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Magnetic-field effects in energy relaxation mediated by Kondo impurities in mesoscopic wires
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We study the energy distribution function of quasiparticles in short voltage biased mesoscopic wires in the
presence of magnetic impurities and applied magnetic field. The system is described by a Boltzmann equation
where the collision integral is determined by coupling to spin-1

2 impurities. We develop a theory of the
coupling of nonequilibrium electrons to dissipative spins. This theory is valid as long as the characteristic
smearing of the steps in the energy distribution function, which depends both on the bias voltage and the
location of the probe, exceeds the Kondo temperature. We further address the renormalization of coupling
constants by nonequilibrium electrons. Magnetic-field dependence of the energy relaxation rate turns out to be
nonmonotonic. For low magnetic field an enhancement of energy relaxation is found, whereas for larger
magnetic fields the energy relaxation decreases again meeting qualitatively the experimental findings by An-
thoreet al. ~cond-mat/0109297!. This gives a strong indication that magnetic impurities are in fact responsible
for the enhanced energy relaxation in copper wires. Our theoretical results are in good agreement with the
experiment at large bias voltages where the theory is applicable. At the same time, at small bias voltages there
are substantial quantitative deviations. Furthermore, the concentration of the spins, which follows from the
energy relaxation for Cu, seems to to be substantially higher than the concentration estimated from weak
localization~dephasing rate! measurements. Since the approach presented is valid only above Kondo tempera-
ture, it does not apply to the related problem of weak localization at low temperature in equilibrium.

DOI: 10.1103/PhysRevB.66.195328 PACS number~s!: 73.23.2b, 72.15.Qm, 75.75.1a
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I. MOTIVATION AND OVERVIEW

Energy relaxation of ‘‘hot’’ electrons in disordered co
ductors at low enough energies was for a long time belie
to be determined by direct interaction between electrons.
cent experiments on mesoscopic wires~see Ref. 1, and ref
erences therein! have shown that Kondo impurities~localized
spins! lead to much higher energy relaxation rates than th
predicted by the standard theory.2

On the other hand, the inelastic collisions of electrons a
their spin flips are directly related to the phase cohere
time probed by weak localization effects, such as low-fi
magnetoresistance. The problem of decoherence in wea
calization was recently revisited and intensive
discussed.1,3,4

Theoretical studies by various groups5–10 lead to a satis-
factory and consistent explanation of energy relaxation
periments by Kondo impurity mediated electron-electron
teraction in the gold wires by Pierreet al.1 Those gold wires
were contaminated by iron impurities, and the concentra
of the impurities could be independently estimated from
magnetoresistance as well as from the temperature de
dence of the resistivity. As a result, it was possible to ca
out a parameter-free comparison of theory a
experiment.7–9

At the same time the copper samples in the first ene
relaxation experiment by Pothieret al.11 were fitted using the
concentration and Kondo temperature of the paramagn
impurities as free parameters. The parameters obtained
energy relaxation disagree with those obtained from the m
0163-1829/2002/66~19!/195328~13!/$20.00 66 1953
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netoresistance experiments of the same sample.12,13 There-
fore, whether or not magnetic impurities are responsible
these effects is dubious.

Since the behavior of magnetic impurities is sensitive
the applied magnetic field, studies of energy relaxation in
presence of the magnetic field could either rule out or v
date magnetic impurities as a relevant scattering proces
energy relaxation. Recently, Anthoreet al.14 reported results
of such experiments in Cu wires that indicate a strong
pendence of the energy relaxation on the magnetic field s
gesting that magnetic impurities indeed play a role for
copper wires as well.

In this paper we perform a theoretical study of transp
and energy relaxation in a mesoscopic wire in dependenc
an applied magnetic field. We use a diffusive Boltzma
equation to account for the static scatterers and focus in
inelastic collision integral on magnetic impurities. The fin
ings are in qualitative agreement with the experimental d
in Ref. 14 supporting the presumption that scattering w
magnetic impurities is the essential mechanism of ene
transfer at low temperatures. However, the apparent inc
sistency between the values of the experimentally obser
energy relaxation rate and the dephasing rate extracted
the magnetoresistance in Cu wires remains puzzling.

Starting with a brief discussion of the experiment we p
pose in Sec. II a simple physical picture to explain t
anomalous dependence of the energy relaxation on the m
netic field. In Sec. III follows a theoretical description
terms of a renormalized Hamiltonian restricting the intera
tion processes to the coupling to electron-hole pairs only.
©2002 The American Physical Society28-1
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then present in Sec. IV the numerical procedure and the c
parison with experimental results. Section V is devoted t
discussion of the interpretation and validity of the approa
as well as its possible extensions.

II. EXPERIMENTAL SITUATION AND PHYSICAL
PICTURE

Here, we briefly describe the experimental situation
Ref. 14 and a possible qualitative explanation of their fin
ings.

The experimental setup in Ref. 14 consists of a thin c
per wire of about 45 nm thickness, 105 nm width, and 5mm
length connected to two metallic leads. The leads are bia
by an external voltage sourceU50.1 mV andU50.3 mV
imposing a steady-state current through the wire. The se
is placed in a dilution refrigerator with a temperature of
mK and a magnetic field up to 2.2 T is applied. The elas
mean free path can be estimated to be much smaller tha
length of the wire,L, so that the transport of electrons b
tween the contacts is diffusive. The diffusion constantD
590 cm2/s, estimated from the low-temperature resistan
leads to a diffusion time oftD5L2/D52.8 ns.

The aim of the experiment was to study energy distrib
tion of electrons. The distribution function was determin
by tunneling to an underlying aluminum probe electrod
The differential tunneling conductance is given by a con
lution over the electron distribution functions in the wire a
in the probe electrode, both forB50 and BÞ0, compare
with Refs. 11, 15 and 14, respectively. In the case of van
ing magnetic field, the aluminum probe electrode is in
superconducting state, and the peaked density of states o
probe electrode allows one to straightforwardly extract
energy distribution in the wire from theI -V characteristic of
the junction.

For finite magnetic fields, however, the aluminum pro
electrode is in the normal state. In this case the deconv
tion has been made using a zero bias anomaly. Unfortuna
the latter procedure is less accurate. Considering the num
cal transformation depicted in Fig. 2 of Ref. 14, we exp
that the strongest variations due to uncertainties in the sh
and the depth of the zero bias anomaly arise at the ‘‘Fe
points’’ e56eU/2. Furthermore, the tunnel probe expe
ment in equilibrium,U→0, gave the temperature of 65 mK
which differs from the actual refrigerator temperature. T
might be due to an oversimplification of the environmen
impedance responsible for the zero bias anomaly.14 Conse-
quently, the resulting distribution function has to be tak
with some care; in particular, near the Fermi points.

The electron distribution function in the absence of inel
tic scattering is just a linear combination of the distributio
in the left and right electrode,16

f 0~e,x!5~12x! f F~e2eU/2!1x fF~e1eU/2!. ~1!

Here, f F(e) is the Fermi function whilex is the longitudinal
coordinate of the observation point in units of the total len
L. At low temperatures, the distribution~1! has steps in both
e and x dependences. These steps are smeared by ine
processes, such as electron-phonon and electron-electro
19532
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teraction. As a result, the distribution in the middle of t
wire turns out to be almost insensitive to the ba
temperature.17,18 The smearing depends on the effective
elastic relaxation time, and the latter can be estimated fr
the experimentally observed distribution function.

