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We study the energy distribution function of quasiparticles in short voltage biased mesoscopic wires in the
presence of magnetic impurities and applied magnetic field. The system is described by a Boltzmann equation
where the collision integral is determined by coupling to sbinimpurities. We develop a theory of the
coupling of nonequilibrium electrons to dissipative spins. This theory is valid as long as the characteristic
smearing of the steps in the energy distribution function, which depends both on the bias voltage and the
location of the probe, exceeds the Kondo temperature. We further address the renormalization of coupling
constants by nonequilibrium electrons. Magnetic-field dependence of the energy relaxation rate turns out to be
nonmonotonic. For low magnetic field an enhancement of energy relaxation is found, whereas for larger
magnetic fields the energy relaxation decreases again meeting qualitatively the experimental findings by An-
thoreet al. (cond-mat/0109297 This gives a strong indication that magnetic impurities are in fact responsible
for the enhanced energy relaxation in copper wires. Our theoretical results are in good agreement with the
experiment at large bias voltages where the theory is applicable. At the same time, at small bias voltages there
are substantial quantitative deviations. Furthermore, the concentration of the spins, which follows from the
energy relaxation for Cu, seems to to be substantially higher than the concentration estimated from weak
localization(dephasing rajfemeasurements. Since the approach presented is valid only above Kondo tempera-
ture, it does not apply to the related problem of weak localization at low temperature in equilibrium.
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l. MOTIVATION AND OVERVIEW netoresistance experiments of the same safipfeThere-
fore, whether or not magnetic impurities are responsible for
Energy relaxation of “hot” electrons in disordered con- these effects is dubious.
ductors at low enough energies was for a long time believed Since the behavior of magnetic impurities is sensitive to
to be determined by direct interaction between electrons. Rehe applied magnetic field, studies of energy relaxation in the
cent experiments on mesoscopic wifese Ref. 1, and ref- presence of the magnetic field could either rule out or vali-
erences therejrhave shown that Kondo impuritiélocalized  date magnetic impurities as a relevant scattering process in
sping lead to much higher energy relaxation rates than thosenergy relaxation. Recently, Anthoe¢ al1* reported results
predicted by the standard thedry. of such experiments in Cu wires that indicate a strong de-
On the other hand, the inelastic collisions of electrons anghendence of the energy relaxation on the magnetic field sug-
their spin flips are directly related to the phase coherencgesting that magnetic impurities indeed play a role for the
time probed by weak localization effects, such as low-fieldcopper wires as well.
magnetoresistance. The problem of decoherence in weak lo- In this paper we perform a theoretical study of transport
calization was recently revisited and intensively and energy relaxation in a mesoscopic wire in dependence on
discussed:>* an applied magnetic field. We use a diffusive Boltzmann
Theoretical studies by various groups®lead to a satis- equation to account for the static scatterers and focus in the
factory and consistent explanation of energy relaxation exinelastic collision integral on magnetic impurities. The find-
periments by Kondo impurity mediated electron-electron in-ings are in qualitative agreement with the experimental data
teraction in the gold wires by Pieret al! Those gold wires in Ref. 14 supporting the presumption that scattering with
were contaminated by iron impurities, and the concentrationmmagnetic impurities is the essential mechanism of energy
of the impurities could be independently estimated from theransfer at low temperatures. However, the apparent incon-
magnetoresistance as well as from the temperature depesistency between the values of the experimentally observed
dence of the resistivity. As a result, it was possible to carryenergy relaxation rate and the dephasing rate extracted from
out a parameter-free comparison of theory andthe magnetoresistance in Cu wires remains puzzling.
experiment.™® Starting with a brief discussion of the experiment we pro-
At the same time the copper samples in the first energypose in Sec. Il a simple physical picture to explain the
relaxation experiment by Pothiet al* were fitted using the anomalous dependence of the energy relaxation on the mag-
concentration and Kondo temperature of the paramagnetieetic field. In Sec. Ill follows a theoretical description in
impurities as free parameters. The parameters obtained frotarms of a renormalized Hamiltonian restricting the interac-
energy relaxation disagree with those obtained from the magion processes to the coupling to electron-hole pairs only. We
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then present in Sec. IV the numerical procedure and the conteraction. As a result, the distribution in the middle of the
parison with experimental results. Section V is devoted to avire turns out to be almost insensitive to the bath
discussion of the interpretation and validity of the approachemperaturé’'® The smearing depends on the effective in-

as well as its possible extensions. elastic relaxation time, and the latter can be estimated from
the experimentally observed distribution function.
Il. EXPERIMENTAL SITUATION AND PHYSICAL The first experiment$!® for B=0 have clearly shown
PICTURE that the smearing is too strong to be attributed to the

. . . .. ... electron-electron or electron-phonon interaction. Therefore,
Here, we briefly describe the experimental situation in

. S . .~ in the following we do not take these interactions into ac-
Ref. 14 and a possible qualitative explanation of their fmd—Count 9
Ing_IS_.h . tal setun in Ref. 14 ists of a thi The qualitative outcome of the experimkhis that the
€ expenimental Setup in Ret. consISts of a tin COPpehayior of the inelastic relaxation rate is a nonmonotonic
per wire of about 45 nm thickness, 105 nm width, andré

- . function of the magnetic fiel8. ForB=B;=eU/4.3ug, the
length connected to two metallic leads. The leads are bias laxation rateincreaseswith magnetic field and reaches a
by an external voltage sourd¢¢=0.1 mV andU=0.3 mV

) . . maximum atB~B;. At stronger fieldsB>B,, it decreases
imposing a steady-state current through the wire. The setUPith  further increasing magnetic field, and &~B,

is placed in a dilution refrigerator with a temperature of 25=eU/2,uB it reaches almost the same value as it had at

mK and a magnetic field up to 2.2 T is applied. The elast|c:0 and then decreases further.

lmeanhfrefe r?ath can be esht|mart1ed to be mucrf1 s:naller th%n the The explanation of such a complex behavior given in Ref.

ength of the wire.L, e t. at_t N tranqurt o electrons be- 14 is based on electron scattering by magnetic impurities.
tween r;[?e contacts s diffusive. The diffusion con;tﬁ?nt For vanishing magnetic field, the spin system is degenerate
=90 c/s, estimated from the Jow-temperature resistancey, only second- or higher-order scattering processes con-

H H H —1 2 —
leads to a diffusion tlme. ofp=L%/D=2.8 ns. ... tribute to energy relaxation. For finite magnetic fields, there
The aim of the experiment was to study energy distribu-

. S ) .~ exists also a first-order contribution with enerdyy
tion of electrons. The distribution function was determined -

; ; . = B (equal to the Zeeman splittingransferred to or
by tunneling to an underlying aluminum probe electrode 9ueB (eq plitting

. . . o from the spin system. Therefore, the energy relaxation rate
The differential tunneling conductance is given by a convo- pin sy 9y

lution over the electron distribution functions in the wire andlncreases However, fo,;>eU the spins are completely

. lariz n n no longer contri nergy relaxation.
in the probe electrode, both f@=0 andB+#0, compare polarized and can no longer contribute to energy relaxatio

: . . Consequently, again only higher-order processes are effec-
with Refs. 11, 15 and 14, respectively. In the case of vanlshﬁve_ Comparing this explanation with the experiment, one

ing magnetic field, the aluminum probe electrode is in the stimates the avromaanetic factor for the impurity spins as
superconducting state, and the peaked density of states of L@e ay 9 purty sp

probe electrode allows one to straightforwardly extract th .

