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Signs of quantum dot-lead matrix elements: The effect on transport versus spectral properties
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A small quantum dot coupled to two external leads is considered. Different signs of the dot-lead coupling
matrix elements give rise to qualitatively different behavior of physical observables such as the conductance,
the phase of the transmission amplitude, and the differential capacitance of the dot. For certain relative signs
the conductance may vanish at values of the gate potential, where the spectral density is maximal. Zeroes of the
conductance are robust against increasing the dot-lead coupling. They are associated with abrupt phase lapses
in the transmission phase whose width vanishes as the square of the temperature. We carefully distinguish
between phase lapses ofr and phase antilapses af
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[. INTRODUCTION when the energy of the dot witN electrons is equal to the
energy of the dot witiN+1 electrongthe Coulomb peaks

Two interesting directions in the study of quantum dotsThe peaks in conductance nearly coincide with the maxima
(QD’s) have emerged in recent years. First, it has becomef the derivative of the mean number of electrons in the QD
clear that as the dot-lead coupling is increased, the effect ofith respect toVy. The separation between the Coulomb
the Coulomb blockade is greatly suppressed, yet does n@eaks is mainly dictated by the average charging energy of
altogether disappear. Works discussing the physics ofhe dotU.
strongly coupled QD's include Refs. 1+8ee also Ref. 4 The main goal of the present study is to investigate the
Second, experiments addressing fiteaseof the electron effect of the signs of the dot-lead coupling matrix elements.
transmitted through a QIPemploying an Aharonov-Bohm The underlying physics is related to the interference among
(AB) setuf] revealed interesting and often intriguing dlﬁergnt transmlssmn _amph.tude(say, from the left lead to
physics® the right Igad, desc.rlbmg different traversal paths.through

Of the large number of theoretical works that followed, ad|f'ferent single particle levels. We analyze how this affects

few have addressegither explicitly or implicitly) the role various physical quantities, such as the linear conductance

of the signs of the dot-lead coupling matrix elemeitsio through the QD, the phase of the transmission amplitude as
measured by an AB interference experiment, the spectral

systematic study of the effect of the magnitude and the relagensity of the QD, and the differential capacitance.
tive sign of thgs_e coupling mgtnx elements on a number o Reporting here the first part of our project, and attempting
phys[cal quantities, such as linear conductance, the_z spectrﬁq simplify the problem(ignoring some of the complex but
density, and the transmission phase has been carried out imeresting ingredienjs we consider spinless electrons and
date. ignore at this point electron-electron interactions. We also
A small QD(_or a small glectron dropl}atwhere the elec- 1 5del the spectrum of the small dot by two single particle
tron spectrum is discrete, is a possible nanoscale Iaboratoqgvels_ In a subsequent work we will address the issue of an
for the study of interferenceThe discreteness of the spec- interacting QD. Below(see Sec. Vilwe briefly comment on
trum of a small dot is relevant when the mean level spacing,q rejevance of studying such a toy model for the sake of
A>T kgT, wherel is the characteristic strength of the cou- gaining insight into the physics of “real life” QD.
pling to the leadgsee Eq.(8) below] and T is the tempera- We find that in addition to the strength of the couplifig
ture) Indeed, in such systems there are various paths whicthe key to understand the physics of the relevant physical
interfere and contribute to the conductance. These corresbservables is theelative phaseof the coupling matrix ele-
spond to different ways to traverse the QD, taking advantaggnents of consecutive orbital levels in the QD to the leads.
of the various single particle levels. An efficient way to This will be defined more accurately below. Also, we find
probe the effect of such interference on the transmission amhat the dependence of the conductance and the differential
plitude through the QOimagnitude and phasés to embed  capacitancéor the spectral densityas a function oV, are
the QD in one arm of an AB interferometer. complementary. For example, when the two consecutive lev-
In a typical experimental setup the QD is connected toels arein phase(i.e., the signs of the respective couplings of
source and drain leads via tunneling barriéos diffusive  |evels 1 and 2 are identidalthe conductance exhibits two
contacty with a typical coupling strengti’, controlled  peaks whose positions are unaffectedlbyBy contrast, the
through additional gates. A “plunger gate” coupled electro-two peaks of the spectral densitiyence the differential ca-
Statica"y to the QD controls the number of electrons in thepacitancé approach each other &sis increased, eventua”y
latter® As the potentialVg of the plunger gate is increased, merging into a single peak. The complementarity is summa-
electrons are pulled into the dot. When the coupling to thgized in Table | below.
leadsI is small ("<A) distinct peaks in the source-drain It should be noted that the mean number of electrons on
linear conductance occur at near-degeneracy pbines, the dot depends only on the energy spectrum of the dot and
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TABLE I. Notice the complementarity in the qualitative features of the differential capacitance and the
conductance fos=+1 ands=—1.

