PHYSICAL REVIEW B 66, 195323 (2002

Green'’s function of the half-filled Landau level Chern-Simons theory in the temporal gauge
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We study the Green'’s function of the= 1/2 Chern-Simons system in the tempdiakeyl) gauge. We derive
the Chern-Simons path integral in the temporal gauge. In order to do this, we gauge transform the path integral
in the Coulomb gauge which represents the partition function of the correct normal ordered Chern-Simons
Hamiltonian. We calculate the self-energy of this path integral in the random-phase approxitR@rfor
temperatureT=0. This self-energy does not have the divergence with the logarithm of the area, which is
known to imply the vanishing of the exact Green’s function in the Coulomb gauge for an infinite area. By
Chern-Simons retransforming the path integral representing the Green'’s function in the temporal gauge we
calculate explicitly the exact Green’s function by neglecting the interaction between the electrons, getting a
finite value. Furthermore, we give arguments that the Green’s function of the interacting system is also finite.
The nonvanishing of the Green’s function for infinite area is due to a dynamical creation of the phase factors
linking the created and annihilated particles with the particles in the ground state. The absence of these phase
factors is the reason for the vanishing of the Green’s function in the Coulomb gauge.
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[. INTRODUCTION Shankar and Murthy in RPA finding the same divergence of
the effective mass as HLR. Furthermore, they examined the
The combination of an electronic interaction and a strond-agrangian formalism in the temporéiVeyl) gauge of the
magnetic field in a two-dimensional electron system yields &CS theory. This appears to be very similar to the Hamilton
rich variety of phases. These are best classified by the fillingheory of Murthy and Shankawhich works with a Hilbert
factor v, which is the electron density divided by the density space consisting of the electron plus the magnetoplasmon
of a completely filled Landau level. In the casew&1/2,  degrees of freedom and an additional constraint on the Hil-
the behavior of the system resembles that of a Fermi liquid ifbert space. In their paper, Stezhal. show that the quasipar-
the absence of a magnetic field, or at small magnetic fielddicles of both theories contain the dipole nature of the
This effect can be explained with a new sort of quasiparti-=1/2 Rezayi-Read wave functidfiwhich has a good over-
cles: atv=1/2, each electron combines with two flux quantalap with ther=1/2 exact ground state for small systems. In
of the magnetic field to form a composite fermion; thesethis paper we consider the Lagrangian formulation of the CS
composite fermions then move in an effective magnetic fieldheory in the temporal gauge. Up to now it is not clear
that is zero on the average. The interpretation of many exwhether this theory and the Hamilton theory of Shankar and
periments supports this picture. We mention transport experiMurthy are in any relation. This is due to the difficulty in
ments with antidots, in which features of the resistivity areformulating a coherent state path integral for a Hamilton
related to closed loops of the composite fermions around ththeory that contains a constraint including fermionic fields.
dots! and also focusing experimerftéAn overview of fur-  We should mention that besides the theories of HLR and of
ther experiments can be found in Ref. 3. A field theoreticalShankar and Murthy there are other alternative formulations
formulation of this composite fermion picture was first es-of the CS theory that appear to be similar to the CS theory of
tablished by Halperin, Lee, and RéatHLR) as well as  Shankar and Murthi
Kalmeyer and Zhang. As mentioned first in Ref. 4 by semiclassical arguments
HLR studied many physical quantities within the random-and showed further by us non-perturbativétplculated ex-
phase approximatiofRPA). Most prominent among these is plicitly for the non-interacting systetf) the Green’s function
the effective mass of the composite fermions, which is foundf the v=1/2 CS system in the version of HLECoulomb
to diverge at the Fermi surfaéé.This is caused by the in- gauge of the Lagrangian formulation of the CS theomn-
teraction of the composite fermions via transversal gaugéshes exponentially with an exponent proportional toA)n(
interactions. Later on, Shankar and Murtipyoposed a new whereA is the area of the system. This is caused by the CS
theory of thev=1/2 system. Based upon a transformation oftransformation, which effectively gives a velocity boost to
the Chern-SimongCS) Hamiltonian one achieves a separa- every electron. This velocity boost results in a one-particle
tion of the magnetoplasmon oscillators from the total inter-energy that diverges proportional to A)( We further show
action of the system. After restricting the number of the magin Ref. 12 that theA asymptotics of the Hartree-Fock ap-
netoplasmon oscillators to the number of electrons Shankagsroximation of the Green’s function is in accordance with the
and Murthy obtain a finite quasiparticle mass which scalegxact Green’s functiofin contrast to the Green'’s function in
with the inverse of the strength of the Coulomb repulsion. INRPA), which is the theoretical justification for formulating a
their derivation they calculated a smaller number of self enperturbation theory around the Hartree-Fock mean field. This
ergy Feynman diagrams than in the RPA is calculated. Retheory was discussed by us in Ref. 13. Due to this divergence
cently, Sterret al® calculated the self-energy of the theory of it is difficult to formulate a quasiparticle language for such a
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theory. When neglecting this |Af divergence in the self en- tion in the Coulomb gauge. This is the reason for the vanish-
ergy one gets the diverging effective mass on the fermiing of the Coulomb gauged Green's function with an expo-
surface discussed above. On the way to formulate a C8€nt proportional to log) not existent in the temporal
theory of the half-filled Landau level with meaningful quasi- 9aUge. _ _ _
particles we consider in this paper the Green’s function of the _The paper is organized as follows: In Sec. Il we derive the
CS theory in the temporal gauge. This is the Green’s functiof®S Path integral in the temporal gauge from the path integral
for the new composite fermions. We will show that this in the Coulomb gauge. We compare the Green's functions in
Green’s function does not vanish with an exponent proporRPA of both gauges in Sec. Ill. In Sec. IV we consider the
tional to Ind) (at least for the Coulomb interacting system Green’s function in the temporal gauge nonperturbatively.
We will calculate explicitly the Green'’s function in position-

time representation by neglecting the Coulomb interaction.  Il. THE CS PATH INTEGRAL IN THE COULOMB

This yields a finite Green’s function. Furthermore, we show AS WELL AS THE TEMPORAL GAUGE

that the Green’s function should be also finite when taking
into account the interaction between the electrons. These are
the main results of this paper.

In this section we consider interacting spin-polarized elec-
ns moving in two dimensions in a strong magnetic figld
pirected in the negativedirection. The electronic density is

To this end we derive at first by a gauge transformation o . s
the CS path integral in the Coulomb gaﬂfgme CS path _chosen such that the lowest Landau level of the noninteract

integral in the temporal gauge. We have shown in Refs. 14N system is filled to a fractiom=1/¢ where¢ is an even
and 15 that one is not allowed to carry out the time slicenumber. We are mainly interested ¢in=2. The CS transfor-
continuum limit in CS path integrals of quantum Hall sys- mation is defined by

tems due to an additional term in the path integral that sup-

plies the correct operator order in the correspondent CS TN ety o -~ 2. S o
Hamiltonian. When neglecting this additional term we get v (r)—\I’e(l’)eX;{lqﬁf drrargr=rp(r)), D
the familiar CS path integral, representing a gauge theory . _ -

(e.g., Ref. 16 We will show that we get the same result WhereWe(r) is the electron creation operatd¥, (r) is the
either by writing down this gauge path integral in the tem-creation opefator of the transformed fermiofomposite
poral gauge or by gauge transforming the correct normalermions, p(r) is the density operator of the fermion opera-

order CS path integral in the Coulomb gauge. By calculatingors, and arg() is the angle that forms with thex axis. In
the self energy of this path integral in RPA we get a singu-+his paper we use the convention that arg has its cut on the

larity proportional to 1T whereT is the temperature. This negative real axis. The Hamiltonian is given after the trans-
was calculated earlier by Steet al. in Ref. 6 for the Hamil-  formation as
ton theory of Shankar and Murthy.

