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Green’s function of the half-filled Landau level Chern-Simons theory in the temporal gauge

J. Dietel*
Institut für Theoretische Physik, Universita¨t Leipzig, Augustusplatz 10, D 04109 Leipzig, Germany

~Received 22 April 2002; published 27 November 2002!

We study the Green’s function of then51/2 Chern-Simons system in the temporal~Weyl! gauge. We derive
the Chern-Simons path integral in the temporal gauge. In order to do this, we gauge transform the path integral
in the Coulomb gauge which represents the partition function of the correct normal ordered Chern-Simons
Hamiltonian. We calculate the self-energy of this path integral in the random-phase approximation~RPA! for
temperatureT50. This self-energy does not have the divergence with the logarithm of the area, which is
known to imply the vanishing of the exact Green’s function in the Coulomb gauge for an infinite area. By
Chern-Simons retransforming the path integral representing the Green’s function in the temporal gauge we
calculate explicitly the exact Green’s function by neglecting the interaction between the electrons, getting a
finite value. Furthermore, we give arguments that the Green’s function of the interacting system is also finite.
The nonvanishing of the Green’s function for infinite area is due to a dynamical creation of the phase factors
linking the created and annihilated particles with the particles in the ground state. The absence of these phase
factors is the reason for the vanishing of the Green’s function in the Coulomb gauge.

DOI: 10.1103/PhysRevB.66.195323 PACS number~s!: 71.10.Pm, 73.43.2f
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I. INTRODUCTION

The combination of an electronic interaction and a stro
magnetic field in a two-dimensional electron system yield
rich variety of phases. These are best classified by the fil
factorn, which is the electron density divided by the dens
of a completely filled Landau level. In the case ofn>1/2,
the behavior of the system resembles that of a Fermi liqui
the absence of a magnetic field, or at small magnetic fie
This effect can be explained with a new sort of quasipa
cles: atn51/2, each electron combines with two flux quan
of the magnetic field to form a composite fermion; the
composite fermions then move in an effective magnetic fi
that is zero on the average. The interpretation of many
periments supports this picture. We mention transport exp
ments with antidots, in which features of the resistivity a
related to closed loops of the composite fermions around
dots,1 and also focusing experiments.2 An overview of fur-
ther experiments can be found in Ref. 3. A field theoreti
formulation of this composite fermion picture was first e
tablished by Halperin, Lee, and Read4 ~HLR! as well as
Kalmeyer and Zhang.5

HLR studied many physical quantities within the rando
phase approximation~RPA!. Most prominent among these
the effective mass of the composite fermions, which is fou
to diverge at the Fermi surface.4,6 This is caused by the in
teraction of the composite fermions via transversal ga
interactions. Later on, Shankar and Murthy7 proposed a new
theory of then51/2 system. Based upon a transformation
the Chern-Simons~CS! Hamiltonian one achieves a separ
tion of the magnetoplasmon oscillators from the total int
action of the system. After restricting the number of the m
netoplasmon oscillators to the number of electrons Shan
and Murthy obtain a finite quasiparticle mass which sca
with the inverse of the strength of the Coulomb repulsion.
their derivation they calculated a smaller number of self
ergy Feynman diagrams than in the RPA is calculated.
cently, Sternet al.8 calculated the self-energy of the theory
0163-1829/2002/66~19!/195323~16!/$20.00 66 1953
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Shankar and Murthy in RPA finding the same divergence
the effective mass as HLR. Furthermore, they examined
Lagrangian formalism in the temporal~Weyl! gauge of the
CS theory. This appears to be very similar to the Hamilt
theory of Murthy and Shankar9 which works with a Hilbert
space consisting of the electron plus the magnetoplas
degrees of freedom and an additional constraint on the
bert space. In their paper, Sternet al.show that the quasipar
ticles of both theories contain the dipole nature of then
51/2 Rezayi-Read wave function,10 which has a good over
lap with then51/2 exact ground state for small systems.
this paper we consider the Lagrangian formulation of the
theory in the temporal gauge. Up to now it is not cle
whether this theory and the Hamilton theory of Shankar a
Murthy are in any relation. This is due to the difficulty i
formulating a coherent state path integral for a Hamilt
theory that contains a constraint including fermionic field
We should mention that besides the theories of HLR and
Shankar and Murthy there are other alternative formulati
of the CS theory that appear to be similar to the CS theory
Shankar and Murthy.11

As mentioned first in Ref. 4 by semiclassical argume
and showed further by us non-perturbatively~calculated ex-
plicitly for the non-interacting system12! the Green’s function
of the n51/2 CS system in the version of HLR~Coulomb
gauge of the Lagrangian formulation of the CS theory! van-
ishes exponentially with an exponent proportional to ln(A),
whereA is the area of the system. This is caused by the
transformation, which effectively gives a velocity boost
every electron. This velocity boost results in a one-parti
energy that diverges proportional to ln(A). We further show
in Ref. 12 that theA asymptotics of the Hartree-Fock ap
proximation of the Green’s function is in accordance with t
exact Green’s function~in contrast to the Green’s function i
RPA!, which is the theoretical justification for formulating
perturbation theory around the Hartree-Fock mean field. T
theory was discussed by us in Ref. 13. Due to this diverge
it is difficult to formulate a quasiparticle language for such
©2002 The American Physical Society23-1
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theory. When neglecting this ln(A) divergence in the self en
ergy one gets the diverging effective mass on the fer
surface discussed above. On the way to formulate a
theory of the half-filled Landau level with meaningful quas
particles we consider in this paper the Green’s function of
CS theory in the temporal gauge. This is the Green’s func
for the new composite fermions. We will show that th
Green’s function does not vanish with an exponent prop
tional to ln(A) ~at least for the Coulomb interacting system!.
We will calculate explicitly the Green’s function in position
time representation by neglecting the Coulomb interacti
This yields a finite Green’s function. Furthermore, we sh
that the Green’s function should be also finite when tak
into account the interaction between the electrons. These
the main results of this paper.

To this end we derive at first by a gauge transformation
the CS path integral in the Coulomb gauge14 the CS path
integral in the temporal gauge. We have shown in Refs.
and 15 that one is not allowed to carry out the time sl
continuum limit in CS path integrals of quantum Hall sy
tems due to an additional term in the path integral that s
plies the correct operator order in the correspondent
Hamiltonian. When neglecting this additional term we g
the familiar CS path integral, representing a gauge the
~e.g., Ref. 16!. We will show that we get the same resu
either by writing down this gauge path integral in the te
poral gauge or by gauge transforming the correct nor
order CS path integral in the Coulomb gauge. By calculat
the self energy of this path integral in RPA we get a sing
larity proportional to 1/T whereT is the temperature. This
was calculated earlier by Sternet al. in Ref. 6 for the Hamil-
ton theory of Shankar and Murthy.

By retransforming the Green’s function path integral
the electrons we get an effective path integral action o
time-dependent Hamiltonian. This time-dependent Ham
tonian describes electrons in a homogeneous magnetic
with two separated magnetic strings of opposite strengt
the positions of the creation and the annihilation operato
the Green’s function, which are adiabatically switched
until they get two flux quanta~for the n51/2 system!. By
calculating the ground state energy and the ground s
wave function of this Hamiltonian we derive explicitly fo
the noninteracting system a nonvanishing zero tempera
Green’s function. We will show further that the reason for t
T→0 vanishing of the Green’s function in RPA is caused
getting a difference in the ground state energy for the sys
taking into account the two strings in comparison to the s
tem without the strings. The RPA corresponds to the ene
correction in second-order perturbation theory in the str
strength. Therefore, we calculate in this paper the ene
difference for the interacting electron system, getting a z
energy difference. Thus, we see that the exact Green’s f
tion in the temporal gauge should be also finite when tak
into account the Coulomb interaction between the electro
Furthermore, we will see that by switching on the magne
strings the creation and the annihilation operator in
Green’s function gets additional CS phases linking them w
all other electrons in the ground state. These phase facto
not exist in the comparable expression of the Green’s fu
19532
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tion in the Coulomb gauge. This is the reason for the vani
ing of the Coulomb gauged Green’s function with an exp
nent proportional to log(A) not existent in the tempora
gauge.12

The paper is organized as follows: In Sec. II we derive
CS path integral in the temporal gauge from the path integ
in the Coulomb gauge. We compare the Green’s function
RPA of both gauges in Sec. III. In Sec. IV we consider t
Green’s function in the temporal gauge nonperturbatively

II. THE CS PATH INTEGRAL IN THE COULOMB
AS WELL AS THE TEMPORAL GAUGE

In this section we consider interacting spin-polarized el
trons moving in two dimensions in a strong magnetic fieldB
directed in the negativez direction. The electronic density i
chosen such that the lowest Landau level of the noninter
ing system is filled to a fractionn51/f̃ wheref̃ is an even
number. We are mainly interested inf̃52. The CS transfor-
mation is defined by17

C†~rW !5Ce
†~rW !expF i f̃E d2r 8arg~rW2rW8!r~rW8!G , ~1!

whereCe
†(rW) is the electron creation operator,C†(rW) is the

creation operator of the transformed fermions~composite
fermions!, r̂(rW) is the density operator of the fermion oper
tors, and arg(rW) is the angle thatrW forms with thex axis. In
this paper we use the convention that arg has its cut on
negative real axis. The Hamiltonian is given after the tra
formation as

HCS~aW CS!5E d2r H 1

2m
C†~rW !~2 i¹W 1AW 1aW CS!