The first experiments11,15 for B50 have clearly shown
that the smearing is too strong to be attributed to
electron-electron or electron-phonon interaction. Therefo
in the following we do not take these interactions into a
count.

The qualitative outcome of the experiment14 is that the
behavior of the inelastic relaxation rate is a nonmonoto
function of the magnetic fieldB. ForB&B15eU/4.3mB , the
relaxation rateincreaseswith magnetic field and reaches
maximum atB'B1. At stronger fields,B.B1, it decreases
with further increasing magnetic field, and atB'B2
5eU/2mB it reaches almost the same value as it had aB
50 and then decreases further.

The explanation of such a complex behavior given in R
14 is based on electron scattering by magnetic impurit
For vanishing magnetic field, the spin system is degene
and only second- or higher-order scattering processes
tribute to energy relaxation. For finite magnetic fields, the
exists also a first-order contribution with energyEH
5gmBB ~equal to the Zeeman splitting! transferred to or
from the spin system. Therefore, the energy relaxation
increases. However, forEH.eU the spins are completely
polarized and can no longer contribute to energy relaxat
Consequently, again only higher-order processes are e
tive. Comparing this explanation with the experiment, o
estimates the gyromagnetic factor for the impurity spins
g'2.

Thus, electron-spin interaction taken into account in
lowest order of the perturbation theory explains, in princip
the main experimental features. However, from the theor
cal point of view, there appears a subtlety. The problem
that the higher-order terms, estimated within the framew
of the t-matrix approach in Refs. 6,7,10, lead to a diverge
contribution;J4/(e7EH)2 to be integrated over. HereJ is
the renormalized coupling constant that defines the stren
of the electron-impurity interaction. The suggestion6,8,9 to in-
troduce a cutoff at the Korringa width,19 K;J2 gives a result
that is comparable with the first-order contribution. Cons
quently, there is no systematic expansion in powers of
coupling constant, and one needs a generalized approach
is not based on expansion in terms of the interaction stren

The aim of the present paper is to develop an appro
capable of treating lowest- and higher-order contributio
within a unified scheme. We show that the problem can
described as electrons coupled to a dissipative spin sys
The dissipation of impurity spins is, in turn, caused
creation/annihilation of electron-hole pairs due to electro
spin coupling. We show that this scheme includes the div
gent higher-order contributions appearing in thet-matrix ap-
proach. Using our approach, we derive an electron-s
collision integral expressed through spin-spin correlat
functions. An important feature of these correlation functio
is that their dependence on the electron energy is autom
cally broadened by Korringa-type processes. These p
8-2



ti
ef
e

in
ha
l
lec
or
b

to

la
on
o

io

de

he

rs
of
fo

er
h

th
m

or
th

th
m

pl
ilib
ic

ith

p
n

s.
it,
he
n
ib

io

n-

Its

e
-
e

hted
u-

q.

or-

in

r

A
20
ib-
the
on-
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cesses, however, depend on the actual electron distribu
rather than on the thermal equilibrium distribution as in R
19. As a result, the applied voltage plays the role of an
fective temperature.

The crucial difference between the casesB50 and B
Þ0 is the following. At zero magnetic field, all spin-sp
correlation functions are centered at zero energy and be
as K/(e21K2). It is important that in the collision integra
these correlators are multiplied by a combination of the e
tron distribution functions, which at small energies is prop
tional to e. Consequently, the broadening turns out to
unimportant,7 and one can omitK2 in the denominator. This
way the resulting collision integral becomes proportional
J4 and one recovers the results6,7 of the t-matrix approach.

At finite magnetic fields, however, the spin-spin corre
tion function decomposes into three contributions. The n
spin-flip part is still centered at zero energy, while the tw
spin-flip contributions are peaked ate56EH . Let us, for a
moment, accept the above simplified form of the correlat
function and assumeK→0. Since in this caseK/@(e
7EH)21K2#→pd(e7EH), the two spin-flip correlation
functions with finite-energy transfer lead indeed to the
sired first order inJ2 contribution. In this simplified case
only the non-spin-flip correlation function contributes to t
orderJ4 in the collision integral.

Using thet-matrix approach with a finite cutoffK, intro-
duced by hand, would lead to a double counting of the fi
order inJ2 contribution. Here, on the other hand, the cut
is included automatically and the first order is accounted
correctly.

In this simplified case the reasoning to explain the exp
mental data follows the lines of the experimentalists. T
only difference is that forEH.eU, where the spin-flip con-
tribution is already frozen out, there remains just 1/3 of
B50 energy relaxation because only the non-spin-flip co
ponent contributes to energy relaxation in orderJ4. In prac-
tice, K is not constant but depends on frequency. Theref
the correlation functions are not Lorentzian shaped and
spin-flip terms will also contribute to theJ4 term. Further,
the width decreases with increasing magnetic field for
non-spin-flip component and therefore energy relaxation
diated by magnetic impurities dies out forEH@eU.

We believe that our approach provides a consistent ex
nation of the magnetic-field dependence of the nonequ
rium electron distribution in diffusive wires with magnet
impurities.

III. THEORETICAL DESCRIPTION

Here we present a simplified version of the theory w
isotropically renormalized coupling constantJ independent
of energy. In general, the renormalization can be anisotro
and energy dependent. These generalizations, which do
alter the underlying physics, are discussed in appendixe

We assume that the metallic wire is in the diffusive lim
i.e., the elastic relaxation time is much smaller than ot
time scales. We also assume that the distribution functio
electrons does not depend on the spin. The energy distr
tion of the electrons is governed by the Boltzmann equat
19532
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] f ~e,x!

]t
2

1

tD

]2f ~e,x!

]x2
1I $ f %50, ~2!

I $ f %5E dv$ f ~e!@12 f ~e2v!#W~e,v!

2@12 f ~e!# f ~e2v!W~e2v,2v!%. ~3!

Here, we include the density of statesr in the scattering rate
W(e,v) and omit for convenience the explicit spatial depe
dence of the distribution function. The rateW describes the
transitions between two electron states with energiese and
e2v mediated by coupling to the dissipative spin system.
explicit form is given by

W~e,v!5~cimp /r\!@rJ/2#2C~v!, ~4!

wherecimp is the impurity density. The explicit dependenc
of W on electron energye is taken into account in the con
crete calculations. However, it is not important for th
present discussion. Further,C(v) is the Fourier transform of
a spin-spin correlation function. The latter can be split as

C~ t !5@C1~ t !1C2~ t !#/21Cz~ t !, ~5!

where

C6~ t !5^S6~ t !S7~0!&, Cz~ t !5^Sz~ t !Sz~0!&. ~6!

The averages here mean the spin and electron trace weig
with the unknown nonequilibrium density. The time evol
tion is governed by the HamiltonianH5H01HI , where

H05(
ks

eksCks
† Cks2EHSz ~7!

describes free electrons. Here, operatorsCks
† andCks create

and annihilate an electron in a given orbitalk and spins
state.eks is the energy of this state. The second term in E
~7! describes a spin-1

2 impurity with Zeeman splittingEH
5gmBB. The interaction Hamiltonian

HI5J (
kk8ss8

S•ss8sCk8s8
† Cks ~8!

couples electrons to the impurity spin system via the ren
malized coupling strengthJ, rather than the bare one,J0.
Further, the electron is coupled only to one impurity sp
since we assume that the impurity densitycimp is small
enough to neglect higher-order terms.