By retransforming the Green’s function path integral to - PN I P
the electrons we get an effective path integral action of a Hcs(acs)=f dr) S W (—1VH+A+acy "W (r)
time-dependent Hamiltonian. This time-dependent Hamil-
tonian describes electrons in a homogeneous magnetic field 1 , - ce -,
with two separated magnetic strings of opposite strength at + EJ d?r [|q’(r)|2_PB]VF,F/[|‘P(r )2
the positions of the creation and the annihilation operator of
the Green’s function, which are adiabatically switched on
until they get two flux quantdfor the v=1/2 system By _pB]]' 2
calculating the ground state energy and the ground state . .
wave function of this Hamiltonian we derive explicitly for The CS vector potentialacs is defined by acg(r)
the noninteracting system a nonvanishing zero temperature?ﬁfdzr'F(F— F’)\IrT(F’)\If(F’). Here \PT(F) creates[and
Green'’s function. We will show further that the reason for the\I,(r*) annihilate$ a composite fermion with coordinate
T—0 vanishing of the Green’s function in RPA is caused by, ee =e2/|F— F’| is the Coulomb interaction where?
getting a difference in the ground state energy for the systemr.r) i )
taking into account the two strings in comparison to the sys= de/ € Je i the charge of the electrons afads the dielec-
tem without the strings. The RPA corresponds to the energfric constant of the background fiefgs . A(r) is the vector

correction in second-order perturbation theory in the stringyotentialA=Bxr/2 andB is a homogeneous magnetic field
strength. Therefore, we calculate in this paper the energy, e negativez direction gZ_BéZ where éz is the unit

differenc_e for the interacting electron system, getting a zerQ,octor in thez direction. We suppose throughout this paper
energy difference. Thus, we see that the exact Green’s func;

tion in the temporal gauge should be also finite when takin h%t B 1S aaposmve number. The fun(.;t|0f(r) IS given Py
into account the Coulomb interaction between the electrond.(") =€, Xr/r?. We used the conventioh=1 andc=1 in
Furthermore, we will see that by switching on the magnetidhe above formulg2). Furthermore, we seg.=1 for the
strings the creation and the annihilation operator in thecoupling of the magnetic potential to the electrons. We ob-
Green's function gets additional CS phases linking them witHained in Ref. 14 the partition function of the Hamiltonie)
all other electrons in the ground state. These phase factors di the path integral formalism. With the help of the real

not exist in the comparable expression of the Green's funcbosonic CS field$a®(r,t),a(r,t)] we get
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N, ) We start from the path integréB) by the gauge transfor-
Zcou= |imﬁ H D[af’ D[P ] mation of the fermionic fields:
e—0 =1 JBC
. 0 g
X exf] — e(LE+ Leg) + Lea) . 3 i—exdi(gtF@L I,
The various functions in Ed3) are given by Vo—exdiF(a’a)]¥,, (8)

1 ) ) ith
LFOU|:fd2r \Ifl*(r)g[‘l”(r)_\lil—l(r)] "

| 1 N;
— o_— 0
—gl E( a.k ﬁ kzl Eak) . (9)

- € - . - -
—wr M+(1+'§a?(r) Ia?<r>}\v._l<r>
1 The definition ofg, is chosen such that the Fourier transfor-

+ 2—\PT(F)[—iﬁ+§(F)+é(F)]2W|,1(F), (4) mation ofg, is 1/(i (i)) times the Fourier transformation eif’
m (for e—0). F(a%a) is a function of the fields’ and a,
which does not depend explicitly on the time indeXrrom

Lo 1 d2r a8 xa(r 5 this transformation one sees that the new Grassmann fields

csl™y P ria(r)vxa(r), ) keep the antiperiodic boundary condititfy, = —W. In the

o
following, we defineF(a°,a) such that thev=0 term of the

10, . Fourier transformation of the functiog\+F(a°,§) is zero.
Leer=5 | d rd?r (W ()W 4(r)— pe] This results in
XVEE [UF(r)Wi-a(r) — pg), (6) . A 1N
o F(@a)=—|—> > € ead-- > e’|. (10
and B2, k=1 2 =1

. R After inserting the transformatiori8) of the Grassmann
N=H D[a?,adexp{—e(LCS,,)]. (7) fields in (3) we expand the exponential function in relation
=1 JBC (8). We do not have to consider all of the expansion terms for
The path integral3) is correct under the gauge condition €—0- In order to determine which expansion terms have to
> - . . . . ' be considered we further expand the exponential function in
V-a=0 (Coulomb gauge The time slice widthe is defined £ (3) fth £ SOl containi  least CS field
by e=B/N, where 3=1/T. The indexl counts the discrete q ot the exponent~ containing at feast one 1€

time slices. Furthermore, we have antiperiodic boundar! Or & . Now one may assume that it is enough to consider
conditions¥, = — ¥, (denoted by BEfor the Grassmann ©Only linear terms in the expansion of the exponential func-
|

. ; ; I tion in relation(8). This is not correct because one gets also
fields. The action of the path integréd) is given by a fer- ) )
Coul 5 hosonic ternics, of the CS form, and terms of the ordeiO(1) after integrating out the Chern-

mionic termL, . ' ' :
Simons fieldde.g., a sum of Grassmann fields over the time
a Coulomb mteractlon termee, . In comparison to the CS . ) . .
slices timese is of order O(1)]. By analyzing the terms

path mtegral of HLR we get an additional term proportional carefully we see that one has to take into account up to the

28\p* Coul
to G(a') Wiw—a/2in L 7, Eq.(4). This term is due to the guadratic expansion terms in the exponential function in re-

non-normal—order of thclf6 term in the CS Hamiltoniahl ¢ ; : : ;
. . . , lation (8) to get allO(1) terms in the path integral. Doing so,
(2). This is best seen by integrating the path inte¢Balover one can observe the interesting effect that the

the CS fields. Due to the additive term one cannot perform 201,k
the formal limite—0 in Eq.(3). Now suppose that one may e( ') WiW_4/2 term in Eq.(4) is canceled by some of the

PR Coul expansion terms in relatiofB). After an additional gauge
neglect thee(a?)?¥{¥,_,/2 term in L~ Eq. (4). Then ¢ :

. ransformation

one can take the formal limé—0 in Eq.(3) gettmg the well
known path integral describing a CS gauge theory in the
Coulomb gauge. Without the gauge fixing conditidh
-é(F)zO the path integral consists of the three independen\t.velobtain a pgth integral in V\_/hich it is allowed to take the
CS fieldsa® anda.® The CS theory in the temporal gadde imit €é—0. This path integral is given by
is then given bya®=0. The neglection of the term
€(@”)?WFWw,_,/2 in LE is to our opinion not satisfactory
because we showed in Refs. 14 and 15 that this results in the
wrong RPA energy. Thus, it is important to determine

Wy (r)—exdidf(0)- r1¥(r), (11)

1 R
ZWeyI::f Dla%,a]D[¥*, V]
NJBC

whether the CS path integral in the temporal gauge used by _(? Wey!

Shankar and Murthyand Sterret al? is correct by consid- X ex , UL ¥ Lestled |, (12)
ering the full Lagrangiar{4) in the derivation. This will be

done in the following: with
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Wevi 5 . i (B o R In this equatioly, is the ideal gas density-density response
L ey:f dor w*(r,t)| d—p— EJO dt’a’(r,t") | W(r,t) andIl is the transversal momentum-momentum response.
These response functions can be calculated exdciiye

1 . L. grand canonical potential is then a functional of the
+%\I’*(r,t)(—iV+A(r) interaction-free  Green's functionG=—1/iw—q?%(2m)
+u]. The RPA self energy can be calculated By

+a(r,H)+V[g(r,t)+F(a%a)])2¥(r,1), (13) = 60°°Y 5G. By carrying out the calculation for the path

integral (3), one gets fo “°" one term that is divergent for
A— .12 This term corresponds to a self-energy Feynman-
Les= 1~f d2riad(r )V xa(r.t), (149  diagram with one density—densit;a‘(,ao)_ RPA vertex. The
47 other RPA self-energy diagram containing one transversal
momentum-momentumé(r,éT) vertex is finite(heref;lT is

1 - - the transversal component éj. One obtains for the diver-
__ 2,421 * —
Lee_zf drd"r’ (W7 (N)W-1(r)— psl gent self-energy term
XV [ (r) W 4(r) = pel. (15 1 o
ekt " ° Eggm(k,w)ZE,:(k,w)-i-Ez G(K+q,0+0)
By neglecting the third term in the first large parentheses in q.Q
Eqg. (13) for T=0 and the definition of the longitudinal CS p\ (27 h)?
gauge potential X | Doo(,2) — E) 5 (18)
q

a (r)=Vlg(r)+F(a"a)] 18 \yith the Fock self-energy
we get the well known CS path integral in the temporal _
gauge’® This path integral was used by Sternal.in Ref. 8 (2m)?

N
to show that the quasiparticles in the temporal gauge behave 2e(kw)=— E nF(|k+q|)ﬁ 9 (19
like dipoles with a dipole momentum perpendicular to their d

canonical momenturtfor small momentum and frequency and the a°a% RPA vertex

This can be seen by calculating the response of the electrons
in the RPA due to some external potential. This picture of the

12
CS quasiparticles is very attractifedue to a similar dipole Do 0,0 = (2 ¢) M1+ p/m _ '
interpretation of the Rezayi-Read wave functt8n. q?  1-HgyI1+p/m)(2mwd)? g?

