
PHYSICAL REVIEW B 66, 195316 ~2002!
Signs of quantum dot–lead matrix elements: The effect on transport versus spectral properties

Alessandro Silva, Yuval Oreg, and Yuval Gefen
Department of Condensed Matter Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel
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A small quantum dot coupled to two external leads is considered. Different signs of the dot-lead coupling
matrix elements give rise to qualitatively different behavior of physical observables such as the conductance,
the phase of the transmission amplitude, and the differential capacitance of the dot. For certain relative signs
the conductance may vanish at values of the gate potential, where the spectral density is maximal. Zeroes of the
conductance are robust against increasing the dot-lead coupling. They are associated with abrupt phase lapses
in the transmission phase whose width vanishes as the square of the temperature. We carefully distinguish
between phase lapses of2p and phase antilapses ofp.
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I. INTRODUCTION

Two interesting directions in the study of quantum do
~QD’s! have emerged in recent years. First, it has beco
clear that as the dot-lead coupling is increased, the effec
the Coulomb blockade is greatly suppressed, yet does
altogether disappear. Works discussing the physics
strongly coupled QD’s include Refs. 1–3~see also Ref. 4!.
Second, experiments addressing thephaseof the electron
transmitted through a QD@employing an Aharonov-Bohm
~AB! setup# revealed interesting and often intriguin
physics.5

Of the large number of theoretical works that followed
few have addressed~either explicitly or implicitly! the role
of the signs of the dot-lead coupling matrix elements.6,7 No
systematic study of the effect of the magnitude and the r
tive sign of these coupling matrix elements on a number
physical quantities, such as linear conductance, the spe
density, and the transmission phase has been carried o
date.

A small QD ~or a small electron droplet!, where the elec-
tron spectrum is discrete, is a possible nanoscale labora
for the study of interference.„The discreteness of the spe
trum of a small dot is relevant when the mean level spac
D̄@G,kBT, whereG is the characteristic strength of the co
pling to the leads@see Eq.~8! below# andT is the tempera-
ture.… Indeed, in such systems there are various paths w
interfere and contribute to the conductance. These co
spond to different ways to traverse the QD, taking advant
of the various single particle levels. An efficient way
probe the effect of such interference on the transmission
plitude through the QD~magnitude and phase! is to embed
the QD in one arm of an AB interferometer.

In a typical experimental setup the QD is connected
source and drain leads via tunneling barriers~or diffusive
contacts! with a typical coupling strengthG, controlled
through additional gates. A ‘‘plunger gate’’ coupled electr
statically to the QD controls the number of electrons in
latter.8 As the potentialVg of the plunger gate is increase
electrons are pulled into the dot. When the coupling to
leadsG is small (G!D̄) distinct peaks in the source-dra
linear conductance occur at near-degeneracy points,8 i.e.,
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when the energy of the dot withN electrons is equal to the
energy of the dot withN11 electrons~the Coulomb peaks!.
The peaks in conductance nearly coincide with the max
of the derivative of the mean number of electrons in the Q
with respect toVg . The separation between the Coulom
peaks is mainly dictated by the average charging energ
the dotU.

The main goal of the present study is to investigate
effect of the signs of the dot-lead coupling matrix elemen
The underlying physics is related to the interference am
different transmission amplitudes~say, from the left lead to
the right lead!, describing different traversal paths throug
different single particle levels. We analyze how this affe
various physical quantities, such as the linear conducta
through the QD, the phase of the transmission amplitude
measured by an AB interference experiment, the spec
density of the QD, and the differential capacitance.

Reporting here the first part of our project, and attempt
to simplify the problem~ignoring some of the complex bu
interesting ingredients!, we consider spinless electrons an
ignore at this point electron-electron interactions. We a
model the spectrum of the small dot by two single parti
levels. In a subsequent work we will address the issue o
interacting QD. Below~see Sec. VI! we briefly comment on
the relevance of studying such a toy model for the sake
gaining insight into the physics of ‘‘real life’’ QD.

We find that in addition to the strength of the couplingG
the key to understand the physics of the relevant phys
observables is therelative phaseof the coupling matrix ele-
ments of consecutive orbital levels in the QD to the lea
This will be defined more accurately below. Also, we fin
that the dependence of the conductance and the differe
capacitance~or the spectral density! as a function ofVg are
complementary. For example, when the two consecutive
els arein phase~i.e., the signs of the respective couplings
levels 1 and 2 are identical!, the conductance exhibits tw
peaks whose positions are unaffected byG. By contrast, the
two peaks of the spectral density~hence the differential ca
pacitance! approach each other asG is increased, eventually
merging into a single peak. The complementarity is summ
rized in Table I below.