Using this renormalized Hamiltonian we will restrict ou
calculation for the time evolution ofC(t) to the coupling to
simple electron-hole pair excitations only, see Appendix
for details. A similar procedure was already used in Ref.
to discuss the impurity spin resonance linewidth in equil
rium using Baym and Kadanoff’s kinetic equations. Here,
spin-spin correlation functions are calculated using the c
ventional projection operator technique.21 The results read
8-3
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Cz~v!5
1

2

nz~v!

v21nz~v!2
, ~9!

C6~v!5
2P6n6~v!

@v7EH#21n6~v!2
. ~10!

The functionsnz ,n6 describing damping of spin fluctuation
can be expressed through an auxiliary function

z~v!5E de8 f ~e8!@12 f ~v1e8!# ~11!

stemming from the coupling to electron-hole pairs. Th
read

nz~v!5p~rJ!2@P1z~v2EH!1P2z~v1EH!#, ~12!

n6~v!5~p/4!~rJ!2@2z~v7EH!1z~v!/P6#. ~13!

Further,P6 is the occupation probability for impurity spi
up or down, respectively. These probabilities are determi
by a master equation

dP6 /dt52G6P61G7P7 , P11P251, ~14!

which can be solved in the steady state leading to

P65G7 /~G11G2!. ~15!

Here, the inverse lifetime for the spin-up~down! state,G6 ,
is determined by the expression

G65
~rJ!2

4\P6
E dvz~2v!C6~v!. ~16!

For a given electron distribution, the set of Eqs.~15! and
~16! determines the occupation probabilities of the spin s
tem. From Eqs.~5! and ~6! one can prove the sum rule fo
the correlation function,

C~ t50!5E ~dv/2p!C~v!53/45S~S11!, ~17!

which is independent of magnetic field. In the weak-coupl
limit

C6~v!52pP6d~v7EH!, Cz~v!5pd~v!/2. ~18!

Inserting this result into the rates~4! and~16!, we recover
the Fermi’s golden rule expressions for the electron collis
operator for the case of interaction with a single spin. H
the d functions signalize energy conservation. The dissi
tion leads to an energy uncertainty that, in turn, results i
broadening of thed functions. The final result differs from
that obtained by thet-matrix approach22 by allowing for a
finite-energy uncertainty.

For vanishing magnetic field,EH50, the occupation
numbersP651/2, and the correlation function simply read
C(v)53Cz(v). Inserted in the collision integral, our ex
pression with the renormalized coupling constantJ from Eq.
~B6! is consistent with the results of Refs. 6 and 7. T
advantage here is that the cutoffnz(0)5p(rJ)2z(0), sug-
19532
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gested in Refs. 6,8,9, is naturally included. This cutoff equ
the Korringa widthK. For weak coupling only elastic sca
tering survives and we getW(e)5tsf

21d(e) where the time
tsf is usually referred to as spin-flip time.23 In this case the
collision integral vanishes identically and one has to go
yond the lowest order.

Further, our expression for the correlation function
equilibrium and vanishing magnetic field coincides with t
results of Wo¨ger and Zittartz24 based on a Nagaoka-like de
coupling scheme. Using Suhl’st matrix for the renormalized
coupling constants, the spin susceptibilities follow fro
proper kinetic equations. The procedure is actually simila
the one used in Ref. 20 for the analysis of the impurity s
resonance linewidth.

An asymmetric rateW(v) in the collision integral~3! in
general does not allow for a thermalized solution. Howev
this is one of the basic requirements the Boltzmann equa
has to fulfill. In order to show that our specific rate allows f
such a solution, we expandW(v) in powers ofJ2. In the
collision integral we get higher orders in the distributio
function, however, with a symmetric kernel. For theCz term
this is obviously 1/v2n. In contrast, theC6 kernel is given
by 1/(v7EH)2n that has to be summed over6 to lead to an
even expression inv. Taking the logarithm of the integran
leads to the usual condition ln(f/12 f )5const solved by the
Fermi distribution proving the statement. Since the effect
electron temperature profileTel(x) in a sufficiently long wire
in the diffusive limit depends only on the diffusive motion o
the electrons in the wire17 the Boltzmann equation~2! will
eventually lead to the correct thermalized distribution cov
ing the so-called ‘‘hot electron’’ limit.

IV. NUMERICAL PROCEDURE AND COMPARISON
WITH EXPERIMENT

For the numerical procedure we use anisotropic a
energy-dependent coupling constantsJ6

z (e) andJ6(e) given
in Appendix B, Eqs.~B6! and ~B7!, respectively. They have
to be calculated self-consistently as functionals of the fi
nonequilibrium distribution function. This procedure leads
a slight complication of the formulas in the preceding sect
but does not alter their structure. The detailed changes t
made are listed in Appendix D.

We have started with the solution~1! of the impurity-free
problem inserted in Eqs.~B6! and~B7! for the coupling con-
stants, Eqs.~D5! and ~D6! for the auxiliary functionszz(v)
and z6(v), and Eq.~3! for the collision integral. Then the
distribution function was evolved iteratively using the Bo
zmann equation~2! with collision operator~3!. At each itera-
tion both the coupling constants and the correlation functi
were updated. After about 120 iterations a stationary solu
has been reached.

To make an independent comparison of the finite fi
data, we have fitted the impurity density with data atB50.
The resulting impurity concentrationcimp 58 ppm is in ac-
cordance with the experimental purity of copper
99.999%.14 The density of states is chosen to ber
50.21/(site eV).25 The Kondo temperature, not known s
far, has been assumed asTK50.4 K. Further, the gyromag
8-4
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netic factor was chosen asg'2, see the review of experi
mental results in Sec. II.

The comparison of the distribution functions forU
50.1 mV is shown in Fig. 1 and forU50.3 mV in Fig. 2.
The symbols are the distribution functions for several m
netic fields obtained from experimental data by a decon
lution procedure. Note that a magnetic field ofB51 T leads
to a Zeeman splittingEH'0.12 meV. Thick lines are the

FIG. 1. Comparison of experimentally determined distributi
functions from Ref. 14~symbols! with the theoretical predictions
for various magnetic fields andU50.1 mV. The thick lines are data
gained from solving the Boltzmann equation where the impu
spins are out of equilibrium, whereas the thin ones~differing from
the thick lines for two values ofB only! are determined with impu-
rity spins fixed to equilibrium. The distribution functions are give
from bottom to top forB50.0,0.2,0.4,0.8,1.2 T and shifted vert
cally by steps of 0.2 and 0.3, respectively.

FIG. 2. Comparison of experimentally determined distributi
functions from Ref. 14~symbols! with the theoretical predictions
for various magnetic fields andU50.3 mV. The thick lines are data
gained from solving the Boltzmann equation where the impu
spins are out of equilibrium, whereas the thin ones are determ
with impurity spins fixed to equilibrium. The distribution function
are given from bottom to top forB50.0,0.4,0.8,1.2,1.6,2.2 T an
shifted vertically by steps of 0.2.
19532
-
-

outcome of our numerical procedure allowing for the no
equilibrium occupation numbers~15! for the impurity spins.
For comparison, thin broken lines are the results obtai
from the Boltzmann equation for equilibrium impurity spin
It is clear that the results for relatively weak magnetic field
EH,eU, agree with theoretical predictions only if the no
equilibrium spin population is taken into account. Cons
quently, we conclude that the impurity states are indeedout
of equilibrium. Since the only spin-relaxation mechanis
taken onto account is an interaction with electrons, it follo
that ‘‘hot’’ impurity centers serve asmediators for the
electron-electron interaction.