2C~rW !

1
1

2E d2r 8@ uC~rW !u22rB#VrW,rW8
ee

†uC~rW8!u2

2rB‡J . ~2!

The CS vector potentialaW CS is defined by aW CS(rW)
5f̃*d2r 8 fW(rW2rW8)C†(rW8)C(rW8). Here C†(rW) creates@and
C(rW) annihilates# a composite fermion with coordinaterW.
VrW,rW8

ee
5e2/urW2rW8u is the Coulomb interaction wheree2

5qe
2/e. qe is the charge of the electrons ande is the dielec-

tric constant of the background fieldrB . AW (rW) is the vector
potentialAW 5BW 3rW/2 andBW is a homogeneous magnetic fie
in the negativez direction BW 52BeW z where eW z is the unit
vector in thez direction. We suppose throughout this pap
that B is a positive number. The functionfW(rW) is given by
fW(rW)5eW z3rW/r 2. We used the convention\51 andc51 in
the above formula~2!. Furthermore, we setqe51 for the
coupling of the magnetic potential to the electrons. We o
tained in Ref. 14 the partition function of the Hamiltonian~2!
in the path integral formalism. With the help of the re
bosonic CS fields@a0(r ,t),aW (r ,t)# we get
3-2
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ZCoul5 lim
e→0

1

N̄
)
l 51

Nl E
BC

D@al
0 ,aW l #D@C l* ,C l #

3exp@2e~Ll
Coul1LCS,l1Lee,l !#. ~3!

The various functions in Eq.~3! are given by

Ll
Coul5E d2r C l* ~rW !

1

e
@C l~rW !2C l 21~rW !#

2C l* ~rW !Fm1S 11 i
e

2
al

0~rW ! D ial
0~rW !GC l 21~rW !

1
1

2m
C l* ~rW !@2 i¹W 1AW ~rW !1aWl~rW !#2C l 21~rW !, ~4!

LCS,l5
1

4pf̃
E d2r ia l

0~rW !¹W 3aWl~rW !, ~5!

Lee,l5
1

2E d2rd2r 8@C l* ~rW !C l 21~rW !2rB#

3VrW,rW8
ee

†C l* ~rW8!C l 21~rW8!2rB‡, ~6!

and

N̄5)
l 51

Nl E
BC

D@al
0 ,aW l #exp@2e~LCS,l !#. ~7!

The path integral~3! is correct under the gauge conditio
¹W •aWl50 ~Coulomb gauge!. The time slice widthe is defined
by e5b/Nl whereb51/T. The indexl counts the discrete
time slices. Furthermore, we have antiperiodic bound
conditionsCNl

52C0 ~denoted by BC! for the Grassmann
fields. The action of the path integral~3! is given by a fer-
mionic termLl

Coul, a bosonic termLCS,l of the CS form, and
a Coulomb interaction termLee,l . In comparison to the CS
path integral of HLR4 we get an additional term proportiona
to e(al

0)2C l* C l 21/2 in Ll
Coul, Eq.~4!. This term is due to the

non-normal-order of theC6 term in the CS HamiltonianHCS
~2!. This is best seen by integrating the path integral~3! over
the CS fields. Due to the additive term one cannot perfo
the formal limite→0 in Eq.~3!. Now suppose that one ma
neglect thee(al

0)2C l* C l 21/2 term in Ll
Coul, Eq. ~4!. Then

one can take the formal limite→0 in Eq.~3! getting the well
known path integral describing a CS gauge theory in
Coulomb gauge. Without the gauge fixing condition¹W

•aWl(rW)50 the path integral consists of the three independ
CS fieldsa0 andaW .16 The CS theory in the temporal gauge7,8

is then given by a050. The neglection of the term
e(al

0)2C l* C l 21/2 in Ll
Coul is to our opinion not satisfactory

because we showed in Refs. 14 and 15 that this results in
wrong RPA energy. Thus, it is important to determi
whether the CS path integral in the temporal gauge used
Shankar and Murthy7 and Sternet al.8 is correct by consid-
ering the full Lagrangian~4! in the derivation. This will be
done in the following:
19532
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We start from the path integral~3! by the gauge transfor
mation of the fermionic fields:

C l→exp@ i „gl1F~a0,aW !…#C l ,

C0→exp@ iF ~a0,aW !#C0 , ~8!

with

gl5 (
k51

l

eS ak
02

1

b (
k51

Nl

eak
0D . ~9!

The definition ofgl is chosen such that the Fourier transfo
mation ofgl is 1/(iv) times the Fourier transformation ofa0

~for e→0). F(a0,aW ) is a function of the fieldsa0 and aW ,
which does not depend explicitly on the time indexl. From
this transformation one sees that the new Grassmann fi
keep the antiperiodic boundary conditionCNl

52C0. In the

following, we defineF(a0,aW ) such that thev50 term of the
Fourier transformation of the functiongl1F(a0,aW ) is zero.
This results in

F~a0,aW !52S 1

b (
k851

Nl

e(
k51

k8

eak
02

1

2 (
k51

Nl

eak
0D . ~10!

After inserting the transformation~8! of the Grassmann
fields in ~3! we expand the exponential function in relatio
~8!. We do not have to consider all of the expansion terms
e→0. In order to determine which expansion terms have
be considered we further expand the exponential function
Eq. ~3! of the exponentLl

Coul containing at least one CS fiel

al
0 or aW l . Now one may assume that it is enough to consi

only linear terms in the expansion of the exponential fun
tion in relation~8!. This is not correct because one gets a
terms of the orderO(1) after integrating out the Chern
Simons fields@e.g., a sum of Grassmann fields over the tim
slices timese is of order O(1)]. By analyzing the terms
carefully we see that one has to take into account up to
quadratic expansion terms in the exponential function in
lation ~8! to get allO(1) terms in the path integral. Doing so
one can observe the interesting effect that
e(al

0)2C l* C l 21/2 term in Eq.~4! is canceled by some of th
expansion terms in relation~8!. After an additional gauge
transformation

C l~rW !→exp@ i f̃ fW~0!•rW#C l~rW !, ~11!

we obtain a path integral in which it is allowed to take t
limit e→0. This path integral is given by

ZWeyl5
1

N̄
E

BC
D@a0,aW #D@C* ,C#

3expF2E
0

b

dt~LWeyl1LCS1Lee!G , ~12!

with
3-3
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LWeyl5E d2r C* ~rW,t !S ] t2m2
i

bE0

b

dt8a0~rW,t8! DC~rW,t !

1
1

2m
C* ~rW,t !„2 i¹W 1AW ~rW !

1aW ~rW,t !1¹W @g~rW,t !1F~a0,aW !#…2C~rW,t !, ~13!

LCS5
1

4pf̃
E d2ria 0~rW,t !¹W 3aW ~rW,t !, ~14!

Lee5
1

2E d2rd2r 8 @C l* ~rW !C l 21~rW !2rB#

3VrW,rW8
ee

†C l* ~rW8!C l 21~rW8!2rB‡. ~15!

By neglecting the third term in the first large parentheses
Eq. ~13! for T50 and the definition of the longitudinal C
gauge potential

aW L~rW !5¹W @g~rW !1F~a0,aW !# ~16!

we get the well known CS path integral in the tempo
gauge.7,8 This path integral was used by Sternet al. in Ref. 8
to show that the quasiparticles in the temporal gauge beh
like dipoles with a dipole momentum perpendicular to th
canonical momentum~for small momentum and frequency!.
This can be seen by calculating the response of the elect
in the RPA due to some external potential. This picture of
CS quasiparticles is very attractive18 due to a similar dipole
interpretation of the Rezayi-Read wave function.10

It has been shown that this wave function has a very g
overlap with the exact ground state for small systems.10

III. THE RPA GREEN’S FUNCTIONS

In this section we determine the RPA Green’s functions
the Coulomb as well as the temporal gauge for tempera
T→0. This was done earlier for the Coulomb gauge.12 Since
the Coulomb interaction has no influence on the singula
of the Green’s function in the Coulomb as well as in t
temporal gauge we will simplify the notation by consideri
explicitly only the interaction-free case of the Green’s fun
tion. The Coulomb interaction can easily be taken into
count by carrying out a Hubbard-Stratonovich decouplin19

of the Coulomb interaction term~15!. In the following, we
will mention explicitly where the results for the noninterac
ing system differ from those of the interacting system.

In Ref. 14, we calculated the grand canonical poten
VCoul from the CS path integral in the Coulomb gauge~3! in
RPA. This was done by carrying out the integration of E
~3! over the fermionic fields and further by expanding t
logarithms of the result in the CS fields. The restriction
quadratic order in the RPA for the CS fields results in

VCoul5
1

2b (
qW ,V

lnF12P00S PTT1
r

mD ~2pf̃!2

q2 G . ~17!
19532
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In this equationP00 is the ideal gas density-density respon
andPTT is the transversal momentum-momentum respon
These response functions can be calculated exactly.14 The
grand canonical potential is then a functional of t
interaction-free Green’s functionG521/@ iv2q2/(2m)
1m#. The RPA self energy can be calculated bySCoul

5dVCoul/dG. By carrying out the calculation for the pat
integral~3!, one gets forSCoul one term that is divergent fo
A→`.12 This term corresponds to a self-energy Feynm
diagram with one density-density (a0,a0) RPA vertex. The
other RPA self-energy diagram containing one transve
momentum-momentum (aW T ,aW T) vertex is finite~hereaW T is
the transversal component ofaW ). One obtains for the diver-
gent self-energy term

S00
Coul~k,v!5SF~k,v!1

1

b (
qW ,V

G~kW1qW ,v1V!