It should be noted that the mean number of electrons
the dot depends only on the energy spectrum of the dot
©2002 The American Physical Society16-1



d the

ALESSANDRO SILVA, YUVAL OREG, AND YUVAL GEFEN PHYSICAL REVIEW B66, 195316 ~2002!
TABLE I. Notice the complementarity in the qualitative features of the differential capacitance an
conductance fors511 ands521.

s511 s521

G: Conductance peaks do not shift peaks merge atG.D/2
u: Transmission phase a sharp phase lapse of width}G(T/D)2 no phase lapse
C: Differential capacitance peaks merge atG.D/2 peaks do not shift
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the level width ~given by diagonal matrix elements of th
single electron propagator!. By contrast, the conductance d
pends also on the actual value of the eigenfunction of
system~including off-diagonal matrix elements of the sing
electron propagator9!. Hence it is not surprising that over
certain range of values ofG the conductance and the diffe
ential capacitance exhibit qualitatively different behavio10

as a function ofVg .
Another quantity which receives much attention here

the phase of the total transmission amplitude. When the s
of the respective couplings of the two dot’s levels are id
tical ~the in-phasescenario!, it turns out that there is a valu
of Vg ~corresponding to the ‘‘conductance valley’’ betwe
the two conductance peaks! for which the zero temperatur
conductance vanishes. This vanishing of the conductanc
associated with a lapse of the transmission phase. It turns
~by carefully including the off-diagonal Green’s function
into the calculation of the transmission amplitude, see A
pendix B! that the width of the phase lapse vanishes~as the
square of the temperature!. We point out in our analysis how
it is possible to distinguish a2p phase lapse from a1p
one, an observation which, we believe, has a greater rang
validity than the specific problem considered here. Surp
ingly, the width of the phase lapse is determined by the te
perature, to be contrasted with the width of the conducta
peak~the latter is determined by Max@G,T#).

The remainder of the paper is organized as follows.
Sec. II we discuss the relation between measurable quan
characterizing a QD, such as the conductance, the AB o
latory part of the conductance, the mean number of electr
the transmission amplitude, its phase and the spectral de
of electrons. In Sec. III we introduce a toy model consist
of a two level QD attached to two leads. We recall an e
pression for the transmission amplitude through the QD
well as for the spectral density~derivation of the latter can be
found in Appendix A!. In Sec. IV we study thein-phasecase
~all four coupling matrix elements having the same sign!. In
Sec. V we consider theout-of-phasecase, where one of th
matrix elements has a sign opposite to the others. We s
that the entire analysis, other than the discussion of the w
of the phase lapse~Sec. IV A! for which the temperature is
essential, is carried out atT50. Section VI includes some
remarks concerning the relevance of the present analys
the interacting case and the possible extension of our m
to more than two levels.

II. MEASURABLE QUANTITIES

Experimentally, the basic quantities characterizing tra
port through a QD are the conductance, the AB oscillatio
19531
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pattern when the QD is inserted in an AB interferometer a
the differential capacitance, describing how the number
electrons occupying the QD varies as a function ofVg .

Since we consider here a model of independent electr
it is possible to relate all these quantities9,11 to the transmis-
sion amplitudet(v) through the QD and the spectral dens
A(v). We assume throughout our analysis single-chan
transport through each participating lead.

A. The conductanceG

Information about the absolute value oft(v) close to the
Fermi level can be obtained through the linear response c
ductance, given by

G52
e2

h E dv f 8~v!ut~v!u2, ~1!

where f (v) is the Fermi function.

B. Phase of the transmission amplitudeu

It is also possible to measure the phase of the transmis
amplitude through the QD by inserting it in one arm of
open geometry AB interferometer, shown schematically
Fig. 1.

