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Nonlinear dynamics in far-infrared driven quantum-well intersubband transitions
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We study the effect of many-body interactions on the collective response of confined electrons in doped
quantum-well~QW! heterostructures to intense far-infrared radiation. Absorption line shapes are computed
both by numerically integrating the equations of motion and by using the appropriately time-averaged equa-
tions. For a two-subband double-QW system, optical bistability and period-doubling bifurcations are observed
and their parameter range of activity is given. For a three-subband asymmetric triple-QW system driven at
v'E22E0, Hopf bifurcations occur which generate a strong response at a frequency incommensurate with
the drive frequency or any natural frequency of the system.
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I. INTRODUCTION

Hopf bifurcations, with an incommensurate frequency
sponse, and subharmonic generation~a period-doubling bi-
furcation! are not as ubiquitous features of driven classi
nonlinear systems as is superharmonic generation. Altho
these bifurcations usually require the fine-tuning of para
eters, they are being intensively studied due to their num
ous applications and theoretical interest.1,2 The same bifur-
cations may exist in some driven, effectively nonline
quantum mechanical systems. For example, in the mean-
description, Bose-Einstein condensates,3 Josephson
junctions,4 atomic beams in optical cavities,5 and n-doped
quantum wells6 ~QW’s! have nonlinear equations of motion
Finding bifurcations in these quantum systems also requ
a theoretical or experimental search for the appropriate
rameter range. In this article, we focus on strongly driv
far-infrared~FIR! intersubband transitions inn-doped GaAs/
AlGaAs QW’s, which have been shown to exhibit superh
monic generation and nonlinear phenomena in their abs
tion line shapes. We show that the intersubband transit
can undergo Hopf bifurcations and period-doubling bifurc
tions in their response to a strong FIR drive, and give
appropriate parameter ranges for these effects in chosen
structures.

In recent years, a number of nonlinear effects have b
investigated inn-doped QW’s. Second-harmonic generati
has been accurately simulated and measured.7–10 The dy-
namic screening effects on the absorption peak, which
pend nonlinearly on the intensity of the incoming radiatio
have also been studied experimentally and theoretic
Experiments7,11 showed the intersubband absorption pe
broadening, distorting, and slightly redshifting towards t
bare intersubband frequency as the subbands saturate
increasing FIR intensity. These results were in agreem
with a two-subband density matrix model proposed
Zalużny.12,13 Broadening and shifting of the absorption pe
occur independent of the QW sheet density and its width.
the other hand, depolarization-shift effects occur only if t
0163-1829/2002/66~19!/195325~12!/$20.00 66 1953
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QW is wide and many-body interactions are relevant.14,15For
the same FIR intensity, one sees a few other changes in
absorption such as peak distorting, narrowing, and an a
tional shift of the peak frequency~which decreases with in
creasing field intensity!.

The electron-electron (e-e) interaction affects the above
mentioned effects inn-doped QW’s in measurable ways, b
it is not a necessary condition for their occurrence. In t
article we study a set a nonlinear effects where the m
source of the nonlinearitiesis the e-e interaction.

The generic bifurcation from a fixed point~corresponding
to a periodic orbit! in a classical system is a Hopf bifurcatio
~HB!,16 and it typically leads to a response comparable
magnitude to the drive. Another interesting property of th
type of response is that it usually happens with a freque
that is incommensurate with the frequency of the driv
These two characteristics motivate the search for a HB fr
a fixed point in our effectively nonlinear quantum mecha
cal system. In this paper we show that HB’s can be found
suitably designedn-doped QW systems driven by intens
FIR radiation.

Here we also extend the work of Galdrikian and Birn8

and Batistaet al.17 on period-doubling bifurcations~PDB’s!
in a two-subband QW. The theoretical model that we emp
here allows the treatment of more than two subbands an
principle can also include exchange-interaction terms
mass dispersion. On the other hand, analytical calculat
such as the averaging technique used in Ref. 17 are con
erably more difficult to perform when more than two su
bands are included in the system. Thus, in those cases w
limited to focusing on numerical results for the nonline
dynamics.

Many-body effects on intersubband transitions and opt
properties of QW’s have been studied in recent years6,18–21

with semiconductor Bloch equations~SBE’s! using Hartree-
Fock and rotating-wave approximations~RWA’s! for the re-
sponse of two-~sub!band QW’s. Multisubband transition
and numerical integration of the SBE’s were performed
Tsang et al.;22 however, those authors neglecte
©2002 The American Physical Society25-1
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depolarization-shift terms, which is a serious handicap
their predictions for wide QW’s.

We study the multisubband SBE’s in their time-depend
Hartree version~i.e., without exchange! without making the
rotating-wave approximation, from a nonlinear dynamic
systems perspective. We find, in qualitative agreement w
previous work,8 that for the two-subband QW driven ne
resonance PDB’s or optical bistability~OB! may occur. For a
three-subband QW structure~Fig. 1! driven at resonancev
5E20 basically two types of bifurcations occur as the F
field strength is varied. We observe a HB producing a stro
signal at a frequency lower than the frequency of the dri
For a different value of the field strength a PDB is observ
that also produces a strong signal. Both of these respo
are produced at moderate values of the field strength. In c
trast, the PDB signal observed in the double QW in Ref
was much weaker than the fundamental and occurred at
tively large field strength. Our approach can in principle
applied to any multisubband system, with the precaution
the frequencies involved should not exceed the LO pho
energy (;36 meV in GaAs/AlGaAs QW’s!, to prevent a
rapid loss of coherence.