s=+1 s=-1

G: Conductance peaks do not shift peaks mergean\/2
6: Transmission phase a sharp phase lapse of vidtiT/A)? no phase lapse
C: Differential capacitance peaks mergelat A/2 peaks do not shift

the level width(given by diagonal matrix elements of the pattern when the QD is inserted in an AB interferometer and
single electron propagatoBy contrast, the conductance de- the differential capacitance, describing how the number of
pends also on the actual value of the eigenfunction of thelectrons occupying the QD varies as a functiorvgt
system(including off-diagonal matrix elements of the single  Since we consider here a model of independent electrons,
electron propagatdy. Hence it is not surprising that over a it is possible to relate all these quantifiésto the transmis-
certain range of values df the conductance and the differ- sion amplitude(w) through the QD and the spectral density
ential capacitance exhibit qualitatively different behatflor A(w). We assume throughout our analysis single-channel
as a function ot transport through each participating lead.

Another quantity which receives much attention here is
the phase of the total transmission amplitude. When the signs
of the respective couplings of the two dot’s levels are iden- _
tical (the in-phasescenarig, it turns out that there is a value _ Information about the absolute valuetgtv) close to the
of V, (corresponding to the “conductance valley” between Fermi level can be obtained through the linear response con-
the two conductance peakfor which the zero temperature ductance, given by
conductance vanishes. This vanishing of the conductance is
associated with a lapse of the transmission phase. It turns out
(by carefully including the off-diagonal Green’s functions
into the calculation of the transmission amplitude, see Ap- _ ) )
pendix B that the width of the phase lapse vaniskas the =~ Wheref(w) is the Fermi function.
square of the temperatyré&Ve point out in our analysis how
it is possible to distinguish a 7 phase lapse from & = B. Phase of the transmission amplitude?
one, an observation which, we believe, has a greater range of | . . .

o e . - Itis also possible to measure the phase of the transmission
validity than the specific problem considered here. Surpris-

ingly, the width of the phase lapse is determined by the tem‘:"mplltude through the QD by inserting it in one arm of an

perature, to be contrasted with the width of the conductanc@Pe" geometry AB interferometer, shown schematically in

. ) Eig. 1.
peak(the Iattgr is determined by.MER,T]).. One measures the dependence of the linear conductance
The remainder of the paper is organized as follows. In

. . ... through the interferometer upon the enclosed fhiand on
Sec. Il we discuss the relation between measurable quanﬂﬂTEe lunaer aate volt It is possible to shoktl2that
characterizing a QD, such as the conductance, the AB oscil- plunger gate voltagé, . It is possi s a
latory part of the conductance, the mean number of electrons,
the transmission amplitude, its phase and the spectral density

- s Reference arm
of electrons. In Sec. lll we introduce a toy model consisting / \
of a two level QD attached to two leads. We recall an ex- ‘

A. The conductanceG

2
6=+ [ dof (@t &

pression for the transmission amplitude through the QD as

well as for the spectral densitderivation of the latter can be

found in Appendix A. In Sec. IV we study th@n-phasecase E

(all four coupling matrix elements having the same &ign |

Sec. V we consider theut-of-phasecase, where one of the
matrix elements has a sign opposite to the others. We stress

that the entire analysis, other than the discussion of the width \ | /

of the phase laps€ec. IV A) for which the temperature is L
essential, is carried out dt=0. Section VI includes some
remarks concerning the relevance of the present analysis to QD
the interacting case and the possible extension of our model
to more than two levels. FIG. 1. Schematic picture of an open geometry AB interferom-
eter. Electrons traverse the interferometer from the em(igrto
Il. MEASURABLE QUANTITIES the collector C). In one of the two arms a QD is inserted; a mag-