3S D00~q,V!2
r

mD ~2pf̃!2

q2
~18!

with the Fock self-energy

SF~k,v!52(
qW

nF~ ukW1qW u!
r

m

~2pf̃!2

q2
~19!

and the (a0,a0) RPA vertex

D00~q,V!5
~2pf̃!2

q2

PTT1r/m

12P00~PTT1r/m!~2pf̃!2/q2
.

~20!

r is the density of the system. The singular part of t
(a0,a0) RPA vertexD00 in Eq. ~18! has its parameter rang
in V@qAm/m andq2/(mm)!1.4 In this range one gets fo
the vertex

D00~q,V!'
~2pf̃!2

q2

r

m

V2

V21vc
2

. ~21!

Herevc is given byB/m5(2pf̃)r/m. With the help of this
expression we obtain for theA→` singular part of the
Green’s function

S00
Coul~k,v!5f̃2

m

2
lnS 1

AD
3

iv2k2/2m1m

vc1sgn~k2/2m2m!~k2/2m2 iv2m!
.

~22!

sgn@•# is the sign of the argument.
We may now carry out a similar calculation for the C

path integral in the temporal gauge~12! yielding for the
grand canonical potentialVWeyl in RPA
3-4
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VWeyl5
1

2b (
qW ,VÞ0

lnF12S PLL1
r

mD S PTT1
r

mD ~2pf̃!2

V2 G
1

1

2b (
qW

lnF12P00~qW ,0!S PTT~qW ,0!1
r

mD
3

~2pf̃!2

q2 G . ~23!

Here PLL is the ideal gas longitudinal momentum
momentum response function. With the help of the ideal
continuity equation (PLL1r/m)/V25P00/q2 we getVCoul

5VWeyl. Nevertheless,VCoul andVWeyl are not identical as a
function of G. As in the Coulomb gauge we calculate th
RPA self-energy bySWeyl5dVWeyl/dG. Then we get one
term that corresponds to the RPA self-energy diagram c
taining one transversal momentum-momentum ver
(aW T ,aW T). This finite term is the same as that in the Coulom
m
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y
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C
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gauge. The other term corresponds to the self-energy
grams containing one longitudinal momentum-moment
vertex (aW L ,aW L). It is given by

SLL
Weyl~k,v!5

1

b (
qW

G~kW1qW ,v!D00~q,0!

1
1

b (
qW ,VÞ0

G~kW1qW ,v1V!D00~q,V!
q2

V2

3S ~2kW1qW !•qW

2mq
D 2

. ~24!

Here the first term originates from the third term in the fi
large parentheses in Eq.~13!. Contrary to the Coulomb
gauge, one finds an infinite self-energy forT50 in the pa-
rameter rangeV!qAm/m andq2/(mm)!1 because of the
additional 1/V2 factor in the second term in Eq.~24!. In this
parameter range the vertexD00 is given by
D00~q,V!'
q2

24pm

1

A2mmmuVu/~2p!2q1@e2m/~2pf̃!2#q1q2~1/48p211/~2pf̃!2!
. ~25!
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This expression contains a correction due to the Coulo
interaction. Inserting relation~25! in Eq. ~24! results in a
self-energy term proportional tob, which is given by

SLL
Weyl~k,v!'

b

12 (
uqu,k

G~kW1qW ,v!D00~q,0!S ~2kW1qW !•qW

2m
D 2

.

~26!

Here k!Amm is a momentum cutoff. Thus, one finds th
SLL

Weyl is proportional tob and diverges asT→0. This results
in a divergent self-energy for temperatureT50. By compar-
ing relation~26! with Eq. ~22! one sees that the self-energ
in the temporal gauge is not divergent forA→`. In Ref. 12
we showed that the Green’s function in the Coulomb ga
vanishes with an exponent proportional to ln(A) in the
position-time representation. This is caused by an effec
velocity boost obtained for every CS quasiparticle by the
transformation.4 This results in a self-energy proportional
ln(A). Due to the missing ln(A) term in the RPA self energy
in the temporal gauge the first question we want to answe
nonperturbative methods is the following.

A. Is it true that the exact CS Green’s function in the
temporal gauge does not show a similarA\` vanishing

asymptotics as the Green’s function in the Coulomb gauge?

The b divergence of the self-energy in relation~26! has
its origin in the form of theaW L coupling to the fermionic
fields inLWeyl, Eq. ~13!, which results in an additionalq2/v2

factor for every (aW L ,aW L) vertex in comparison to the (a0 ,a0)
vertices in the Coulomb gauge. From this it is clear tha
b

e

e
S

y

a

similar kind of divergence should also be given in the se
energy diagrams beyond RPA.

Sternet al. mentioned first in Ref. 8~for the case of the
Hamiltonian formulation of the CS theory in the tempor
gauge! that this divergence in the self-energy is caused
the additional gauge freedom of the CS path integral~12!
with respect to time-independent gauge transformations. T
causes the partition function to be independent of the z
frequencyaW L variable by additionally carrying out the inte
gration over the fermionic fields. Nevertheless, one can
deduce from this the behavior of the partition function foraW L
with frequencies approximately zero by additionally carryi
out the integration over the fastaW L modes andaW T . This
would be more relevant for the behavior of the Green’s fu
tion than the additional gauge freedom. Thus, we are led
the second question we would like to answer by no
perturbative methods.

B. Is it true that the exact CS Green’s function in the
temporal gauge is zero for temperatureTÄ0?

A first approach to a solution of this question is given
the following observation: By carrying out a gauge retran
formation ~8! of the path integral representing the Green
function G(rW,t) in the temporal gauge the Grassmann fie
representing the created and the annihilated particle in
Green’s function obtain exponential prefactors of the fo
~8!. By an expansion of the exponents up to quadratic or
in the a0 fields we get for theT→0 diverging part of the
Green’s function a term proportional tob@D 00

ex(rW,v50)
3-5
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2D 00
ex(0,v50)#. D 00

ex(rW,v50) is the exact (a0,a0) vertex

corresponding to Eq.~20! in RPA. D 00
ex(rW,v50) is given by

D 00
ex~rW,v50!52f̃2E d2r 8 fW~rW2rW8!• fW~rW8!

^r̂~rW8!&
m

1f̃2E dtE d2r 8d2r 9 fW~rW2rW8!•^TJŴ~rW8,t !

3JŴ~rW9,0!&c• fW~rW9!. ~27!

T is the time ordering operator. The right-hand side of E
~27! can be calculated in the electronic system. Thus,r̂(rW) is
the density operator andJŴ (rW) is the current operator of th
electrons.̂ •&c is the connected average with respect to
electronic ground state~not the CS ground state!. It is clear
from the derivation above that the Feynman diagrams of
Green’s function in first order inSLL

Weyl are contained in this
Green’s function. We now restrict our considerations to
noninteracting electron system. In Appendix A we calcul
D 00

ex(rW,v50) without any approximation for this noninte
acting system. We obtain

D 00
ex~rW,0!5

f̃

l 0
2m

H F lnS r 2

2l 0
2D 1gGe2r 2/2l 0

2
1

3

2
E1S r 2

2l 0
2D J .

~28!

Here l 051/AB is the magnetic length.g is Euler’s constant
and E1 is the exponential integral function. We obtain th
D 00

ex(rW,v50)2D 00
ex(0,v50) diverges for the noninteractin

system. This divergence was regularized in the RPA s
energy formula~24! with the help of a momentum cutoff in
the uv region. It is easy to see that the expressionD 00

ex(rW,v
50)2D 00

ex(0,v50) agrees with the energy formula of th
second-order perturbation theory of electrons in a homo
neous magnetic fieldB under the perturbation of two mag
netic strings of fluxf̃ and2f̃ at the origin and at the posi
tion rW, respectively~see, e.g., Appendix A!. It is well known
that the energy of electrons in a homogeneous magnetic
B with two magnetic strings is finite. Therefore, this ener
cannot be calculated perturbatively. We will show in the f
lowing subsections that this is in fact the reason for the te
poral gauged Green’s function in RPA to be zero forT50.
Furthermore, we show that the exact Green’s function is
nite for T50 because the ground state energy correcti
due to the two magnetic strings is zero.

IV. THE EXACT CS GREEN’S FUNCTION
IN THE TEMPORAL GAUGE

In this section, we calculate the CS Green’s function
the temporal gauge nonperturbatively. This was done by
in Ref. 20 for the CS Green’s function in the Coulom
gauge. There we determined the Green’s function in
position-time representation by CS retransforming~1! the
Green’s function to the electronic Hilbert space. A simi
procedure will be done in this section for the Green’s fun
tion in the temporal gauge. It is defined by
19532
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GWeyl~xW ,xW8;t,t8!5^C~xW ,t!C* ~xW8,t8!&Weyl . ~29!