In Sec. II we start our study of the effect of many-bo
interactions on the optical properties of confined electron
d-doped QW’s. We derive the density-matrix equations
motion of the confined electrons, treating the many-body
teractions in the time-dependent Hartree approximation.
density matrix provides information on the collective r
sponse of the electrons to an applied FIR field. We acco

FIG. 1. The stationary self-consistent potential forNs53.0
31011 cm22 with the eigenenergies indicated by horizontal ba
the density and first seven eigenstates are shown on top. The d
barrier creates, through tunneling, three closely spaced subb
well isolated from upper subbands. The slight asymmetry enha
the nonlinear effects, but too much asymmetry reduces the tun
ing and with it the decoupling with upper subbands.
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for energy~inelastic! and momentum~elastic! types of scat-
tering phenomenologically within the relaxation-time a
proximation. In Sec. III averaged equations for two-subba
QW’s and for multisubband QW’s are derived; in the latt
case the averaging method is applicable only if all the s
band energies involved are~almost! equally spaced. In Sec
IV the numerical analysis of the equations obtained in Se
II and III is shown. Here we confirm previous observatio
of Galdrikian and Birnir of period-doubling bifurcations fo
a two-subband system. For a three-subband asymmetric
with two small barriers we observe Hopf bifurcations of t
Poincare´ maps in the electrons’ collective response.

II. THEORETICAL MODEL

In this section we introduce our theoretical model to d
scribe the interplay of electronic and optical properties
confined electrons in a QW. More specifically, our aim is
understand the influence of the electron-electron interac
on the collective dynamical properties of the electrons wh
subjected to strong FIR radiation. The starting point is
Hamiltonian of the confined electrons, which includes t
interaction of the electrons with the ionized donors loca
outside the QW’s. Our treatment employs the seco
quantization formalism, and we use field operators or s
band creation and annihilation operators at different stage
the calculations. Initially we do not include the FIR radiatio
term in the Hamiltonian so that we can understand the or
of the depolarization shift terms and also provide an appro
mation of the many-body ground state based on the Har
approximation. This will also give us the basis states for o
single-particle field operators, the single-particle ene
spectrum, and the equilibrium subband occupation numb
Afterwards we develop the multisubband time-depend
Hartree theory including the applied FIR field.

A system of fixed donors and confined electrons in a Q
with bare potentialW(z) has the following Hamiltonian op-
erator:

Ĥ5Ĥ01Ĥel-el1Ĥel-b1Hb . ~1!

The bare well Hamiltonian is given by

Ĥ05E d3xĉ†~x!F2
1

2m*
\2¹21W~z!G ĉ~x!.

The electron contribution is given by

Ĥel5
e2

2 E d3xE d3x8ĉ†~x!ĉ†~x8!
1

ux2x8u
ĉ~x8!ĉ~x!.

The Hamiltonian for the electron-background interaction
given by

Ĥel2b52e2E d3xd3x8ĉ†~x8!nD~x!
1

ux2x8u
ĉ~x8!,

and the background contribution is

;
ble
ds
es
el-
5-2
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Hb5
e2

2 E d3xE d3x8
nD~x!nD~x8!

ux2x8u
,

wherenD(x) denotes the density of the background dono
The field operatorsĉ(x) andĉ†(x) can be expressed as lin
ear combinations of creation and annihilation operatorsak

andak
† , respectively,

ĉ~x![(
k

fk~x!ak ,
19532
.

ĉ†~x![(
k

fk* ~x!ak
† ,

where the single-particle wave function isfk(x)
5(eik•r/AA)jn(z) andjn(z) is the envelope wave function
in the growth direction. This change of basis will be partic
larly useful for simplifying the equations of motion from
partial differential equation to an ordinary differential sy
tem, in which we will keep only the most important mode

Using the total Hamiltonian above we obtain the Heise
berg equations of motion for the field operators,
h the
b
rom the

e

i\
]ĉ

]t
~x,t !5F2

1

2m*
\2¹21W~z!G ĉ~x,t !2E dx8nD~x8!Vm~x2x8!ĉ~x,t !1E dx8Vm~x2x8!ĉ†~x8,t !ĉ~x8,t !ĉ~x,t !,

~2!

where

Vm~x2x8!5
e2e2mux2x8u

kux2x8u

is the screened Coulomb potential, withk the dielectric constant. The screening is a mathematical artifact included wit
only purpose of avoiding divergence in certain integrals; later on we will take the limitm→0 and recover the usual Coulom
potential. In the experimental setup of interest the donors are distributed symmetrically in two thin layers far removed f
QW according tonD(z)5Ns/2@d(z2L)1d(z1L)#, whereNs is the sheet density. The integrals on the right side of Eq.~2!
are given by

E dx8nD~x8!Vm~x2x8!5
pe2Ns

km
~e2muz2Lu1e2muz1Lu!,

E dx8Vm~x2x8!ĉ†~x8,t !ĉ~x8,t !5
2pe2

kA (
n1n2 ,k1k2

an1k1

† an2k2
e2 ir•(k12k2)E dz8jn1

~z8!jn2
~z8!

3E
0

`

rJ0~r uk12k2u!
e2mAr 21(z2z8)2

Ar 21~z2z8!2
dr. ~3!

The k15k2 term in the above sum can be simplified to

2pe2

kmA (
k,n1n2

an1k
† an2kE dz8jn1

~z8!jn2
~z8!e2muz2z8u5

2pe2

kmA F N̂2m (
k,n1n2

an1k
† an2kE dz8jn1

~z8!jn2
~z8!Uz2z8U1O~m2!G .