netic flux ® is enclosed in the area of the interferometer. The two
Experimentally, the basic quantities characterizing transarrowed paths are those that contribute the most to the conductance
port through a QD are the conductance, the AB oscillationsn the open geometry configuration.
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in this double-slit geometry the flux-dependent oscillatorythem in the definitions of the operatarg , andd;. Hence,
component of the conductance is given by we chooseV/| ;=Vg 1=V ,=V andVg,=€'*V. When time
reversal symmetry is present, the QD’s wave functions can
?) be chosen real, whereby, upon an appropriate gauge of the
' lead wave functions, the value of the relative phasés
&gither 0 orm, in other wordss=e'¢=*1.
We are interested in calculating the transport properties of
dependent as wajldy=hc/e is the flux quantum. It is thus this model as a function of a plunger gate voltage. This can

possible to extract information about the temperature®® ddF’”e hsettt)inr?el,f _f'fﬁA/Z’ WhereAf:'El_.ez‘ fand
weighted phase of the transmission amplitude through th&tdying the behavior of the system as a function o

Qb €(Vg)=e(Vg=0)+V,. )

0(T):arg{ — f dof'(w)t(w)

Gapg*2 R%tfef(fdw[—f’(a))]t(w))ezm‘b/q’o

wheret ¢ is the transmission amplitude through the referenc
arm, assumed to b¥; independentt( is taken energy in-

3) Other than the level spacing, the scale coming into play is
the strength of the coupling to the leads

In practice this is done by recording the AB oscillations as I'=2mpV?, (8)
a function of® for several values of the parame¥y. The . .
phase evolutiorfas a function of/,) can be extractédrom ~ Wherep is the density of statedOS) of the leads.
the relative phase shift of the various curves. We note that Since the Hamiltonian is frequadratig, the calculation
the “transmission phase” so measured may not reflect th@f botht(«) and A(w) is straightforward(see Appendix.
actual transmission phase through the QD, but might be afone readily obtains
fected by multiple reflection paths, reflection from any of the

terminals of the interferometer and deviations from t (w)= [(0—€)*(0—€)], 9
unitarity 1314 - D.(w)
C. leferentlaTI capacitance measurements | A.(w)= 2[2w2—2w(61+ e)
The spectral densiti(w) represents the local density of D+ (w)]
states in the QD at energy and is formally proportional to 44 E4TY151)] (10)
l 2 ’

the imaginary part of the trace of the dot retarded Green’s

function matrix[see Eq.(A4)]. One can relate the spectral where the denominatoD . (w)=(w—€;)(w—€)+i'(2w
density to the average number of electrons occupying the QB- ¢, — €,) —I'?(151)/2.

through the expression

= de IV. THE IN-PHASE (s=+1) CASE
N= J,wﬁf(“’)A(w)’ 4 As first step in our analysis we consider thephasecase,

_ ) ) s=+1 [upper sign in Eqs(9), (10)] . Starting with the zero
and study howN varies as a function d¥; . In this case the temperature limit, all transport properties are determined by

measured quantity is the differential capacitance the value oft(w) at the Fermi level, i.e., ab=e=0. From
deN = do d A(w) Eq. (9) the transmission amplitude at the Fermi level can be
C(Vv ):_:ef —f(w) ———, (5) written as
9 dV, 2T dVy
wheree is the electronic charge. The differential capacitance te_,(0)=t, = 2le _ (12)
can be measured by means of a detector sensitive to the QD e?—(A2)2+2iTe
charge!®1®

We now discuss the implications to the conductance and its

flux sensitive component.
Ill. ATOY MODEL HAMILTONIAN

We shall consider the Hamiltonian A. The conductanceG and the transmission phased
for s=+1
H=2 €aClaChat > €didi+ X [V, cl di+H.cl, At zero temperature the Fermi function in Bd) can be
! K] substituted by a Dirac delta function alis given by G
(6) =(e?/h)t, . The conductanc& is depicted in Fig. 2 for

where the operators, , refer to electronic states in the leads various values of the parameters. The main feature to be
(e=L,R) and the operatorsl; describe the quantum dot noticed in Fig. 2 is the presence of an exact zero of the
levels (=1,2). In order to simplify our discussion, we will transmission probability between the two peaks, resulting
assume the dot-lead couplings ; to all have the same mag- from the vanishing of the numerator in E(L1) at e=0.
nitude but possibly different phas¥slt is straightforward to  Physically that zero can be interpreted as the result of de-
see that three of these phases can be gaugeld absorbing  structive interference between patftest to right) traversing
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[t4[?