distribution in the wire f theV ch teristic of Thus, electron-spin interaction taken into account in the
?hneeggxctilznn ution in the wire from charactenstic o 5\vest order of the perturbation theory explains, in principle,

For finit ic fields. h the alumi b the main experimental features. However, from the theoreti-
or Tinite magnetc Tields, however, the aluminum probe ., point of view, there appears a subtlety. The problem is

glectrode is in the ”Orma' state. In this case the deconVOIL{hat the higher-order terms, estimated within the framework
tion has been made using a zero bias anomaly. Unfortunatelgf the t-matrix approach in Refs. 6,7,10, lead to a divergent

the latter procedure is less accurate. Considering the numer&bntributionfv\]“/(eiEH)2 to be integrated over. Hergis

cal ransformation de_plc_ted in Fig. 2 of Re_f. 14, we eXPeClne renormalized coupling constant that defines the strength
that the strongest variations due to uncertainties in the shapO the electron-impurity interaction. The suggestiiito in-

and the depth of the zero bias anomaly arise at the “Fer roduce a cutoff at the Korringa wid#il K ~ J° gives a result

p0|nt§ €= t_llebU.IZ. Furtgermore,hthe tunnel prob? 6exper|- that is comparable with the first-order contribution. Conse-
Vrcﬁir;th'réi?fgtr’: frgl:nmiﬁ;ac'tl?;}vriftrie teTpetrature Ot 5 njrlf] quently, there is no systematic expansion in powers of the

. ual refrigerator temperature. IScoupling constant, and one needs a generalized approach that
_rmght be due to an _over3|mpllf|cat|on .Of the eﬁr%\gronmentalis not based on expansion in terms of the interaction strength.
impedance respon_3|ble_for_ the_ Zero b'fis anorfafyonse- The aim of the present paper is to develop an approach
guently, the resulting distribution function has to be takencapable of treating lowest- and higher-order contributions

W|t:1_hsorr;e (t:?rr?; dlin tﬁsrttli(:ur:afr’nn?ial;’]til;]’]etf']: ermbl pglnts.f inel within a unified scheme. We show that the problem can be
. € electron distribution function In the absence ol IN€lasyqqqrineq as electrons coupled to a dissipative spin system.
tic scattering is just a linear combination of the distributions

: : The dissipation of impurity spins is, in turn, caused b
in the left and right electrod€, creation/a%nihilation ofpele():/troﬂ—hole pairs due to electror>1/—
—(1_ _ spin coupling. We show that this scheme includes the diver-
fo(ex)=(1=x)fe(e-eUi2) +xfr(e+eUf2). (1) gent higher-order contributions appearing in theatrix ap-
Here,fr(€) is the Fermi function while is the longitudinal  proach. Using our approach, we derive an electron-spin
coordinate of the observation point in units of the total lengthcollision integral expressed through spin-spin correlation
L. At low temperatures, the distributiqi) has steps in both  functions. An important feature of these correlation functions
e and x dependences. These steps are smeared by inelasticthat their dependence on the electron energy is automati-
processes, such as electron-phonon and electron-electron ically broadened by Korringa-type processes. These pro-
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cesses, however, depend on Fhe _actua] e!ect_ron dis.tribution of(ex) 1 Pf(ex)
rather than on the thermal equilibrium distribution as in Ref. -— +I1{f}=0, (2
19. As a result, the applied voltage plays the role of an ef- at ™ ox?
fective temperature.
The crucial difference between the cad®s 0 and B
#0 is the following. At zero magnetic field, all spin-spin I{f}:f do{f(e)[1-f(e—w)]W(e,0)
correlation functions are centered at zero energy and behave
asK/(€2+K?). It is important that in the collision integral —[1-f(e)]f(e— 0)W(e—w,~w)}. )

these correlators are multiplied by a combination of the eleci_| include the densitv of statesn th tteri i
tron distribution functions, which at small energies is propor-11€'€: We include the density of statesn the scattering rate

tional to e. Consequently, the broadening turns out to be\év(f"”) ??r? Og.“ttf.%r ;:_onvfemetr.\ce t:‘_ﬁ exg;;cg spaFgal dfﬁen'
unimportant, and one can omik? in the denominator. This ence ot the distribution function. The raté describes the
transitions between two electron states with energiesd

way the resulting collision integral becomes proportional to . . L .
J% and one recovers the resdifeof the t-matrix approach. €~ @ mediated by coupling to the dissipative spin system. Its
explicit form is given by

At finite magnetic fields, however, the spin-spin correla-
tion function decomposes into three contributions. The non-
spin-flip part is still centered at zero energy, while the two

L o 4
spin-flip contributions are peaked &t * Ey. Let us, for a wherec;y,, is the impurity density. The explicit dependence

moment, accept the above simplified form of the correlation . . .
function and assume<—0. Since in this caseK/[(e of W on electron energy is taken into account in the con

~E,)2+K2]—m8(eTE,), the two spin-flip correlation crete calculations. However, it is not important for the

functions with finite-energy transfer lead indeed to the de-present discussion. Furth@(w) is the Fourier transform of

sired first order inJ? contribution. In this simplified case a spin-spin correlation function. The latter can be split as
only the non-spin-flip correlation function contributes to the
orderJ* in the collision integral.

Using thet-matrix approach with a finite cutof, intro- where
duced by hand, would lead to a double counting of the first
order inJ? contribution. Here, on the other hand, the cutoff
is included automatically and the first order is accounted for

correctly. _The averages here mean the spin and electron trace weighted

In this simplified case the reasoning to explain the experiyit, the unknown nonequilibrium density. The time evolu-
mental data follows the lines of the experimentalists. Thetion is governed by the Hamiltoniad=H,+H, , where
only difference is that foE,;>eU, where the spin-flip con- o

tribution is already frozen out, there remains just 1/3 of the
B=0 energy relaxation because only the non-spin-flip com- HO:E GkUCEUCka— = 7
ponent contributes to energy relaxation in ordér In prac- ko
tice, K is not constant but depends on frequency. Therefore, .
the correlation functions are not Lorentzian shaped and thd€scribes free electrons. Here, op_eratbb andCy, create
spin-flip terms will also contribute to tha* term. Further, @nd annihilate an electron in a given orbitaand spino
the width decreases with increasing magnetic field for theétate. €, is the energy of this state. The second term in Eq.
non-spin-flip component and therefore energy relaxation met?) describes a splé-lmpurlty_ with Zeeman splittingey
diated by magnetic impurities dies out f&,>eU. =9gueB. The interaction Hamiltonian

We believe that our approach provides a consistent expla-
nation of the magnetic-field dependence of the nonequilib-
rium electron distribution in diffusive wires with magnetic
impurities.