One measures the dependence of the linear conduct
through the interferometer upon the enclosed fluxF and on
the plunger gate voltageVg . It is possible to show7,11,12that

FIG. 1. Schematic picture of an open geometry AB interfero
eter. Electrons traverse the interferometer from the emitter~E! to
the collector (C). In one of the two arms a QD is inserted; a ma
netic flux F is enclosed in the area of the interferometer. The t
arrowed paths are those that contribute the most to the conduct
in the open geometry configuration.
6-2
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in this double-slit geometry the flux-dependent oscillato
component of the conductance is given by

GAB}2 ReF t ref* S E dv@2 f 8~v!#t~v! De2p iF/F0G , ~2!

wheret ref is the transmission amplitude through the referen
arm, assumed to beVg independent (t ref is taken energy in-
dependent as well!; F05hc/e is the flux quantum. It is thus
possible to extract information about the temperat
weighted phase of the transmission amplitude through
QD

u~T!5argF2E dv f 8~v!t~v!G . ~3!

In practice this is done by recording the AB oscillations
a function ofF for several values of the parameterVg . The
phase evolution~as a function ofVg) can be extracted5 from
the relative phase shift of the various curves. We note
the ‘‘transmission phase’’ so measured may not reflect
actual transmission phase through the QD, but might be
fected by multiple reflection paths, reflection from any of t
terminals of the interferometer and deviations fro
unitarity.13,14

C. Differential capacitance measurements

The spectral densityA(v) represents the local density o
states in the QD at energyv and is formally proportional to
the imaginary part of the trace of the dot retarded Gree
function matrix @see Eq.~A4!#. One can relate the spectr
density to the average number of electrons occupying the
through the expression

N5E
2`

` dv

2p
f ~v!A~v!, ~4!

and study howN varies as a function ofVg . In this case the
measured quantity is the differential capacitance

C~Vg!5
d eN

d Vg
5e E

2`

` dv

2p
f ~v!

d A~v!

d Vg
, ~5!

wheree is the electronic charge. The differential capacitan
can be measured by means of a detector sensitive to the
charge.15,16

III. A TOY MODEL HAMILTONIAN

We shall consider the Hamiltonian

H5( ek,ack,a
† ck,a1(

j
e jdj

†dj1 (
k,a, j

@Va, j ck,a
† dj1H.c.#,

~6!

where the operatorsck,a refer to electronic states in the lead
(a5L,R) and the operatorsdj describe the quantum do
levels (j 51,2). In order to simplify our discussion, we wi
assume the dot-lead couplingsVa, j to all have the same mag
nitude but possibly different phases.17 It is straightforward to
see that three of these phases can be gauged out,18 absorbing
19531
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them in the definitions of the operatorsck,a anddj . Hence,
we chooseVL,15VR,15VL,25V andVR,25eiwV. When time
reversal symmetry is present, the QD’s wave functions
be chosen real, whereby, upon an appropriate gauge o
lead wave functions, the value of the relative phasew is
either 0 orp, in other wordss[eiw561.

We are interested in calculating the transport propertie
this model as a function of a plunger gate voltage. This c
be done settinge1,252e6D/2, where D5e12e2, and
studying the behavior of the system as a function of

e~Vg!5e~Vg50!1Vg . ~7!

Other than the level spacing, the scale coming into play
the strength of the coupling to the leads

G52prV2, ~8!

wherer is the density of states~DOS! of the leads.
Since the Hamiltonian is free~quadratic!, the calculation

of both t(v) and A(v) is straightforward~see Appendix!.
One readily obtains

t6~v!5
G

D6~v!
@~v2e1!6~v2e2!#, ~9!

A6~v!5
2G

uD6~v!u2
@2v222v~e11e2!

1e1
21e2

21G2~171!#, ~10!

where the denominatorD6(v)[(v2e1)(v2e2)1 iG(2v
2e12e2)2G2(171)/2.

IV. THE IN-PHASE „sÄ¿1… CASE

As first step in our analysis we consider thein-phasecase,
s511 @upper sign in Eqs.~9!, ~10!# . Starting with the zero
temperature limit, all transport properties are determined
the value oft(v) at the Fermi level, i.e., atv5eF[0. From
Eq. ~9! the transmission amplitude at the Fermi level can
written as

ts51~0![t15
2Ge

e22~D/2!212iGe
. ~11!

We now discuss the implications to the conductance and
flux sensitive component.