In large magnetic fields,EH.eU, according to the theory
the impurity-induced energy relaxation is frozen out. Con
quently, to obtain a quantitative agreement with the exp
mental results shown in Fig. 1 one should take into acco
other, though weak, scattering mechanisms.

Further, we observe that the numerical data forU
50.3 mV and B51.2 T show an additional step in th
middle of the energy distribution function. This can be e
plained in terms of the lowest-order,J2, scattering with im-
purity spins where the transferred energy between elec
and impurity spin is always6EH . The origin is that the
Zeeman splittingEH at this magnetic field is almosteU/2.
Electrons in the energy region slightly below2eU/2 are
scattered slightly belowe50 because the distribution func
tion differs strongly in these two regions. The same sta
ment is correct for electrons that scatter from slightly abo
e50 to slightly aboveeU/2. Scattering between other re
gions is suppressed by the small difference in the distribu
function at the contributing regions. Using only the first o
der inJ2 description for energy relaxation, this feature wou
be much more pronounced as the one shown in Fig. 2.
finite width in the correlation functions~10! responsible for
these inelastic processes smear already out most of the s
features. We assume that additional energy relaxation
cesses, such as the direct electron-electron interaction
responsible for the missing step in the corresponding exp
mental data. This feature is therefore assumed to be an
fact of our numerical calculation caused by neglecting ot
scattering mechanisms.

Since, in our theoretical approach, additional scatter
mechanisms that lead to small energy transfer are mis
and further the experimental data uncertainties are most
nounced at the ‘‘Fermi points’’e56eU/2, it is not reason-
able to consider these energy regions in more detail. To c
acterize the quality of our fits we focus the comparis
between our numerical data and the experiment to the ‘‘p
teau’’ region arounde'0 in the middle of the two-step dis
tribution function. The negative slope of the distributio
function is a good indicator of the energy relaxation stren
as long as it is small. For vanishing energy relaxation it
zero and it increases with increasing energy relaxation
Fig. 3 we show the averaged negative slope of the ene
distribution functions at the plateau neare'0 in dependence
of the magnetic fieldB. We find that the theoretical dat
~solid lines! meet the qualitative outcome in Sec. II of in
creasing energy relaxation up to the maximum value at ab
EH'eU/2 and then decreasing again, showing atEH'eU
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about the same value as atEH50. The data, however, canno
explain the experimental outcome~dashed lines! in quantita-
tive detail, which is not further surprising taking into accou
the simplifications we made.

V. DISCUSSION

Let us first discuss the outcome of our findings in terms
an inelastic relaxation rate, then focus on the justification
various assumptions including the discussion of the Kon
temperature not addressed in previous sections, and conc
with an outlook to further work.

A. Inelastic relaxation rate

Since the distribution functions of electrons and spins
out of equilibrium, the inelastic relaxation cannot, in gener
be discussed in terms of a single relaxation rate. In the
lowing we use two quantities to describe the inelastic rel
ation.

First, we consider the collision integral~3! in relaxation
time approximation. We find the corresponding rate to be

1

t rt
[E de8W~e8!@12 f ~e2e8!1 f ~e1e8!#

5
1

tsf
2E de8 f ~e2e8!@W~e8!2W~2e8!#, ~19!

with the spin-flip time defined by the exact relation followin
from the sum rule~17! for the correlation function,C(v),

E deW~e!5
p

2\

cimp

r
S~S11!~rJ!2[

1

tsf
. ~20!

Here, for simplicity, we consider again an energy indep
dent and isotropic coupling constantJ leading toW(e,v)
5W(v). The inverse relaxation time 1/t rt equals the imagi-

FIG. 3. Averaged negative slope of the energy distribution fu
tions at the plateau neare'0 in dependence of the magnetic fieldB
in units of Tesla. The data forU50.1 mV ~dots! are extracted from
Fig. 1 and forU50.3 mV ~squares! from Fig. 2. The solid lines are
our numerical data and the dashed lines the experimental one
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nary part of the electron self-energy considering only int
action with localized impurity spins. To discuss this expre
sion at finite magnetic fields, we approximateW(e) by its
weak-coupling form to get

1

t rt
5

1

tsf
H 12

2

3
@ f ~e2EH!2 f ~e1EH!#~P12P2!J ,

~21!

where (P12P2) is the mean polarization of the localize
spin, see Eqs.~14! and ~15!. For monotonic distribution
functions, the additional term leads to a nonpositive con
bution and we have always 1/t rt <1/tsf . At small magnetic
fields the combination of occupation numbers and distri
tion functions in Eq.~21! decreases and becomes of ord
(EH /eU)2. In equilibrium we find this contribution to be
;tanh2(bEH/2), which leads to an exact cancellation of th
spin-flip term, 1/t rt 51/3tsf , for large magnetic fields,EH
@kBT. This is in accordance with the fact that for larg
magnetic fields the spin-flip contribution is completely fr
zen out. Out of equilibrium, the contribution stemming fro
the distribution functions behaves similarly and cannot
plain the increase of energy relaxation for small magne
fields.

Whereas in the collision operator~3! small-energy trans-
fer is canceled by the distribution functions, the relaxati
rate in Eq.~19! includes terms stemming from elastic sca
tering for e850. To consider the pure inelastic part, we d
fine an inelastic scattering rate by

1

t in
[

1

t rt
2

1

tel
5

1

t rt
2E

2K8

K8
de8W~e8! ~22!

with some given cutoffK8 not further specified.
To understand the behavior of the inelastic relaxation ti

at small magnetic field one has to recall that the scatte
processes atB50 are almost elastic, a typical energy trans
being smaller or of the order of the Korringa rateK. Thus,
subtraction of the elastic processes leads to a drastic dec
of the inelastic relaxation rate, or to an increase of the ine
tic relaxation time. For finite, small magnetic fields, how
ever, the inelastic relaxation is of orderK1EH and therefore
will lead to an increase of order (EH /K)2. This term has to
be compared with the monotonic decrease of or
(EH /eU)2 and dominates in the regimerJ!1 explaining
the increase of the inelastic relaxation rate for small m
netic fields.

A second way to discuss inelastic relaxation is to int
duce the so-called energy relaxation time defined as an a
age energy-transfer rate. It is defined as

1

te
[2

1

ē
E der~e!eI $ f %. ~23!

Herer(e) is the electron density of states, whileē is a con-
stant reference energy to normalize the particle energy
natural scale forē at eU@kBT is eU. SinceeU!D, where

-
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D is the electronic bandwidth, the electron density of sta
can be regarded as energy independent, and after some
bra we get

1

te
52

r

ē
E deE dvW~v!v f ~e!@12 f ~e2v!#. ~24!

One notices that this expression does not contain elastic
tering.