It has been shown that this wave function has a very good (20

overlap with the exact ground state for small systéns. _ _ _
p is the density of the system. The singular part of the

(a%,a® RPA vertexDy, in Eq. (18) has its parameter range

in O>q+/u/m andg?(mu)<1.% In this range one gets for
In this section we determine the RPA Green'’s functions inthe vertex

the Coulomb as well as the temporal gauge for temperature

Ill. THE RPA GREEN’S FUNCTIONS

T—0. This was done earlier for the Coulomb gadgsince 2rd)2p Q2
the Coulomb interaction has no influence on the singularity Doo @, 2)~ ——— YL (21)
of the Green’s function in the Coulomb as well as in the q We

temporal gauge we will simplify the notation by considering o ~ ) ,
explicitly only the interaction-free case of the Green’s func-Here @ is given byB/m= (27 $)p/m. With the help of this
tion. The Coulomb interaction can easily be taken into acexpression we obtain for thA—-c singular part of the
count by carrying out a Hubbard-Stratonovich decoupfing Green’s function
of the Coulomb interaction terr(iL5). In the following, we
will mention explicitly where the results for the noninteract- 5 Col e _~2ﬁ| 1
ing system differ from those of the interacting system. o0 (K,@)=¢"ZIn| £

In Ref. 14, we calculated the grand canonical potential
Q cou from the CS path integral in the Coulomb gau@gin y io—k22m+ u
RPA. This was done by carrying out the integration of Eq. 2/9m _ 29m i)
(3) over the fermionic fields and further by expanding the e sgriki/zm=p)(k/2m=iw=p)
logarithms of the result in the CS fields. The restriction to (22)
qguadratic order in the RPA for the CS fields results in

sgr -] is the sign of the argument.
We may now carry out a similar calculation for the CS
.17 path integral in the temporal gaudé&?) yielding for the
grand canonical potenti&)"®' in RPA

p\(2m)?
1_HOO(HTT+ m 2

1
QCoul__—_ E In
2p a.0
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1 2. dh)2 gauge. The other term corresponds to the self-energy dia-
Weyl_ P p|(2mP) o &SP
OWY=_— > In1—|O + — || Tyt = |——— grams containing one longitudinal momentum-momentum
2B s 0%o m m/ (2 - - .
a, vertex @, ,a.). It is given by
+i§‘,|n 1-Tog(G.0)| (6,00 + = Weyl 1 >
26 < o A.0)| Hrr(@.0+ g 2Pk )= 5 3 G(k+0,0)Poda.0)
q
(2m)? 1 o o
X : (23 += > G(k+q,0+0)Duyq,Q) —
92 B 5 q oold 02

Here II,, is the ideal gas longitudinal momentum- (2K+ &)a 2
momentum response function. With the help of the ideal gas —) )
continuity equation {1, | + p/m)/Q%=1I,,/q? we getQ ! 2mq
=" Nevertheless()“°" and)"*¥' are not identical as a Here the first term originates from the third term in the first
function of G. As in the Coulomb gauge we calculate the |Jarge parentheses in E¢13). Contrary to the Coulomb
RPA self-energy byx"®¥'=50"¥/5G. Then we get one gauge, one finds an infinite self-energy &0 in the pa-
term that corresponds to the RPA self-energy diagram conrameter rangé)<q+/u/m andg?(mu)<1 because of the
taining one transversal momentum-momentum  verteXdditional 102 factor in the second term in EGR4). In this
(at,at). This finite term is the same as that in the Coulombparameter range the vert@&yy is given by

(29)

q° 1
24mm \2mum|Q|/(27)2q+[e2m/ (27 d)?2]q+ q3(1/48m%+ 12w $)?)

Doo(q,2)~ (25

This expression contains a correction due to the CoulomBimilar kind of divergence should also be given in the self-
interaction. Inserting relatiofi25) in Eq. (24) results in a  energy diagrams beyond RPA.
self-energy term proportional t8, which is given by Sternet al. mentioned first in Ref. &for the case of the
o Hamiltonian formulation of the CS theory in the temporal
I (2k+Qq)-q gauge that this divergence in the self-energy is caused by
G(k+q’w)D00(qv0)(T) - the additional gauge freedom of the CS path integt)
(26) with respect to time-independent gauge transformations. This
causes the partition function to be independent of the zero
H\s:v(ree|:.<<\/m_,u, is @ momentum cutoff. Thus, one finds that frequencya, variable by additionally carrying out the inte-
%" is proportional to3 and diverges a§—0. This results  gration over the fermionic fields. Nevertheless, one cannot

@n a dilve.rgenzt self.—(re]nergyzfgr temperatl]'rsc 0. hBy ccifmpar— deduce from this the behavior of the partition functionzi@r
ing relation(26) with Eg. (22) one sees that the self-energy with frequencies approximately zero by additionally carrying

in the temporal gauge is not divergent #¢x. In Ref. 12 t the int i the fast d B Thi
we showed that the Green’s function in the Coulomb gaug€{® € Integration over the las, modes andar. This
would be more relevant for the behavior of the Green’s func-

vanishes with an exponent proportional to Ap(in the . o
position-time representation. This is caused by an effectiv jon than the addltllonal gauge freedom. Thus, we are led to
e second question we would like to answer by non-

velocity boost obtained for every CS quasiparticle by the C turbati thod

transformatiorf. This results in a self-energy proportional to perturbative methods.

In(A). Due to the missing ) term in the RPA self energy

in the temporal gauge the first question we want to answer by B |s it true that the exact CS Green'’s function in the
nonperturbative methods is the following. temporal gauge is zero for temperatureT=0?

B
ko)~ 35

lal<x

A first approach to a solution of this question is given by
the following observation: By carrying out a gauge retrans-
formation (8) of the path integral representing the Green'’s
function G(r,t) in the temporal gauge the Grassmann fields

The g divergence of the self-energy in relatioB6) has  representing the created and the annihilated particle in the
its origin in the form of thea, coupling to the fermionic Green’s function obtain exponential prefactors of the form
fields inL"eY' Eq.(13), which results in an additiona®/ ®>  (8). By an expansion of the exponents up to quadratic order
factor for every @, ,a,) vertex in comparison to theag,a,)  in the a° fields we get for theT—0 diverging part of the
vertices in the Coulomb gauge. From this it is clear that aGreen's function a term proportional t8[Dgy(r,«=0)

A. Is it true that the exact CS Green'’s function in the
temporal gauge does not show a similaA— < vanishing
asymptotics as the Green’s function in the Coulomb gauge?
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~D§K0.0=0)]. Dgir,w=0) is the exact §°,a%) vertex G, X" 7, 7 ) = (B (X, DT (X', 7 NDweyt- (29)

. . ex - _ . .
corresponding to Eq20) in RPA. Dog(r,«=0) is given by Here(- )weyi is the average with respect to the CS path inte-

~s gral in the temporal gaug€l2). We now carry out the in-
DE(r,0=0)= _’(;521 a2 (i — F’)~F(F')<p(r ) verse of the gauge transformatié®) and(11) on the fermi-

m onic fields in this expression. After integrating out the CS
fields one gets the following expression

+’<}52f dtf a2 d2rf(r—r)-(TI(F" ) L
GWey'(i,i';T,T')zN—f DIY*  WI¥(x, 1) ¥*(x',7')
X J(r",0))¢- F(r"). (27) ¢ e

T is the time ordering operator. The right-hand side of Eq. Xexp{ — fﬁdtLG('&ts } (30)
(27) can be calculated in) the electronic system. THi(s) is 0

the density operator andlr) is the current operator of the \uith the normNg

electrons(- ). is the connected average with respect to the

electronic ground statéot the CS ground statelt is clear . B

from the derivation above that the Feynman diagrams of the Ng= JBCD[‘I’ ,\If]ex;{ - L dtLg(0)
Green’s function in first order i Y are contained in this

Green’s function. We now restrict our considerations to theand the Lagrangian

noninteracting electron system. In Appendix A we calculate

Dgy(F,w=0) without any approximation for this noninter- LG('&tss):f dzr(\P*(F,t)(at—M)‘If(F,t)
acting system. We obtain

DE(r,0) ¢ I ( r’ +
r = —_— n —_—
ool T 12m 2] 77

0

(31)

2,2 3
e*r /2|0+§E1

1. . - .
r? +—¢2J d2r F2(r =)W (r,H)W(r,t)
) [ 2m

0

- - 1 -
XW*(r" t)y¥(r',t)+ 2—\If*(r,t)
Herel,=1/\B is the magnetic lengthy is Euler's constant m
ane(i E} is the exgxonentlal mtggral function. Weiobtam .that ><[—iﬁ+;’3(F)+§Cs(F,t)+AtSS(F)]2‘P(F,t)
Doo(r,w=0)—Dyi(0,0=0) diverges for the noninteracting

system. This divergence was regularized in the RPA self- 1 , -
. : +5 | d2r[|W(r 02— pg]
energy formula24) with the help of a momentum cutoff in 2 ' B
the uv region. It is easy to see that the expresﬂk@é(?,w
=0)—Dg(0,0=0) agrees with the energy formula of the XV??,[|‘1’(F’,t)|2—pB]]- (32)
second-order perturbation theory of electrons in a homoge- ’

neous magnetic fiel® under the perturbation of two mag- The string configuratiod. in L o(A!
netic strings of flux¢ and — ¢ at the origin and at the posi- 5 *

tion r, respectively(see, e.g., Appendix Alt is well known O(r—1)— Tt 1

that the energy of electrons in a homogeneous magnetic field (7=1) B2

B with two magnetic strings is finite. Therefore, this energy , L

cannot be calculated perturbatively. We will show in the fol- ~z.> 2 , Tt 1

lowing subsections that this is in fact the reason for the tem- +T(r—x )( 0=~ - (33