A. The conductanceG and the transmission phaseu
for sÄ¿1

At zero temperature the Fermi function in Eq.~1! can be
substituted by a Dirac delta function andG is given byG
5(e2/h)t1 . The conductanceG is depicted in Fig. 2 for
various values of the parameters. The main feature to
noticed in Fig. 2 is the presence of an exact zero of
transmission probability between the two peaks, result
from the vanishing of the numerator in Eq.~11! at e50.
Physically that zero can be interpreted as the result of
structive interference between paths~left to right! traversing
6-3
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ALESSANDRO SILVA, YUVAL OREG, AND YUVAL GEFEN PHYSICAL REVIEW B66, 195316 ~2002!
levels 1 and 2 of the dot respectively~see Appendix A!. As
we demonstrate below, the interference pattern is sensitiv
the relative signs.

The existence of a zero in the transmission amplitude
plies the existence of an abrupt~without a scale! phase
lapse5,7,19–21of 2p in the ‘‘conductance valley’’ between th
two conductance peaks~see Fig. 3!. In terms of the AB os-

FIG. 2. Transmission probabilityut1u2 at the Fermi energy of
the leads vse for s51. Here e12e252 and G50.1 ~full !, 0.2
~dashed!, 0.5 ~dash-dotted!, and 1 ~dotted!. Notice that~i! at e50
the contributions to the transmission through to the two levels~in-
cluding off-diagonal elements of the transmission matrix! add up
destructively leading to an exact zero of the transmission proba
ity ~see Appendix B! and~ii ! the peak positions and maximal value
~equal to 1! are insensitive toG. The spectral density of thes
521 case (A2 in Fig. 8! exhibits a feature similar to the latter fo
large values ofG, while the spectral densityA1 ~see Fig. 5! has a
maximum ate50.

FIG. 3. The transmission phaseu1/2p at zero temperature vse
for s51. Here, e12e252 and G50.1 ~full !, 0.2 ~dashed!, 0.5
~dash-dotted!, and 1~dotted!. Note that the destructive interferenc
of the transmission through the dot’s levels leads to the vanishin
the conductance ate50 which, in turn, leads to an abrupt~without
a scale! phase-lapse in the ‘‘conductance valley.’’ As discussed
low @see Eq.~13!#, the width of the phase lapse at finite tempe
tures is}GT2/D2, introducing a new nontrivial energy scale.
19531
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cillations pattern~e.g., the conductance measured as a fu
tion of F) this implies that ase varies from 02 to 01 G(F)
shifts abruptly by half a period. Since atT50 this shift is
abrupt, it is physically impossible to discuss its directio
i.e., whether the phase of the AB oscillations jumps by2p
~lapse! or by 1p ~antilapse!. Interestingly, at finite tempera
tures this ambiguity is resolved: the phase varies by2p
close toe50 ~a lapse!.

This conclusion can obtained by noting that the traject
in the complex plane oft1 @as a function ofe(Vg)] is a
closed curve tangential to the the abscissa at the origin~see
the black curve in Fig. 4!, i.e., Im@ t(v)#<0. As e is swept
from 2` to 1`, the transmission amplitude performs tw

il-

of

-
-

FIG. 4. Plot ofut1(e)u2 vs e for e12e252 andG50.5 ~upper
plot! and of t1(e) in the complex plane~lower plot!. At zero tem-
perature the transmission amplitude evolves along a circle in
lower part of the complex plane (Im@ t#<0). As e is increased,
t1(e) evolves from point~a! traversing the origin ate50 @point
~b!# and winds around the circle again up to point~c!. The black
thick line in the lower plot denotes that portion of the circle that
visited twice byt1(e) ase varies from24 to 4. Upon temperature
averagingt1(e) evolves along a contour enclosed in the zero te
perature circle~grey line in the lower plot atT50.2). As a result,
the finite temperature curve does not contain the origin, and
phase lapse of Fig. 3 is smeared. It is then easily concluded th
T→0 the transmission phase lapses by2p.
6-4
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full counterclockwiserevolutions, starting fromt(2`)
5@02,02# and ending att(`)5@01,02#. In the lower plot
of Fig. 4 we show howt1(e) makes almost two full revolu-
tions around the circle when24,e,4. It starts ~for e
524) at @Re(t1),Im(t1)#'@20.3,20.05#, goes through
point ~a! ~see the upper plot of Fig. 4! then proceeds to poin
~b! at the origin and goes around the circle through point~c!.

For a fixede at finite temperatures, one needs to averag
over the sections of the curve close tot1(e), with the ap-
propriate statistical weight@see Eq.~C2!#. The result is a
trajectory~shown schematically as a gray contour in Fig.!
which does not include the origin; the phaseu1(T) evolves
from 2p to 0 with a lapse of a finite width ate50.