In Fig. 4 we show the magnetic-field dependence of
inverse energy relaxation time 1/te in arbitrary units forU
50.3 mV ~solid line!. We observe a monotonic decrease
the total energy transferred with increasing magnetic fie
Note, that using the effective electron-electron interact
with a constant lifetime, meaning one fixes the lifetimes
the denominators of the Eqs.~9! and ~10! at resonance, im-
plies 1/te[0 because of energy conservation. The dissi
tive motion of the spin system, however, virtually brea
energy conservation leading to a finite result. Consider
Eq. ~24! as the average (r/ ē)*dedv . . . of the energy trans
fer, one finds in the integrand, depending on the energy, b
positive and negative contributions. Although the avera
~24! monotonically decreases whenB increases, the positive
and negative contributions in fact increase for small m
netic fieldsEH!eU. For comparison we show by the dash
line the average~24! where all transferred energiesv are
added positively. This quantity, in contrast, shows the n
monotonic behavior in dependence of magnetic field. T
physical relevance of this quantity, however, is not cle
This observation shows that the notion of a single ene
relaxation time to describe energy relaxation is quite m
leading. What happens is that nonequilibrium spins justre-
distribute the electron energy between different energy
gions, the extra energy being transferred due to diffusion
‘‘hot’’ electrons in real space.

In the experimental papers~Refs. 1,11, and 14!, as well as
in the theoretical ones based upon thet matrix approach
~Refs. 6,7, and 10!, a contribution of two-particle scatterin

FIG. 4. Inverse energy relaxation time 1/te ~solid line! in arbi-
trary units forU50.3 mV depending on magnetic fieldB measured
in Tesla. The dashed line shows the same quantity rescaled by
where all transferred energiesv in Eq. ~24! are added positively.
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processes was also discussed. The results are express
terms of an effective interaction strengthg, which in our
notation readsg5(rJ)2/tsf . In the experimental papers, th
results forB50 and for finite magnetic fields were fitte
assuming the same shape of the electron-electron intera
kernel}1/v2. According to our findings, the behavior of th
interaction kernel differs fromv22. Consequently, it is dif-
ficult to compare their and our results.

B. Parameters obtained from experiment

Now let us briefly discuss the parameters obtained fr
the fit of the experimental data. Similarly to Ref. 7 where t
first experiments11 with Cu were fitted, we determine th
Kondo temperature and the impurity density~see Sec. IV!
from the distribution function atB50. These values yield
TK'0.4 K and cimp 58 ppm, respectively. The procedur
proposed in Ref. 12, based on the analysis of the satur
phase breaking time, would suggest a Kondo tempera
below T'0.1 K, see also Ref. 13. However, assuming su
a small TK in our formalism, we would disagree with th
experimentally observed distribution function atB50 in
Ref. 11. Here, we want to mention that we used the Kon
temperature in its simplest form based on the leadi
logarithmic approximation. Corrections may still be large f
this quantity and this disagreement could possibly be
solved using a refined version.

The procedure based on the estimate of the decoher
time tf leads to some other inconsistencies. Namely, an
timation of the phase coherence time with our parame
would lead totf'tsf /2'0.06 ns while, according to Ref
12, tf'1 ns. In return, a fit of the decoherence time in R
13 using the sametsf has lead to an impurity density o
cimp '0.15 ppm much lower than our estimated impur
density. This means that using the standard theory of w
localization26 the impurity spins should produce much high
decoherence rates than those observed experimentally.
main problem in comparing these two quantities may be
following: the decoherence time is measured in equilibriu
and it saturates in the case of Cu below the Kondo temp
ture if we assume that bothtf and the energy relaxation ar
determined by the Kondo impurities. In that region, howev
our treatment, as well as the standard theory of weak lo
ization using the spins as random classical objects, bec
inaccurate. It is the aim of future work to develop a theo
valid belowTK .

In our treatment we used some assumptions that were
addressed so far. First, we used the same distribution fu
tion for the electrons with different spin projections and t
standard diffusive form of the Boltzmann equation. The lat
assumption can be justified because the elastic relaxa
time14,25t imp '0.01 ps is much smaller than that for inelas
scattering. The usage of a single distribution function is c
tainly fulfilled when the spin-orbit relaxation ratetso

21 is
larger than the ratetsf

21 of processes that tend to violate th
electron-spin symmetry. This assumption is supported by
results of the experiment12 yielding tso'39 ps, whereastsf
is of the order of few nanoseconds.

/30
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We have disregarded some scattering mechanisms to
cus on the magnetic dependence and to discuss the influ
of this sort of impurities only. Direct electron-electron inte
action leads to a pronounced smearing of the distribu
function at low-energy transfer. That can be important
rather large magnetic fields when the energy relaxation
diated by magnetic impurities vanishes. Since this additio
effect atB50 is much weaker than the contribution by ma
netic impurities, it cannot explain the deviations from expe
ment in the region of small-energy transfer. A comparison
the relaxation rates in Cu with realistic parameters has sh
that the direct electron-electron interaction in the relev
frequency regime is about one order smaller than
corresponding effective interaction mediated by Kon
impurities.

In Appendix B we determine the renormalized coupli
constantJ that replaces the bare coupling constantJ0. The
calculations are performed within a random-phase-like
proximation. All higher-order corrections are supposed to
taken into account by the renormalization of the coupl
constantJ. This procedure, as known, leads to the so-cal
overcounting problem, which has been considered both
the electron27 and pseudo-Fermion28 self-energy. In these pa
pers an attempt to cure this problem by setting the ene
variable of the renormalized quantity to some special va
has been made. No general method that would allow on
avoid the overcounting has been suggested so far. The
message is that as long as the renormalization is weak
the renormalized vertices are changing slowly with ener
one can use the ‘‘double dressed’’ vertices instead of
‘‘single dressed’’ ones, using the language of Ref. 27. He
we simply adopt this ‘‘rule,’’ however, having in mind that
the renormalized quantities get too much structure, i.e., in
Kondo regime, this approach may become inaccurate.
renormalized vertices are similar to those obtained using
Hamann approximation29 in the t-matrix approach by
Keiter,30 which is a generalization of Suhl’s dispersio
approach31 to finite magnetic fields. We further neglected t
non-spin-flip contribution, which may be put into the fre
Hamiltonian and does not influence energy relaxation.

In the calculation of the correlation functions~9! and~10!
we neglected the Knight shift as well as the frequency a
Zeeman energy renormalizations. The Knight shift just le
to a simple addition to the ‘‘not really known’’ Zeeman spli
ting of the impurity spin and can be disregarded. The ot
terms can be determined by the Kramers-Kronig relat
from the Korringa widths~12! and ~13!. They vanish for
e,EH50 and give just a renormalization of higher order
(rJ)2 which is usually disregarded well above the Kon
temperature. However, below the Kondo temperature th
corrections would lead to an anomalous behavior and
has to go beyond the lowest order in the memory funct
even if one uses already renormalized coupling consta
see Ref. 28 for a discussion.

C. Kondo Temperature

The regime where all our calculations are actually valid
defined here as the regime where the lowest order in
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logarithmic corrections, such as in Eqs.~B4! and ~B5!, are
still small compared to 1. This is what we actually me
when speaking about a ‘‘non-equilibrium’’ regime or abou
situation ‘‘above the Kondo temperature.’’ The Kondo tem
perature is usually defined by the electron temperature wh
perturbation theory starts to fail. The terms of the pertur
tive expansion explicitly depend on the electron distributi
function. As a result, even when the bath temperature is
duced belowTK , the perturbative approach can still be a
plied provided that the deviation from equilibrium is stron
enough.

In Refs. 8, 9, and 10 the use of an effective spatia
dependent Kondo temperatureTK* (x)5TK

1/x/(eU)(12x)/x was
proposed for electrons energetically near the Fermi poine
52eU/2 using the free solution~1! as a basis of the renor
malization. For electrons neare5eU/2 one has simply to
replacex→12x. In these terms the effective Kondo tem
perature in the nonequilibrium situation is always smal
than the equilibrium Kondo temperature.