Here^•&Weyl is the average with respect to the CS path in
gral in the temporal gauge~12!. We now carry out the in-
verse of the gauge transformation~8! and~11! on the fermi-
onic fields in this expression. After integrating out the C
fields one gets the following expression

GWeyl~xW ,xW8;t,t8!5
1

NG
E

BC
D@C* ,C#C~xW ,t!C* ~xW8,t8!

3expF2E
0

b

dtLG~AW ss
t !G . ~30!

with the normNG

NG5E
BC

D@C* ,C#expF2E
0

b

dtLG~0!G ~31!

and the Lagrangian

LG~AW ss
t !5E d2r H C* ~rW,t !~] t2m!C~rW,t !

1
1

2m
f̃2E d2r 8 fW2~rW2rW8!C* ~rW,t !C~rW,t !

3C* ~rW8,t !C~rW8,t !1
1

2m
C* ~rW,t !

3@2 i¹W 1AW ~rW !1aW CS~rW,t !1AW ss
t ~rW !#2C~rW,t !

1
1

2E d2r 8@ uC~rW,t !u22rB#

3VrW,rW8
ee

†uC~rW8,t !u22rB‡J . ~32!

The string configurationAW ss
t in LG(AW ss

t ) is given by

AW ss
t ~rW !52f̃ fW~rW2xW !S Q~t2t !2

t2t

b
2

1

2D
1f̃ fW~rW2xW8!S Q~t82t !2

t82t

b
2

1

2D . ~33!

HereQ(x) is the Heaviside function. We see from this fo
mula that the effective Lagrangian of the Green’s function
given by the well-known CS Lagrangian and additiona
two time-dependent strings with opposite fluxes centered
the coordinatesxW andxW8. Furthermore, we see from Eq.~33!
that the Green’s function depends ont2t8 ~time transla-
tional invariance!. We see from Eqs.~30!–~33! that one has
to solve a complicated time-dependent Schro¨dinger equation
to get the Green’s function in the temporal gauge. Nevert
less, we will derive a solution of the problem for temperatu
T50 below. Thus, in the following we restrict the calcul
tion of the Green’s function to temperatureT50. We treat at
first the Green’s function for time orderingt2t8.0. Then
the path integral~30! can be interpreted as follows.

With the help of
3-6
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Hss~aW CS,AW ss,2
t !5E d2r H 1

2m
C†~rW !~2 i¹W 1AW 1aW CS

1AW ss,2
t !2C~rW !1

1

2E d2r 8@ uC~rW !u2

2rB#VrW,rW8
ee

†uC~rW8!u22rB‡J ~34!

and

AW ss,2
t 5S 1

2
2

t

b D f̃ fW~rW2xW !2S 3

2
2

t

b D f̃ fW~rW2xW8!, ~35!

we define the time evolution operatorUt(aW CS,AW ss,2) by

2
]

]t
Ut~aW CS,AW ss,2!5Hss~aW CS,AW ss,2

t !Ut~aW CS,AW ss,2!

~36!

with the boundary conditionU051. Because the flux quan
tum numbers of the strings of the vector potentialsAW ss,2

b and

AW ss,2
0 differ only by an integer value we know that the eigen

paces ofHss(aW CS,AW ss,2
0 ) andHss(aW CS,AW ss,2

b ) are linked by the
unitary phase transformation

Phf̃~xW ,xW8!5expS 2 i f̃E d2r arg~xW2rW !r̂~rW ! D
3expS i f̃E d2rarg~xW82rW !r̂~rW ! D ~37!

acting on the states ofHss(aW CS,AW ss,2
b ). The eigenvalues are

invariant under this transformation. With the help of t
phase factors~37! we get for the Green’s function fort
2t8.0

GWeyl~xW ,xW8;t,t8!

5e2 i f̃ fW(0)•(xW2xW8)

3 lim
b→`

1

Tr$exp@2~b1t2t8!Hss~aW CS,0!#%

3Tr$Ub~aW CS,AW ss,2!Phf̃~xW ,xW8!

3Ce~xW !exp@2~t2t8!Hss~aW CS,AW ss,2
b !#Ce

†~xW8!%,

~38!

whereCe
† is the electron creation operator~1!. Now assume

that Hss(aW CS,AW ss,2
t ) has the same ground state degener

and ground state energy as the HamiltonianHss(aW CS,0). This
will be shown for the noninteracting as well as for the inte
acting electron system in the following subsections. The
is intuitively clear that the operatorUb(aW CS,AW ss,2)/Tr$exp

@2(b1t2t8)Hss(aWCS,0)#% has its support on the lowest en
ergy eigenspace forb→`. We will also show this explicitly
in the following subsection. On the other hand it is clear t
we get an infinite or zero Green’s function, respectively
19532
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the integral of the ground state energy ofHss(aW CS,AW ss,2
t )

2Hs(aW CS,0) over the timet is nonzero. As mentioned abov
the incorrect reproduction of the ground state energy wit
second-order perturbation theory is the reason that the R
self-energy is infinite forT50.

Now we compare the expression~38! of the Green’s func-
tion with the corresponding expression in the Coulom
gauge fort2t8.0. This function is given by the expressio

~38! with the substitutions Ub(aW CS,AW ss,2)Ph(xW ,xW8)

→Ub(aW CS,0), Ce(xW )→C(xW ), Ce
†(xW )→C†(xW ),

Hss(aW CS,Ass,2
b )→Hss(aW CS,0) and exp@2if̃fW(0)•(xW2xW8)#→1.

As mentioned above we calculated in Ref. 20 a CS Gree
function in the Coulomb gauge that vanishes exponenti
with an exponent proportional to ln(A). The reason for this is

that a quasiparticleC†(xW8) created at timet8 gets a velocity
boost from all other particles in the ground state. This res
in an infinite quasiparticle energy. This is not the case for

quasiparticleCe
†(xW8) created at timet8 in the Green’s func-

tion of the temporal gauge. Thus, we see that the CS ph
between the created particle and all other electrons of
ground state that led to the velocity boost in the Coulo
gauge are automatically annihilated through the dynam
creation of an opposite phase by turning on the magn
strings inHss in the temporal gauge. In this sense one c
understand the missing ln(A) terms in the RPA self-energy o
the temporal gauge. Now we carry out a CS retransforma
~1! of the expression~38!. This results in

GWeyl~xW ,xW8;t,t8!5e2 i f̃ fW(0)•(xW2xW8)

3 lim
b→`

1

Tr$exp@2~b1t2t8!Hss~0,0!#%

3Tr$Ub~0,AW ss,2!Phf̃~xW ,xW8!C~xW !

3exp@2~t2t8!Hss~0,AW ss,2
b !#C†~xW8!%.

~39!

In the following section we will calculate this expression f
the case of a noninteracting electron system. Then we
from Eq. ~39! that by the CS retransformation one loses
many-particle interaction terms. Thus, we can determine
Green’s function by calculating the one-particle ground st
wave function and the ground state energy of the Ham

tonian Hss(0,AW ss,2
t ). From this we getUb(0,AW ss,2). In Sec.

IV A, we calculate the ground state wave function and t
ground state energy of an electron in a homogenous m
netic field in the background of two opposite magne
strings. By using this result, we calculate in Sec. IV B t
Green’s function in the temporal gauge without Coulom
interaction. Section IV C is devoted to show that the Gree
function of the interacting electron system should be a
finite.
3-7
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A. The quantum mechanics of an electron in a homogeneous
magnetic field and a background of one or two separated

magnetic strings

In this section we discuss the eigenfunctions and eig
values of an electron in a homogenous magnetic field wit
background of one or two separated strings. The eigenva
and eigenfunctions of these systems have to be calculate
get an expression for the one-particle propaga
Ub(0,AW ss,2), Eq.~36!, as well as for the exact density-densi
propagatorD 00

ex , Eq. ~28!.
We will solve at first the simpler problem of an electron

a homogeneous magnetic field and a background ofone
magnetic string at the origin with flux quantumf. The one-
particle Hamiltonian is given by

Hs
1~f!5

1

2m
@2 i¹W 1AW ~rW !2f fW~rW !#2. ~40!

We now seek a solution of the the formC(r ,w)
5(1/A2p) f (r )eipw ~we used cylindrical polar coordinates!.
Then one gets for the eigenvalue equation in polar coo
nates withAW 5B(y,2x)/2

1

2m S f 91
1

r
f 82

~p2f!2

r 2
f D

1FE2
1

8
mvc

2r 21
1

2
vc~p2f!G f 50. ~41!

This differential equation is similar to the differential equ
tion of electrons in a homogeneous magnetic fieldB without
a magnetic string which can be recovered by replacingp
2f→p. The eigenfunctions and eigenvalues of this syst
are well known ~e.g., Ref. 21!. By using an analogous
method to solve the differential equation~41! we get for the
regular eigenfunctions and eigenvalues, which are finite
r 50,

Cn,p
f ~rW !5F n!

2p l 0
22up2fuG~n111up2fu!G

1/2

eipf

3S r

l 0
D up2fu

Ln
up2fuS r 2

2l 0
2D e2r 2/4l 0

2
, ~42!