The diverging terms in Eq.~2! cancel out and we can take the limitm→0, obtaining the depolarization-shift terms in th
Heisenberg equation, which becomes

i\
]ĉ

]t
~x,t !5F2

1

2m
\2¹21W~z!G ĉ~x,t !2

2pe2

kA (
k,n1n2

an1k
† an2kE dz8jn1

~z8!jn2
~z8!uz2z8uĉ~x,t !

1
2pe2

kA (
n1n2 ,k1Þk2

an1k1

† an2k2
e2 ir•(k12k2)E dz8jn1

~z8!jn2
~z8!

e2uk12k2uuz2z8u

uk12k2u
ĉ~x,t !. ~4!
5-3
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After the Hartree approximation is applied, we obtain

i\
]ĉ

]t
~x,t !5F2

1

2m*
\2¹21W~z!G ĉ~x,t !2

2pe2

kA (
k,n1

^an1k
† an2k&E dz8jn1

~z8!jn1
~z8!uz2z8uĉ~x,t !. ~5!
ee
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This should be a good approximation for very high sh
densities (r s!1), since the kinetic terms then dominate23

There are some studies24,25 that show a significantly reduce
effect of exchange-correlation corrections on the FIR abso
tion lines in a double QW when two subbands are well po
lated. The case of the Hartree-Fock approximation will
studied in a following paper.

If an(k,t)5an(k)eiEn(k)t, whereEn(k)5En1\2k2/2m* ,
then jn(z) obeys the Schro¨dinger equation for the
nth-subband wave function given by

F2
1

2m*
d2

dz2 1W~z!1VH~z!Gjn~z!5Enjn~z!. ~6!

The Hartree potentialVH(z) is given by

VH~z!5
22pe2

k E
2`

`

dz8uz2z8un~z8!, ~7!

and the electron number density is given by

n~z!5^ĉ†~z!ĉ~z!&5
1

A (
n,k

ujn~z!u2f n~k!, ~8!

where f n(k) is the Fermi occupation function. The electro
number density can be rewritten asn(z)5Ns(nwnujn(z)u2,
with the normalization(nwn51. The subband occupatio
numbers at nonzero temperatures are given by

wn5
1

pNs
E kdk

1

e(En(k)2m)/T11

5
m* T

\2Nsp
ln@11e2(En2m)/T#. ~9!

The chemical potentialm can be obtained from solving th
polynomial equation

Ns5
m* T

p\2 (
n

ln@11e2(En2m)/T#, ~10!

where the variable ise2m/T. It can be easily proved that ther
is only one solution form real. For the two-subband case w
can actually solve this equation analytically. We obtain

w05
m* T

\2Nsp
ln$11ed/T@2cosh~d/T!1Asinh2~d/T!1s#%,

w15
m* T

\2Nsp
ln$11e2d/T@2cosh~d/T!1Asinh2~d/T!1s#%,

whered5(E12E0)/2 ands5exp@p\2Ns/m*T#. At T50 the
subband occupation numbers are given by
19532
t

p-
-

e

wn5
m*

p\2Ns
~m2En!Q~m2En! ~11!

and the chemical potential can be obtained from s
consistently solving

Ns5
m*

p\2 (
n

~m2En!Q~m2En!, ~12!

whereQ is the step function.
Now using the electric-dipole approximation we includ

the external FIR field, polarized in the growth direction,
the Heisenberg equations@in Eq. ~4!#. This introduces coher-
ence between states of different subbands but with the s
momentum. Neglecting the coherence between states
different momentum is a valid approximation since the m
mentum transfer due to the THz radiation is negligible due
the small energy differences between subbands~of the order
of 10 meV!. With this external field, the Heisenberg equati
in the time-dependent Hartree approximation becomes

i\
]ĉ

]t
~x,t !5F2

1

2m*
\2¹21W~z!1VH~z!G ĉ~x,t !

2
2pe2

kA (
k,n1n2

@^an1k
† an2k&2 f n1

~k!dn1 ,n2
#

3E dz8jn1
~z8!jn2

~z8!uz2z8uĉ~x,t !

2eF~ t !zĉ~x,t !. ~13!

After rewriting the above equation solely in terms of th
operatorsank andan8k

† , we obtain

i\ȧn8p5En~p!an8p2
2pe2

kA (
k,n1n2n3

@^an1k
† an2k&

2 f n1
~k!dn1 ,n2

#E dzE dz8jn8~z!jn1
~z8!

3uz2z8ujn2
~z8!jn3

~z!an3p2(
m

F~ t !mn8mapm .

The density matrix provides information on the far-infrar
response to the THz field of the electrons collective osci
tions in the QW. It also allows us to treat dissipation effe
due to momentum scattering with point impurities and e
ergy scattering with phonons. The elements of the den
matrix are given by

snn8~k!5^ank
† an8k&. ~14!
5-4
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With this substitution and the shorthand notation

Vn1n2n3n4

0 5
2pe2Ns

k E dzE dz8jn1
~z!jn2

~z8!

3uz2z8ujn3
~z8!jn4

~z!, ~15!

we obtain

i\ȧn8p5En8~p!an8p2
1

ANs
(

k,n1n3n4

Vn8n2n3n4

0
@sn2n3

~k!

2 f n2
~k!dn2 ,n3

#an4p2(
m

F~ t !mn8mamp .

Multiplying the above equation to the left byapn
† and then

applying the quantum statistical average, denoted by the
gular brackets, we obtain

2 i\^anp
† ȧn8p&52En8~p!snn8~p!

1
1

ANs
(

k,n2n3n4

Vn8n2n3n4

0
@sn2n3

~k!

2 f n2
~k!dn2n3

#snn4
~p!