For an arbitrary distribution function it is not as straigh
forward to calculate the renormalized quantities as it is
the free solution~1!. Equivalently to the notion of a renor
malized Kondo temperature we propose to use a local t
peratureT* (x) describing the nonequilibrium situation. Th
Kondo temperature then equals its bulk equilibrium va
and the local temperature is a spatially dependent functio
of the distribution function. For strong electron-electron i
teraction or equivalently in the middle of a very long wir
T* (x) equals the analytically determined ‘‘hot electron
temperature15,17,18independent of the scattering mechanis
Further, this temperature fulfills the boundary conditio
T* (x50,1)5Tbath. Therefore, at the ends of the wire an
for temperatures explored experimentally, we are bel
Kondo temperature and our approach is inadequate. Here
assume that the boundary regions where our approach
are narrow and do not influence the distribution function
the middle of the wire. We believe that this assumption
fulfilled for long wires that were studied in experiments.1,11,14

Further, it is obvious that our approach becomes more ac
rate for larger applied voltages when the distribution funct
at B50 is a function ofe/eU only. This is the reason why
we focus more onU50.3 mV. It turns out~see below for
details! that for U50.1 mV and smaller voltages our theo
retical approach reaches its limit of validity within the e
perimentally explored temperature range.

To be more specific, we give an analytic expression
the effective temperature in the case of weak smearing.
distribution function then equals the free solution~1! and the
smearing is just included in an effective temperatureTeff
characterizing the energetic width of the smeared ste
~Here, the Boltzmann constantkB is set to one.! For example,
one can determine Teff as Teff (e,x)52(12x)
3@4] f (e,x)/]e#21 for e'eU/2. For simplicity we restrict
ourselves toB50, but the generalization is straightforwar
As a basis of the renormalization we use Eqs.~B3! and~B5!.
Following the usual poor man’s scaling procedure we ge

rJ~e!5
rJ0

12rJ0g~e!
, ~25!
8-8
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whereby we adiabatically integrated out all high-energy c
tributions from2D to e2D̃ andD to e1D̃ letting D̃ to tend
to zero. This procedure at finite temperature or finite eff
tive temperature leads to an effective lower-energy cu
which is eithere, eU/2, or Teff and follows immediately
from

g~e!'~12x!lnF D

ue2eU/2u1Teff
G1x lnF D

ue1eU/2u1Teff
G .

~26!

Inserted into Eq.~25!, we get for the renormalized couplin
constant

rJ~e!5 lnF ~ ue2eU/2u1Teff!
12x~ ue1eU/2u1Teff!

x

TK
G21

~27!

with

TK5De21/rJ0. ~28!

For sufficiently weak smearingTeff!eU mostly electrons
near the Fermi pointse'6eU/2 contribute. We may define
a local temperature for electrons depending on the Fe
point. For electrons at e'eU/2, we get T1* (x)
5Teff

12x(eU)x. The other local temperature for electrons
e'2eU/2 readsT2* (x)5Teff

x (eU)12x. Here, of course, the
effective smearingTeff depends onx and coincides at the
ends of the wire (x50,1) with the bath temperatureTbath.
Since electrons of both Fermi points contribute to inelas
processes, one has to average the effective temperatures
simplest average that yields the correct expression in
middle and at the ends of the wire readsT* (x)
5(12x)Teff

12x(eU)x1xTeff
x (eU)12x, because atx50,1 only

electron at one Fermi point contributes.
In the middle of the wire, we get simply the requireme

TeffeU@TK
2 for the calculations to be valid. If the smearin

becomes stronger andTeff is of the order ofeU, or even
larger, we get from Eq.~27! the requirementT* 5Teff
@TK .

On the other hand, we may define an effective Kon
temperature by the failure of the perturbation theory. F
electrons near the lower Fermi pointe'2eU/2, we write

rJ~e!51Y x lnFTeff

ueUu(12x)/x

TK
1/x G ~29!

and find the effective Kondo temperature to beTK* (x)
5TK

1/x/(eU)(12x)/x as proposed in Ref. 10. The Kondo tem
perature for electrons near the upper Fermi point follo
analogously. To our opinion the introduction of a local te
perature is much more intuitive than a modification of t
Kondo temperature. It seems to us that the latter concept
sometimes be misleading.

CONCLUSION

In this paper we studied energy relaxation mediated
magnetic impurities above Kondo temperature. We h
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shown that the effective electron-electron interaction is
ready included in the dissipative nature of the spin syste
The finite linewidth in nonequilibrium proportional to th
applied voltage leads to strong energy relaxation even
vanishing magnetic field where the spin states are dege
ate. We succeeded in deriving a nonperturbative descrip
valid for arbitrary magnetic fields where the perturbati
t-matrix approach fails due to divergences in the tw
electron scattering rates.

We characterized the efficiency of the energy relaxat
by the slope of the distribution function ate'0. The
magnetic-field dependence of this quantity shown in Fig
shows a nonmonotonic behavior. For small magnetic fie
EH,eU/2, the energy relaxation strength is increased a
for larger magnetic fields,EH.eU/2, it decreases again. Us
ing the results in Sec. III we would even get a distributi
function that depends on the pair of dimensionless ener
e/eU and EH /eU only. These features meet qualitative
recent experimental data on energy relaxation in mesosc
copper wires. Further, we found that the impurity spins
out of equilibrium. Namely, forEH,eU both spin states are
occupied even at zero temperature, and the role of the e
tive temperature is played by the applied voltage. In t
sense the impurity centers turn out to be ‘‘hot.’’ Contrari
when the magnetic field is strong,EH.eU, i.e., only the
lowest spin level should be occupied, the occupation of
‘‘unfavorite’’ spin state is determined by high–order pr
cesses. Although the detailed comparison of the energy
tribution functions fails to fit quantitatively all energy re
gions, this gives a strong indication that magnetic impurit
are indeed responsible for energy relaxation in copper wi

Several things remain to be done in order to achiev
quantitative description for the energy relaxation experim
in the broad regions of temperature and magnetic field. To
below the Kondo temperature, the overcounting problem
to be addressed. High-order corrections in impurity dens
might require a more complicated kinetic equation includi
quantum effects. Finally, for larger magnetic fields and
low concentration of the localized spins, other relaxati
mechanisms have to be accounted for.

To show that magnetic impurities are indeed presen
copper wires, one has to describe all the available exp
ments using the same set of parameters. Since there
strong deviations from the magnetoresistance experime
this is still an open question.
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APPENDIX A:
DERIVATION OF THE COLLISION INTEGRAL

We start with the ‘‘bare’’ HamiltonianH5H01HI ,
where the free Hamiltonian is given in Eq.~7!. In terms of
pseudo-Fermions it reads
8-9
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H05(
ks

eksCks
† Cks1(

b
Ebab

†ab . ~A1!

Here the creation~annihilation! operatorsCks
† (Cks) de-

scribe electrons while the operatorsab
† ,ab describe pseudo

Fermions. The pseudo-Fermion states are specified bb
56 having the energiesE657gmBB/2. The interaction
Hamiltonian

HI5J0 (
kk8ss8

S•ss8sCk8s8
† Cks

is thes2d exchange Hamiltonian with the bare couplingJ0.
Expressing spin operators through pseudo-Fermions, one
rewrite it as

HI5(
kk8

Js8s
b8bCk8s8

† Cksab8
† ab ~A2!