B 2
poral gauged Green’s function in RPA to be zero To¢ 0. . . - . .
Furthermore, we show that the exact Green’s function is ﬁ_Here(x) is the Heaviside function. We see from this for-

nite for T=0 because the ground state energy correctiongq.UIa that the effective Lagrangian of th.e Green's f“F‘.C“O” Is
due to the two magnetic strings is zero given by the well-known CS Lagrangian and additionally

two time-dependent strings with opposite fluxes centered at

V. THE EXACT CS GREEN'S FUNCTION the coordinates andi’.' Furthermore, we see from E®3)
IN THE TEMPORAL GAUGE that the Green’s function depends an- 7' (time transla-
tional invarianceé We see from Eq930)—(33) that one has
In this section, we calculate the CS Green’s function into solve a complicated time-dependent Sclimger equation
the temporal gauge nonperturbatively. This was done by u® get the Green'’s function in the temporal gauge. Neverthe-
in Ref. 20 for the CS Green’s function in the Coulomb less, we will derive a solution of the problem for temperature
gauge. There we determined the Green’s function in th@=0 below. Thus, in the following we restrict the calcula-
position-time representation by CS retransformiilg the tion of the Green'’s function to temperatufe= 0. We treat at
Green’s function to the electronic Hilbert space. A similarfirst the Green’s function for time ordering— 7' >0. Then
procedure will be done in this section for the Green’s func-the path integra(30) can be interpreted as follows.
tion in the temporal gauge. It is defined by With the help of

J is given by

A1) =—f(r—x)
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s =y P I
Hsdacs Ags) = | d°r E\I’ (r)(—iV+A+acs
AL 2 e 1 2.7 2\ |2
+Ass2) \If(r)+§ d?r/[|W(r)]

—pelViL[W(r '>|2—pB]] (39)

and
b P - T 1 O
ASSZ_ E—E qu(r—x)— E—E d)f(r—x ), (35)

we define the time evolution operatok(acs,Ass2) by

J R R - - R R
T Ui(acs,Ass2) =Hsdacs, At o) Ur(acs, Ass2)

(36)

PHYSICAL REVIEW B66, 195323 (2002

the integral of the ground state energy ldfss(écs,ﬂtssz)

- Hs(écs,O) over the time is nonzero. As mentioned above
the incorrect reproduction of the ground state energy within
second-order perturbation theory is the reason that the RPA
self-energy is infinite folT=0.

Now we compare the expressi@B) of the Green’s func-
tion with the corresponding expression in the Coulomb
gauge forr— 7' >0. This function is given by the expression
(38) with the substitutions U g(acs,Ass2)Ph(x,x’)
—Up(acs0),  Te()—=T(x), V)T,
Hed@cs, AL ) —Hsacs0) and exp—igf(0)- (x—x')]—1.

As mentioned above we calculated in Ref. 20 a CS Green'’s
function in the Coulomb gauge that vanishes exponentially
with an exponent proportional to IAf. The reason for this is
that a quasiparticléf’r(i’) created at time’ gets a velocity
boost from all other particles in the ground state. This results
in an infinite quasiparticle energy. This is not the case for the

with the boundary conditiotd,=1. Because the flux quan- quasiparticleklfl(i’) created at time’ in the Green’s func-

tum numbers of the strings of the vector potentiéf§2 and

tion of the temporal gauge. Thus, we see that the CS phases

,&252 differ only by an integer value we know that the eigens-between the created particle and all other electrons of the

paces oH{(acs, A ,) andHs(acs,A%,) are linked by the
unitary phase transformation

Ph;,,(>Z,>Z’)=exp(—i?2>J d?r arg(i—r*)ﬁ(r*))

xex;{i?&f dzrargi’—F)ﬁ(F)) (37)

acting on the states dﬂﬂss(écs,,&fsz). The eigenvalues are Worl = =
invariant under this transformation. With the help of the G F(x X', r)=e

phase factorg37) we get for the Green’s function for
—-7'>0

GWeYl( X x":7,7")

— e i$f(0)-(x-x)

X lim ! =
p—=Triexd —(B+7— 7" )Hsdacs0) ]}

X THU g(@cs,Ass2) PHH(X,X")
XWo(x)exd — (7— 7' )Hed acs, A2 ) TT LX)},
(39

Where*lfl is the electron creation operatd). Now assume

that He((acs,AL,) has the same ground state degenerac

and ground state energy as the Hamiltombslg(écs,O). This

will be shown for the noninteracting as well as for the inter-
acting electron system in the following subsections. Then i

is intuitively clear that the operatddﬁ(écs,ﬁssz)/Tr{exp

ground state that led to the velocity boost in the Coulomb
gauge are automatically annihilated through the dynamical
creation of an opposite phase by turning on the magnetic
strings inHg in the temporal gauge. In this sense one can
understand the missing ) terms in the RPA self-energy of
the temporal gauge. Now we carry out a CS retransformation
(1) of the expressioni38). This results in

—ipf(0)- (x=x")

X lim !
poeTriexd —(B+7—7")Hs{0,0)]}

X TH{U 5(0,Ass2) PHG (X, X" )W (X)

Xexg — (17— 7 )He 0AL ) 1T (x")}.
(39)

In the following section we will calculate this expression for
the case of a noninteracting electron system. Then we see
from Eq. (39 that by the CS retransformation one loses all
many-particle interaction terms. Thus, we can determine the
Green’s function by calculating the one-particle ground state
wave function and the ground state energy of the Hamil-

Yonian He(0AL,,). From this we gel 4(0Ass2). In Sec.

IVA, we calculate the ground state wave function and the

ﬂround state energy of an electron in a homogenous mag-

etic field in the background of two opposite magnetic
strings. By using this result, we calculate in Sec. IVB the

[—(,B+T—7J)HSS(5CSO)]} has its support on the lowest en- Green’s function in the temporal gauge without Coulomb

ergy eigenspace fg8—co. We will also show this explicitly

interaction. Section IV C is devoted to show that the Green’s

in the following subsection. On the other hand it is clear thafunction of the interacting electron system should be also
we get an infinite or zero Green’s function, respectively, iffinite.
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A. The quantum mechanics of an electron in a homogeneous singular eigenfunctionﬁff’gmg and\If,‘f’Sing in a way that the

= 1
magnetic field and a background of one or two separated operatorH. is self-adjoint. This is the reason for the non-
magnetlc Strlngs

orthogonality of the regular and the irregular
In this section we discuss the eigenfunctions and eigeneigenfunctiong? It is now possible to restrict the domain of
values of an electron in a homogenous magnetic field with ahe Hamiltonian to get a self-adjoint extensiongi. This
background of one or two separated strings. The eigenvaluesstriction is not unique. The concrete extension has to be
and eigenfunctions of these systems have to be calculated tiztermined by physical arguments. For example, in the
get an expression for the one-particle propagatoAharonov-Bohm ca#é (i.e., electrons in the background of
U4(0Ass2), Eq.(36), as well as for the exact density-density & magnetic stringone can show rather generally that the
propagatorD &%, Eq. (28). correct sejf—adpmt extension of the Hamiltonian consists of
We will solve at first the simpler problem of an electron in the domain of wave functions which are zero at the ofigin
a homogeneous magnetic field and a backgroundr (for 0<¢<1). This is done by a regularization of the mag-

magnetic string at the origin with flux quantugh The one-  Netic string field at the origir(the string widthR, being
particle Hamiltonian is given by finite). After a calculation of the inner and outer solutions of

this spread out string and a calculation of the matching con-

1 1 e - 2 s ditions one gets foR,— 0 only a square integrable nonzero
Hs(@) =5 [—1V+A(r) —of(r)]" (40 eigenfunction in the case where the function is zero at the

origin (for 0< ¢$<1). We have done a similar calculation for
We now seek a solution of the the form¥(r,¢) the case of an electron in the background of a finite number
= (12m)f(r)€e'P¢ (we used cylindrical polar coordinales of homogeneously spread out magnetic strings in a homoge-
Then one gets for the eigenvalue equation in polar coordineous magnetic field. It is then easily seen that the asymp-

nates withA=B(y, —x)/2 totics of the wave function at the bordRy of a string does
not depend on the existence of the homogeneous magnetic
1 (p—¢)? field and the other strings fd®,— O [this could be also seen
°m f"+ Ff,_ r—zf from Eg. (41)]. By an examination of the matching condi-

tions we get a square integrable nonzero eigenfunction only
1 1 in the case where the function is zero at the origin of the