En,p
f 5vcFn1

1

2
up2fu2

1

2
~p2f!1

1

2G ~43!

with nPN0 and pPZ. Beside these eigenfunctions w
also have eigenfunctions that are not finite atr 50 ~but
nevertheless square integrable!. These irregular eigenfunc
tions and eigenvalues are given by~for 0<f<1) Cn,0

f,sing

}(r / l 0)2fLn
2f

„r 2/(2l 0
2)…e2r 2/(4l 0

2) with eigenvaluesEn,0
f,sing

5vc(n11/2) and Cn,1
f,sing}eiw(r / l 0)2(12f)Ln

2(12f)
„r 2/

(2l 0
2)…e2r 2/(4l 0

2) with eigenvaluesEn,1
f,sing5vc(n1f21/2). It

is well known for an electron in the background of a ma
netic string22,23 that there is no domain of the Hamiltonia
Hs

1 that contains the eigenfunctionsCn,p
f (rW) as well as the
19532
n-
a
es
to
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at
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singular eigenfunctionsCn,0
f,sing andCn,1

f,sing in a way that the
operatorHs

1 is self-adjoint. This is the reason for the no
orthogonality of the regular and the irregula
eigenfunctions.23 It is now possible to restrict the domain o
the Hamiltonian to get a self-adjoint extension ofHs

1 . This
restriction is not unique. The concrete extension has to
determined by physical arguments. For example, in
Aharonov-Bohm case24 ~i.e., electrons in the background o
a magnetic string! one can show rather generally that th
correct self-adjoint extension of the Hamiltonian consists
the domain of wave functions which are zero at the origi25

~for 0,f,1). This is done by a regularization of the ma
netic string field at the origin~the string widthR0 being
finite!. After a calculation of the inner and outer solutions
this spread out string and a calculation of the matching c
ditions one gets forR0→0 only a square integrable nonze
eigenfunction in the case where the function is zero at
origin ~for 0,f,1). We have done a similar calculation fo
the case of an electron in the background of a finite num
of homogeneously spread out magnetic strings in a homo
neous magnetic field. It is then easily seen that the asy
totics of the wave function at the borderR0 of a string does
not depend on the existence of the homogeneous mag
field and the other strings forR0→0 @this could be also seen
from Eq. ~41!#. By an examination of the matching cond
tions we get a square integrable nonzero eigenfunction o
in the case where the function is zero at the origin of
strings. Thus, we have to use the regular eigenfunctions~42!
as solutions. One can see from these eigenvalues that in
trast to the case of an electron in a string background with
a homogeneous magnetic field we have an energy splittin
the Landau levels due to the string background.

Next, we will calculate the eigenfunctions and eigenv
ues of an electron in a homogeneous magnetic fieldB in the
background oftwo magnetic strings of opposite streng
separated by a distanced. In contrast to the one-string syste
above we do not have a rotational symmetry. This make
much more complicated to get the eigenfunctions and eig
values of the system. Therefore, we will restrict us in t
following to the ground state. This is enough because
can calculate the Green’s function forT50 from the knowl-
edge of the ground state eigenfunctions and eigenvalues
to the denominator in Eq.~39!. The Hamiltonian of an elec-
tron in a homogeneous magnetic field in the background
two magnetic strings with flux quanta2f andf located at
the origin anddeW x is given by

Hss
1 ~f!5

1

2m
@2 i¹W 1AW ~rW !2f fW~rW !1f fW~rW2deW x!#

2.

~44!

We assume thatf>0. We now carry out a phase transfo
mation on the eigenfunctionsC of Hss

1 . It is given by

Cp~rW !5e2 ifarg[rW]e1 ifarg[rW2deWx]C~rW !. ~45!

In the following we denote the one-dimensional subspacy

50, 0<x<deW x of the plane byC. With the help of the
transformation~45! one easily can show thatCp are eigen-
3-8
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functions of the Hamiltonian without the stringsH15

@2 i¹W 1AW (rW)#2/2m for r 5R2\C with the matching condi-
tions

Cp~rW1eeW y!5eif2pCp~rW2eeW y!,

¹W Cp~rW1eeW y!5eif2p¹W Cp~rW2eeW y! ~46!

for rWPC ande→01. By using the complex variablesz5x

1 iy and z̄5x2 iy we get for the HamiltonianH1

H152
2

m
]z] z̄2

B

2m
~z]z2 z̄] z̄!1

B2

8m
z̄z. ~47!

With the help of the ansatzCp(z,z̄)5u(z,z̄)e2uzu2B/4 we
have to solve onR2\C the eigenvalue equationHz

1u(z,z̄)

5Eu(z,z̄) with

Hz
152

2

m
]z] z̄1

B

m
~ z̄] z̄!1

B

2m
~48!

and the scalar product

^u,v&15E d2r e2uzu2B/2 ūv ~49!

for two wave functionsu,v. The energy of a normalized
wave functionu on R2\C is given by

E5^u~z,z̄!,Hz
1~z,z̄!u~z,z̄!&1

5
2

m
^] z̄u~z,z̄!,] z̄u~z,z̄!&11

B

2m
. ~50!

From this equation we find that the ground state wave fu
tions are the normalized holomorphic wave functions
C\C that fulfill the transformed matching conditions corr
sponding to Eq.~46! ~here we identifiedR2 with the complex
planeC).

We now determine a linearly independent basis of
ground state wave functions. To this end we carry out
following transformations on the ground state wave fun
tions

ut~z!5zf~z2z0!2fu~z!. ~51!

Herez05d andzPC. The scalar product of the transforme
wave functions is given by

^ut ,v t&25E d2r e2uzu2B/2uzu22fuz2z0u2fūtv t . ~52!

Using the matching conditions~46! we find that the ground
state wave functions are the holomorphic functions on
whole complex planeC with a finite norm corresponding to
the scalar product~52!. It is shown in Ref. 26 that this spac
as well as the space of the holomorphic functions onC with
a finite norm~49! known as the Segal-Bargmann space26 are
Hilbert spaces. We will denote the first byHL2

2 and the
Segal-Bargmann space byHL1

2. One can see easily that bo
spaces consists of the same holomorphic functions. It is w
19532
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known that the functions$zp% (pPN0) are a basis27 of the
Segal-Bargmann spaceHL1

2. We obtain from the definition
of the scalar product~49! that the basis functions are o
thogonal. This is no longer the case for$zp% (pPN0) in the
Hilbert space with the scalar product~52!. Nevertheless, we
will show in Appendix C that these functions are indeed
basis of this Hilbert space.

Then, by carrying out the retransformations~51! and~45!
we get a basis for the ground state eigenfunctions ofHss

1 ,
Eq. ~44!, for 0<f<1. Due to the considerations below~43!
concerning the domain of the Hamiltonian we find for th
basis

Cp
f5eipwr p2f~Ar 222drcosw1d2!fe2r 2B/4 for p>1,

~53!

where 0<f<1. We find one additional basis state for th
limiting casesf50,1

C0
f5e2r 2B/4 for f50,1 ~54!

We see from Eq.~50! that the energy eigenvaluesEp of the
wave functionsCp

f ~the ground state energy for strin
strengthf) are given by

Ep5
vc

2
. ~55!

By comparing the ground state degeneracy as a function of
and the energy of an electron in a homogeneous magn
field in the background of one string@Eqs.~42! and~43!# and
in the background of two magnetic strings@Eqs. ~53!, ~54!
and ~55!# we get agreement of these two systems for str
distanced→`. In Fig. 1 we show the ground state energy
a function of the magnetic flux for the Hamiltonian of a
electron in the background of two magnetic strings. We
from this figure that only one wave function (p50) of the
degenerate ground state forf50 increases in energy. Th
rest of the ground states (pÞ0) keep their lowest Landau
level energy.

B. The calculation of the Green’s function

In this section, we will calculate the Green’s functio
GWeyl(xW ,xW8;t,t8), Eq. ~38!, for t2t8.0 andb→`. After-
wards we will generalize the results to timest2t8,0. For
doing this we have to calculate the thermodynamic time e

FIG. 1. Ground state energyE of an electron in a magnetic field
B in the background of two magnetic strings with fluxf and
2f. In the figure we showE as a function of the fluxf. NLLL is
the number of lowest Landau level eigenstates forf50. This num-
ber is proportional to the area of the system.
3-9
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lution Ub of the time dependent HamiltonianHss(0,AW ss,2
t ),

Eq. ~34!. We first will calculate the one-particle transitio
matrix of the adiabatic time-dependent Hamiltoni
Hss

1
„(t/b)f̃… (t is the time parameter! divided by the one-

particle partition function Tr$exp@2b„Hss
1 (0)2m…# % for b

→`. We will denote this quantity by UP1(f) where f

5(t/b)f̃. This can be calculated from the finite wave fun
tions for b→` of the transformed Schro¨dinger wave equa-
tion

]fw~f!52
b

f̃
S Hss

1 ~f!2
vc

2 Dw~f! ~56!

for 0<f<f̃. Then the solutions of the Schro¨dinger equa-
tion of motion for imaginary times of the HamiltonianHss

1

are given byC(f)5exp@2(b/f̃)(vc/2)f#w(f). We will
solve Eq.~56! first for 0<f<1 andb→`. We now define
w5w01wA where w0 is that part of the wave functionw
which is in the eigenspaceHss

1 of the lowest eigenvaluevc/2
for fÞ0 andfÞ1 ~i.e., span$Cp

f% for p>1). Forf50 or
f51, respectively, we denotew0 by that part of the ground
state wave function that is linked continuously as a funct
of f to a ground state wave function for 0,f or f,1,
respectively. Thus,wA is that part of the wave functionw that
is in the subspace spanned by the higher energy eigenf
tions.