1(
m

F~ t !mn8msnm~p!.

Another approximation we introduce is to consider t
effective masses of all subbands equal, which is a fairly
curate approximation for GaAs/AlGaAs QW’s.~This is not
the case in general; for example, it does not apply to In
AlSb QW’s.! With this approximation, we can reduce th
dimensions of the equation of motion even further by p
forming a sum overk. Then the equations for the averag
density matrix become

2 i\ṡnn85~En2En8!snn81 iGnn8~snn82snn8
0

!

1 (
n2n3n4

Vn8n2n3n4

0 snn4
~sn2n3

2sn2n3

0 !

2 (
n1n2n3

Vn1n2n3n
0 sn1n8~sn2n3

2sn2n3

0 !

2(
m

F~ t !~mmnsmn82mn8msnm!, ~16!

wheresnn85(1/ANs)(ksnn8(k) andsnn8
0 is the equilibrium

density matrix. We introduced above, within the relaxatio
time approximation, the phenomenological dissipation ra
Gnn85\dnn8 /T11\(12dnn8)/T2, where T1 is the energy
scattering time~or depopulation time! andT2 is the momen-
tum scattering time~or depolarization time!. Before proceed-
ing further, it is useful to transform the above equations i
dimensionless form via

t5Vt, enn85
En2En8

\V
, gnn85

Gnn8
\V

, m̃mn5
mmn

m10
,

19532
n-

c-

/

-

-
s

o

E~ t !5
m10F~ t !

\V
, V n1n2n3n4

0 5
1

\V
Vn1n2n3n4

0 , ~17!

where V is the frequency of the driving field. After thes
transformations one obtains

2 i ṡnn85enn8snn81 ignn8~snn82snn8
0

!

1 (
n2n3n4

V n8n2n3n4

0 sn,n4
~sn2n3

2sn2n3

0 !

2 (
n1n2n3

V n1n2n3n
0 sn1n8~sn2n3

2sn2n3

0 !

2(
m

~m̃mnsmn82m̃n8msnm!E~t!. ~18!

The main advantage of the present method based on
operators over the method used in Ref. 8 is that now we h
developed the density-matrix equations of motion for a
number of subbands. The previous method is restricted to
two-subband problem without exchange terms. The
change terms could also be included in our equations o
the time-dependent Hartree-Fock approximation is taken

Two-subband problem

In the two-subband system case Eqs.~18! can be explic-
itly written as

ṡ0052g1~s002s00
0 !2 i (

n2n3

V 0n2n31
0 ~sn2n3

2sn2n3

0 !

3~s102s01!2 iE~t!~s102s01!. ~19!

With the substitution of

(
n2n3

V 0n2n31
0 ~sn2n3

2sn2n3

0 !52V 0101
0 Res10

1V 0001
0 ~s002s00

0 !

1V 0111
0 ~s112s11

0 ! ~20!

ands005(11D)/2 in the above equation, we obtain

Ḋ52g1~D2D0!18Ims10@V 0101
0 Res10

1~V 0001
0 2V 0111

0 !~D2D0!/41E~ t !/2#.

The equation for the coherence term is given by

ṡ105 i e10s102g2s102 iD (
n2n3

V 0n2n31
0 ~sn2n3

2sn2n3

0 !

2 is10(
n2n3

~V 1n2n31
0 2V 0n2n30

0 !~sn2n3
2sn2n3

0 !

2 iE~t!(
m

~m̃m1sm02m̃0ms1m!.

Making the simplifications
5-5
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(
n2n3

V 0n2n31
0 ~sn2n3

2sn2n3

0 !52V 0101
0 Res101~V 0001

0 2V 0111
0 !

3~D2D0!/2,

(
n2n3

~V 1n2n31
0 2V 0n2n30

0 !~sn2n3
2sn2n3

0 !

52~V 0111
0 2V 0001

0 !Res101~2V 1001
0 2V 0000

0 2V 1111
0 !

3~D2D0!/2,

(
m

~m̃m1sm02m̃0ms1m!5D1~m̃112m̃00!s10,

we obtain

Ḋ52g1~D2D0!14Ims10

3$a@Res102z~D2D0!/4#1E~t!%,

ṡ105 i ẽ10s102g2s102 iaD@Res102z~D2D0!/4#

2 ias10@zRes101b~D2D0!/4#

2 iE~t!@m10D1~m112m00!s10#, ~21!

where we have used the shorthand notationa52V0101
0 , z

5(V1101
0 2V1000

0 )/V1010
0 , and b5(2V1001

0 2V0000
0

2V1111
0 )/V1010

0 . We can further simplify Eq.~21! with the
notationV10(t)5E(t)1a@Res102z(D2D0)/4#, which re-
sults in

Ḋ52g1~D2D0!14Ims10V10~t!,

ṡ105 i ẽ10s102g2s102 iDV10~t!

2 is10$a@zRes101b~D2D0!/4#1E~t!~m̃112m̃00!%.

~22!

This equation is equivalent to the one found previously
Galdrikian and Birnir.8 In the next section we approximat
the original system~18! by a simplified set of equation
which allows us to do some predictions of OB’s. The valid
of the method is verified by comparing its predictions w
some of our numerical results.

III. AVERAGING METHOD

The averaging method is generally used to eliminate
explicit time dependence of periodically driven ODE sy
19532
y

e
-

tems. It has been applied in many different problems, e
the gravitational three-body problem, the van der P
oscillator,2 and in the study of PDB’s in the Duffing
oscillator.1 The simplest application of this method is pe
haps the computation of the shape of the first two Arn
tongues~i.e., the boundary between stable and unstable m
tion! in Mathieu’s equation.26 A survey of the theory of av-
eraging and many new results can be found in Ref. 27. N
we present a brief summary of this method.