~summation over repeated indices is expected!. In addition,
we have to take into account the operator constrainta1

† a1

1a2
† a251 which can be formally done by a projection wi

the help of a complex chemical potential.32

Linear in the impurity densitycimp , the angular average
collision integral for the classical Boltzmann equation can
expressed as33,34

I $ f %5
i

\
$ f ~e!S.~e!1@12 f ~e!#S,~e!% ~A3!

with S./,(e)5(sS./,(ks,e)/2 wheree5eks is the spin
averaged self-energy assumed to be independent of the
gular momentum.f (e) is the angular averaged distributio
function for electrons of energye, where we suppressed th
spatial dependence for convenience. Since the self-ener
proportional to the impurity density, we already replaced
electron Green’s functions by their unperturbed form a
integrated over frequency to get the classical form of
Boltzmann equation.

The electron self-energy in the lowest nonvanishing ord
depicted in Fig. 5, is given by a pseudo-Fermion bubble
an electron or hole line inbetween,

S2
.~ks,e!5cimp Js8s

b8bJss8
bb8(

k8
E dv

2p

dv8

2p
G0

.~k8s8,e2v8!

3G 0
.~b8,v1v8!G 0

,~b,v!, ~A4!

where summation over internal spins is implied. The se
energyS2

, is given by the obvious change of the, and.
signs in Eq. ~A4!. Since all corrections in the electro

FIG. 5. Second-order self-energy graph for the electron Gre
function
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Green’s functions are of higher orders incimp , they can al-
ways be used in the free formG0

,(ks,v)52p i f (v)d(v
2eks) and G0

.(ks,v)522p i @12 f (v)#d(v2eks), re-
spectively. The pseudo-Fermion Green’s function in the lo
est order readsG 0

,(b,v)52p iPbd(v2Eb) and has to be
renormalized in the following. Note that when using th
Abrikosov technique,35 the occupation numbersP6 acquire
an additional chemical potential exp(2il) and therefore
G 0

.(b,v)522p id(v2Eb), see Ref. 32. In contrast to Re
32 we assume that the occupation probabilitiesP6 are deter-
mined by the nonequilibrium electron distribution. Therefo
they have to be found self-consistently.

For further proceeding, we have to classify the appear
graphs. Graphs including two pseudo-Fermion bubbles
shown in Fig. 6 are of second order in the impurity dens
and are therefore neglected. It is obvious that we may
clude an arbitrary number of additional electron-hole bubb
where each one is at least of orderJ0

2. The two lowest-order
graphs with one additional electron-hole bubble are depic
in Fig. 7. Considering only these two topologically differe
graphs in the self-energy, we obtain thet-matrix expression
for the collision integral derived in Refs. 6 and 7, howev
with bare coupling constants. The electron-hole pairs do
only renormalize the pseudo-Fermion propagator, which
been considered in Ref. 28, but also include bubbles conn
ing the upper and lower pseudo-Fermion lines. The la
graphs are so-called crossed diagrams and lead to ve
corrections20 not included in a simple noncrossing approac

All other corrections lead to higher orders inJ0 for a
single electron-hole bubble or outer electron line. Above
Kondo temperature, it is conventionally accepted that o
may write these corrections as a renormalization of the c
responding vertices and that in the leading logarithmic or
the vertices are renormalized independently.6,10 As a result,
two dressed vertices instead of one are used. This proce
has been explicitly proven in the leading-logarithmic a
proximation both for the electron27 and pseudo-Fermion28

self-energies. An alternative derivation of the independ
vertex renormalization has been given in Ref. 7.

Assuming this independent renormalization of vertices
be correct also for more involved graphs and that this ren
malization depends only on the electron energies, one
equivalently start with a renormalized Hamiltonian restri

’s
FIG. 6. Fourth-order graphs of second order in impur

density.

FIG. 7. Fourth-order self-energy terms including one additio
electron-hole bubble.
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ing the appearing graphs to simple electron-hole bubble

the order ofJ2 in the renormalizedmatrix elementsJ̃s8s
b8b .

Neglecting the energy dependence ofJ̃s8s
b8b one obtains

S.~ks,v!5cimp J̃s8s
b8bJ̃ss8

bb8(
k8

E dv8

2p

dv̂

2p

3G0
.~k8s8,v2v8!

3^G 0
.~b8,v̂1v8!G 0

,~b,v̂ !&eh, ~A5!

where the averagê•••&eh means the dressing of the pseud
Fermion bubble with all possible electron-hole pairs us
renormalized coupling constants. Rephrasing the pseu
Fermions in terms of spin operators and assuming isotro
couplingJ, we may write

S.~v!52 i
cimp

4r
~rJ!2E dv8C~v8!@12 f ~v2v8!#

~A6!

with the time-dependent correlation functionC(t) given by
Eqs.~5! and~6!. The self-energyS, is given by the replace
ment f→12 f andC(v)→C(2v), which is obvious since
C(t) is an autocorrelation function. Inserting this express
in Eq. ~A3!, we find the collision integral in the desired form
~3!. The spin-spin correlation functions are calculated th
using a projection operator technique.21 The actual procedure
follows the lines outlined in Ref. 36 for the case of two-lev
systems.

APPENDIX B: VERTEX RENORMALIZATION

We proceed to determine the renormalized coupling c
stants. They can be derived in different ways: by a p
man’s scaling procedure,37 Suhl’s t-matrix approach,31 fol-
lowing Abrikosov and solving a generalized verte
equation,35 or considering lower-order corrections and a
suming similar resummation procedure as in equilibriu
According to Refs. 27 and 38 the renormalized vertex re

G~e8s8,v8b8ues,vb!5G01Ge~e1v!1Gh~e2v8!,
~B1!

where

G05Js8s
b8b

5J0Sb8b•ss8s ~B2!

is the bare vertex of thes2d exchange Hamiltonian.s,b are
the incoming electron and pseudo-Fermion spins ande,v are
the incoming electron and pseudo-Fermion energies.
primed quantities are the outgoing spins and energies,
spectively. Energy conservation is fulfilled at each ver
meaninge85e1v2v8. The electron and hole vertex par
can be assumed to depend on a single energy variable.28 The
electron vertexGe depends on the sum of incoming electr
and pseudo-Fermion energiese1v, and the hole vertex par
Gh depends on the difference of the incoming electron a
outgoing pseudo-Fermion energiese2v8. In the lowest or-
der in J0 the retarded quantities read
19532
of

-
g
o-
ic

n

n

l

-
r

-
.
s

e
e-
x

d

Ge/h
r ~e!5

irJs8k
b8gJks

gb

2 E dj

2pE deqk@G0
r ~qk,e7j!G 0

K~g,j!

1G0
K~qk,e7j!G 0

r ~g,j!#'Js8k
b8gJks

gbrg~e7Eg!.