In Appendix C we show that̂wAuwA&(f) vanishes as
O(1/b) for 0,f,1 and asO(1/b1/(n11)) at f51 wheren
is defined by the order of the intersection of the eigenval
at f51. In the case of a smooth intersection we find th
^wAuwA&(f) vanishes aso(1) at f51. This corresponds to
the well known adiabatic theorem28 in the case of the solu
tions of the Schro¨dinger equation~56! for real times. Further-
more, we obtain in Appendix C that the transition opera
UP1(f) is nonzero only on the subspace spanned byCp

0 ,
Eq. ~53!, for p>1. One can then get the finite part o
UP1(f) by solving the projected Schro¨dinger equation

^Cp
fu]fw0~f!&50 ~57!

for p51, . . . ,̀ . The set of equations~57! shows that the
time evolution ofw0(f) is given by a parallel transport in
the submanifold of the ground states. This is a well-kno
transport in quantum mechanics that is responsible for
Berry phase29 in the case of a nondegenerate ground st
Assuming thatw0(0)5Cp

0 , we get UP1(1)w0(0)5w0(1)
for the evolution where the background strings are switc
on adiabatically up to one flux quantum. In the following, w
will calculate this quantity for small string separationd. At
first, we have to calculate the overlap matrixSnl

d :

Snl
d ~f!ªE d2rCn

f~rW !C l
f~rW !5

2p2nn!

Bn11 FdnlS 11
f2B

2n
d2D

2dn11,lfd2dn21,l

fB

2n
d1dn12,lO~1/n0!O~d2!

1dn22,lO~1/n2!O~d2!1O~d3!G . ~58!
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With the help of this overlap matrix it is easy to solv
the parallel transport equation~57!. Defining the matrix

@UP1#(f) by cW (f)5@UP1#(f)cW (0) where w0(f)
5(pcp(f)Cp

f we get as a solution of Eq.~57!

@UP1#~f!5TexpF2
1

2E0

f

df8@Sd~f8!#21@]f8S
d~f8!#G

5T expF2
1

2E0

f

df8$11@S0~f8!#21DSd~f8!%21

3@S0~f8!#21]f8DSd~f8!G . ~59!

Here,S5S01DSd whereS0 is the overlap matrixSd for d
50. Now we expand the exponential function in Eq.~59!
and the term@11(S0)21DSd#21 in the exponent. Then we
get an expansion of UP1(1) in d. UP1(f̃) is then given by
UP1(f̃)5@Ph

2f̃
1 (0,deW x)#@Ph1

1(0,deW x)UP1(1)#f̃. Ph1 is the
phase transformation operator, Eq.~37!, calculated in the
one-particle sector in the first quantized language. By us
UP1(1)C0

050 we get

@Phf̃
1
~0,deW x!UP1~f̃ !#nl

5~12dn0!~12d l0!H dnlS 12
f̃2B

16

~2n11!

n~n11!
d2D

1dn1d l1

f̃~f̃21!B

16n
d21S dn21,l

f̃B

4n
A2nB

2dn11,l

f̃

2

1

A2~n11!B
D dJ 2dn,0d l ,1

1

A2B
d

1dn12,lO~1/n1!O~d2!1dn22,lO~1/n1!O~d2!

1O~d3!, ~60!

where@Phf̃
1 (0,deW x)UP1(f̃)#nl is the matrix operator with re-

spect to the orthonormal basis$Cn
0%, Eq. ~53!, for n

50, . . . ,̀ . With the help of this matrix we will calculate the
Green’s functionGWeyl, ~39!. For doing this we first calculate
the overlap function Ov(d) by the use of this matrix, yield-
ing

Ov~d!ª

(
CpW Pn1/f̃ ,piÞ0

Det@Phf̃
1
~0,deW x!UP1~f̃ !#pW

(
CpW Pn1/f̃

1

5

(
CpW Pn1/f̃ ,piÞ0

exp„Tr$ ln@Phf̃
1
~0,deW x!UP1~f̃ !#pW%…

(
CpW Pn1/f̃

1

5S 12
1

f̃
D expF2~f̃21!

B

8
ln~A!d2
3-10
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1O~1/A0!O~d2!G . ~61!

Here n1/f̃ are the ground states of then51/f̃ system. The
ground stateCpW is then given by the Slater determina
CpW5S@C0,pi

0 , . . . ,C0,pN

0 #. The wave functionsC0,pN

0 can be

seen in Eq.~42!. @•#pW is the sub matrix of the argument wit
line and column indicespi . For deriving this result we use
techniques of averaging over the ground states develope
Ref. 12. In Eq.~61! we mean byO(1/A0)O(d2) that these
terms are finite forA→` and of orderO(d2). The finiteness
of the exponents of orderO(d3) for A→` is obtained by
extending the analysis of the overlap matrixSnl

d , Eq. ~58!, as
a function ofn,l to all orders ofd. We see from Eq.~61! that
the overlap function Ov(d) is zero ford.0 andA→`. This
is in accordance with the general inequality21<Ov(d)
<1 that can be derived from the parallel transport equa
~57! by showing that the norm of the vectorw0 is invariant
under the transport.

It is now easy to calculate the Green’s functio
GWeyl(xW ,xW8;t,t8), Eq. ~39!, for t2t8.0. This is done by
writing down the expression~39! in the one-particle basis
With the help of Eqs.~60! and~61! and by using the above
mentioned averaging techniques as well as~gauge! transfor-
mation properties of the path integral Eqs.~12! to get the
Green’s function also forxWÞ0, we obtain

GWeyl~xW ,xW8;t,t8!

5~21!f̃/2Ov~ uxW2xW8u!e2 i f̃ fW(0)•(xW2xW8)

3FG0~xW ,xW8;t,t8!1e2 iAW (xW )•(xW2xW8)e2uxW2xW8u2B/4

3e2(t2t8)(vc/22m)

3S 1

f̃

B

4p
uxW2xW8u21O~B2uxW2xW8u4!D G . ~62!

G0 is the Green’s function of the HamiltonianHss(0,0), cal-
culated with respect to the vacuum ground state~zero par-
ticle ground state!, i.e., G0(xW ,xW8;t,t8)5Q(t2t8)*d2rd(xW

2rW)exp@2(t2t8)$@2i¹W 1AW (rW)#2/2m2m)%d(xW82rW). One can
deduce from Eq.~30! that the expression~62! is also valid
for the Green’s functionGWeyl(xW ,xW8;t,t8) for t2t8,0 ~we
haveG050 for this time order!. The first term in the brack-
ets in Eq.~62! is a typical term for noninteracting electron
representing that term in Eq.~39! in the first quantized lan-
guage where the twod functions corresponding to the cre
ated and annihilated particle in Eq.~39! carry the same par
ticle index. Due to the enormous effort of calculation w
determined the terms where the twod functions carry differ-
ent particle indices represented by the rest of the summa
in Eq. ~62! only for small distancesuxW82xW u.

BecauseG0 or AW , respectively, is not translation invarian
we obtain that the Fourier transform of the Green’s funct
GWeyl does not have the form GWeyl(kW ,kW8;v,v8)
19532
in

n

ds

n

5GWeyl(kW ,v)dkW ,2kW8dv,2v8 . During the calculation of the
Green’s function of then51/f̃ system within CS theories
one usually uses the condition

~2pf̃!r5¹W 3^aW &5¹W 3AW ~63!

and the fact thatAW is transversal~Coulomb gauge!. More-
over, in the Coulomb gauge we have the freedom to cho
the origin (x0 ,y0) of the vector potentialAW 51/2B(y2y0 ,
2(x2x0)). We see from Eq.~62! that the explicit result of
the Green’s function depends on the origin of the symme
gauge potential. By using the condition~63! during pertur-
bational calculations we lose the dependence of the Gre
function30 on the external magnetic fieldAW and thus also on
the origin (x0 ,y0). Nevertheless, this dependence must
pear in through the limitA→` in integrals*Ad2r ••• when
calculating a Feynman diagram. In Fourier space the dep
dence of the result on the concrete limitA→` should also be
seen in the transition going from momentum sums to m
mentum integrals. Carrying out this transition is not straig
forward for integrals of functions which fall off very slowly
such as the integral off, Eq. ~2!. The result depends on th
way of calculating the limitA→`. Because the integrand
of perturbational calculations within RPA fall off rapidl
enough the explicite dependence on (x0 ,y0) has to be chosen
when going beyond RPA. We see from Eq.~62! that there are
several ways to choose (x0 ,y0) or the integral limit
*A→`d2r •••, respectively, to get a translationally invaria
Green’s function@e.g., x05(x11x18)/2,y05(x21x28)/2, or
x05x18 , y05x28 , or . . . ], which is necessary when definin
the effective mass of quasi-particles. One can see from
~62! that all these choices differ in their Green’s function
a pure phase factor exp@iAW (rW0,2)(xW2xW8)# (rW0,2 is a vector not
depending onxW ,xW8), which in momentum space results
different translations of the momentum variable of t
Green’s function. Thus, we see that all these choices resu
the same effective mass. It is then clear that by an additio
shift of the origin (x0 ,y0) of value2 fW(0) we can make the
gauge factor exp@2if̃fW(0)•(xW2xW8)# in Eq. ~62! vanish. This
gauge transformation does not destroy the translational
variance of the Green’s function~62! when choosing either
of the origins (x0 ,y0) discussed above.

