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Persistent currents in the Heisenberg chain with a weak link
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The Heisenberg chain with a weak link is studied as a simple example of a quantum ring with a constriction
or defect. The Heisenberg chain is equivalent to a spinless electron gas under a Jordan-Wigner transformation.
Using density matrix renormalization group and quantum Monte Carlo methods we calculate the spin/charge
stiffness of the model, which determines the strength of the “persistent currents.” The stiffness is found to
scale to zero in the weak-link case, in agreement with renormalization group arguments of Eggert and Affleck,
and Kane and Fisher.

DOI: 10.1103/PhysRevB.66.195313 PACS nuntder73.23.Ra, 75.10.Jm

. INTRODUCTION group (DMRG)¥* and quantum Monte CarldQMC)
method$? to obtain numerical results on chains of up to 256
Technological advances in recent years have allowed thgites, and perform finite-size scaling extrapolations to the
fabrication of electrical and even mechanical devices on th&ulk limit. We study the spin stiffness, which under the
nanometer scale, where individual atoms or electrons can b&rdan-Wigner transformation is equivalent to the charge
manipulated. The physics of these devices poses a plethoféffness of the electron gas and is related to the persistent
of fundamental questions through a rich variety of novelcurrent, as a function of the weak-link coupling. We also
quantum effects. This has led to an upsurge of theoretical Study the spin correlations across the weak link. _
interest in the physics of “quantum wires,” “quantum dots”, ~ Eggert and Affleck’ have previously studied the Heisen-
and more general physics at the mesoscopic or nanomet@_?rg chain with an |s_olated impurity using exact d|§igonal|z_a-
scale? The effects of electron-electron interactions are typi-tion and conformal field theory techniques. They find that in
cally enhanced in systems of reduced dimensionality, leadinfEnormalization group language a single weak link across the
to nonperturbative effects such as the breakdown of Fernfinds of an open chain corresponds to an irrelevant operator,
liquid behavior in one-dimensional metals, and single-and therefore th_e open chain is a_stable _flxed pomt_under
electron charging effects in quasi-zero-dimensional system8uch a perturbation. Thus they predict that in the bulk limit a
(quantum dots An important milestone in the nascent field qha!n with a weak link will behave like an open chain. The;e
of nanomechanics was the experimental discovery that ndthdings for a concrete model system are in agreement with
only the electrical but also theechanicaproperties of me-  the general predictions of Kane and Fl§ﬁ€f(_)r the general
tallic structures on the nanometer scale exhibit apparentl¢ne-dimensional interacting electron gas, i.e., the Luttinger
universal nonmonotonic quantum correctidfsyhich could  fiquid. An integrable version of _the17He|senberg spin chain
be explained theoretically within the framework of a Jellium With defects has also been studi€d:” The case of a single
model® defect corresponds to a weak link. However, as opposed to
In the electrical domain, paradigm systems to investigatéhe case discussed here where only one bond is modified,
mesoscopic behavior have long been small ring-shaped érﬂtegrablllty_ requires a qulflcathn of two adjacent bonds
multiply connected devices, where the application of a mag@nd an additional three-spin coupling. Although the defect of
netic flux piercing the device leads to persistent currentsthis integrable chain is completely transparent to particle
However, the theoretical prediction of these persistent curScattering, the persistent current is renormalized by the de-
rents, first in superconducting and then in normal conductingect strength. . _ _
materials, has always predated experimental investigation, L€t us briefly revied® how the persistent current arises,
which has only become feasible in the last dechery for the S|m_ple case of fre_e electrons. Start from the real-
recently, with the discovery of a tunable Kondo effect in SPace continuum Hamiltonian
guantum dots, the persistent currents of multiply connected
systems with magnetic quantum dots—Kondo rings for )
short—have aroused considerable intefedt. He_ h D deX (%) 324, (X) 1)
In this paper we explore a very simple system, which may o2m. 4 o Va xWa
serve to model a metallic quantum wire ring with a weak
junction, orconstriction It consists of the standard spin-1/2
Heisenberg antiferromagnetic spin chain, which by a Jordanwhere ¢,(x) is an electron field with spin index==*1,
Wigner transformation is equivalent to a spinless electrorandL is the circumference of the ring. Now thread the ring
gas in one dimension, where the exchange coupling is weakwith a magnetic fluxd®, producing an Aharonov-Bohm
ened at a single link. We use density matrix renormalizatioreffect® The quantum phase
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can be encoded via a gauge transformation in the twisted
boundary conditions i