W(e, @)= (Cimp /pfi)[pdI2]*C(w), 4

C(t)=[C.(t) +C_(1)]/2+C,(1), 5

C.()=(S7(1)S™(0)), C,()=(S(1)S(0)). (6)

H=J 2 S8/Cl . Ci (8)

kk' oo’

couples electrons to the impurity spin system via the renor-
malized coupling strengtl, rather than the bare ond,,.
Further, the electron is coupled only to one impurity spin
Here we present a simplified version of the theory withsince we assume that the impurity denstty,, is small
isotropically renormalized coupling constahiindependent enough to neglect higher-order terms.
of energy. In general, the renormalization can be anisotropic Using this renormalized Hamiltonian we will restrict our
and energy dependent. These generalizations, which do noglculation for the time evolution dE(t) to the coupling to
alter the underlying physics, are discussed in appendixes. simple electron-hole pair excitations only, see Appendix A
We assume that the metallic wire is in the diffusive limit, for details. A similar procedure was already used in Ref. 20
i.e., the elastic relaxation time is much smaller than otheto discuss the impurity spin resonance linewidth in equilib-
time scales. We also assume that the distribution function ofium using Baym and Kadanoff’s kinetic equations. Here, the
electrons does not depend on the spin. The energy distribspin-spin correlation functions are calculated using the con-
tion of the electrons is governed by the Boltzmann equationyentional projection operator technigtfeThe results read

Ill. THEORETICAL DESCRIPTION
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c _} v(w) 9
Z(w)_z w2+yz(w)2, ( )

_ 2Pve(w)
Ci(w)= (10)

[0FEn]2+ve(w)?

The functionsv,,v.. describing damping of spin fluctuations
can be expressed through an auxiliary function

§(w)=fde'f(e’)[l—f(w+e')] (11

stemming from the coupling to electron-hole pairs. They
read

v@)=m(pd)’ [P {(0—En)+P-L(o+Ey], (12
va(o)=(74)(pd)[2{(0FEn) +{(w)/P-]. (13

Further,P.. is the occupation probability for impurity spin
up or down, respectively. These probabilities are determine
by a master equation

dP./dt=—-T.P.+I'sPz, P,+P_=1,

which can be solved in the steady state leading to

14

P.=T /(I +T_). (15

Here, the inverse lifetime for the spin-udown) state,l" .,
is determined by the expression

(pd)?

F=2p.

fdwé“(—w)ci(w)- (16)

For a given electron distribution, the set of E¢5) and
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gested in Refs. 6,8,9, is naturally included. This cutoff equals
the Korringa widthK. For weak coupling only elastic scat-
tering survives and we gét/(e) = rs’flé(e) where the time

75 is usually referred to as spin-flip tinfé.In this case the
collision integral vanishes identically and one has to go be-
yond the lowest order.

Further, our expression for the correlation function in
equilibrium and vanishing magnetic field coincides with the
results of Waer and Zittart?* based on a Nagaoka-like de-
coupling scheme. Using Suhksmatrix for the renormalized
coupling constants, the spin susceptibilities follow from
proper kinetic equations. The procedure is actually similar to
the one used in Ref. 20 for the analysis of the impurity spin
resonance linewidth.

An asymmetric ratéV(w) in the collision integral3) in
general does not allow for a thermalized solution. However,
this is one of the basic requirements the Boltzmann equation
has to fulfill. In order to show that our specific rate allows for
such a solution, we expand/(w) in powers ofJ?. In the

ollision integral we get higher orders in the distribution
unction, however, with a symmetric kernel. For tBgterm
this is obviously 162", In contrast, theC. kernel is given
by 1/(w ¥ Ey)?" that has to be summed over to lead to an
even expression iw. Taking the logarithm of the integrand
leads to the usual condition fiil— f) = const solved by the
Fermi distribution proving the statement. Since the effective
electron temperature profile,(x) in a sufficiently long wire
in the diffusive limit depends only on the diffusive motion of
the electrons in the wifé the Boltzmann equatiof2) will
eventually lead to the correct thermalized distribution cover-
ing the so-called “hot electron” limit.

IV. NUMERICAL PROCEDURE AND COMPARISON
WITH EXPERIMENT

(16) determines the occupation probabilities of the spin sys-

tem. From Eqs(5) and(6) one can prove the sum rule for
the correlation function,

C(t=0)=J' (dw/27)C(w)=3/4=S(S+1), (17)

which is independent of magnetic field. In the weak-coupling
limit
Ci(w)=27P.8(w+Ey), Clw)=7dw)l2. (18

Inserting this result into the raté4) and(16), we recover

For the numerical procedure we use anisotropic and
energy-dependent coupling constalifige) andJ* (e) given
in Appendix B, Eqs(B6) and(B7), respectively. They have
to be calculated self-consistently as functionals of the final
nonequilibrium distribution function. This procedure leads to
a slight complication of the formulas in the preceding section
but does not alter their structure. The detailed changes to be
made are listed in Appendix D.

We have started with the solutidft) of the impurity-free
problem inserted in Eq$B6) and(B7) for the coupling con-
stants, Eqs(D5) and (D6) for the auxiliary functions,(w)

the Fermi's golden rule expressions for the electron collisiorand {. (), and Eq.(3) for the collision integral. Then the
operator for the case of interaction with a single spin. Heralistribution function was evolved iteratively using the Bolt-
the 6 functions signalize energy conservation. The dissipazmann equatiofi2) with collision operator3). At each itera-
tion leads to an energy uncertainty that, in turn, results in dion both the coupling constants and the correlation functions

broadening of thes functions. The final result differs from
that obtained by thé-matrix approact by allowing for a
finite-energy uncertainty.

For vanishing magnetic fieldE,=0, the occupation
numbersP.=1/2, and the correlation function simply reads
C(w)=3C,(w). Inserted in the collision integral, our ex-
pression with the renormalized coupling constafitom Eq.
(B6) is consistent with the results of Refs. 6 and 7. The
advantage here is that the cuteff(0)=m(pJ)2£(0), sug-

were updated. After about 120 iterations a stationary solution
has been reached.

To make an independent comparison of the finite field
data, we have fitted the impurity density with dateBat 0.
The resulting impurity concentratioty,,, =8 ppm is in ac-
cordance with the experimental purity of copper of
99.999%'* The density of states is chosen to he
=0.21/(site eV)?® The Kondo temperature, not known so
far, has been assumed 8g=0.4 K. Further, the gyromag-
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2.0 o

' outcome of our numerical procedure allowing for the non-

o, \‘
o4 U=0.1mV equilibrium occupation number45) for the impurity spins.
.moso-oo-oo;o\‘.ioo For comparison, thin broken lines are the results obtained
oo)b‘--°—“-w-e-e-o-u-3—-\‘ from the Boltzmann equation for equilibrium impurity spins.
O ° o \

It is clear that the results for relatively weak magnetic fields,
Ey<eU, agree with theoretical predictions only if the non-
equilibrium spin population is taken into account. Conse-
quently, we conclude that the impurity states are indewtd

of equilibrium Since the only spin-relaxation mechanism

——— Bo12T . ¥ taken onto account is an interaction with electrons, it follows

Tooeeer O\ that “hot” impurity centers serve asnediators for the

— B-ozT O electron-electron interaction.