Suppose we have a differential equation

ẋ5e f ~x,t !, xPCn, 0,e!1, ~23!

with f (x,t) T periodic and sufficiently well behaved (C2 is
enough!. The functionf can be decomposed in its Fourie
modes, f (x)5 f 0(x)1 f̃ (x,t), where f 0(x) has no explicit
time dependence andf̃ (x,t) includes all the oscillating
terms. The averaging theorem2,1 states that in the limite
→0, Eq. ~23!, through the transformationx5y1ew(y,t),
can be replaced by

ẏ5e f 0~y!1e2D f̃ ~y,t !w~y,t !.

The function w(y,t) is chosen to satisfy the differentia
equationwt(y,t)5 f̃ (y,t) with integration constants set t
zero. Since here we are interested only in first-order ave
ing, we neglect termsO(e2). We are then left with

ẏ5e f 0~y!. ~24!

This replacement means that for the same initial conditi
solutions to Eqs.~23! and~24! will be close to orderO(e) in
a time scale ofO(1/e). Therefore a study of Eq.~24! reveals
substantial information about the structure of the origin
system~23!.

The averaging method will be applied to the multisubba
case in which the energy levels are~almost! equally spaced
or only have small deviations from it. This condition can
relaxed but the equations become slightly more complica
to write; however, the algorithm to solve them has the sa
complexity. Applying the transformationsnn82snn8

0

5exp@i(n2n8)vt#rnn8 to Eqs.~16! we can set them into the
slowly varying form if we assume that the dissipation rat
Coulomb interaction coefficients, andmnmF(t) are small
compared to\V. The resulting equations are
2 i\
]

]t
rnn85~Dnn81 iGnn8!rnn81e2 i (n2n8)vt (

n2n3n4

Vn8n2n3n4

0
~rn,n4

ei (n2n4)vt1snn4

0 !rn2n3
ei (n22n3)vt

2e2 i (n2n8)vt (
n2n3n4

Vnn2n3n4

0 ~rn4 ,n8e
i (n42n8)vt1sn4n8

0
!rn2n3

ei (n22n3)vt2e2 i (n2n8)vt(
m

~mmnrmn8e
i (m2n8)vt

2mn8mrnmei (n2m)vt!F~ t !2e2 i (n2n8)vtmn8n~sn8n8
0

2snn
0 !F~ t !. ~25!
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The applied external field is given byF(t)5F0eiVt1F0* e2 iVt, where V5Nv with N integer, Dnn85En2En82\(n
2n8)v, and the field strengthF0 is a constant. After transforming the above equations to dimensionless form via Eq.~17! we
can see that the right-hand side of the above equation has an explicit time dependence which is periodic with frequev/V
and is weakly varying in time. Thus the averaging method can be correctly applied and to first order we obtain

2 i
]

]t
rnn85~D̃nn81 ignn8!rnn81 (

n2n3n4

V n8n2n3n4

0
~rn,n4

dn81n2 ,n31n4
1snn4

0 dn81n2 ,n31n!rn2n3

2 (
n2n3n4

V nn2n3n4

0 ~rn4 ,n8dn21n4 ,n1n3
1sn4n8

0 dn81n2 ,n1n3
!rn2n3

2(
m

@m̃mnrmn8~E0dm2n,2N1E0* dm2n,N!

2m̃n8mrnm~E0dn82m,2N1E0* dn82m,N!#2~E0dn2n8,N1E0* dn2n8,2N!m̃n8n~sn8n8
0

2snn
0 !. ~26!
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Now we can integrate these equations numerically until t
converge to a fixed point which gives the response of
system. First-order averaging will give us an equivalent
swer to that of the RWA when the latter is applicable, but
range of applicability of the averaging method is larger th
the RWA’s. For instance, the RWA does not apply for
multiple-subband problem when the intersubband spacin
nearly constant as just described. There are other handi
of the RWA even for a two-subband system. For examp
the RWA cannot account for second-harmonic generatio
asymmetric QW’s when the drive frequencyV'e10/2 and it
cannot describe subharmonic generation either.17 For these
last two problems one needs to go to second order in
averaging method.

A. Optical bistability in the two-subband QW

Optical bistability is basically a nonlinear response of t
medium ~here confined electrons in a QW! to an external
oscillating field, in which there are three possible respon
~two stable and one unstable!. Which one the system choose
depends on the history of the adiabatically varying con
parameters~usually electric field amplitude!. The OB we con-
sider here is an intrinsic feature of the electron gas in t
QW and does not rely on the use of a Fabry-Perot resona.
In addition, the effect is due to coupling of the far-infrare
radiation to intersubband transitions in the QW. Another f
ture of OB is that it is not a ubiquitous nonlinear respon
such as superharmonic generation; it can be observed on
some restricted values of the parameters. Furthermore
nonlinear response changes abruptly from one value of
output to the other at a saddle-node bifurcation when
unstable fixed point merges with the stable fixed point
system was at. This effect can be measured by detecting
different transmitted intensities of the FIR field to the sa
input field. The two stable responses have different pha
the low-transmissivity one corresponds to in-phase osc
tions with the external field~the electron population is highe
in the lower well! while the high-transmissivity solution cor
responds to out-of-phase oscillations with the external fi
~the electron population is higher in the upper well!. These
transmission features of OB make it a relevant choice
applications to optical switching and the realization of op
cal logic gates.28
19532
y
e
-

e
n

is
ps
,

in

e

s

l

r

-
e
at

he
e
e
e
he
e
s;
-

d

r
-

The innovation of our approach over the previous stud
in Ref. 28 lies in the absence of cavities~etalons!, the inex-
istence of any external dc bias, in the fact that the freque
range of the drive is in the THz, and in the essential r
played by the many-body interactions. Intrinsic OB w
studied in Ref. 29 in a similar setting to ours, but in the
model they neglected depolarization shift and coherence
fects~since they used only a rate-equation model!; these two
ingredients though are essential for the OB observed h
Two other studies13,30 proposed density-matrix models de
scribing the intrinsic OB ofn-doped QW’s, but they were
both limited to the RWA and they did not verify the applic
bility range of their results. Although in Ref. 30 a fou
subband basis is used, while in our present study of OB
have a two-subband basis, their analysis of the equation
motion is purely numerical and a parameter range of
activity is not provided.