E—gmw§r2+§wc(p— ¢)}f=0- (41)  strings. Thus, we have to use the regular eigenfunctié®s

as solutions. One can see from these eigenvalues that in con-
This differential equation is similar to the differential equa- trast to the case of an electron in a string background without
tion of electrons in a homogeneous magnetic feldithout ~ a homogeneous magnetic field we have an energy splitting of
a magnetic string which can be recovered by replaging the Landau levels due to the string background.
— ¢—p. The eigenfunctions and eigenvalues of this system Next, we will calculate the eigenfunctions and eigenval-
are well known (e.g., Ref. 21 By using an analogous ues of an electron in a homogeneous magnetic feiial the
method to solve the differential equatiofl) we get for the background oftwo magnetic strings of opposite strength
regular eigenfunctions and eigenvalues, which are finite aseparated by a distandeln contrast to the one-string system

+

r=0, above we do not have a rotational symmetry. This makes it
much more complicated to get the eigenfunctions and eigen-
5 o n! 12 - values of the system. Therefore, we will restrict us in the
W)= following to the ground state. This is enough because one
P 25|p—d| _ g g : g
2ml52 [(n+1+[p—d¢|) can calculate the Green’s function 6.0 from the knowl-

edge of the ground state eigenfunctions and eigenvalues due

[p— ¢l 2
% r |_|np—¢\ r_) e—r2/4|§, (42)  to the denominator in E39). The Hamiltonian of an elec-
0 2|S tron in @ homogeneous magnetic field in the background of
two magnetic strings with flux quanta ¢ and ¢ located at
1 1 1 the origin andde, is given b
Efp=wd n+5lp—dl-5(p-#)+5 (43 I ancie s gen By

1 I . .

with neNy and peZ. Beside these eigenfunctions we H§S(¢)=2—[—iV+A(r)—¢f(r)+¢f(r—dex)]2.

; : 2 m
also have eigenfunctions that are not finiteratO (but (44)
nevertheless square integrabl@hese irregular eigenfunc-
tions and eigenvalues are given kipr 0<¢=<1) ¥?¢5"  We assume thap=0. We now carry out a phase transfor-
oc(r/I0)“”L;¢(r2/(2IS))e‘rz’(‘”g) with eigenvaluesE,?'gi”g mation on the eigenfunction® of His. It is given by
=w(n+1/2) and WPHMele(r/lp) " AL 192
(212))e 40 with eigenvalue€!$"%= wo(n+ ¢—1/2). It
is well known for an electron in the background of a mag-In the following we denote the one-dimensional subspace
netic string>** that there is no domain of the Hamiltonian =g, o<x=ds, of the plane byC. With the help of the
H? that contains the eigenfunctionE,?’p(F) as well as the transformation(45) one easily can show thalt, are eigen-

q,p(F):e—i¢arg[F]e+i¢arg[F—déx]\P(F). (45)
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functions of the Hamiltonian without the stringd!=
[—iV+A(r)]%2m for r=R?\ C with the matching condi-
tions

V(1 +eey) =€ 920 (1 —ee)),

VW, (r+ee,) =€ 92"V (1 - ee)) (46)

forreC ande—0". By using the complex variables=x
+iy andz=x—iy we get for the Hamiltoniam*

2

2 — B_
(2d,—2d7) + 8—mzz.

Eaz@_

Hl

2m

(47)

With the help of the ansata¥ (z,z)=u(z.z)e 148 we
have to solve oiR?\C the eigenvalue equatioHlu(z,z)
=Eu(z,z) with

1 2 B — B
HZ=—E(925;+ E(Z@"’% (48
and the scalar product
<U,U>1=f d2r e~ 1282 (49

for two wave functionsu,v. The energy of a normalized
wave functionu on R2\C is given by

E=(u(z,2),H}(z,2)u(z,2));

2 _ _ B
—(0U(2,2),5U(2,2))1+ 5. (50)

From this equation we find that the ground state wave func

C\C that fulfill the transformed matching conditions corre-
sponding to Eq(46) (here we identified? with the complex
planeC).

We now determine a linearly independent basis of the

PHYSICAL REVIEW B66, 195323 (2002

Elw]

1.5

FIG. 1. Ground state enerdyof an electron in a magnetic field
B in the background of two magnetic strings with flyx and
—¢. In the figure we shoviE as a function of the fluxp. N, is
the number of lowest Landau level eigenstatesffer0. This num-
ber is proportional to the area of the system.

known that the function$z”} (peN,) are a basf of the

Segal-Bargmann spaddaLf. We obtain from the definition
of the scalar product49) that the basis functions are or-
thogonal. This is no longer the case @} (peNy) in the
Hilbert space with the scalar produ&2). Nevertheless, we
will show in Appendix C that these functions are indeed a
basis of this Hilbert space.

Then, by carrying out the retransformatiofgd) and(45)
we get a basis for the ground state eigenfunctionsib;,
Eq. (44), for 0< ¢=<1. Due to the considerations beld43)
concerning the domain of the Hamiltonian we find for this
basis

W o=elPerPmo( JrZ=2drcosp+ d?)%e B4 for p=1,
(53
where 0= ¢=<1. We find one additional basis state for the
limiting cases$=0,1

Vg=e "84 for $=0,1 (54)

We see from Eq(50) that the energy eigenvalués, of the

"wave functions\P,f (the ground state energy for string

strength¢) are given by

w
E,=—.

= (55)

ground state wave functions. To this end we carry out the
f_oIIowing transformations on the ground state wave fUﬂC-By comparing the ground state degeneracy as a functigh of
tions and the energy of an electron in a homogeneous magnetic
N field in the background of one stringgs.(42) and(43)] and
u(2)=2%(z=20) " “u(2). G in the backgrou?]d of two magneti%qstrinﬂéqs. (53), (59
Herez,=d andze C. The scalar product of the transformed and (55)] we get agreement of these two systems for string
wave functions is given by distanced— . In Fig. 1 we show the ground state energy as
a function of the magnetic flux for the Hamiltonian of an
electron in the background of two magnetic strings. We see
from this figure that only one wave functiop€0) of the

. . . ' degenerate ground state fgr=0 increases in energy. The
Using the matching condition@6) we find that the ground rest of the ground statep¢0) keep their lowest Landau
state wave functions are the holomorphic functions on the,

S . _ evel energy.
whole complex plané: with a finite norm corresponding to
the scalar produdi52). It is shown in Ref. 26 that this space
as well as the space of the holomorphic functiong_omith
a finite norm(49) known as the Segal-Bargmann sp8ae In this section, we will calculate the Green’s function
Hilbert spaces. We will denote the first ByL3 and the GWe¥(x x':r,7'), Eq.(39), for 7— 7'>0 andB— . After-
Segal-Bargmann space bM_i One can see easily that both wards we will generalize the results to times 7' <0. For
spaces consists of the same holomorphic functions. It is wellloing this we have to calculate the thermodynamic time evo-

(U !vt>2:f dr e_|Z|ZB/2|Z|_2¢|Z_Zo|2¢atvt- (52)

B. The calculation of the Green’s function
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lution U 4 of the time dependent Hamiltoniads(0AL,,), ~ With the help of this overlap matrix it is easy to solve
Eq. (34). We first will calculate the one-particle transition the parallel transport equatiof67). Defining the matrix
matrix of the adiabatic time-dependent Hamiltonian[UP*](¢) by c(¢)=[UP'](#)c(0) where ¢o(o)
HL((t/B)9) (t is the time parameterivided by the one- =2,Co(¢) ¥} we get as a solution of E¢57)

particle partition function Trexd —B(HE{0)— )]} for B 1

—o, We will denote this quantity by UR¢$) where ¢ [Upl]((ﬁ):TeXF{_EL d¢/[sd(¢r)]1[(9¢/sd(¢r)]}