— B=007 ' In large magnetic field€&,>eU, according to the theory,
0~Q1_0 0.0 o the impurity-induced energy relaxation is frozen out. Conse-

E/eU quently, to obtain a quantitative agreement with the experi-
mental results shown in Fig. 1 one should take into account
FIG. 1. Comparison of experimentally determined distribution other, though weak, scattering mechanisms.

functions from Ref. 14(symbols with the theoretical predictions Further, we observe that the numerical data fdr

for various magnetic fields ard=0.1 mV. The thick linesaredata =0.3 mV andB=1.2 T show an additional step in the

gained from solving the Boltzmann equation where the impuritymiddle of the energy distribution function. This can be ex-

spins are out of equilibrium, whereas the thin ofdiffering from plained in terms of the Iowest-orde]z,, scattering with im-

the thick lines for two values d only) are determined with impu- purity spins where the transferred energy between electron

rity spins fixed to equilibrium. The distribution function; are give_n and impurity spin is always-E, . The origin is that the

from bottom to top forB=0.0,0.2,0.4,Q.8,1.2 T and shifted verti- Zeeman splittingE,; at this magnetic field is almogtU/2.

cally by steps of 0.2 and 0.3, respectively. Electrons in the energy region slightly beloweU/2 are
scattered slightly belove=0 because the distribution func-

netic factor was chosen a@g~2, see the review of experi- tion differs strongly in these two regions. The same state-

mental results in Sec. II. ment is correct for electrons that scatter from slightly above

The comparison of the distribution functions fdd  ¢=0 to slightly aboveeU/2. Scattering between other re-

=0.1 mV is shown in Fig. 1 and fdd=0.3 mV in Fig. 2.  gions is suppressed by the small difference in the distribution

The symbols are the distribution functions for several magfunction at the contributing regions. Using only the first or-

netic fields obtained from experimental data by a deconvoder inJ? description for energy relaxation, this feature would

lution procedure. Note that a magnetic fieldB#1 T leads be much more pronounced as the one shown in Fig. 2. The

to a Zeeman splittinge,;~0.12 meV. Thick lines are the finite width in the correlation functiongl0) responsible for
these inelastic processes smear already out most of the sharp

2.0 - : features. We assume that additional energy relaxation pro-
g\k\ U=03mV cesses, such as the direct electron-electron interaction are
P SPC D £ =Vu.. . .. . . .
N, responsible for the missing step in the corresponding experi-
%ER;O:OQ:\"\O&QM mental data. This feature is therefore assumed to be an arti-
PeeRAiL T Ko S Tove. fact of our numerical calculation caused by neglecting other
R N M\‘io scattering mechanisms.
_ S 5 L Since, in our theoretical approach, additional scattering
§ 10 pova e \’{o‘o'”‘?ﬁ“ mechanisms that lead to small energy transfer are missing
SELe e and further the experimental data uncertainties are most pro-
i c\\gtozoggegm nounced at the “Fermi pointsé=+eU/2, it is not reason-
gyl able to consider these energy regions in more detail. To char-
-=-- B=0.8T LY acterize the quality of our fits we focus the comparison
e \ o between our numerical data and the experiment to the “pla-
0.0 = - teau” region arounc~0 in the middle of the two-step dis-
-1.0 E?é()U 1.0 tribution function. The negative slope of the distribution

function is a good indicator of the energy relaxation strength
FIG. 2. Comparison of experimentally determined distribution as long as_ 'F is small. FF’r v'anlshln'g energy relaxatlop It 1s

functions from Ref. 14symbol3 with the theoretical predictions Z€r0 and it increases with increasing energy relaxation. In

for various magnetic fields arid=0.3 mV. The thick lines are data Fi9- 3 we show the averaged negative slope of the energy

gained from solving the Boltzmann equation where the impuritydistribution functions at the plateau ne=#0 in dependence
spins are out of equilibrium, whereas the thin ones are determine@f the magnetic fieldB. We find that the theoretical data
with impurity spins fixed to equilibrium. The distribution functions (solid lineg meet the qualitative outcome in Sec. Il of in-
are given from bottom to top foB=0.0,0.4,0.8,1.2,1.6,2.2 T and creasing energy relaxation up to the maximum value at about
shifted vertically by steps of 0.2. Ey~eU/2 and then decreasing again, showingegt~eU
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0.5

nary part of the electron self-energy considering only inter-
action with localized impurity spins. To discuss this expres-
sion at finite magnetic fields, we approximatg e) by its
weak-coupling form to get

1 1 2
—=— 1—§[f(e—EH>—f(e+EH>]<P+—P)],

Trt  Tsf 21

slope

where (P, —P_) is the mean polarization of the localized
spin, see Eqgs(14) and (15). For monotonic distribution
functions, the additional term leads to a nonpositive contri-
bution and we have always#4/<1/7s . At small magnetic
0.0 fields the combination of occupation numbers and distribu-
0.0 1.0 2.0 , . ,
B tion functions in Eq.(21) decreases and becomes of order
(Ey/eU)2. In equilibrium we find this contribution to be
FIG. 3. Averaged negative slope of the energy distribution func-~tant?(BE,/2), which leads to an exact cancellation of the
tions at the plateau near=0 in dependence of the magnetic fi@d spin-flip term, 1#,=1/3r, for large magnetic fieldsg,
in units of Tesla. The data fdy =0.1 mV (dotg are extracted from > k,T. This is in accordance with the fact that for large
Fig. 1 and folU=0.3 mV (squaresfrom Fig. 2. The solid lines are . magnetic fields the spin-flip contribution is completely fro-
our numerical data and the dashed lines the experimental ones. ,an gut. Out of equilibrium, the contribution stemming from
the distribution functions behaves similarly and cannot ex-
about the same value astg=0. The data, however, cannot ,5in the increase of energy relaxation for small magnetic
explain the experimental outconéashed linesin quantita-  fig|ds.

tive detail, which is not further surprising taking into account  \whereas in the collision operatéd) small-energy trans-

the simplifications we made. fer is canceled by the distribution functions, the relaxation
rate in Eq.(19) includes terms stemming from elastic scat-
V. DISCUSSION tering for e’ =0. To consider the pure inelastic part, we de-

Let us first discuss the outcome of our findings in terms offme an inelastic scattering rate by
an inelastic relaxation rate, then focus on the justification of
various assumptions including the discussion of the Kondo _ _ JK' de’W(e') (22)
temperature not addressed in previous sections, and conclude Tm Tt Tel Trt _K'
with an outlook to further work.
with some given cutofK’ not further specified.

To understand the behavior of the inelastic relaxation time
. o i i at small magnetic field one has to recall that the scattering

Since the distribution functions of electrons and spins ar®rocesses @ =0 are almost elastic, a typical energy transfer
out qf equilibrigm, the inelasti_c relaxation cannot, in general,bemg smaller or of the order of the Korringa rde Thus,
be discussed in terms of a single relaxation rate. In the folgpiraction of the elastic processes leads to a drastic decrease
lowing we use two quantities to describe the inelastic relaxyf the inelastic relaxation rate, or to an increase of the inelas-
ation. _ L , _ tic relaxation time. For finite, small magnetic fields, how-
_ First, we consider the collision integréd) in relaxation  ger the inelastic relaxation is of ordér+ E,, and therefore
time approximation. We find the corresponding rate to be i/l |ead to an increase of ordeE(, /K)2. This term has to

be compared with the monotonic decrease of order

izj de’'W(e)[1—f(e—€')+f(e+e)] (E/eU)? and dominates in the regimel<1 explaining
Tt the increase of the inelastic relaxation rate for small mag-

A. Inelastic relaxation rate

1 netic fields.
:__f de’ f(e—e)[W(e')—W(—€")], (19 A second way to discuss inelastic relaxation is to intro-
Tsf duce the so-called energy relaxation time defined as an aver-

with the spin-flip time defined by the exact relation following 29€ energy-transfer rate. It is defined as

from the sum rulg17) for the correlation functionC(w),

1 1
Cimp T—EE—?j dep(e)el{f}. (23

de _Z S+1 32—1 (20)
W(e)=5p —ES(S+1)(pd)*= .