Let us apply the averaging method to first order to E
~23!. We will calculate the absorption line and compare
with the results we obtain from solving numerically the de
sity matrix equations for a two-subband QW. After makin
the transformations105sei t we perform first-order averag
ing ~the same as the RWA! to Eqs.~23!. We obtain the fol-
lowing equations for both symmetric and asymmetric QW

Ḋ52g1~D2D0!2 iE0~s2s* !,

ṡ5~ id2g2!s2 i
aD

2
s2 iasb~D2D0!/42 iE0D/2,

~27!

whered5e1021 is the detuning. The next step is to find th
true fixed point of Eq.~28!, which is given by

s5
iE0D/2

2g21 i @d2aD/22ab~D2D0!/4#
, ~28!

whose imaginary part is

Ims5
2E0Dg2/2

@ d̄2a~11b/2!~D2D0!/2#21g2
2

, ~29!
5-7
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where d̄5d2aD0/2. Then we substitute this expression
the equation forD obtaining a cubic equation in the popul
tion difference:

g1~D2D0!1
E 0

2Dg2

@ d̄2a~11b/2!~D2D0!/2#21g2
2

50.

~30!

We can simplify the above equation using the shorthand
tation y5a(11b/2)(D2D0)/2. With this substitution we
obtain the cubic iny:

@~ d̄2y!21g2
2#y1

E 0
2g2

g1
y1

aD0E 0
2g2

2g1
S 11

b

2 D50.

~31!

In principle we can solve a generic cubic equation e
actly; however, it is not really illuminating to do this, but it
useful to know under which conditions it is possible to ha
three real solutions. This region characterizes an optica
stability. A necessary condition for its existence is given

D52 d̄2/31g2
21E 0

2 g2

g1
,0, ~32!

and a sufficient condition is

22S 2D

3 D 3/2

,C,2S 2D

3 D 3/2

, ~33!

where

C5
2d̄3

27
1

2

3 S g2
21E 0

2 g2

g1
D d̄1

aD0E 0
2g2

2g1
S 11

b

2 D .

B. Absorption

We would like to know what the effect of many-bod
interactions of confined electrons in an-doped QW on its
absorption line shapes is. We obtain our results by both
tegrating numerically the full equations of motion and usi
the averaged ones. The amount of work the driving fi
makes per period of the drive and per electron is given b

G5
1

NT (
i
E

0

T

dt eEi~ t !
d

dt
^zi~ t !&, ~34!

where the sum is over all electrons in the QW. We assu
here that all electrons have the same velocity; i.e., they
oscillating in a long-wavelength plasmon mode. We obta

G5
1

TE0

T

dt eE~ t !
d

dt
Tr@s~ t !z#, ~35!

which for a two-subband system reduces to

G5
1

TE0

T

dt eE~ t !z10@2zḊ12Reṡ10~ t !#. ~36!

We can substitute the result obtained from Eq.~22! and ob-
tain an expression that depends only on the density ma
19532
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For the many-subband case in general we have to reso
the numerical results given by Eq.~35!, except when the
subband energies are almost equally spaced. In this situa
we can use Eq.~26! and obtain

G522ev (
n.m

~n2m!~E0dn2m,2N

1E0* dn2m,N!m̃mnImrnm . ~37!

IV. NUMERICAL RESULTS

The double-QW structures used are 310 Å wide and 2
meV deep with one barrier of 50 Å in width and 50 meV
height; in the asymmetric double QW this barrier is 25 Å o
the center. The triple-QW structure studied is 310 Å wi
and 300 meV deep with two barriers of 26 Å in width an
150 meV in height. The leftmost barrier is located at 92
from the left edge of the QW and the distance between
two barriers is 88 Å. Figure 1 shows the effective well sha
with a sheet densityNs53.031011 cm22 ~provided by Si-
d-doped donor layers set back at hundreds of angstroms f
both sides of the QW!. Equation~18! for the case of two
and three subbands was integrated using the fourth-o
Runge-Kutta method with 2048 steps per cycle of drive. A
ter an equilibration time of 1000 cycles of the FIR field, th
data~plotted in Figs. 2–11! was taken over 128 cycles. Thes
results are obtained at the temperatureT50, but we verified
in triple QW’s that they are approximately the same forT up
to 50 K; the nonlinearity is substantially reduced forT