We note that by considering a vanishingly small~yet non-
zero! temperature, it is possible to determine that the ori
is not included within the closed contour, hence the transm
sion phase lapses by2p ~rather than by1p). For 0,T
!D,G, the evolution of the phaseu1 for e'0 is well ap-
proximated by~see Appendix C!

u1~e!.ArcTan@e/l#2
p

2
. ~12!

The width of the phase lapse is therefore given by a n
trivial combination ofT, G, andD:

l.~8p2/3!G T2/D2. ~13!

We note that this contrasts with the width of the conducta
peaks8 lpeak;max@G,T#. Therefore, the quadratic depe
dence ofl on theT leads atT,G!D to the inequality

l!lpeak for T,G!D.

The smallness ofl is in qualitative agreement with exper
mental observations.5

As seen from Fig. 2, the presence of a zero of the tra
mission amplitude implies thatG(e) has a peak-valley-pea
structure forall values ofG. The width~but not the depth! of
the conductance valley shrinks asG is increased, and the
value of the transmission probability at the peaks is alw
equal to 1.

B. Differential capacitanceC for sÄ¿1

We are now back to theT50 case. The features seen
the conductance are now contrasted with the behavior of
spectral densityA1 ~at the Fermi energy! as a function ofe,
depicted in Fig. 5. Unlike the destructive interference t
leads to the vanishing of the conductance ate50, the two
peaks in the spectral density tend tomergeinto a single peak
asG increases.

Formally the difference between these two quantities
seen in Eq.~A3! for the transmission and Eq.~A4! for the
spectral density. While the former depends on all the e
ments of the Green function matrix, including the o
diagonal ones, the latter contains information on its tra
only. Physically, the conductance depends directly on
size and signs of the couplings to the leads, as it descr
the transfer of an electron from the left lead to the right o
through both levels of the QD. The spectral density, on
19531
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other hand, depends on the couplings to the leads o
through the modification of the position and width of th
bare levels.

To gain some insight into the behavior of the spect
density, it is useful to rewrite it as the sum of two Lorent
ians

A1~v!522 ImF 1

v2ve
1

1

v2vo
G , ~14!

where the poles are given by

ve(o)52e2 iG6A~D/2!22G2. ~15!

The expression forA1(v) shows that forG!D/2 the two
Lorentzians are centered at the positions of the original l
els (e1,2) and have each a widthG. As G exceedsD/2 the
picture is drastically revised—in this limit the two peaks
the spectral densitymerge to form two peaks centered at
2e with different widthsGe(o)5G6AG22(D/2)2. Indeed,
while one of these two peaks ofA1 broadens asG is in-
creased, the second one becomes increasingly sharpe22,23

~see Fig. 5!. This behavior is directly reflected in the diffe
ential capacitance~as a function ofVg). At zero temperature
the differential capacitance@Eq. ~5!# of our toy model is
given by

C~Vg!5e
A~v50!

2p
. ~16!

The occurrence of the spectralmergingcan be understood
through a simple change of variables. Let us perform a
nonical transformation to even and odd combinations of
dot’s operators

de5
d11d2

A2
, do5

d12d2

A2
. ~17!

FIG. 5. The spectral densityA1 @given by Eq.~10! and related
to the differential capacitance via Eq.~16!# vs e for s511. Here
e12e252 and G50.1 ~full !, 0.2 ~dashed!, 0.5 ~dash-dotted!, 1
~dotted!, and 5~small dots!. Note that unlike the conductanceut1u2

depicted in Fig. 2, here there is a peak emerging ate50 for large
values ofG.
6-5
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ALESSANDRO SILVA, YUVAL OREG, AND YUVAL GEFEN PHYSICAL REVIEW B66, 195316 ~2002!
Substituting in the Hamiltonian, Eq.~6!, we obtain

H5( ek,ick,i
† ck,i2e~do

†do1de
†de!1

D

2
~de

†do1H.c.!

1(
k

V@~ck,L
† 1ck,R

† !de1H.c.#. ~18!

In this representation, only one combination~even! is di-
rectly coupled to the leads. However, since both the even
odd modes are not eigenstates of the dot’s Hamiltonian t
are coupled by a tunneling term, whose strength isD/2.