=(t/B)$. This can be calculated from the finite wave func-

tions for B—o of the transformed Schdinger wave equa- 1
tion =Texr{— 5] do IS4 a0}
0
2 <¢>=—E(Hl<¢)—&) (¢) (56
o9 3\ s 5| X[SU(p")] 1o, ASY(@)|. (59)
for 0= ¢<?>- Then the solutions of the Scluinger equa-  Here,S=5"+AS whereS® is the overlap matris® for d
tion of motion for imaginary times of the Hamiltoniafig, =0. Now we expand the exponential function in E§9)

are given by¥(¢)=exd—(8/¢)(wd2)P]e($). We will  and the tern{1+(S°) "*AS?]~1 in the exponent. Then we
solve Eq.(56) first for O< =<1 andB—c. We now define  get an expansion of UR1) in d. UPY($) is then given by
<,D=.(po?f- Pa whe're @o IS th?t part of the wave functiop UP1(<7>)=[Phl,a(O,déx)][Ph}(O,déx)UPl(l)]}’. PH is the

which is in the eigenspadég; of the lowest eigenvalue /2 phase transformation operator, EG7), calculated in the

for_‘lﬁo and$+1 (i.e., spafi¥y} for p=1). For¢=0or  ;n0 naricle sector in the first quantized language. By using
¢=1, respectively, we denoig, by that part of the ground UPl(l)\If8=0 we get

state wave function that is linked continuously as a function

of ¢ to a ground state wave function for<Qp or $<1, [Ph%(O,dQ)UPl(TZ))]m

respectively. Thusp, is that part of the wave functioa that ¢

is in the subspace spanned by the higher energy eigenfunc-

tions. =(1—5n0)(1—5,0)[5n,(1—
In Appendix C we show thatea|¢a)(¢) vanishes as

O(1/B) for 0< <1 and aO(1L/BY"* Dy at p=1 wheren

$%B (2n+1) 2)
16 n(n+1)

is defined by the order of the intersection of the eigenvalues + 5n15|1wd2+( St @m

at =1. In the case of a smooth intersection we find that 1én “4n
(@al@a)(¢) vanishes a®(1) at ¢=1. This corresponds to -

the well known adiabatic theoréfhin the case of the solu- s ¢ 1 alos s 1 q
tions of the Schidinger equatiori56) for real times. Further- n+ily 2m+1)B no 'vl\/ﬁ
more, we obtain in Appendix C that the transition operator

UP(¢) is nonzero only on the subspace spannedit; + 8n42)0(1n1)O(d?) + 8, ,,O(1/n*) O(d?)
Eqg. (63), for p=1. One can then get the finite part of +0O(d?) (60)

UPY(¢) by solving the projected Schiinger equation
where[Phl~(0 de YUPY($) ], is the matrix operator with re-
NP =0 5 ¢ X n
(¥pla4g0(#)) . 57 spect to the orthonormal basig¥’}, Eq. (53), for n
for p=1, ... 0. The set of equationg57) shows that the =0, ... . With the help of this matrix we will calculate the
time evolution ofpy(¢) is given by a parallel transport in - Green’s functiorG"Y, (39). For doing this we first calculate

the submanifold of the ground states. This is a well-knownthe overlap function Ow{) by the use of this matrix, yield-
transport in quantum mechanics that is responsible for thghg

Berry phas in the case of a nondegenerate ground state.

Assuming thateo(0)=W), we get UP(1)po(0)=¢o(1) 1naz ~q.
for the evolution where the background strings are switched \pﬁsy%yp#o Det[Ph;S(O,de«)UPl(cj))]p
on adiabatically up to one flux quantum. In the following, we OV(d):=
will calculate this quantity for small string separatidnAt E 1
first, we have to calculate the overlap matg : Voerig
R . 2m2"n! ’B exp(Tr{In[Ph:(0,d&,) UPL($)]:})
Sﬂ'(d))::f Py W= gn+1 ”'(1+ 2n dz) - “’ﬁe’%'m#o Tt BP0 é)Jo}
¢B 0 2 W‘;lf 1
= Onsry A= 81y 5 A+ 8,45,0(1%)O(d) PV
1 ~ B
:( 1- :) exp{—(¢—1)—ln(A)d2
+6,_2,0(1in?)0(d?) +0O(d%)|. (58) ¢ 8
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+0O(1/A%)0(d?)|. (61)

Here v,3 are the ground states of the= 1/¢ system. The

ground stateV; is then given by the Slater determinant

W= Wo,., - - Wop ]. The wave functionsbg, can be

PHYSICAL REVIEW B66, 195323 (2002

=G"™(K,w)8; 6, . - During the calculation of the
Green’s function of thev=1/¢ system within CS theories
one usually uses the condition

(2md)p=Vx(a)=VXA (63)

seen in Eq(42). [ -]; is the sub matrix of the argument with and the fact thaf is transversalCoulomb gauge More-

line and column indicesg; .

For deriving this result we used over, in the Coulomb gauge we have the freedom to choose

techniques of averaging over the ground states developed fhe origin (o,Yo) of the vector potentiaA=1/2B(y —yj,

Ref. 12. In Eq.(61) we mean byO(1/A%)O(d?) that these
terms are finite foA— o and of ordetO(d?). The finiteness
of the exponents of orde®(d®) for A—o is obtained by
extending the analysis of the overlap maﬁﬁg, Eq.(58), as
a function ofn,| to all orders ofd. We see from Eq(61) that
the overlap function OW) is zero ford>0 andA—c. This
is in accordance with the general inequalityl<Ov(d)

—(Xx—Xp)). We see from Eq(62) that the explicit result of

the Green’s function depends on the origin of the symmetric
gauge potential. By using the conditi@63) during pertur-
bational calculations we lose the dependence of the Green’s

functior’® on the external magnetic fiell and thus also on
the origin (Xg,Yo)- Nevertheless, this dependence must ap-
pear in through the limiA— in integralsf Ad?r - - - when

=<1 that can be derived from the parallel transport equatiorgalculating a Feynman diagram. In Fourier space the depen-

(57 by showing that the norm of the vectey, is invariant
under the transport.

dence of the result on the concrete lirAit> should also be
seen in the transition going from momentum sums to mo-

It is now easy to calculate the Green’s function mentum integrals. Carrying out this transition is not straight-

G™Y(x,x";7,7"), Eq.(39), for 7—7'>0. This is done by

writing down the expressio(39) in the one-particle basis.
With the help of Eqs(60) and(61) and by using the above-

mentioned averaging techniques as wellgasuge transfor-
mation properties of the path integral Eq42) to get the

Green'’s function also foiaﬁo, we obtain
GWEV'(Q,Q’;T, 7')

=(- 1)‘7”20v(|)2—>2’|)e’i:ﬁf(°)'(’z’;')

% Go()z’)z/;T’T,)_l_e—i&(i).(i—i')e—\§—§/|23/4

X e—(T— T')(wC/Z—/,L)

1B . . - -
X| = —|x=x']2+0(B?x—x'|"||. (62
) 4
GY is the Green’s function of the Hamiltonidh.0,0), cal-
culated with respect to the vacuum ground sf@ero par-
ticle ground state i.e., GO(x,x";7,7')=O(7— ') [d?r 5(x
—r)exd —(r—7){[—iV+A@N) 2m—u)t8x' —r). One can
deduce from Eq(30) that the expressiof62) is also valid
for the Green'’s functio6"&Y(x,x"; 7,7') for 7— 7' <0 (we
haveG®=0 for this time ordex. The first term in the brack-

ets in EqQ.(62) is a typical term for noninteracting electrons

representing that term in E¢39) in the first quantized lan-

guage where the tw@é functions corresponding to the cre-

ated and annihilated particle in E@®9) carry the same par-

ticle index. Due to the enormous effort of calculation we

determined the terms where the t@dunctions carry differ-

ent particle indices represented by the rest of the summands

in Eq. (62) only for small distancesx’ —x|.

BecauseGP or A, respectively, is not translation invariant

forward for integrals of functions which fall off very slowly
such as the integral df Eq. (2). The result depends on the
way of calculating the limitA—oo. Because the integrands
of perturbational calculations within RPA fall off rapidly
enough the explicite dependence ag,{/o) has to be chosen
when going beyond RPA. We see from KE@2) that there are
several ways to choosexd,yo) or the integral Ilimit
[a_d%r---, respectively, to get a translationally invariant
Green's function[e.g., Xo= (X1 +X1)/2,yo= (Xo+X5)/2, or
Xo=X1, Yo=X5, Or ...],which is necessary when defining
the effective mass of quasi-particles. One can see from Eq.
(62) that all these choices differ in their Green’s function by
a pure phase factor efif(ro) (x—x')] (ro. is a vector not
depending orx,x’), which in momentum space results in
different translations of the momentum variable of the

Green'’s function. Thus, we see that all these choices result in
the same effective mass. It is then clear that by an additional
shift of the origin &q,yq) of vaIue—f(O) we can make the
gauge factor exp-i¢f(0)-(x—x)] in Eq. (62) vanish. This
gauge transformation does not destroy the translational in-
variance of the Green’s functioi®2) when choosing either

of the origins &g,Yo) discussed above.