Summarizing, in contrast to the RPA result of the Gree
function in the temporal gauge calculated in Sec. III the e
act Green’s function in the temporal gauge is finite. Nev
theless, we see from Eqs.~61! and ~62! that the Green’s
function has its support on the one-dimensional subspacxW

5xW8 for system areaA→`. This is due to the infinite de-
generacy of the ground state of noninteracting electrons
homogeneous magnetic field. More precisely, at the end
the parallel transport calculated in Eq.~57! the ground state
is orthogonal to its phase transformed starting value resul
in the vanishing of Ov(uxW2xW8u) at valuesuxW2xW8uÞ0. This
degeneracy of the ground state usually is not present in
case of a Coulomb-interacting system. Now assume that
nondegeneracy of the ground state is present for all st
values and that the ground state energy correction due to
3-11
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additional strings is zero. Then we can deduce that
Green’s function in the temporal gauge has no degene
having the support in a one dimensional subspace of thxW ,
xW8 plane. This is immediately clear because in this case
overlap function Ov(uxW2xW8u) consists of a phase factor fo
all uxW2xW8u corresponding to a Berry phase.29 This will be
shown in the following section.

C. The exact Green’s function with Coulomb interaction

It is clear that in contrast to the noninteracting case ab
one cannot solve exactly the~ground state! eigenvalue prob-
lem of N electrons in a homogeneous magnetic field in
background of two separated magnetic strings in the p
ence of Coulomb interaction. Nevertheless, we will sh
that we get no energy correction due to the two addit
opposite magnetic strings and that when having a nonde
erate ground state forf50 the system has a nondegener
ground state for allf. In this subsection, we assume th
commonly believed nondegeneracy of the ground state of
interacting half-filled Landau system. We denote byCf,d

n a
normalized eigenstate with energyEn(f,d), wheren labels
the states. Furthermore, we denote the Hamiltonian of
system byHss

e,N , i.e.,

Hss
e,N~f,d!5(

i

N
1

2m
@2 i¹Wi1AW ~rW i !1f fW~rW i1deW x /2!

2f fW~rW i2deWx /2!#21
1

2 (
iÞj

VrWi ,rWj

ee . ~64!

HereN is the number of electrons in then51/f̃ system. For
simplicity we used a version of the many particle Ham
tonian in Eq. ~64! where the magnetic field is symmetr
around the origin and the strings are positioned atdeW x /2 and

2deW x /2 . With the help of the current operatorJŴf,d(rW)
5(1/m)( id(rW2rW i) @2 i¹W i 1 AW (rW i)1f fW(rW i1deW x/2) 2f fW(rW i

2deW x /2)# ~the physical current being the real part of t
expectation value of this current operator! we get

]jE
n5E d2r @]jFW ~rW !#•^JŴ~rW !&f,d

n ~65!

with

FW f,d~rW !5
f

m
@ fW~rW1deW x /2!2 fW~rW2deW x /2!#, ~66!

where j equals d or f, respectively. Here we denote

^Cf,d
n uJŴf,d(rW)uCf,d

n & by ^JŴ (rW)&f,d
n . One can interpret Eq

~65! as the energy variation that is due to the induced e
trical field resulting from a variation in the string magne
field. We have the following relation for the eigenfunction
19532
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:

C12f,d
n ~rW1 , . . . ,rWN!

5Cf,d
n ~2rW1 , . . . ,2rWN!expS 2 i(

• i
arg@rW i1deW x/2# D

3expS 1 i(
• i

arg@rW i2deW x /2# D ~67!

with En(f,d)5En(12f,d) ~we denote these related stat
by the same label!. Thus, we obtain

^JŴ~rW !&12f,d
n 52^JŴ~2rW !&f,d

n . ~68!

Summarizing, due to the different signs of the strengths
the two strings we obtain an inversion symmetry of the e
ergy spectrum with respect to the strengthf50.5. This in-
version symmetry does not depend on the string distancd.
In the following, we calculate the derivative of the ener
Ef,d

n with respect tod. By using Eqs.~65!, ~66!, and~68! we
get

]dEn~f,d!5E d2r @]dFW f,d~rW !#•^JŴ~rW !&f,d
n

52
f

12fE d2r @]dFW 12f,d~rW !#•^JŴ~rW !&12f,d
n

52
f

12f
]dEn~12f,d!. ~69!

Here we usedFW f,d(rW)5FW f,d(2rW). Since En(f,d)5En(1
2f,d) we get

]dEn~f,d!50 ~70!

for fÞ0,1. From Eq.~70! we observe that one should no
have any energy correction due to the two separated m
netic strings. This is in contrast to the exact derivation of
ground state energy in Sec. IV A where we showed that
of the ground state energy levels rises in its energy w
switching on the two strings~see Fig. 1!. To find the reason
for this discrepancy we have to examine the above deriva
a little more carefully. First, as mentioned in Sec. IV A@be-
low Eq. ~43!# the domain of the Hamiltonian in Eq.~64! is
different for differentds. Thus, we have to spread out th
magnetic strings~at string widthR0) before carrying out the
analysis above. It is then clear that one can deduce Eq.~70!
only when the energy levels and wave functions are smo
for string widthR0→0. This should be the case ford.0. It
is then clear from Sec. IV A that some eigenvalues are d
continuous atd50 ~for R0→0), i.e.,]dEn(f,0) is infinite.
This follows from the fact that]dFW f,d(rW)ud505(f/m)
3@eW y /(x21y2)2 fW(rW)2x/(x21y2)# scales like O(1/r 2).
Thus, we obtain from Eq.~65! that]dEn(f,0) can be infinite
for states having a nonzero current expectation value. S
we assumed that the ground state of the Coulomb interac

system without strings is nondegenerate and thus^JŴ (rW)&f,0
50, we have one energy level that stays invariant when
magnetic strings are switched on. This level has the sa
energy as the ground state of the system without the stri
3-12
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Nevertheless, a level crossing with this state could occur
fÞ0,1. This should not happen because we see from
~65! that if we have an energy discontinuity for somef then
we have a discontinuity for allf.0 and the energy discon
tinuity is an increasing function off ~see also Fig. 1!. Then
we obtain from the considerations above and the knowle
that the energy spectrum forf50 is in accordance withf
51 that we have a nondegenerate ground state for a
<f<1 andd>0. This ground state should have the sa
energy as the ground state of the system without strings

To get a better physical insight into the fact that the e
ergy of the ground state remains invariant forfÞ0 in the
following we give a second derivation. In this derivation w
use the Wigner–von Neumann theorem.31 This theorem
states that for a Hamiltonian that depends on one param
one has a level crossing only in the case where the two s
that take part in this level crossing belong to different rep
sentations of the symmetry group of the Hamiltonian. B
cause of the nonzero overlap of the ground state forf50
andf51 for all d>0 and large system area~by using that
the density of the ground state wave function is homogen
for f50) we find that these two states belong to the sa
representation of the symmetry group of the Hamiltoni
Thus, we see that these two states are connected w
switching on the fluxf @furthermore, during the paralle
transport ~57! the system remains in this state#. Now we
calculate the second derivative of the energy of this s
with respect tof for somed.0. This term is proportional to
the magnetic field correction at the positions of the t
strings that is created by the electrons from the first-or
current correction which is itself caused by an infintesim
variation df of f @we have a term similar to expressio
~27!#. This current correction is due to the acceleration of
electrons by the induced electric field resulting from t
variation df. Because we have no spin degree of freed
we know from Lenz’s rule that the magnetic field correcti
tends to reduce the flux variation. This results in a no
negative second-order derivatie of the energy with respec
f for all f and d. Because we have]fE(0,d)5]fE(1,d)
50 for the nondegenerate ground state, we find that the
ergy of the state connecting the ground states forf50 and
f51 remains invariant when switching on the two magne
strings.

It is clear that the two derivations above that make p
dictions on the spectrum of the interacting system are
exact proofs in the sense that they use only the Hamilton
~64! as an input. The exact proof is an outstanding proble
Nevertheless, both derivations presented above lead to
cording predictions based on meaningful physical input.

Now we can use the results at the beginning of Secs
and Sec. IV B to obtain the Green’s function for the Coulom
interacting system. We obtain for the Green’s function of
CS system in the temporal gauge

GWeyl,e~xW ,xW8;t,t8!5~21!f̃/2Ove~ uxW2xW8u!Ge~xW ,xW8;t,t8!.
~71!