Employing this transformation, we can understand qu
tatively the behavior of the spectral density forG*D/2. The
reason why in this limit it is particularly useful to stick to th
even-odd basis is that the escape time 1/G from the even
combination to the leads is shorter than the typical time
tunneling between the two modes 2/D. Once the broadening
G due to the coupling to the leads is larger thanD/2 it is not
surprising that the odd/even peaks of the spectral density
concentric. Moreover, the even mode is directly coupled
the leads~couplingG), while the odd mode is coupled to th
even one (D/2) and only indirectly to the leads. It thus turn
out that the broad~narrow! peak correspond to the eve
~odd! combination.

V. ANALYSIS OF THE CASE sÄÀ1

As anticipated in the introduction, the behavior describ
above is not universal but depends crucially on the rela
sign of the coupling constants,s. Indeed, the qualitative fea
tures fors521 are different from the ones described abo
for s511. In this case the spectral density assumes the f
@see Eq.~10!#

A2~v!5
2G

~v1e2D!21G2
1

2G

~v1e1D!21G2
, ~19!

while the transmission amplitude is given by@see Eq.~9!#

t2~v!5GF 1

v1e2D1 iG
2

1

v1e1D1 iGG . ~20!

The conductance G and transmission phaseu for s5
21. We first consider the transmission probability depic
in Fig. 6. The features of the cases521 are markedly dif-
ferent from the previouss511 case. First, the transmissio
probability ut2u2 is always finite over the entire energy (e)
range, implying the absence of a phase lapse. Indeed
phase evolves continuously from zero to 2p as e is swept
across the two resonances~see Fig. 7!.

Secondly, the positions of the maxima of the transmiss
probability ut2u2 shift asG is increased~contrary to thes5
11 scenario, Fig. 3!; they are given by v652e
6A(D/2)22G2 for G&D/2. For G*D/2 the two peaks
merge24 and are centered at2e. This behavior is reminiscen
of the one observed in the spectral density in thes511
case, see Fig. 5.
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It is quite interesting to note that for the presents521
scenario the peaks in the spectral density do not shift~unlike
the s511 case!. This is seen from Eq.~19! and Fig. 8.

A concise way to summarize the qualitative behavior
the casess561 is by noting thatut6u2 andA6 behave in a
complementary manner as far as the peak position
concerned.24 For both ut1u2 and for A2 the peak positions
are insensitive to the magnitude ofG, while for both ut2u2

and forA1 the peaks approach each other asG is increased
and finally they merge. The reader may consult Table I.

VI. BRIEF SUMMARY AND POSSIBLE EXTENSIONS

The preceding analysis was restricted to a toy model o
QD with two adjacent levels. The qualitative features d
scribed above would survive the extension of our mode

FIG. 6. The transmission probabilityut2u2 at the Fermi energy
vs e for s521. Here, D5e12e252 and G50.1 ~full !, 0.2
~dashed!, 0.5 ~dash-dotted!, and 1 ~dotted!. Notice that in contrast
to the zero ate50 for s511 ~Fig. 2!, here at largeG the conduc-
tance is peaked ate50. In similarity to the spectral densityA1

~Fig. 5!, asG increases the conductance peaks approach each
subsequently merge~Ref. 24!.

FIG. 7. The transmission phaseu2/2p at zero temperature vse
for s511. Here,D5e12e252 andG50.1 ~full !, 0.2 ~dashed!,
0.5 ~dash-dotted!, and 1 ~dotted!. Notice that in contrast to Fig. 2
the phase evolves in the conductance valley continuously from
to 2p, hence no phase lapse.
6-6
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N.2 levels. AsG is increased towardsD, the crucial param-
eter determining the behavior of the conductance, the tra
mission phase and the spectral density is the relative sig
the coupling matrix elements associated with consecu
levels. As an example Figs. 9 and 10 depict the transmis
probability utu2 and the transmission phaseu, respectively,
for a set of 7 levels, the first four ‘‘in-phase’’ (s511) while
the next three levels being ‘‘out of-phase’’ (s521). Simi-
larly to the two-level model, we observe here zeroes of
transmission amplitude as well as phase lapses (s51). The
peak structure fors521 is blurred, indicating an incipien
merger of the peaks~see Fig. 6!.

OnceG,T@D ~for our noninteracting model! more than
two levels will contribute to the transmission amplitude

FIG. 8. The spectral densityA2 at the Fermi energy vse for
s521. HereD5e12e252 and G50.1 ~full !, 0.2 ~dashed!, 0.5
~dash-dotted!, and 1 ~dotted!. Note that the peak positions do no
depend on the strength of the coupling to the leadsG similarly to
the behavior ofut1u2 depicted in Fig. 2.