Summarizing, in contrast to the RPA result of the Green'’s
function in the temporal gauge calculated in Sec. Il the ex-
act Green’s function in the temporal gauge is finite. Never-
theless, we see from Eq#61) and (62) that the Green’'s

function has its support on the one-dimensional subspace

=x' for system areadh— . This is due to the infinite de-
generacy of the ground state of noninteracting electrons in a
homogeneous magnetic field. More precisely, at the end of
the parallel transport calculated in E&7) the ground state

is orthogonal to its phase transformed starting value resulting
in the vanishing of OMk—x'|) at values|x—x’|#0. This
degeneracy of the ground state usually is not present in the
case of a Coulomb-interacting system. Now assume that the

we obtain that the Fourier transform of the Green’s fUnCtionnondegeneracy of the ground state is present for all String

G™Y does not have the formG™Y(k k' w,0')

values and that the ground state energy correction due to the

195323-11



J. DIETEL PHYSICAL REVIEW B 66, 195323 (2002

>

additional strings is zero. Then we can deduce that the P ¢d(F1 o)

Green'’s function in the temporal gauge has no degeneracy

klavmg the s_up_po.rt in a_one dimensional sub_spat?e okthe I\I’Qs d(_FL N ,—FN)ex;{ i arg[Fi+déX/2])
x" plane. This is immediately clear because in this case the ’ i

overlap function Ovl(i— >Z’|) consists of a phase factor for

all [x—x'| corresponding to a Berry pha&&This will be ><exp( +i af@[ri—dQ(/Z]) (67)
shown in the following section. !

with E"(¢,d)=E"(1— ¢,d) (we denote these related states
C. The exact Green'’s function with Coulomb interaction by the same labgl Thus, we obtain
It is clear that in contrast to the noninteracting case above <3(F))27¢’d: —<3(— F))Q’d_ (68)

one cannot solve exactly tHground stateeigenvalue prob- L _ .
lem of N electrons in a homogeneous magnetic field in the>Ummarizing, due to the different signs of the strengths of

background of two separated magnetic strings in the predh® two strings we obtain an inversion symmetry of the en-
ence of Coulomb interaction. Nevertheless, we will show€'dY SPectrum with respect to the strengik-0.5. This in-
that we get no energy correction due to the two additive/€rSion symmetry does not depend on the string distaince
opposite magnetic strings and that when having a nondegetlf]n the 'followmg, we calculgte the derivative of the energy
erate ground state fap=0 the system has a nondegenerateE ¢,a With respect tal. By using Egs(65), (66), and(68) we
ground state for all. In this subsection, we assume the 9€t

commonly believed nondegeneracy of the ground state of the

interacting half-filled Landau system. We denote'by} ; a 07dEn(¢,d)=f dszdﬂ,d(ﬂ]'@(ﬂ)E,d

normalized eigenstate with ener§y(¢,d), wheren labels

the states. Furthermore, we denote the Hamiltonian of the & . . sl
system byHZY, i.e., =— EJ d?r[dgF1-4,a(N]- (3N 44
N L :—iadE”(1—¢> d). (69)
HE (@) =2 S [=1V+A(r) + of(r +de,/2) 1-¢ '
I
. Here we usedF , 4(r)=F 4 4(—r). Since E"(¢,d)=E"(1
— f(ri—de 2 f+5 X VE°: 64 — $d) weget
i# i
. G4E"($,d)=0 (70

HereN is the number of electrons in the= 1/ system. For  for ¢#0,1. From Eq.(70) we observe that one should not
simplicity we used a version of the many particle Hamil- have any energy correction due to the two separated mag-
tonian in Eq.(64) where the magnetic field is symmetric Netic strings. This is in contrast to the exact derivation of the

ground state energy in Sec. IV A where we showed that one
- i " . of the ground state energy levels rises in its energy when
—de /2. With the help of the current operatdi, 4(r)  switching on the two stringésee Fig. 1 To find the reason
=(1m)Z;6(r—r;,) [—iV; + A(rj) + of(r; +ded2) — Hf(r; for this discrepancy we have to examine the above derivation
—de,/2)] (the physical current being the real part of the 2 little more carefully. First, as mentioned in Sec. I\[lge-

expectation value of this current Operatmre get low Eq (43)] the domain of the Hamiltonian in E(QG4) is
different for differentds. Thus, we have to spread out the

magnetic stringgat string widthR,) before carrying out the
n_ 2 SR WATIEL analysis above. It is then clear that one can deducd &Y.
I¢E f dTLoF(N]-(Ir))g,q (65) only when the energy levels and wave functions are smooth
for string widthRy— 0. This should be the case fde>0. It
with is then clear from Sec. IV A that some eigenvalues are dis-
continuous ad=0 (for R,—0), i.e.,d4E"(¢,0) is infinite.
& This follows from the fact thatadlf¢,,d(F)|d:0=(¢/m)
FuaN=—[f(r+de/2)—f(r—de/2)], (66 x[e/(x*+y?)—f(N2x/(x*+y?)] scales like O(1k?).
m Thus, we obtain from Eq65) that 34E"(,0) can be infinite
for states having a nonzero current expectation value. Since
where ¢ equalsd or ¢, respectively. Here we denoted we assumed that the ground state of the Coulomb interacting

<\Ifr¢‘,,d|3¢,d(r*)|\lf[},’d> by (j(r*))’g})yd. One can interpret Eq. system without strings is nondegenerate and ts)) ;o

(65) as the energy variation that is due to the induced elec=0, we have one energy level that stays invariant when the
trical field resulting from a variation in the string magnetic magnetic strings are switched on. This level has the same
field. We have the following relation for the eigenfunctions: energy as the ground state of the system without the strings.

around the origin and the strings are positionedé(tlz and
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Nevertheless, a level crossing with this state could occur fotion for Coulomb interacting electrons in a Coulomb gauged
¢+#0,1. This should not happen because we see from Eqector potentialA [the many-particle Green’s function of the
(65) that if we have an energy discontinuity for somehen  HamiltonianH¢(0,0)]. We should mention that the expres-

we have a discontinuity for ab>0 and the energy discon- sjon (71) is valid for all 7, 7. Ove(|x X ') is the overlap
tinuity is an increasing function ap (see also Fig. L Then  function corresponding to Ov, E¢61), in the noninteracting
we obtain from the considerations above and the knowledggase. As mentioned at the end of Sec. IV CE@va phase
that the energy spectrum fef=0 is in accordance witkh  factor which is calculated by the parallel transport equation
=1 that we have a nondegenerate ground state for all §57) (W in this equation has to be substituted by the non-
<¢=<1 andd=0. This ground state should have the Samedegenerate ground state of string strengdh Thus, we see
energy as the ground state of the system without strings. from this equation that the Green’s function does not have

To get a better physical insight into the fact that the enthe same degeneracy as in the case of the noninteracting
ergy of the ground state remains invariant ##0 in the  gystem.

following we give a second derivation. In this derivation we
use the Wigner—von Neumann theordmThis theorem
states that for a Hamiltonian that depends on one parameter
one has a level crossing only in the case where the two states The CS theory of thev=1/2 system in the Coulomb
that take part in this level crossing belong to different repre-gauge established by HLR does not allow the formulation of
sentations of the symmetry group of the Hamiltonian. Be-a quasiparticle picture of the CS fermions without a physical
cause of the nonzero overlap of the ground statedfer0  motivated cancellation of diverging terms in Feynman dia-
and ¢=1 for all d=0 and large system aréhy using that grams. This is due to a vanishing Green’s function for infi-
the density of the ground state wave function is homogenousite area. Motivated by this, we consider in this paper the CS
for $=0) we find that these two states belong to the sameheory in the temporal gauge. Our intention is to formulate a
representation of the symmetry group of the Hamiltonian.CS theory of the half-filled Landau level which has mean-
Thus, we see that these two states are connected wheémgful quasiparticles. At first, we derive the CS path integral
switching on the flux¢ [furthermore, during the parallel in the temporal gauge by a gauge transformation from the
transport(57) the system remains in this statéNow we  correct normal ordered CS path integral in the Coulomb
calculate the second derivative of the energy of this statgauge. We show that one has to be careful with the time
with respect tap for somed>0. This term is proportional to  slices of the path integrals to get the correct result. From this
the magnetic field correction at the positions of the twowe calculate the self-energy in RPA for both gauges. For the
strings that is created by the electrons from the first-ordeself-energy in the temporal gauge, we obtain a scaling with
current correction which is itself caused by an infintesimal1/T. With the help of a CS retransformation of the path in-
variation 8¢ of ¢ [we have a term similar to expression tegral representing the Green's function we calculate the
(27)]. This current correction is due to the acceleration of theGreen’s function nonperturbatively for the noninteracting
electrons by the induced electric field resulting from theelectron system. We get a finite result for this Green’s func-
variation 6¢. Because we have no spin degree of freedontion. The reason for this shortcoming in RPA is a wrong
we know from Lenz’s rule that the magnetic field correctionresult when calculating the ground state energy up to second-
tends to reduce the flux variation. This results in a non-order perturbation theory in the string strength for a system
negative second-order derivatie of the energy with respect tof electrons in a homogeneous magnetic field and two sepa-
¢ for all ¢ andd. Because we have,E(0d)=d,E(1,d) rated magnetic strings of opposite strength. We obtain ex-
=0 for the nondegenerate ground state, we find that the eractly a zero energy correction of the ground state. Further-
ergy of the state connecting the ground states#fer0 and  more, we calculate explicitly the ground state wave functions
¢=1 remains invariant when switching on the two magneticof this system. By considering methods also used in deriving
strings. the Berry phase we obtain the exact Green’s function in the
It is clear that the two derivations above that make pretemporal gauge. Apart from this we get the reason for the
dictions on the spectrum of the interacting system are nomissing of the Ind) divergence in the self-energy in the tem-
exact proofs in the sense that they use only the Hamiltoniaporal gauge in RPA. This is due to a dynamical creation of
(64) as an input. The exact proof is an outstanding problemphase factors linking the created and annihilated electrons in
Nevertheless, both derivations presented above lead to athe Green’s function to all other electrons when switching on
cording predictions based on meaningful physical input.  adiabatically the two magnetic strings. These phase factors
Now we can use the results at the beginning of Secs. I\do not exist in the Coulomb gauge, thereby leading to the
and Sec. IV B to obtain the Green'’s function for the Coulombin(A) behavior of the exact Green’s function. As a generali-
interacting system. We obtain for the Green’s function of thezation of these results, we find that the ground state energy of