l L

) -2 2 4 €
(a) (b) (c)
FIG. 2. Transmission probabilityt, |? at the Fermi energy of
the leads vse for s=+. Heree;—€,=2 andI'=0.1 (full), 0.2

(dasheg 0.5 (dash-dottef] and 1 (dotted. Notice that(i) at e=0 5. (b) 5.3 0.4
the contributions to the transmission through to the two letiels (a) )l( (c)
-0.2
-0. 4
-0.¢
—048'

cluding off-diagonal elements of the transmission matesd up Re ty

destructively leading to an exact zero of the transmission probabil-
ity (see Appendix Band(ii) the peak positions and maximal values
(equal to ] are insensitive td". The spectral density of the
=—1 case A_ in Fig. 8 exhibits a feature similar to the latter for
large values of", while the spectral densit% . (see Fig. 5 has a
maximum ate=0.

levels 1 and 2 of the dot respectivelsee Appendix A As
we demonstrate below, the interference pattern is sensitive ti
the relative sigrs.
The existence of a zero in the transmission amplitude im- Im ¢,
plies the existence of an abrugithout a scalg phase
laps&712-2lof — 77 in the “conductance valley” between the ~ FIG- 4. Plot of|t, (€)|? vs € for €;,— e,=2 andI'=0.5 (upper

two conductance peaksee Fig. 3. In terms of the AB os- plot) and oft, (€) in the complex plané€lower ploY. At zero tem-
perature the transmission amplitude evolves along a circle in the

lower part of the complex plane ([m=<0). As € is increased,
t.(e) evolves from point(a) traversing the origin at=0 [point

(b)] and winds around the circle again up to pofot. The black
thick line in the lower plot denotes that portion of the circle that is
visited twice byt , (€) ase varies from—4 to 4. Upon temperature
averagingt , (€) evolves along a contour enclosed in the zero tem-
perature circlggrey line in the lower plot alf =0.2). As a result,

the finite temperature curve does not contain the origin, and the
phase lapse of Fig. 3 is smeared. It is then easily concluded that as
T—0 the transmission phase lapses-byr.

cillations patterne.g., the conductance measured as a func-
tion of @) this implies that ag varies from 0 to 0" G(®)
shifts abruptly by half a period. Since @t=0 this shift is
abrupt, it is physically impossible to discuss its direction,
i.e., whether the phase of the AB oscillations jumps-by
FIG. 3. The transmission pha#e /27 at zero temperature ws (lapsg or by + 4 (e_mtil_apsé. Interestingly, at finite 'Fempera-
for s=+. Here, e;—e,=2 and'=0.1 (full), 0.2 (dashedi 0.5 tures this ambiguity is resolved: the phase varies-y
(dash-dottey and 1(dotted. Note that the destructive interference Cl0S€ t0€=0 (a lapsg. _ _ _
of the transmission through the dot’s levels leads to the vanishing of This conclusion can obtained by noting that the trajectory
the conductance at=0 which, in turn, leads to an abrufwithout  in the complex plane of, [as a function ofe(V,)] is a
a scal¢ phase-lapse in the “conductance valley.” As discussed beclosed curve tangential to the the abscissa at the ofgia
low [see Eq.(13)], the width of the phase lapse at finite tempera-the black curve in Fig. #i.e., Inf{t(w)]<0. As € is swept
tures is«I'T?/A2, introducing a new nontrivial energy scale. from —oo to +, the transmission amplitude performs two

0,/2%
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full counterclockwiserevolutions, starting fromt(— ) Ay
=[07,0"] and ending at(«)=[0",07]. In the lower plot 20
of Fig. 4 we show how , (¢) makes almost two full revolu-
tions around the circle whem-4<e<4. It starts(for e
=—4) at[Re(,),Im(t,)]~[—0.3,—-0.05], goes through
point (a) (see the upper plot of Fig,)4hen proceeds to point
(b) at the origin and goes around the circle through p@int

For a fixede at finite temperaturgsone needs to average
over the sections of the curve closetto(e), with the ap-
propriate statistical weighfsee Eq.(C2)]. The result is a
trajectory(shown schematically as a gray contour in Figy. 4
which does not include the origin; the phage(T) evolves
from — 7 to O with a lapse of a finite width at=0.