FIG. 2. Comparison of numerical absorption lines with abso
tion lines calculated with the RWA for a two-subband asymme
double well with sheet densities given in the figure. The bare Q
intersubband gap is 10.6 meV. The optical bistability occurs at sh
densityNs51.531011 cm22 nearv510.5 meV. The FIR field am-
plitude is about 1.4 kV/cm, which significantly enhances the l
broadening of the absorption curves.
5-8
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NONLINEAR DYNAMICS IN FAR-INFRARED DRIVEN . . . PHYSICAL REVIEW B66, 195325 ~2002!
.100 K. For the OB and PDB results in the double QW t
relaxation times used wereT15T256.58 ps (G15G2
50.1 meV) and for the HB’s results in the triple QW w
usedT15T2565.8 ps (G15G250.01 meV). We also veri-
fied that the HB’s still occur for a depolarization timeT2 as
low as 6.58 ps whileT1 was kept at 65.8 ps.T1 is roughly
the experimentally measured depopulation time for a tw

FIG. 3. Comparison of numerical absorption lines with abso
tion lines calculated with the RWA for a two-subband symmet
double QW with sheet densities given in the figure. The bare Q
intersubband gap is 5.9 meV. The optical bistability occurs at sh
density Ns51.531011 cm22 with FIR frequency range v
55.4–5.9 meV. The data with up-pointed triangles was taken w
adiabatically increasingv, while the down-pointed ones wher
taken with decreasingv. The FIR field amplitude is about 0.7 kV
cm.

FIG. 4. Range of optical bistability activity of the long
wavelength intersubband plasmons of the confined electrons in
double QW driven by a FIR field. The shaded area was obtaine
the RWA in Eq.~28! while the dashed contour line was obtain
from the numerical integration of Eq.~23!.
19532
-

subband QW,9,31 but T2 for the results displayed here i
about one order of magnitude higher than what was fou
more recently in Refs. 32 and 33. Although they found larg
values ofT2 than in Refs. 9 and 31 and point out that th
most important contributions for the intersubband plasm
absorption linewidth34 come from interface roughness of th
QW walls and point impurities. One can expect then that
QW growth techniques improve these sources of scatter
will be decreased and our values ofT2 could be achievable
The FIR field driving the triple QW in Figs. 7–10 has fre
quencyv5E20, which is'5 THz ~or 20 meV! and is well
in the range of the free-electron laser~however,E20 can be
lowered by decreasing the tunneling if necessary!.

A. Absorption and optical bistability

Figures 2 and 3~for double QW’s! and Fig. 6~for the
three-subband QW! show a very good agreement in the com

-

et

h

he
in

FIG. 5. Range of optical bistability activity in the asymmetr
double QW. The shaded area was obtained from Eq.~28! while the
contour line was obtained from the numerical integration of E
~23!.

FIG. 6. Comparison of numerical absorption lines with abso
tion lines calculated with the averaged equations~26! and~37! for a
three-subband asymmetric triple well with sheet density given
the figure. Note that the large broadening of the first resonance p
is due to the relatively high field intensity.
5-9
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BATISTA et al. PHYSICAL REVIEW B 66, 195325 ~2002!
puted absorption lines obtained from the original equati
~28! and those obtained from the averaged equation~22!.
These results are in qualitative agreement with the obse
line broadening and distorting of the resonance peak du
high-intensity fields in a double QW in experiments by Cra
et al.11; they are also similar to Zaluz˙ny’s results13 for the
optical bistability in two-subband asymmetric QW’s. In Fi
4 we show the zone of OB activity in a symmetric doub
QW as predicted by the RWA of the density-matrix equatio
and by its full numerical integration. In Fig. 5 we sho
equivalent results for an asymmetric QW but with less agr
ment between RWA results and fully numerical results. T
should remind us that for the same parameters except fo

FIG. 7. The Poincare´ map of the scaled dipole moment in th
doped QW withNs53.031011 cm22. The time evolution of the
dipole moment is provided by the density matrix with^m(t)&
5tr$m s(t)%. As the field strength increases a PDB occurs at
kV/cm. The two branches of the PDB undergo a HB at 5.7 kV/c
At 11.34 kV/cm a supercritical HB occurs, as the field is decrea
below this value.

FIG. 8. A contour plot of the zones of nonlinear response w
either HB or PDB response. The level sets in the figure give
difference between maximum and minimum dipole moments
tained at each value of field amplitude and frequency from Poinc´
maps such as the one in Fig. 7.
19532
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QW shape the RWA may not always work. As seen in t
figures it works better for symmetric QW’s. These resu
could serve as a useful guide for the experimentalist
search of an OB response in QW’s.

In Fig. 6 we show that the averaging method works we
predicting the absorption line of a three-subband QW.
principle we can go further, making a more thorough ana
sis of absorption lines of multiple-subband QW’s, but th
will be left for a future work. For now we just wanted t
point out that the averaging method can be a very good te
nique in studying multilevel systems in which the RWA do
not always work.

1
.
d

e
-
re

FIG. 9. Phase portrait view of the Hopf bifurcation in the QW
Each one of the closed orbits corresponds to a different value o
field amplitude in the range 10.2–11.4 kV/cm.

FIG. 10. Power spectra of the dipole moment for the dop
asymmetric QW near the onset of the supercritical Hopf bifurcati
As we decrease the field past 11.34 kV/cm the low-frequency sig
grows continuously. The zero-frequency peak coincides with thy
axis and extends to zero.
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B. Period doubling and Hopf bifurcations

The bifurcation diagram in Fig. 7 describes the collect
electron oscillations. It shows the Poincare´ map ~strobe pic-
tures taken at the drive frequency! of the dipole moment time
flow ^m(t)&5tr$m s(t)% plotted as a function of the field
amplitude. A PDB in the Poincare´ map occurs at
5.1 kV cm21 followed by the appearence of a subcritical H
of the period-2 orbit ~as the field increases! around
5.7 kV cm21. Around 6.6 kV cm21 the torus~corresponding
to the HB response! disappears abruptly and from it emerg
a period-2 orbit which subsequently also disappears abru
around 8.1 kV cm21. Further on our most interesting nonlin
ear bifurcation is observed around 11.3 kV cm21; this time
when the field is decreased pass this value a direct HB of
period-1 orbit occurs, giving rise to a torus.

