function of (D1t) andBV via Eq. ~15!, as can be
seen from the rate equations for initial annealing withG
50:

dn1 /d~D1t !522s1n1
22sxn1nx , ~D5!

dnx /d~D1t !5s1n1
2. ~D6!

The initial conditions (n1 ,s1) and (nx ,sx) for annealing are
those appropriate to the end of deposition. In the lo
temperature, low dose, deposition case of Cu/Cu~111! con-
sidered, there is very little diffusion during deposition,
that initial capture numbers are given by Eq.~15!.

The coupled Eqs.~D5! and ~D6! require time-dependen
capture numbers, and one can see that, whenn1.nx , the
first term on the right-hand side of Eq.~D5! is likely to be
larger than the second. By the time this situation is revers
the diffusion solution will be appropriate, and the transie
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‘‘problem’’ has gone away; the transient contains a fin
number of adatoms nucleating and joining clusters. Howe
it is relatively more important during annealing than duri
deposition. During annealing there is no replacement of
adatom concentration, so ifs1 is small via (BV/2p)!1, then
n1 stays at its initial value, and no annealing takes pla
During deposition, however, the small values ofs1 and sx
mean that the value ofn1 continues to increase, giving rise t
a compensation effect. This effect can be seen at work in
schematic radial distribution curves shown in Fig. 4.

During annealing, however, the capture number decrea
as follows:

sk5s init f t1skd~12 f t!, ~D7!

where skd is the diffusive contribution given by Eq.~14!,
s init is the initial barrier form of the capture number, andf t is
a transient factor, such that at (D1t)50, f t51, and as
(D1t)→`, f t→0. Short of a complete closed-form solutio
to time-dependent equations for the capture numbers,
have experimented with justifiable forms off t . Our best fits
to date are given in Figs. 6~b! and 7, based ons init5sBf t ,
but note that thisf t doesn’t have to be the same as thef t in
Eq. ~D7!. The physical argument used is that the transien
due to capture from a diffusion zone around the adatom
cluster considered, whose radiusr d increases with time as
some function of (D1t) andBV .

In that case, we can write by analogy with Eq.~A1!

f t5K0~Xd!/K0~Xk0!, ~D8!

where the new argumentXd5(r k1r 01r d)/(D1t)1/2 and
Xk05(r k1r 0)/(D1t)1/2. In the case ofV0 or EB50, we
know that r d will scale with (D1t)0.5. This range must be
restricted whenV0 or EB.0. If n1 is initially constant during
annealing, the detailed time dependence ofnx in Eq. ~D6! is
given bysB , and this scales with a factor (BV/2p) directly.
But also the initial values init decreases rapidly as diffusio
over several lattice distances replaces attachment by a s
jump. This feature, and the presence of square-law term
Eqs.~D5! and~D6!, qualitatively justifies the inclusion of the
second factorf t in Eq. ~16!; this equation is just the simples
form that works.

Figures 6~b! and 7 show the near-perfect fit to the inte
polation formula with

r d5~0.5D1t !0.5BV/2p. ~D9!

The constant 0.5 in Eq.~D9! is the result of trial and error
rather than detailed reasoning, and a full justification of E
~D8! and ~D9! may or may not merit further work. For th
present the above equations give a reasonable interpola
scheme for making extrapolations to other temperatures,
for comparing with experiments.
4-14
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