We note that by considering a vanishingly smgt non- peesmemARES
zerg temperature, it is possible to determine that the origin
is not included within the closed contour, hence the transmis- F|G. 5. The spectral density, [given by Eq.(10) and related
sion phase lapses by m (rather than by+ ). For O<T to the differential capacitance via E€L6)] vs € for s=+1. Here
<A,T", the evolution of the phasé, for e~0 is well ap- ¢;—e,=2 andI'=0.1 (full), 0.2 (dashedi 0.5 (dash-dotte}] 1

proximated by(see Appendix € (dotted, and 5(small dot$. Note that unlike the conductanfte |?
depicted in Fig. 2, here there is a peak emerging=a0 for large
™ I fT.
0.(e)=ArcTar e/\]~ . (19 Vauese©

other hand, depends on the couplings to the leads only
The width of the phase lapse is therefore given by a nonthrough the modification of the position and width of the
trivial combination ofT, I", andA: bare levels.
) 202 To gain some insight into the behavior of the spectral
N=(8m I TTA". (13 density, it is useful to rewrite it as the sum of two Lorentz-
We note that this contrasts with the width of the conductancéans
peak$ Npeamax{ ', T]. Therefore, the quadratic depen-
dence ofA on theT leads afl,I'<<A to the inequality A (w)=-2 Im[

1
+
W—we W— w0,

, (14

N<Apeak for T, I'<A, )
. L ) ~ where the poles are given by
The smallness ok is in qualitative agreement with experi-

mental observatior_%. weo)= — €~ 1= \(A/2)2—T?, (15)
As seen from Fig. 2, the presence of a zero of the trans-
mission amplitude implies th&k(e) has a peak-valley-peak The expression foA . (o) shows that fol"<A/2 the two
structure forall values ofl". The width(but not the depthof ~ Lorentzians are centered at the positions of the original lev-
the conductance valley shrinks &sis increased, and the els (e;,) and have each a width. As I' exceedsA/2 the
value of the transmission probability at the peaks is alwayicture is drastically revised—in this limit the two peaks of
equal to 1. the spectral densitynergeto form two peaks centered at
— € with different widthsI'g)=1"* JI?2=(A/2)?. Indeed,

B. Differential capacitance C for s=+1 while one of these two peaks @&, broadens ag’ is in-

creased, the second one becomes increasingly shafper

. . see Fig. 5. This behavior is directly reflected in the differ-
the conductance are now contrasted with the behavior of th ntial capacitancéas a function ol/,). At zero temperature,

spectral density , (at the Fermi energyas a function of, : : . .

depicted in Fig. 5. Unlike the destructive interference thatg;seglgiremlal capacitancigq. (5)] of our toy model is

leads to the vanishing of the conductancesat0, the two

peaks in the spectral density tendnb@rgeinto a single peak A(w=0)

asI" increases. C(Vy)=e 5 .
Formally the difference between these two quantities is ™

seen in Eq.A3) for the transmission and EgA4) for the .
spectral density. While the former depends on all the ele; The occurrence of the spectrargingcan be understood

ments of the Green function matrix, including the off- through a simple change of variables. Let us perform a ca-

diaconal ones. the latter contains information on its tracenonical transformation to even and odd combinations of the
9 ' dot’'s operators

only. Physically, the conductance depends directly on the
size and signs of the couplings to the leads, as it describes d-+d d.—d
the transfer of an electron from the left lead to the right one d=—" "2 d=-"_2 (17)
through both levels of the QD. The spectral density, on the ¢ 2 ° 2

We are now back to th& =0 case. The features seen in

(16)
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Substituting in the Hamiltonian, E¢6), we obtain
T T T A i
H=2 eicl o~ e(dgdotdide) + 5 (dido+H.c)

+; V[(cf +cfp)de+H.cl. (18)

In this representation, only one combinati@ver) is di-
rectly coupled to the leads. However, since both the even ant
odd modes are not eigenstates of the dot’s Hamiltonian the)
are coupled by a tunneling term, whose strength /2.