Here we neglected a factore2 i f̃ fW(0)•(xW2xW8) @see the discus
sion below Eq.~62!#. Ge is the many-particle Green’s func
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tion for Coulomb interacting electrons in a Coulomb gaug
vector potentialA @the many-particle Green’s function of th
HamiltonianHss(0,0)]. We should mention that the expre
sion ~71! is valid for all t, t ’. Ove(uxW2xW8u) is the overlap
function corresponding to Ov, Eq.~61!, in the noninteracting
case. As mentioned at the end of Sec. IV C, Ove is a phase
factor which is calculated by the parallel transport equat
~57! (Cp

f in this equation has to be substituted by the no
degenerate ground state of string strengthf). Thus, we see
from this equation that the Green’s function does not ha
the same degeneracy as in the case of the nonintera
system.

V. SUMMARY AND OUTLOOK

The CS theory of then51/2 system in the Coulomb
gauge established by HLR does not allow the formulation
a quasiparticle picture of the CS fermions without a physi
motivated cancellation of diverging terms in Feynman d
grams. This is due to a vanishing Green’s function for in
nite area. Motivated by this, we consider in this paper the
theory in the temporal gauge. Our intention is to formulat
CS theory of the half-filled Landau level which has mea
ingful quasiparticles. At first, we derive the CS path integ
in the temporal gauge by a gauge transformation from
correct normal ordered CS path integral in the Coulo
gauge. We show that one has to be careful with the ti
slices of the path integrals to get the correct result. From
we calculate the self-energy in RPA for both gauges. For
self-energy in the temporal gauge, we obtain a scaling w
1/T. With the help of a CS retransformation of the path i
tegral representing the Green’s function we calculate
Green’s function nonperturbatively for the noninteracti
electron system. We get a finite result for this Green’s fu
tion. The reason for this shortcoming in RPA is a wro
result when calculating the ground state energy up to seco
order perturbation theory in the string strength for a syst
of electrons in a homogeneous magnetic field and two se
rated magnetic strings of opposite strength. We obtain
actly a zero energy correction of the ground state. Furth
more, we calculate explicitly the ground state wave functio
of this system. By considering methods also used in deriv
the Berry phase we obtain the exact Green’s function in
temporal gauge. Apart from this we get the reason for
missing of the ln(A) divergence in the self-energy in the tem
poral gauge in RPA. This is due to a dynamical creation
phase factors linking the created and annihilated electron
the Green’s function to all other electrons when switching
adiabatically the two magnetic strings. These phase fac
do not exist in the Coulomb gauge, thereby leading to
ln(A) behavior of the exact Green’s function. As a genera
zation of these results, we find that the ground state energ
an interacting electron system~in the homogeneous magnet
background field! should be the same with and without th
two strings. From this we deduce that also the Green’s fu
tion of the interacting electron system is finite.

Summarizing, we showed in this paper that the CS the
in the temporal gauge contains a meaningful Green’s fu
tion apart from the physical meaningful dipole feature of t
3-13
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quasiparticles. To our understanding, this is the premise
examine the widely discussed effective mass of the CS
mions. The next stage would be the formulation of a per
bation theory of the temporal gauge which shows the fin
ness of the Green’s function. This should be a conser
approximation.32 The knowledge of the exact Green’s fun
tion of the non-interacting system derived in Sec. IV sho
be useful in finding such a formulation. Such a proced
should yield meaningful results not only for the one parti
sector given by the Green’s function but also new results
the higher particle sectors representing most of the physic
the composite fermions. This is work in progress.
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APPENDIX A: THE CALCULATION OF THE EXACT
„a0,a0

… VERTEX

In this section we calculateD 00
ex(rW,v50) @Eq. ~27!# for a

noninteracting electron system without any approximati
With the help of the eigenfunctionsCn,p

0 @Eq. ~42!# andEn,p
0

@Eq. ~43!# we get for the second summand in Eq.~27! by the
insertion of a complete set of eigenfunctions

D 00
ex,2~rW,v50!5f̃2

1

(
CpW Pn1/f̃

1
(

CpW Pn1/f̃
(
i 51

N

(
n51

`
1

nvcm
2

32 ReF E d2r 9C0,pi

0* ~rW9!S ¹9W

i
1AW ~rW9! D

3Cn,pi

0 ~rW9! fW~rW2rW9!E d2r 8Cn,pi

0* ~rW8!

3S ¹8W

i
1AW ~rW8! DC0,pi

0 ~rW8! fW~rW8!G .

~A1!

HereN is the number of electrons in then51/f̃ system. Re
is the real part of its argument. The subexpressio
2(n51

` @1/(nvcm)#Cn,pi

0 (rW9)*d2r 8 Cn,pi

0 (rW8)@¹8W / i

1AW (rW8)#C0,pi

0 (rW8) fW(rW8) in Eq. ~A1! is the first-order correc-

tion to the ground state wave functionC0,pi

0 and is due to a

magnetic string at the origin. Thus, we see thatD 00
ex,2(rW,v

50) corresponds to the first-order correction~in f̃8) of the
operator f̃*d2r 8 fW(rW2rW8)•JW (rW8,t) to the perturbation
f̃8*d2r 8JW (rW8,0)• fW(rW8) ~setting at lastf̃85f̃). From Eq.
~42! we obtain that the eigenfunctionsCn,p

f of the one-string
system are analytic inf at f'0 for pÞ0. Therefore, we
can split then sum in D 00

ex,2(rW,v50) @Eq. ~A1!# in terms
19532
to
r-
r-
-
d

d
e

r
of

.
-

.

with pi50 and terms withpiÞ0. The term in the square
brackets in Eq.~A1! for pi50 can be calculated easily giv
ing zero. Thus, we get forD 00

ex,2(rW,v50)

D 00
ex,2~rW,v50!52

f̃2

m

1

(
C0,pW Pn1/f̃

1
(

C0,pW Pn1/f̃
(
i 51

N

~12dpi ,0
!

3]f̃8F E d2r 9C0,pi

f̃8* ~rW9!S ¹9W

i
1AW ~rW9! D

3C0,pi

f̃8 ~rW9! fW~rW2rW9!G
f̃850

. ~A2!

This expression as well as the first term in Eq.~27! can be
calculated analytically. After some straight forward calcu
tions we get Eq.~28!.

APPENDIX B: A MONOMIAL BASIS FOR HL 2
2

In this appendix we prove that$zp% (pPN0) is a basis of
HL2

2. For simplicity we useB51 in the following consider-
ations. Then we have

HLi
2~C,a i !ª HFPH~C!U E dzuF~z!u2a i~z!,`J ,

~B1!

whereH(C) are the holomorphic functions of the comple
planeC and

a1~z!5e2uzu2/2, ~B2!

a2~z!5e2uzu2/2r 22f~r 222rd cosw1d2!f. ~B3!

It is shown in Ref. 28 thatHL1
2, HL2

2 are Hilbert spaces
@with the scalar products~49! and ~52!# and that the func-
tions $zp% (pPN0) form an orthogonal basis ofHL1

2. We
will show in the following that$zp% is also basis ofHL2

2.
To this end we define

s~R!ªsupr>R$ur 22f~r 222rd cosw1d2!fu%,

iFiR,iªE
uzu>R

dzuF~z!u2a i~z!. ~B4!

Here sup is the supremum of the argument. It holds t
igiR,2<s(R)igiR,1 for R>0. Due to the holomorphy of the
functions inHL1

2, HL2
2 we know that foru(z)PHL1

2 there
exist a series(n>0anzn5u(z) of uniform convergence for
all finite R with uzu<R and point wise convergence in th
whole complex plane. Thus, we have limN→`(i(n>0

N anzn

2gi22i(n>0
N anzn2giR,2)50. Now we have to show tha

limN→`i(n>0
N anzn2giR,250. Then we have the following

inequality
3-14



e

pa
lu

he
r

n

al-

r-
ic

.

y

e

e,
ia,

s

GREEN’s FUNCTION OF THE HALF-FILLED LANDAU . . . PHYSICAL REVIEW B66, 195323 ~2002!
I (
n>0

N

anzn2gI
R,2

<s~R!I (
n>0

N

anzn2gI
R,1

<s~R!I (
n>0

N

anzn2gI
1

. ~B5!

We see from Eqs.~B1!, ~B2!, and ~B3! that HL1
2 and HL2

2

contain the same holomorphic functions. Because$zp% is a
basis of the Segal-Bargmann spaceHL1

2 we have from rela-
tion ~B5! that limN→`i(n>0

N anzn2giR,250 and thus the
proof that$zp% is a basis ofHL2

2.

APPENDIX C: THE ASYMPTOTIC SOLUTIONS OF THE
TIME DEPENDENT SCHRÖ DINGER EQUATION „56…

In this appendix we discuss the solutions of the tim
dependent Schro¨dinger equation~56! for b→`. We will
show that the solutions of this equation have a vanishing
in the eigensubspace corresponding to higher eigenva
i.e., wA(f) is zero for 0,f<1. First, we get from Eq.~56!

]f^wAuwA&52]f^w0uw0&22
b

f̃
^wAuS Hss

1 ~f!2
vc

2 D uwA&.

~C1!

Denoting byDE(f) the difference between the energy of t
first excited state and the ground state which is zero fof
50,1 we definê wA8 uwA8 & by the following differential equa-
tion

]f^wA8 uwA8 &52]f^w0uw0&22
b

f̃
DE~f!^wA8 uwA8 &. ~C2!

By comparing Eqs.~C1! and ~C2! we find that ^wA8 uwA8 &
>^wAuwA& for 0<f<1. By a straight forward calculation
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