FIG. 9. The transmission probabilityutu2 at the Fermi level vse
for 7 levels, with level spacingD53. All couplings to the leads
have the same magnitude~for every levelG5GL1GR51). How-
ever, the first four levels are in phase, while the last three~peaks on
the right! have a relative phase ofp between each consecutive pa
Note that the ‘‘conductance valley’’ between, e.g., peaks 4 an
almost disappears. All the qualitative features described in the
for two levels are observed also here.
19531
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electrons at a certain energy. In this case, for every valu
the gate voltage, the details of the couplings to the le
~magnitude and phase! of a set ofN.G/D levels around the
Fermi level determine the behavior of the system.

The issue of electron-electron interaction deserves car
consideration, beyond the scope of the present paper. A
remarks are nevertheless due. One can account for the i
action on the level of a capacitive term, incorporating t
standard term

Ĥ int5Un1n2 ~21!

(ni5di
†di) in the Hamiltonian@see Eq.~6!#. It is possible to

treat this interaction term within a self-consistent Hartr
scheme. This approximation is justified25 whenG,D. In this
case the main relevant features of the model studied h
i.e., the qualitative differences between the two casess5
11 ands521 as well as the contrasting behavior of th
conductance and the spectral density, remain unchange
particular, fors511 the conductance valley contains a ze
and therefore the phase exhibits a lapse in similitude to
noninteracting case. Within this scheme the main effect
including the interactions is the replacement of the bare l
els e1 ,e2 by the self consistent Hartree levels

e185e11U^n2&; e285e21U^n1&. ~22!

It follows that the distance between consecutive conducta
peaks is then'D1U.

In conclusion, we have analyzed a simple noninteract
toy model describing a QD coupled to two leads and stud
certain important observables such as the transmission
plitude through the QD~phase and magnitude!, as well as the
spectral density. We have shown that the transmission p
ability and the spectral density exhibit qualitatively differe

5
xt

FIG. 10. The transmission phaseu/2p vs e for 7 levels, with
level spacingD53. All couplings to the leads have the same abs
lute value~for every levelG51) ~see the caption of Fig. 9!. Since
the first four levels are ‘‘in phase’’ (s511), a phase lapse of
2p is observed in the valleys between peaks~1,2!, ~2,3!, and~3,4!.
For the remaining levels, being ‘‘out of-phase,’’ the phase evol
continuously. The discontinuous jump seen ate.5 is due to the
fact that the phase is defined between 0 and 2p anddoes notreflect
any physical effect.
6-7
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ALESSANDRO SILVA, YUVAL OREG, AND YUVAL GEFEN PHYSICAL REVIEW B66, 195316 ~2002!
behavior as function of the plunger voltage. These diff
ences become dramatically apparent when the couplin
the leadsG exceedsD.

A crucially important parameter in our discussion is t
relative phasew between two adjacent levels in the QD. Th
behavior of the various physical quantities depends stron
on whether this phase isw50 (s511) or w5p
(s521)~time reversal symmetry is assumed!. The salient
features observed in these two cases are summarize
Table I.
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APPENDIX A: DERIVATION OF THE TRANSMISSION
AMPLITUDE AND SPECTRAL DENSITY

In this appendix we sketch the derivation of the transm
sion amplitude and the spectral density, Eqs.~9! and~10!. All
physical quantities discussed here can be expressed in t
of the QD Green’s functionsGi , j (t)[2 iu(t)^di(t),dj

†(0)&.
This Green’s function matrix is given by

G~v!5~v2H!21, ~A1!

where

H5S e12 iG 2 iGe2 iw/2cos~w/2!

2 iGeiw/2cos~w/2! e22 iG D , ~A2!

is the effective Hamiltonian of the two level system, follow
ing the integration of the leads states. The widthG is given
by 2prV2, wherer is the DOS of the leads.

It is possible to write the transmission amplitude from l
to right in terms of the matrixG

t~v!52pr (
i , j 51,2

VL,i* @G~v!# i j VR, j . ~A3!

Thus, the evaluation of the transmission amplitude requ
knowledge of the diagonal and off-diagonal components
the matrixG. On the other hand, the density of states in
QD involves only the diagonal components ofG and is given
by

A~v!522 Im@ tr@G~v!##. ~A4!