Employing this transformation, we can understand quali-
tatively the behavior of the spectral density o= A/2. The
reason why in this limit it is particularly useful to stick to the
even-odd basis is that the escape timE frfom the even FIG. 6. The transmission probability_|? at the Fermi energy
combination to the leads is shorter than the typical time folys ¢ for s=—1. Here, A=¢;—€,=2 and I'=0.1 (full), 0.2
tunneling between the two modes\2/Once the broadening (dashed 0.5 (dash-dottej and 1 (dotted. Notice that in contrast
I' due to the coupling to the leads is larger the#2 it is not  to the zero at=0 for s=+1 (Fig. 2), here at largd” the conduc-
surprising that the odd/even peaks of the spectral density atence is peaked at=0. In similarity to the spectral densit
concentric. Moreover, the even mode is directly coupled tdFig. 5, asI" increases the conductance peaks approach each and
the leadgcouplingl’), while the odd mode is coupled to the subsequently mergeref. 24.
even one A/2) and only indirectly to the leads. It thus turns

out that the broadnarrow peak correspond to the even Itis quite interesting to note that for the present —1
(odd) combination. scenario the peaks in the spectral density do not &lnifike

thes=+1 case. This is seen from Eq19) and Fig. 8.

A concise way to summarize the qualitative behavior of
the cases= +1 is by noting thait..|? andA. behave in a

As anticipated in the introduction, the behavior describedccomplementary manner as far as the peak position is
above is not universal but depends crucially on the relativeoncerned? For both|t.|? and for A_ the peak positions
sign of the coupling constants, Indeed, the qualitative fea- are insensitive to the magnitude Bf while for both|t_|?
tures fors= —1 are different from the ones described aboveand forA . the peaks approach each othedas increased
for s=+1. In this case the spectral density assumes the forrand finally they merge. The reader may consult Table I.
[see Eq(10)]

-4

V. ANALYSIS OF THE CASE s=-1

VI. BRIEF SUMMARY AND POSSIBLE EXTENSIONS

2r 2r . . .
= + ., (19 The preceding analysis was restricted to a toy model of a
(w+e—A)2+T? (w+e+A)?+T2 QD with two adjacent levels. The qualitative features de-
scribed above would survive the extension of our model to

A_(w)

while the transmission amplitude is given [Bee Eq.(9)]

6_/27
)= A AT wreranit) 0 0.4} (T
Y

The conductance G and transmission phasdor s= 0.2l
—1. We first consider the transmission probability depicted ]
in Fig. 6. The features of the case- —1 are markedly dif- S
ferent from the previous= +1 case. First, the transmission =3 2 /// 5 4 e
probability [t_|? is always finite over the entire energy)( i/
range, implying the absence of a phase lapse. Indeed, th A -0.2
phase evolves continuously from zero tar &s € is swept /
across the two resonancesee Fig. 7. __,_,/” . / o al

Secondly, the positions of the maxima of the transmission ;'__i—:/ e
probability |t_|2 shift asI" is increasedcontrary to thes=
+1 scenario, Fig. B they are given byw™=-—e¢ FIG. 7. The transmission phasge /27 at zero temperature us

=N A/42)2—FZ for I'<A/2. For '=A/2 the two peaks for s=+1. Here,A=e;—e,=2 andT'=0.1 (full), 0.2 (dashe
mergé” and are centered ate. This behavior is reminiscent 0.5 (dash-dottelj and 1 (dotted. Notice that in contrast to Fig. 2

of the one observed in the spectral density in #%e+1  the phase evolves in the conductance valley continuously from zero
case, see Fig. 5. to 27, hence no phase lapse.
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A 6/2r
S0t -0.5
-0.25 r
0 . 5 G
L-0.25
I --0.5

FIG. 10. The transmission phagé2 vs € for 7 levels, with
level spacingA = 3. All couplings to the leads have the same abso-
lute value(for every levell’=1) (see the caption of Fig.)9Since
the first four levels are “in phase’d=+1), a phase lapse of
—ar is observed in the valleys between peék®), (2,3), and(3,4).