Here, for simplicity, we consider again an energy indepenHerep(e) is the electron density of states, Wh?G'S a con-

dent and isotropic coupling constadtieading toW(e,w) stant reference energy to normalize the particle energy. A

=W(w). The inverse relaxation time 1/ equals the imagi- natural scale foe at e Us kgT is eU. SinceeU<D, where
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processes was also discussed. The results are expressed in
terms of an effective interaction strengsh which in our
notation reads/= (pJ)?/ 7 . In the experimental papers, the
results forB=0 and for finite magnetic fields were fitted
assuming the same shape of the electron-electron interaction
kernele 1/w?. According to our findings, the behavior of the
interaction kernel differs fromw 2. Consequently, it is dif-

ficult to compare their and our results.

/T,

B. Parameters obtained from experiment

Now let us briefly discuss the parameters obtained from
the fit of the experimental data. Similarly to Ref. 7 where the
first experiments with Cu were fitted, we determine the
Kondo temperature and the impurity densigee Sec. IV

FIG. 4. Inverse energy relaxation timerl/(solid line in arbi-  from the distribution function aB=0. These values yield
trary units forU=0.3 mV depending on magnetic fiekimeasured Tx~0.4 K and ¢;,, =8 ppm, respectively. The procedure
in Tesla. The dashed line shows the same quantity rescaled by 2/3goposed in Ref. 12, based on the analysis of the saturated
where all transferred energiesin Eq. (24) are added positively. ~ phase breaking time, would suggest a Kondo temperature

below T~0.1 K, see also Ref. 13. However, assuming such
D is the electronic bandwidth, the electron density of state& small T, in our formalism, we would disagree with the
can be regarded as energy independent, and after some algsperimentally observed distribution function Bt=0 in
bra we get Ref. 11. Here, we want to mention that we used the Kondo
temperature in its simplest form based on the leading-
p logarithmic approximation. Corrections may still be large for
T_E:_?J dGJ doW(w)of(e)[1-f(e-w)]. 24 g quantity and this disagreement could possibly be re-
solved using a refined version.
One notices that this expression does not contain elastic scat- The procedure based on the estimate of the decoherence
tering. time 7, leads to some other inconsistencies. Namely, an es-

In Fig. 4 we show the magnetic-field dependence of thagimation of the phase coherence time with our parameters
inverse energy relaxation timel/in arbitrary units forU would lead tor,~ 74/2~0.06 ns while, according to Ref.
=0.3 mV (solid line). We observe a monotonic decrease of12, 7,~1 ns. In return, a fit of the decoherence time in Ref.
the total energy transferred with increasing magnetic field13 using the same has lead to an impurity density of
Note, that using the effective electron-electron interactiorciy,, ~0.15 ppm much lower than our estimated impurity
with a constant lifetime, meaning one fixes the lifetimes indensity. This means that using the standard theory of weak
the denominators of the Eq) and (10) at resonance, im- localizatiorf® the impurity spins should produce much higher
plies 1/.=0 because of energy conservation. The dissipadecoherence rates than those observed experimentally. The
tive motion of the spin system, however, virtually breaksmain problem in comparing these two quantities may be the
energy conservation leading to a finite result. Considerindollowing: the decoherence time is measured in equilibrium

Eq.(24) as the averagep(?) fdedw . .. of the energy trans- and it saturates in the case of Cu below the Kondo tempera-
fer, one finds in the integrand, depending on the energy, bothire if we assume that botk, and the energy relaxation are
positive and negative contributions. Although the averagéletermined by the Kondo impurities. In that region, however,
(24) monotonically decreases whénincreases, the positive Our treatment, as well as the standard theory of weak local-
and negative contributions in fact increase for small magization using the spins as random classical objects, become
netic fie|dsEH<eU_ For Comparison we show by the dashedinaCCUrate. It is the aim of future work to develop a theory
line the averagd24) where all transferred energies are  valid belowTy .
added positively. This quantity, in contrast, shows the non- [n our treatment we used some assumptions that were not
monotonic behavior in dependence of magnetic field. Thedddressed so far. First, we used the same distribution func-
phys|ca| relevance of this quan“ty, however is not C|earti0n for the electrons with different Spin prOjeCtionS and the
This observation shows that the notion of a S|ng|e energ)standard diffusive form of the Boltzmann equatlon The latter
relaxation time to describe energy relaxation is quite m|sassumpt|on can be justified because the elastic relaxation
leading. What happens is that nonequilibrium spins jast time'** 7, ~0.01 ps is much smaller than that for inelastic
distribute the electron energy between different energy re-scattering. The usage of a single distribution function |s cer-
gions, the extra energy being transferred due to diffusion ofainly fulfilled when the spin-orbit relaxation rates;" i
“hot” electrons in real space. larger than the rate_* of processes that tend to V|olate the
In the experimental pape(Refs. 1,11, and )4as well as  electron-spin symmetry. This assumption is supported by the
in the theoretical ones based upon thenatrix approach results of the experimelftyielding 7.,~39 ps, whereas
(Refs. 6,7, and 10 a contribution of two-particle scattering is of the order of few nanoseconds.
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We have disregarded some scattering mechanisms to féegarithmic corrections, such as in Eq84) and (B5), are
cus on the magnetic dependence and to discuss the influensgll small compared to 1. This is what we actually mean
of this sort of impurities only. Direct electron-electron inter- when speaking about a “non-equilibrium” regime or about a
action leads to a pronounced smearing of the distributiorsituation “above the Kondo temperature.” The Kondo tem-
function at low-energy transfer. That can be important atperature is usually defined by the electron temperature where
rather large magnetic fields when the energy relaxation meperturbation theory starts to fail. The terms of the perturba-
diated by magnetic impurities vanishes. Since this additionalive expansion explicitly depend on the electron distribution
effect atB= 0 is much weaker than the contribution by mag- function. As a result, even when the bath temperature is re-
netic impurities, it cannot explain the deviations from experi-duced belowT, the perturbative approach can still be ap-
ment in the region of small-energy transfer. A comparison ofplied provided that the deviation from equilibrium is strong
the relaxation rates in Cu with realistic parameters has showanough.
that the direct electron-electron interaction in the relevant In Refs. 8, 9, and 10 the use of an effective spatially
frequency regime is about one order smaller than thelependent Kondo temperatufg (x) =T/ (e U)*~0* was
corresponding effective interaction mediated by Kondoproposed for electrons energetically near the Fermi peint
impurities. = —eUJ2 using the free solutiofil) as a basis of the renor-