The calculation ofG(v) is straightforward and yields

G5
1

D~v! S v1e1D/21 iG 2 iGe2 iw/2cos~w/2!

2 iGeiw/2cos~w/2! v1e2D/21 iG D ,

~A5!
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where the denominator is D(v)5(v1e)22(D/2)2

12iG(v1e)2G2sin2(w/2).

APPENDIX B: INTERFERENCE AND OFF-DIAGONAL
GREEN’S FUNCTIONS

In this appendix we show, by means of a perturbat
expansion inG, that the contribution of the off-diagona
Green’s functions to the transmission amplitude is crucia
obtaining a zero int1 and therefore an abrupt phase lapse
T50. Using Eq. ~A3! as well as the expression for th
Green’s function matrixG, Eq.~A5!, one can write the trans
mission amplitudet1 as

t1~v!5tdiag~v!1toff~v!, ~B1!

tdiag~v![G G1,1~v!1G G2,2~v!, ~B2!

toff~v![G G1,2~v!1G G2,1~v!, ~B3!

wheretdiag(off) consists of the diagonal/~off-diagonal! contri-
butions tot1 .

Let us now expand the two contributions tot1 up to sec-
ond order inG. Settingv50 one obtains

tdiag~0!.2
8e

D224e2
G2 i

8~D214e2!

~D224e2!2
G2, ~B4!

toff~0!. i
8

D224e2
G2. ~B5!

The expansion oftdiag begins with the linear order inG,
describing processes where an electron hops from the l
to the dot and out. This term is real and vanishes fore50.
The imaginary part oftdiag is determined by theO(G2) term
in the perturbative expansion, describing events where
electron hops twice from the lead to thesamelevel before
being transfered through the dot. This term is of the sa
order in G as the leading term in the expansion oftoff , the
latter describing events where an electron hops twice fr
the lead todifferent levels before being transfered throug
the dot ~e.g., left lead→level 1→left lead→level2→right
lead!. It turns out that the termO(G2) in the perturbative
expansion oftoff is purely imaginary and cancels exact
against theO(G2) term of tdiag at e50. More generally, once
the contribution of the off-diagonal Green’s functions is i
cluded, the cancellations leading to an exact zero of
transmission amplitude appear order by order in the per
bative expansion in the dot-lead coupling.

APPENDIX C: EVALUATION OF THE WIDTH OF THE
PHASE LAPSE AT FINITE TEMPERATURES

In this appendix we derive derive the expression for
width of the phase lapse Eq.~13!. The phase observed in a
AB interference experimentu is defined in Eq.~3!. Focusing
on the cases511, the transmission amplitude Eq.~9! can
be expressed as
6-8
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t1~v!5
2G~vo1e!

~vo2ve!

1

v2vo
2

2G~ve1e!

~vo2ve!

1

v2ve
,

~C1!

where the polesve,o are given in Eq.~15!. The temperature
averaged transmission amplitude is therefore given by

t1~T!52E dv f 8~v!t~v!5
2G~vo1e!

~vo2ve!
F 1

2p i T
C8F1

2

1
vo

2p i T G G2
2G~ve1e!

~vo2ve!
F 1

2p i T
C8F1

2
1

ve

2p i T G G ,
~C2!

whereC8 is the trigamma function. In order to obtain th
low temperature behavior of the transmission phase clos
s.
,

i

. J

R

.

tt

,

y

n,

to
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the phase lapse, one has to expand Eq.~C2! up to second
order ine andT obtaining

t1~T!52
8G

D2
e2 i

64G2~p2T213e2!

3D4

.2
8G

D2
e2 i

64G2p2

3D4
T2, ~C3!

the last equality being valid forueu!T. The width of the
phase lapse,l, in Eq. ~13! follows. It is obtained straightfor-
wardly from the expression for the temperature avera
transmission phase

u~T!5ArcTanS 2
Re@ t#

Im@ t# D2
p

2
5ArcTanS 2

e

l D2
p

2
.

~C4!
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ing D represents Zeeman splitting. It is known that this mo
could give rise to the Kondo effect, providedD,TK (TK!G),
whereTK is the Kondo temperature. It follows that in this re
gime of the model the Hartree approximation is inappropri
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since it erroneously breaks the SU(2) symmetry. ForD.G
~henceD@TK) the pseudospin SU(2) symmetry is broken, t
Kondo effect is suppressed, and employment of the Hartree
proximation is valid.
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