Here the upper sign stands for the electron vertex and
lower sign for the hole vertex, respectively. The auxilia
function

g~e!5E
2D

D

de8
f ~e8!21/2

e2e81 id
~B3!

leads in equilibrium to the usual logarithmic corrections.
Considering the lowest-order vertex corrections to

self-energy in Fig. 8 and assuming that the pseudo-Ferm
energies are fixed to resonance, we get

G65
J0

2 H 11
rJ0

2
@g~e6EH!1g~e!#J ~B4!

for the spin-flip component proportional toS6 and

G6
z 5~J0/4!@11rJ0g~e6EH!# ~B5!

for the component proportional toSz applying to a spin-up
~down! electron. This means that the leading renormalizat
of the ‘‘up’’ electron is given by the ‘‘down’’ electrons and
vice versa. This anisotropic decomposition of the renorm
ized coupling constants has also been found by Keiter.30 Set-
ting the pseudo-Fermion energy to resonance is correct
for the lowest-order correction in the electron self-energy
Fig. 5. However, considering corrections to the graphs in F
7, we find that there the pseudo-Fermion energies
weighted with a divergent term}(v2Eb)22 justifying the
use of the resonance energyv'Eb in the renormalization.
Assuming that this is also justified for more involved graph
we use these corrections as a basis of our renormalization
write the renormalized Hamiltonian in terms of effective a
isotropic and energy-dependent coupling constants, we r
troduce the spin operators and defineJ6

z (e)54G6
z (e) and

J6(e)52G6(e).
To define a ‘‘Kondo scale’’ we consider the renormaliz

coupling constants as functions of the incoming electron
ergy and use the Hamann approximation29 for the renormal-
ized quantities. This approximation yields the same leadi
logarithm expansion as the poor man’s scaling proced
based on the expressions~B4! and~B5!, however, taking care
of the unitarity condition in each order. In this approxim
tion, theSz coupling constant reads

J6
z ~e!/J05$u12~prJ0!2S~S11!/42rJ0g~e7EH!u2

1~prJ0!2S~S11!%21/2 ~B6!

FIG. 8. Lowest-order vertex renormalization.
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GÖPPERTet al. PHYSICAL REVIEW B 66, 195328 ~2002!
in accordance with a high-temperature expansion of Keite30

Analogously the spin-flip process renormalization reads

J6~e!/J05$u12~prJ0!2S~S11!/4

2rJ0@g~e!1g~e6EH!#/2u2

1~prJ0!2S~S11!%21/2. ~B7!

These quantities coincide forB50 with those used in Refs. 7
and 39 and cover the results obtained by the poor m
scaling procedure; see discussion about Kondo tempera
in Sec. V. Note that the renormalized coupling constants
main finite also below the Kondo temperature where th
meaning is questionable.

APPENDIX C: CALCULATION OF THE CORRELATION
FUNCTION

We briefly present the method used to derive the result
Sec. III. Our main interest is the spin-spin correlation fun
tions ~6!. SinceC(t) is an autocorrelator, its Fourier tran
form is given by the expressionC(v)5C̃(2 iv1d)1C̃

(2 iv2d) whereC̃(z) is the Laplace transform of the co
relator. Using projection operatorsPzX5Sz^XSz&/^SzSz& for
Cz and P6X5S6^XS7&/^S6S7& for the C6 component,
one can derive a formally exact integro-different
equation21

Ċa~ t !5FaCa~ t !2E
0

t

dufa~ t2u!Ca~u! ~C1!

with the solution in terms of the Laplace transform

C̃a~z!5
Ca~ t50!

z2Fa1f̃a~z!
, ~C2!

where a5z,6. Here Fz5^ṠzSz&/^SzSz&50 and F6

5^Ṡ6S7&/^S6S7&57 iẼH leads to the free propagation o
the correlators, whereẼH includes the Knight shift neglecte
throughout the paper. The averages are calculated with
proper steady-state density defined by the stationary solu
of the Boltzmann equation. The memory kernelfa(t) for the
correlation function plays a similar role as the self-energy
the Green’s function. For theC6 term we find

f6~ t !5
^Ṡr

6~ t !Ṡ7&

^S6S7&
1F6

^Ṡr
6~ t !S7&

^S6S7&
. ~C3!

Here the indexr in Sr
6(t) indicates that the dynamics of th

spin operator is reduced by the projection. It is determin
by the expressionṠr

6(t)5exp@iL̂(12P6)t#Ṡ6 with the Liou-

ville operatorL̂ acting asL̂X̂5@H,X̂#/\. The memory ker-
nel for the Cz correlation function is simply given by Eq
~C3! with the replacement6,7→z. Though formally exact,
the above equations do not allow a simple calculation of
correlators. Here, we expand the kernel up to second ord
the renormalized couplingJ. Since the dynamics of the ex
19532
’s
re
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ir
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e
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panded kernel function is oscillatory, the Fourier transform
correlation function has always the simple form

Ca~v!5
2Ca~ t50!Refa~v!

@v2 iFa1Imfa~v!#21@Refa~v!#2
~C4!

with a5z,6. Similar to Green’s functions, this reflects th
fact that in the steady state the retarded and advanced
energies are complex conjugate, leading to a similar struc
of the ‘‘. ’’ or ‘‘ , ’’ Green’s functions. Note that the roles o
the imaginary and real parts of the memory kernel are op
site to those of the Green’s functions because of different
of definitions. Further, we define Refa(v)[Re@f̃a(2 iv
1d)# and the imaginary part Imfa(v) follows from a
Kramers-Kronig relation. WithCz(t50)5^SzSz&51/4 and
C6(t50)5^S6S7&5P6 and further neglecting the imagi
nary parts in the denominators, which lead to a freque
and Zeeman energy renormalization, we find the express
~9! and ~10! for the correlation functions.

APPENDIX D: DETAILED THEORETICAL DESCRIPTION

Starting with anisotropic and energy-dependent coupl
constants derived in Appendix B, the interaction Hamiltoni
in terms of impurity spin operators reads

HI5
1

2 (
kk8

$S1J1~ek↑!Ck8↓
† Ck↑1S2J2~ek↓!Ck8↑

† Ck↓

1Sz@J1
z ~ek↑!Ck8↑

† Ck↑2J2
z ~ek↓!Ck8↓

† Ck↓#%. ~D1!

Considering the electron self-energy in the Boltzmann eq
tion the scattering rateW in the collision integral~3! depends
on both, incoming electron energye and transferred
energyv

W~e,v!5~cimp r/8\!$J2~e!J1~e8!C1~v!

1J1~e!J2~e8!C2~v!1@J1
z ~e!J1

z ~e8!

1J2
z ~e!J2

z ~e8!#Cz~v!% ~D2!

with the outgoing electron energye85e2v; see Appendix
A and Eqs.~5! and ~6!. The calculation of the correlation
functions follows the lines in Appendix C and the gene
form ~C4! leading the Eqs.~9! and~10! remain the same. The
changes are only in the damping

nz~v!5pr2@P1z1~v2EH!1P2z2~v1EH!#, ~D3!

n6~v!5~p/4!r2@zz~v7EH!1z7~v!/P6#, ~D4!

with the auxiliary functions

zz~v!5E de8@J1
z ~e8!J1

z ~v1e8!1J2
z ~e8!J2

z ~v1e8!#

3 f ~e8!@12 f ~v1e8!#, ~D5!

z6~v!5E de8J7~e8!J6~v1e8! f ~e8!@12 f ~v1e8!#.

~D6!
8-12



to
of

a-
tion

MAGNETIC-FIELD EFFECTS IN ENERGY RELAXATION . . . PHYSICAL REVIEW B66, 195328 ~2002!
The corresponding master equation~14! for the occupation
probabilitiesP6 remains the same, but the rate changes

G65
r2

4\P6
E dvz6~2v!C6~v!. ~D7!
-
.

lla

et

al

t,

ge

et

t,

19532
We used these formulas for the numerical determination
the distribution function in Sec. IV; however, the main fe
tures do not alter even if one uses the simplified descrip
in Sec. III.
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