In Appendix B we determine the renormalized couplingmalization. For electrons near=eU/2 one has simply to
constant] that replaces the bare coupling constagt The  replacex—1—x. In these terms the effective Kondo tem-
calculations are performed within a random-phase-like apperature in the nonequilibrium situation is always smaller
proximation. All higher-order corrections are supposed to behan the equilibrium Kondo temperature.
taken into account by the renormalization of the coupling For an arbitrary distribution function it is not as straight-
constant). This procedure, as known, leads to the so-calledorward to calculate the renormalized quantities as it is for
overcounting problem, which has been considered both fothe free solution(1). Equivalently to the notion of a renor-
the electrofi” and pseudo-Fermidhself-energy. In these pa- malized Kondo temperature we propose to use a local tem-
pers an attempt to cure this problem by setting the energgeratureT* (x) describing the nonequilibrium situation. The
variable of the renormalized quantity to some special valu&ondo temperature then equals its bulk equilibrium value
has been made. No general method that would allow one tand the local temperature is a spatially dependent functional
avoid the overcounting has been suggested so far. The onbf the distribution function. For strong electron-electron in-
message is that as long as the renormalization is weak andraction or equivalently in the middle of a very long wire,
the renormalized vertices are changing slowly with energyr+*(x) equals the analytically determined “hot electron”
one can use the “double dressed” vertices instead of theéemperatur'’'8independent of the scattering mechanism.
“single dressed” ones, using the language of Ref. 27. Herefuyrther, this temperature fulfills the boundary conditions
we simply adopt this “rule,” however, having in mind that if T*(x=0,1)=T,,. Therefore, at the ends of the wire and
the renormalized quantities get too much structure, i.e., in theor temperatures explored experimentally, we are below
Kondo regime, this approach may become inaccurate. OWondo temperature and our approach is inadequate. Here, we
renormalized vertices are similar to those obtained using thgssume that the boundary regions where our approach fails
Hamann approximatidil in the t-matrix approach by are narrow and do not influence the distribution function in
Keiter®® which is a generalization of Suhl's dispersion the middle of the wire. We believe that this assumption is
approach to finite magnetic fields. We further neglected the fulfilled for long wires that were studied in experimeft:*4
non-spin-flip contribution, which may be put into the free Further, it is obvious that our approach becomes more accu-
Hamiltonian and does not influence energy relaxation. rate for larger applied voltages when the distribution function

In the calculation of the correlation functio(® and(10)  atB=0 is a function ofe/eU only. This is the reason why
we neglected the Knight shift as well as the frequency angyve focus more orJ=0.3 mV. It turns out(see below for
Zeeman energy renormalizations. The Knight shift just leadgjetailg that for U=0.1 mV and smaller voltages our theo-
to a simple addition to the “not really known” Zeeman split- retical approach reaches its limit of validity within the ex-
ting of the impurity spin and can be disregarded. The Otheberimentally explored temperature range.
terms can be determined by the KramerS'Kronig relation To be more SpeciﬁC, we give an ana|ytic expression for
from the Korringa widths(12) and (13). They vanish for  the effective temperature in the case of weak smearing. The
€,E4=0 and give just a renormalization of higher order in gjstribution function then equals the free solutidh and the
(pJd)? which is usually disregarded well above the Kondosmearing is just included in an effective temperatlig
temperature. However, below the Kondo temperature thesgharacterizing the energetic width of the smeared steps.
corrections would lead to an anomalous behavior and ongHere, the Boltzmann constaky is set to one.For example,
has to go beyond the lowest order in the memory functiorhne can  determine Ter as Tep(€,X)=—(1-X)
even if one uses qlready renormalized coupling constants([ 44 (e,x)/de] "t for e~eU/2. For simplicity we restrict
see Ref. 28 for a discussion. ourselves td8=0, but the generalization is straightforward.

As a basis of the renormalization we use E@&3) and(B5).
Following the usual poor man’s scaling procedure we get
C. Kondo Temperature

The regime where all our calculations are actually valid is Je)= pJdo (25)

defined here as the regime where the lowest order in the P 1-pJog(e)’
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whereby we adiabatically integrated out all high-energy conshown that the effective electron-electron interaction is al-

tributions from—D to e— D andD to e+ D lettingD totend  feady included in the dissipative nature of the spin system.
to zero. This procedure at finite temperature or finite effec-The finite linewidth in nonequilibrium proportional to the
tive temperature leads to an effective lower-energy cutoffPPlied voltage leads to strong energy relaxation even for

which is eithere, eU/2, or Te; and follows immediately anishing magnetic field where the spin states are degener-
ate. We succeeded in deriving a nonperturbative description

from valid for arbitrary magnetic fields where the perturbative
D t-matrix approach fails due to divergences in the two-

g(e)=~(1—x)In———————|+xIn[—————|. electron scattering rates.
|e— U2+ T |e+eUi2 +Tey We characterized the efficiency of the energy relaxation

(26) by the slope of the distribution function at~0. The
Inserted into Eq(25), we get for the renormalized coupling magnetic-field dependence of this quantity shown in Fig. 3
constant shows a nonmonotonic behavior. For small magnetic field,
Ey<eU/2, the energy relaxation strength is increased and
(|le—eUl2|+ Tt *(|e+eUi2 + Tep)*] 2 for larger magnetic field€,>eU/2, it decreases again. Us-
PJ(E)Zm[ T ing the results in Sec. Il we would even get a distribution
K function that depends on the pair of dimensionless energies
(27 e
e/leU and Ey/eU only. These features meet qualitatively
with recent experimental data on energy relaxation in mesoscopic
copper wires. Further, we found that the impurity spins are
Ty=De ", (28)  out of equilibrium Namely, forE,<eU both spin states are

occupied even at zero temperature, and the role of the effec-

AR : . tive temperature is played by the applied voltage. In this
near the Fermi points~ = eU/2 contribute. We may define sense the impurity centers turn out to be “hot.” Contrarily,

a local temperature for electrons depending on the Fermbhen the magnetic field is stron§,>eU, i.e., only the

point. For electrons ate~eU/2, we get Ti(X)  |owest spin level should be occupied, the occupation of the
=Teq “(eU)*. The other local temperature for electrons at“unfavorite” spin state is determined by high—order pro-

e~—eU/2 readsT* (x) =T%;(eU)1*. Here, of course, the cesses. Although the detailed comparison of the energy dis-
effective smearindl.z depends orx and coincides at the tribution functions fails to fit quantitatively all energy re-

ends of the wire X=0,1) with the bath temperaturg,,;,.  9ions, this gives a strong indication that magnetic impurities
Since electrons of both Fermi points contribute to inelasticdre indeed responsible for energy relaxation in copper wires.
processes, one has to average the effective temperatures. TheSeveral things remain to be done in order to achieve a

simplest average that yields the correct expression in thguantitative description for the energy relaxation experiment
middle and at the ends of the wire readg*(x) in the broad regions of temperature and magnetic field. To go

—(1_ )Tl X X 1-x _ below the Kondo temperature, the overcounting problem has
el é(l:tro)g-;iﬁor(lgLli)erJrrn)i(-[I:-)Ggi%etlé)ontri'bzfeC:use at=0,1 only to be addressed. High-order corrections in impurity density
In the middle of the wire, we get sirﬁply the requirementm'ght require a more complicated kinetic equation including
2 . . .~ ~quantum effects. Finally, for larger magnetic fields and/or
TeeU>Tic for the calculations to be valid. If the smearing 1o, concentration of the localized spins, other relaxation

becomes stronger arilly is of the order ofeU, or even  mechanisms have to be accounted for.

larger, we get from Eq.27) the requirementT* =T To show that magnetic impurities are indeed present in

>Tk. copper wires, one has to describe all the available experi-
On the other hand, we may define an effective Kondoments using the same set of parameters. Since there are

temperature by the failure of the perturbation theory. Forstrong deviations from the magnetoresistance experiments,

electrons near the lower Fermi poiets —eU/2, we write this is still an open question.