We found that whenNs'3.031011 cm22 the bifurcations
occur with greatest strength and at the same time requi
small field amplitude, while forNs,0.531011 cm22 and for
Ns.6.031011 cm22 the bifurcations become too small fo
practical observations. We also verified that the results
Fig. 7 persist qualitatively for different driving frequencie
as can be seen in Fig. 8. It shows a contour plot of Poinc´-
map sweeps. The level sets are obtained from the differe
between maximum and minimum values of the dipole m
ment obtained at each field amplitude and frequency fr
the Poincare´ map.

The phase portrait~a two-dimensional cross section! of
the Poincare´ map is shown in Fig. 9. It depicts the dipo
moment plotted against its time derivative~on the vertical
axis! for various values of field strength before and after
HB. Near 11.3 kV cm21 a supercritical HB is observed a
we decrease the field intensity; the fixed point, correspond
to a periodic orbit with the frequency of the drive, becom
unstable, generating a quasiperiodic orbit which is depic
as a small closed orbit in the phase portrait. Several of th
orbits are plotted, each one corresponding to a fixed valu
the field strength; decreasing the field amplitude gives ris

FIG. 11. Level sets displaying the regions of subharmonic g
eration in the two-subband asymmetric QW. Inner level sets re
sent a stronger subharmonic response. The level sets in the fi
give the difference between maximum and minimum dipole m
ments obtained at each value of field amplitude and frequency f
Poincare´ maps. The sheet density isNs51.531011 cm22.
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a new and larger closed orbit. The evidence of the quasip
odic response can be seen from the filling of the closed or
in Fig. 9.

The power spectrum before and after the HB is shown
Fig. 10. The large and broad peak close tov/2 is the main
feature of the bifurcation. The peak in Fig. 10 is broad due
the difference frequencies, dressed6(E212E10), which are
clearly visible on each side of the incommensurate peak.
half-frequency peaks~not shown! for the PDB are sharp in
distinction.8 By varying the sheet density and field streng
the incommensurate peak can be tuned but this will be
plored in another study. In Fig. 10 there is also a dc respo
but it coincides with the zero-frequency axis and cannot
seen. The dynamics of the electron gas after~decreasing field
amplitude! the HB corresponds to a quasiperiodic orbit on
torus defined by the incommensurate frequency and fun
mental. At both the PDB and HB’s the populations of t
upper subbands are suddenly increased at the expense o
zeroth subband.

V. CONCLUSION

We obtained the equations of motion for electrons co
fined ind-doped QW’s in a systematic way, starting with th
total Hamiltonian and culminating with the multisubban
density-matrix equations in the time-dependent Hartree
proximation. In this process we dealt carefully with the o
gin of the depolarization shift terms and included the con
bution of the asymmetric terms of the Coulomb interacti
coefficients in the Hamiltonian. We then adopted two diffe
ent approaches to analyze the information provided by
equations of motion.

In the first approach we used a relatively new mathem
cal technique—the averaging method—as an alternative
more refined approach to the usual perturbation method
simplify the equations of motion. With this method we stu
ied the absorption line shapes and reobtained the usua
polarization shift due to the charge dynamical screeni
Also, broadening and distortion~in QW’s with Ns
.1011 cm22) of the resonance peak due to high-intens
fields were observed in a two-subband system in qualita
agreement with experiments by Craiget al.11 We found the
necessary conditions for the observation of optical bistabi
using Eq.~31!. Based on it we obtained Fig. 4, which ca
serve as a guide for the experimentalist in the search fo
OB in QW’s. From Fig. 4 one can see that the existence
positive detuning favors an OB response. Although OB, l
broadening, and distorting of the absorption peak have
ready been predicted by other models,13,30 we believe that
our theoretical approach provides a more systematic wa
study these phenomena. Also, our approach allows on
handle more complex situations such as the optical pro
ties of many-subband QW’s; we used this method to stu
the absorption lines of a three-subband system.

In the second approach we simply integrated the eq
tions of motion obtained from Sec. II. For a two-subba
QW we obtained an OB response in the absorption line
good agreement with the results obtained from the avera
equations. We also obtained the parameter range for sub
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monic generation in an asymmetric double QW~shown in
Fig. 11! ~the outer contours in this figure correspond
PDB’s!. We did not analyze these PDB’s here with the av
aging method since some of us17 were able to predict PDB’s
with the averaging method when the drive frequency is n
twice the resonance frequency, but we had to go to sec
order in the averaging. For arbitrary drive frequencies t
approach~second-order averaging! does not seem to be ap
plicable to predict PDB’s.

As the THz region of the spectrum is opened—for scien
and technology—the need arises for materials and struct
exhibiting nonlinearities at the FIR frequencies. The det
tion of this type of response inn-doped QW’s would indicate
that the nonlinear density-matrix equations based on
time-dependent Hartree approximation are a good appr
mation for the infinite-dimensional many-body problem
This would strongly suggest that its other predictions such
v.

d

le-

ys

ys
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PDB’s and HB’s will also be present if one searches in
appropriate parameter range. The realization that QW’s
undergo a Hopf bifurcation~from a periodic orbit! only ob-
served before in classical nonlinear systems may lead to
plications such as frequency downconverters for electro
detection of amplitude-modulated FIR signals and n
sources of FIR radiation.
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12M. Zalużny, Phys. Rev. B47, 3995~1993!.
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