For the remaining levels, being “out of-phase,” the phase evolves
continuously. The discontinuous jump seeneat5 is due to the

N>2 levels. Asl' is increased towards, the crucial param- . .
eter determining the behavior of the conductance, the transf‘rElct that the phase is defined between 0 andshddoes noteflect

mission phase and the spectral density is the relative sign S physical effect
the coupling matrix elements associated with consecutiv
levels. As an example Figs. 9 and 10 depict the transmissi
probability |t|> and the transmission phagg respectively,
for a set of 7 levels, the first four “in-phases€& + 1) while
the next three levels being “out of-phase$£€ —1). Simi-
larly to the two-level model, we observe here zeroes of th
transmission amplitude as well as phase lapses+). The
peak structure fos= —1 is blurred, indicating an incipient
merger of the peak&ee Fig. 6.

Oncel’, T>A (for our noninteracting modgimore than
two levels will contribute to the transmission amplitude of

FIG. 8. The spectral densit%_ at the Fermi energy vs for
s=—1. HereA=¢€;—€,=2 andI"'=0.1 (full), 0.2 (dasheg 0.5
(dash-dottel and 1 (dotted. Note that the peak positions do not
depend on the strength of the coupling to the leBdsimilarly to
the behavior oft. |? depicted in Fig. 2.

0%Iectrons at a certain energy. In this case, for every value of
fhe gate voltage, the details of the couplings to the leads
(magnitude and phagef a set ofN=I"/A levels around the
Fermi level determine the behavior of the system.

The issue of electron-electron interaction deserves careful
Tonsideration, beyond the scope of the present paper. A few
remarks are nevertheless due. One can account for the inter-
action on the level of a capacitive term, incorporating the
standard term

Hin=Un;n;, (22)

i (n;j=d/d;) in the Hamiltoniar{see Eq(6)]. It is possible to

| treat this interaction term within a self-consistent Hartree
scheme. This approximation is justiff@advhenT’'<A. In this
case the main relevant features of the model studied here,
i.e., the qualitative differences between the two cases

+1 ands=—1 as well as the contrasting behavior of the
conductance and the spectral density, remain unchanged. In
particular, fors= +1 the conductance valley contains a zero
and therefore the phase exhibits a lapse in similitude to the
noninteracting case. Within this scheme the main effect of
including the interactions is the replacement of the bare lev-
els e1,€, by the self consistent Hartree levels

10 _ T z 10 1=, TU(Ny);  e=€+U(ny). (22)

FIG. 9. The transmission probabilitti? at the Fermi level ve It follows that the distance between consecutive conductance

for 7 levels, with level spacings=3. All couplings to the leads P€aks is ther=A+U. _ . .
have the same magnitudfor every levell =T +'g=1). How- In conclusion, we have analyzed a simple noninteracting
ever, the first four levels are in phase, while the last tiipeaks on oy model describing a QD coupled to two leads and studied
the righy have a relative phase af between each consecutive pair. Certain important observables such as the transmission am-
Note that the “conductance valley” between, e.g., peaks 4 and Plitude through the Q@phase and magnitugieas well as the
almost disappears. All the qualitative features described in the texgpectral density. We have shown that the transmission prob-
for two levels are observed also here. ability and the spectral density exhibit qualitatively different

195316-7



ALESSANDRO SILVA, YUVAL OREG, AND YUVAL GEFEN PHYSICAL REVIEW B66, 195316 (2002

behavior as function of the plunger voltage. These differwhere the denominator isD(w)=(w+€)?—(A/2)?
ences become dramatically apparent when the coupling te 2iT"(w+ €) — I'?sir?(¢/2).
the leadd” exceedsA.

A crucially important parameter in our discussion is the  AppeNDIX B: INTERFERENCE AND OFF-DIAGONAL

relative phase between two adjacent levels in the QD. The GREEN'S FUNCTIONS
behavior of the various physical quantities depends strongly
on whether this phase isp=0 (s=+1) or o= In this appendix we show, by means of a perturbative

(s=—1)(time reversal symmetry is assumedhe salient expansion inI’, that the contribution of the off-diagonal
features observed in these two cases are summarized @reen’s functions to the transmission amplitude is crucial in
Table I. obtaining a zero i, and therefore an abrupt phase lapse at

T=0. Using Eg.(A3) as well as the expression for the
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APPENDIX A: DERIVATION OF THE TRANSMISSION Let us now expand the two contributionsttp up to sec-
AMPLITUDE AND SPECTRAL DENSITY ond order inl’. Settingw=0 one obtains

In this appendix we sketch the derivation of the transmis- 8e 8(A2+4¢2)
sion amplitude and the spectral density, E§sand(10). All tiag(0)=— =i rz (B4)
physical quantities discussed here can be expressed in terms A2—4¢€? (A%—4€%)?

of the QD Green'’s function§; ;(t)= —i6(t)(d;(t),d’(0)).