V. SUMMARY AND OUTLOOK

CS system in the temporal gauge an interacting electron systefim the homogeneous magnetic
~ background fielishould be the same with and without the
GWerle(x x": 7,7 ) =(—1)#20v8(|x—X'|) G8(X,X"; 7,7'). two strings. From this we deduce that also the Green’s func-

(71  tion of the interacting electron system is finite.
Summarizing, we showed in this paper that the CS theory
Here we neglected a factar '*f(©)-(~x) [see the discus- in the temporal gauge contains a meaningful Green’s func-
sion below Eq(62)]. G€ is the many-particle Green’s func- tion apart from the physical meaningful dipole feature of the
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guasiparticles. To our understanding, this is the premise twith p;=0 and terms withp;#0. The term in the square
examine the widely discussed effective mass of the CS ferbrackets in Eq(Al) for p;=0 can be calculated easily giv-
mions. The next stage would be the formulation of a perturing zero. Thus, we get fob &1, w=0)

bation theory of the temporal gauge which shows the finite-

ness of the Green’s function. This should be a conserved ~5 N
approximatior?? The knowledge of the exact Green’s func- DT w=0)=— ¢_ 1 >SS (1-6, )
tion of the non-interacting system derived in Sec. IV should 00t m 2 Wope vy i=1 P 0

be useful in finding such a formulation. Such a procedure VorTu 1

should yield meaningful results not only for the one particle ’

sector given by the Green’s function but also new results for A v
the higher particle sectors representing most of the physics of X g fd FWop (M| 7 +AI")
the composite fermions. This is work in progress.
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APPENDIX B: A MONOMIAL BASIS FOR HL%

APPENDIX A: THE CALCULATION OF THE EXACT . . D N .
(a°,a% VERTEX In this appendix we prove thazP} (pey) is a basis of

HL%. For simplicity we useB=1 in the following consider-
In this section we calculat® g5(r,w=0) [Eq. (27)] fora  ations. Then we have
noninteracting electron system without any approximation.

With the help of the eigenfunction | [Eq. (42)] andE; , . . )
[Eq. (43)] we get for the second summand in Eg7) by the HL{(C, i) =1 F e H(C) f dZ|F(2)|*ei(2) <o,
insertion of a complete set of eigenfunctions (B1)
N ® . .
R - 1 1 whereH(C) are the holomorphic functions of the complex
DEAr,w=0)=gp>——— > > Z > planeC and

E 1‘I’§EV1/¢I=1 n=1 nwcm

Voevqy
P ay(z)=e" 117, (B2)
x2Rq | @ ()| -+ A )
E{ o ()| 7 HAT) ay(2)=e 11 2012~ 2rd cosp+d?)%.  (BI)
SUNErn o ’ 1 I 1 2 2 1
X‘I’g,pi(r V(r—r )J d2r ‘I’gfkpi(f ) It is shown in Ref. 28 thaHL], HL5 are Hilbert spaces

[with the scalar producté49) and (52)] and that the func-
& tions {z°} (peNy) form an orthogonal basis dfiL2. We
i—+A(F’))\If8‘pi(F’)F(F’)} will show in the following that{z"} is also basis oHL32.
To this end we define

X

(A1)

. . ~ S(R):=sup=g{|r 2¢(r?—2rd cose+d?)?|},
HereN is the number of electrons in the=1/¢ system. Re

is the real part of its argument. The subexpression
=S [U(noam) W, (7 fd?r WO (7)) [V IFl,i:= f dZF (2)[2ai(2). (B4)
+A(r") W, (r)f(r') in Eq. (A1) is the first-order correc- =R

tion to the ground state wave functioh&pi and is due to a Here sup is the supremum of the argument. It holds that

magnetic string at the origin. Thus, we see tlﬁ?a@é'z(F,w l9llr2=S(R)lIgllg.1 for R=0. Due to the holomorphy of the
functions inHL2, HL3 we know that foru(z) e HL? there

J— 1 1 4

=0) Co”efporz‘dsj‘i the first-order correction ¢') of the oyt 3 seriess,4a,z"=u(z) of uniform convergence for
operator ¢Jdr'f(r—r’)-J(r',t) to_the perturbation g finite R with |z/<R and point wise convergence in the
@' fd?r'3(r',0)-f(r') (setting at lastd’=¢). From Eq. whole complex plane. Thus, we have lim.. (=M. a,z"
(42) we obtain that the eigem‘unctiortl's,‘.ﬁ”p of the one-string  —g||,—[=N_,a,2"—g|lr2) =0. Now we have to show that

system are analytic iy at qsfo for p#0. Therefore, we IimNHOCHEEannZn_g”R,Z:O- Then we have the following
can split then sum in DESAr,0=0) [Eq. (Al)] in terms  inequality

195323-14



GREEN’s FUNCTION OF THE HALF-FILLED LANDAU . ..

<s(R)
R,2

N
2 a-nZn_ g
n=0

N
E anzn_ g
n=0

R,1

N
<s(R) HZO a,2"—g (B5)

1

We see from Eqs(B1), (B2), and (B3) that HLZ and HL3

contain the same holomorphic functions. Beca{=® is a
basis of the Segal-Bargmann sp&tbf we have from rela-
tion (BS) that limy_...|=h.0a,2"—glr,=0 and thus the
proof that{z"} is a basis oHL3.

APPENDIX C: THE ASYMPTOTIC SOLUTIONS OF THE
TIME DEPENDENT SCHRO DINGER EQUATION (56)

PHYSICAL REVIEW B66, 195323 (2002

we obtain the following solution of the differential equation
(C2):

,8 ¢
(o4l ()= (oAl o) (0) exp[—zzf dg’ AE(¢)
d) 0
9
_fo do’ (94 (@oleo)(d'))
©3

B ¢ " n
xex;{—ZZL,dgb AE(¢ )].

We see from Eq(C3) that d 4 ¢o| ¥0)(¢) has to be negative
and infinite for some valué>0 in order to get a finite value

In this appendix we discuss the solutions of the time-(¢al®a)(#)>0 for B— and ¢>0. In the following we

dependent Schdinger equation(56) for g—«. We will

will show that this can not be the case. From Eif) we get

show that the solutions of this equation have a vanishing part

in the eigensubspace corresponding to higher eigenvalues

i.e., pa(P) is zero for 0< p=<1. First, we get from Eq(56)

_ B 1 We
(7¢< <PA| <PA> = (7¢><<Po| <Po> - 23<<PA| ( Hod @) — 7) | <PA>-
(Cy

8 4(@ol@o) () =2 R (3 400( D) oa($))]=2 Re (@ P)

|In(\r2=2dr cose+d?/r )| @a(h))].
(CH

Here we used the basis functio(®3). We see from Eq(C4)

Denoting byAE(¢) the difference between the energy of the that d 4(¢o| o) (¢) is finite for 0<¢p=<1. From this,(C3)

first excited state and the ground state which is zerodfor
=0,1 we defing ¢,|,) by the following differential equa-
tion

24 <p;\>=—a¢<¢o|<oo>—2%AE<¢)<¢,;|¢,&>. 2

By comparing Egs{(C1) and (C2) we find that(ea|ea)
=(pplea) for 0O<p=<1. By a straight forward calculation

and the spectrum in Fig. 1 we get tHata| ¢a)(¢) vanishes
asO(1/B) for 0< <1 and aO(1/BY"* 1)) at =1 where

n is defined by the order of the intersection of the eigenval-
ues atp=1, i.e., AE(1— ¢)=0((1— #)"). In the case that
the intersection is smooth we get tHata| ¢a)(¢) vanishes
aso(1l) at ¢=1. Furthermore, we see from EqE3) and
(C4) that the solutions of the Schiimger equatior(56) are
only nonzero for starting valuegy(0)#0 in the casegB

_>m_
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