For sufficiently weak smearind+<eU mostly electrons
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sometimes be misleading. APPENDIX A:

DERIVATION OF THE COLLISION INTEGRAL

CONCLUSION . . .
We start with the “bare” HamiltonianH=Hy+H,,

In this paper we studied energy relaxation mediated bywhere the free Hamiltonian is given in E(). In terms of
magnetic impurities above Kondo temperature. We havepseudo-Fermions it reads
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FIG. 6. Fourth-order graphs of second order in impurity
FIG. 5. Second-order self-energy graph for the electron Green'slensity.
function

Green’s functions are of higher ordersap,, , they can al-
_ T t ways be used in the free for@g (ko,w)=2mif(w)d(w
Ho kE Gk"ck"ck"+% Es22s- (A1) — &) and GJ (ko,w)=—2mi[1-f(w)]8(w—€,), re-
spectively. The pseudo-Fermion Green’s function in the low-
est order readQé(,B,w)sziPlgé(w—EB) and has to be
renormalized in the following. Note that when using the
Abrikosov techniqué® the occupation numberB. acquire
an additional chemical potential expi(\) and therefore

o

Here the creation(annihilation operatorsCla_ (Cyy) de-
scribe electrons while the operatca%,aﬁ describe pseudo-
Fermions. The pseudo-Fermion states are specifieg3 by
==+ having the energiek€.=+gugB/2. The interaction

Hamiltonian Go(B,w)=—2mi 8(w—Ep), see Ref. 32. In contrast to Ref.
32 we assume that the occupation probabiliffesare deter-
H=J > S SUIUCE,J,CK(, mined by the nonequilibrium electron distribution. Therefore
kk' oo’ they have to be found self-consistently.
is thes—d exchange Hamiltonian with the bare couplifg For further proceeding, we have to classify the appearing
Expressing spin operators through pseudo-Fermions, one c&@Phs. Graphs including two pseudo-Fermion bubbles as
rewrite it as shown in Fig. 6 are of second order in the impurity density

and are therefore neglected. It is obvious that we may in-
BBt N clude an arbitrary number of additional electron-hole bubbles
H = 2 J5/0Ckr o1 Chopip (A2)  where each one is at least of orddr The two lowest-order
Kk graphs with one additional electron-hole bubble are depicted
(summation over repeated indices is expectéd addition, in Fig. 7. Considering only these two topologically different
we have to take into account the operator constraIm . graphs in the self-energy, we obtain thmatrix expression
+a' a_=1 which can be formally done by a projection with for the collision integral derived in Refs. 6 and 7, however,
the help of a complex chemical potentfal. with bare coupling constants. The electron-hole pairs do not

Linear in the impurity densitg;,, , the angular averaged Only renormalize the pseudo-Fermion propagator, which has
collision integral for the classical Boltzmann equation can be?een considered in Ref. 28, but also include bubbles connect-
expressed 353 ing the upper and lower pseudo-Fermion lines. The latter

graphs are so-called crossed diagrams and lead to vertex
i - - correctioné® not included in a simple noncrossing approach.
=7 {f(aX (9 +[1-f(e)]27()} (A3 All other corrections lead to higher orders ¥y for a
single electron-hole bubble or outer electron line. Above the
with 37/<(e)==,%7'<(ko,€)/2 wheree= ¢, is the spin  Kondo temperature, it is conventionally accepted that one
averaged self-energy assumed to be independent of the amay write these corrections as a renormalization of the cor-
gular momentumf(e) is the angular averaged distribution responding vertices and that in the leading logarithmic order
function for electrons of energy, where we suppressed the the vertices are renormalized independehtffAs a resuilt,
spatial dependence for convenience. Since the self-energy t&o dressed vertices instead of one are used. This procedure
proportional to the impurity density, we already replaced thenas been explicitly proven in the leading-logarithmic ap-
electron Green’s functions by their unperturbed form andproximation both for the electréh and pseudo-Fermidh
integrated over frequency to get the classical form of theself-energies. An alternative derivation of the independent
Boltzmann equation. vertex renormalization has been given in Ref. 7.

The electron self-energy in the lowest nonvanishing order, Assuming this independent renormalization of vertices to
depicted in Fig. 5, is given by a pseudo-Fermion bubble andbe correct also for more involved graphs and that this renor-
an electron or hole line inbetween, malization depends only on the electron energies, one can

equivalently start with a renormalized Hamiltonian restrict-

’ ’ dw d(}),
35 (ka,€)=Cimpd2, P38 S fZEGE(k'U',e—w’)
kl

XG5 (8wt 0G5 (Bro), (O : A

where summation over internal spins is implied. The self-

energyX. is given by the obvious change of the and > FIG. 7. Fourth-order self-energy terms including one additional
signs in Eq.(A4). Since all corrections in the electron electron-hole bubble.
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ing the appearing graphs to simple electron-hole bubbles 0'\:/ \/ \_/ y
[N + ’y\ IS + I IKS

the order ofJ? in the renormalizedmatrix elementﬁf:f.
Neglecting the energy dependencejéff one obtains

. . do’ do FIG. 8. Lowest-order vertex renormalization.
2>(k0',w):CimpJf,,fj§'g,z IEE
‘ IR de r )
XGq(kK'o'o—w') Len(e)= TJ Ef deq [ Go(ak,e+ £)Go(7,€)
> r 7 ’ < - ,
X(Go (B 0+ )G5(B,0))en, (A5) +GK(ar, €7 £)Gh(7,6)1~38, 7378 pg(eFE ).

where the average - - )en means the dressing of the pseudo-
Fermion bubble with all possible electron-hole pairs usingIOWer sign for the hole vertex, respectively. The auxiliary
renormalized coupling constants. Rephrasing the pseudgq oo ' '
Fermions in terms of spin operators and assuming isotropic
couplingJ, we may write

Here the upper sign stands for the electron vertex and the

D f(e")—1/2
c 9(6)=J df'ﬁ (B3)
37 ()= —i 20 ( J)Zf do'Clo")[1-f(o—0')] ooemedl
4p leads i ilibrium to th | logarithmi t
(A6B) eads in equilibrium to the usual logarithmic corrections.

Considering the lowest-order vertex corrections to the
with the time-dependent correlation functi@{(t) given by  self-energy in Fig. 8 and assuming that the pseudo-Fermion
Egs.(5) and(6). The self-energ® < is given by the replace- energies are fixed to resonance, we get
mentf—1—f andC(w)— C(— w), which is obvious since
C(t) is an autocorrelation function. Inserting this expression re _ﬁ
in Eq. (A3), we find the collision integral in the desired form T2
(3). The spin-spin correlation functions are calculated then o . .
using a projection operator techniqtfeThe actual procedure for the spin-flip component proportional & and
follows the lines outlined in Ref. 36 for the case of two-level ,
systems. IS =(Jo/4)[1+pJog(exEy)] (BS)

pJo
1+ —-[9(e*En)+g(e)] (84)