This Green'’s function matrix is given by 8
tor(0) =i ﬁl“z. (B5)
G(w)=(0—H) %, (A1) AT de
where The expansion oty begins with the linear order i,
describing processes where an electron hops from the leads
e—il —iTe "¢2coq ¢/2) to the dot and out. This term is real and vanishesefei0.
H= _iTe*2c0g o/2) =i » (A2)  The imaginary part of i,y is determined by th€©(I'?) term

in the perturbative expansion, describing events where an
is the effective Hamiltonian of the two level system, follow- electron hops twice from the lead to tkamelevel before
ing the integration of the leads states. The willtis given ~ being transfered through the dot. This term is of the same

by 2mwpV2, wherep is the DOS of the leads. order inT" as the leading term in the expansiontgf, the
It is possible to write the transmission amplitude from left latter describing events where an electron hops twice from
to right in terms of the matrixG the lead todifferent levels before being transfered through

the dot (e.g., left lead-level 1—left lead—level2—right
. lead. It turns out that the tern®(I'?) in the perturbative
t(“’)ZZWPi levL,i[G(‘”)]iJVR,j- (A3) expansion ofty; is purely imaginary and cancels exactly
I against theD(I'?) term ofty,4ate=0. More generally, once
Thus, the evaluation of the transmission amplitude requirethe contribution of the off-diagonal Green’s functions is in-
knowledge of the diagonal and off-diagonal components ofluded, the cancellations leading to an exact zero of the
the matrixG. On the other hand, the density of states in thetransmission amplitude appear order by order in the pertur-
QD involves only the diagonal components®fand is given  bative expansion in the dot-lead coupling.
by
APPENDIX C: EVALUATION OF THE WIDTH OF THE
Alw)=—2Imu[G(w)]]. (A4) PHASE LAPSE AT FINITE TEMPERATURES

The calculation of5(w) is straightforward and yields In this appendix we derive derive the expression for the
) il width of the phase lapse E(L3). The phase observed in an
_ 1 [ et etAl2+ill - —il'e ¥ cog¢/2) AB interference experimertt is defined in Eq(3). Focusing
D(w)| —iTe*?cod¢/2) w+e—AR+il |’ on the cases=+1, the transmission amplitude E(@) can
(A5) be expressed as

G
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2M(wo+€) 1 2T(wete) 1

(W= we) 0~ (We—we) O—we'

(CD

t(w)=

where the poles, , are given in Eq(15). The temperature
averaged transmission amplitude is therefore given by

, 2M(wote)| 1 1
0 e
wo || 2l(wete)| 1 1w
+27TiT - (wo—we) |2mi T §+ 2w T
(C2

whereW' is the trigamma function. In order to obtain the

low temperature behavior of the transmission phase close to

PHYSICAL REVIEW B 66, 195316 (2002

the phase lapse, one has to expand @%) up to second
order ine and T obtaining

8I'  64I'%(7°T?+3€%)
t+(T):_P6—I 3A4
8I' 6472 2 3
= ——€— y
A? 3A%4

the last equality being valid fofe|<T. The width of the
phase lapse\, in Eq.(13) follows. It is obtained straightfor-

' wardly from the expression for the temperature averaged
transmission phase

B Rgt]\ B e\
H(T) =ArcTan — m - E =ArcTan — X - E
(C4
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interaction it is possible, by means of change of variables
ki =(CLtCr)/V2, ¢ =(CL—Ckr)/V2, to map our
model onto a pseudospin Anderson model. Here, the indices
1,1 are the pseudo-spin states. In this language, the level spac-



ALESSANDRO SILVA, YUVAL OREG, AND YUVAL GEFEN

ing A represents Zeeman splitting. It is known that this model
could give rise to the Kondo effect, providéd< Ty (Tx<I),
where Ty is the Kondo temperature. It follows that in this re-
gime of the model the Hartree approximation is inappropriate
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since it erroneously breaks the SU(2) symmetry. BorI’
(henceA>Ty) the pseudospin SU(2) symmetry is broken, the
Kondo effect is suppressed, and employment of the Hartree ap-
proximation is valid.
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