for the component proportional 8 applying to a spin-up
APPENDIX B: VERTEX RENORMALIZATION (down) electron. This means that the leading renormalization
of the “up” electron is given by the “down” electrons and
ice versa. This anisotropic decomposition of the renormal-
ized coupling constants has also been found by K&it8et-
ting the pseudo-Fermion energy to resonance is correct only
for the lowest-order correction in the electron self-energy in
Fig. 5. However, considering corrections to the graphs in Fig.
Z, we find that there the pseudo-Fermion energies are
weighted with a divergent term (w— Eﬁ)‘2 justifying the
I(e'o' 0 B |ec,wB)=To+To(e+w)+The—w'), use of the resonance energy~Eg in the renormalization.
(B1)  Assuming that this is also justified for more involved graphs,
we use these corrections as a basis of our renormalization. To
where write the renormalized Hamiltonian in terms of effective an-
, isotropic and energy-dependent coupling constants, we rein-
To=38=30S4 5514 (B2)  troduce the spin operators and defilfe(e)=4T"% (¢) and
. o J*(e)=2T"(e).
IS th'e barg vertex of the—d exchange quﬂtomam,ﬁ are gl'o) define(a)“Kondo scale” we consider the renormalized
the incoming electron and pseudo-Fermion spinsgndare coupling constants as functions of the incoming electron en-

th_e incoming_ Qlectron and pseL_Jdo-Fe_rmion energie_s. Thgrgy and use the Hamann approximafibior the renormal-
pnme_d guantities are the outgoing spins and energies, '4Zed guantities. This approximation yields the same leading-
spectively. Energy conservation is fulfilled at each vertex,

oo , ogarithm expansion as the poor man’s scaling procedure
meaninge’ = e+ w—w'. The electron and hole vertex parts

based on th i d(B5), h , taki
can be assumed to depend on a single energy variblee ased on the expressiofEs4) and(BS), however, taking care

| L. d d h fi . | of the unitarity condition in each order. In this approxima-
electron verteX', depends on the sum of incoming e ectrontion, the S coupling constant reads

and pseudo-Fermion energie$ », and the hole vertex part

I';, depends on the difference of the incoming electron and ()1 Ip=1{|1— (mpIg)2S(S+1)/4— pJog(eT Ep)|2
outgoing pseudo-Fermion energies ’. In the lowest or- -

der inJ, the retarded quantities read +(7ply)®S(S+1)} 12 (B6)

We proceed to determine the renormalized coupling con
stants. They can be derived in different ways: by a poo
man’s scaling procedur, Suhl’s t-matrix approach: fol-
lowing Abrikosov and solving a generalized vertex
equatiort® or considering lower-order corrections and as-
suming similar resummation procedure as in equilibrium.
According to Refs. 27 and 38 the renormalized vertex read
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in accordance with a high-temperature expansion of K&ter. panded kernel function is oscillatory, the Fourier transformed
Analogously the spin-flip process renormalization reads  correlation function has always the simple form

J*(€)1Io={|1— (mplo)*S(S+1)/4 o 2C,(t=0)Red,(w) ca
alw)= .
—pJo[g(€) +g(exEp)1/2? [0—i®a+IMpa(w)]?+[Reds(w)]?
+(mpJg)?S(S+1)} 12 (B7)  With a=z,*. Similar to Green’s functions, this reflects the

fact that in the steady state the retarded and advanced self-
These quantities coincide f@&=0 with those used in Refs. 7 energies are complex conjugate, leading to a similar structure
and 39 and cover the results obtained by the poor man’sf the “>"or * <” Green’s functions. Note that the roles of
scaling procedure; see discussion about Kondo temperatutie imaginary and real parts of the memory kernel are oppo-
in Sec. V. Note that the renormalized coupling constants resite to those of the Green’s functions because of different set

main finite also below the Kondo temperature where theity gefinitions. Further, we define Rie(w)=Rd ¢a(—iw

meaning is questionable. +6)] and the imaginary part Inp,(w) follows from a
Kramers-Kronig relation. WithC,(t=0)=(S*S*)=1/4 and
APPENDIX C: CALCULATION OF THE CORRELATION C.(t=0)=(S*S")="P. and further neglecting the imagi-
FUNCTION nary parts in the denominators, which lead to a frequency

. . .and Zeeman energy renormalization, we find the expressions
We briefly present the method used to derive the results ||@9) and (10) for theg)éorrelation functions P

Sec. lll. Our main interest is the spin-spin correlation func-
tions (6). SinceC(t) is an autocorrelator, its Fourier trans-
form is given by the expressiof€(w)=C(—iw+8)+C
(—iw—5) whereC(z) is the Laplace transform of the cor- ~ Starting with anisotropic and energy-dependent coupling
relator. Using projection operatoPZX = S X §)/(S*S?) for ~ constants derived in Appendix B, the interaction Hamiltonian
C, and P*X=S"(XS")/(S*S") for the C. component, in terms of impurity spin operators reads
one can derive a formally exact integro-differential
equatioR® Hi=5 > {S*3*(€)C Chq+S 37 (€ )Cl Ci

%

APPENDIX D: DETAILED THEORETICAL DESCRIPTION

. t
Ca(t):q)aca(t)_ du¢a(t_u)ca(u) (Cl) +SZ[Ji(€kT)Cl, CkT—JZ_(GkL)CE, Ckl]}' (Dl)
0 7 1

Considering the electron self-energy in the Boltzmann equa-
tion the scattering raté/ in the collision integral3) depends
on both, incoming electron energy and transferred

with the solution in terms of the Laplace transform

Ea(z)zLio), (Ccy energye
=Pyt ¢a(2) W(€,w)=(Cimpp/8i){I" (€)I"(")C(w)
where a=z,+. Here ®,=(FS)/(SF)=0 and d. +37 ()37 (' )C_(w)+[I(e)I% (€)
=(5"S7)/(S*S7)=FiEy leads to the free propagation of +37(6) 37 (€)]Cyl @)} (D2)

the correlators, wherg,, includes the Knight shift neglected
throughout the paper. The averages are calculated with tH&ith the outgoing electron energy = e— w; see Appendix
proper steady-state density defined by the stationary solutiofy and Egs.(5) and (6). The calculation of the correlation
of the Boltzmann equation. The memory ker%(t) for the functions follows the lines in AppendiX C and the general
correlation function plays a similar role as the self-energy forform (C4) leading the Eqs(9) and(10) remain the same. The
the Green’s function. For th€. term we find changes are only in the damping

ot i\ oF ot = Vz(w):7TP2[7)+§+(‘U—EH)+P—§—(“’+EH)]v (D3)
(S (t)? >+q)+<5r (U? >.
(s°87) ©(s7sY)

Here the index in S (t) indicates that the dynamics of the With the auxiliary functions
spin operator is reduced by the projection. It is determined

¢-(1)= (C3

ve(w)= (74 p*[{ 0FEn)+{=(0)/P.],  (D4)

by the expressios, (t) =ex{iL (1—P*)t]S" with the Liou- §Z(w)=f de'[F% () (w+e)+I%(e)I* (w+e)]
ville operatorL acting asLX=[H,X]/%. The memory ker-
nel for the C, correlation function is simply given by Eq. Xf(eN[1-f(o+te)], (D5)

(CY) with the replacement-, ¥ —z. Though formally exact,
the above equations do not allow a simple calculation of the _ - , , ,
correlators. Here, we expand the kernel up to second order in gi(w)‘f de’J"(e")I"(w+e)f(e)[1-T(w+e)].
the renormalized coupling. Since the dynamics of the ex- (D6)
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The corresponding master equatigi®) for the occupation We used these formulas for the numerical determination of
probabilitiesP.. remains the same, but the rate changes to the distribution function in Sec. IV; however, the main fea-

p? tures do not alter even if one uses the simplified description
Frsz dw.(~0)Cs(w). (D7) in Sec. Il
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