lﬂa(L) - eiaﬁwa(o)’ ©) Site 2 Site 1
where
, o , : Block 2 :
b= 77(1)0, (4) o :
. Augmentation 2
and®,=hc/e is the elementary flux quantum.

When an Aharonov-Bohm field is applied, the Hamil-  FIG. 1. The augmentation process within one DMRG iteration.
tonian acquires the usual interaction tefwe sethi=c=1 Augmentation IAugmentation 2 gives the new Block 1Block 2)
henceforth in the next DMRG iteration.

Il. METHOD

Himz—f dxA,J*(X). (5)
We study the spin-1/2 Heisenberg quantum spin chain
Thus for a constant fielé, = ®/L the corresponding persis- with a single weak coupling’<J between two adjacent
tent current is given by the Feynman-Hellman theorem:  spins located between sites N andi=1. The Hamiltonian
is

H=1(D)=— — (6) N—1
H=Ji§1 S-S.1+3'SyS. (11)

which can be expanded to

2 There are a total dl sites in the ring. We study’/J in the

f) ) () range[ 0,1], hence we have either open or periodic boundary
conditions(OBC or PBQ at the extremities of this range. We

whereD. is the “charge stiffness.” If weassumehat | (P) also consider “twisted” antiperiodic boundary conditions in
is purely linear in® (as can be proved for the pure Heisen-the same range af'/J,
berg chaif?), then the charge stiffness and hence the persis-
tent current can be estimated from the difference in energy S 1=S,S1=—S1, (12)
between the system with anti-periodic boundary conditions
[Eo =Eo(®=®,/2)] and periodic boundary conditions which is equivalent to considering a system threaded by a

@
|(®)=~De +O

[Eq =Eo(®=0)], magnetic flux of strengthr#ic/e,?? and where we can obtain
the charge stiffnes®. according to Eq(8). The model in
8L these limits is exactly solvable by Bethe ansdtand hence
D.=—(Ey —Ep). (8) is often used as a testing ground for various DMRG
®o methodst®?* The quantities that have been calculated using

The corresponding quantity in the Heisenberg chain is th&?MRG include the ground-state energy, the singlet and trip-
spin stiffness. In the linear response approximation, it can bt gaps, and correlation functions.

showrf! that the charge stiffnesB, is equivalent to the _The “infinite-lattice” DMRG method® is used here, ap--
Drude weight in the conductivity(w) at frequencyew: plied with periodic boundary conditions. The lattice is split
into two blocks and two sites as shown in Fig. 1. The weak
R o(w)]=7D8(@) + 0req( ®) (9)  link is placed between block 1 and site 2. At any time the
superblock consists of a system block and an environment
and block, plus two extra sites. The presence of the weak link

destroys the translational invariance normally exploited in
usual DMRG schemes, hence we cannot simply make a copy
of the density matrix in one block and transfer it to the other
whereo . 4() is regular aiw=0. Afinite value ofD. in the  block. Therefore in a single DMRG iteration, two density
bulk limit indicates a conductor according to the Kohn matrices are constructddne for each block and the basis
criterion?! while a zero value indicates an insulator. set for each block originates from its corresponding density
In Sec. Il of the paper we briefly summarize the DMRG matrix. Each block increases in size by a single site in a
and QMC methods used to calculate this quantity. In Sec. lIsingle DMRG iteration. We calculate results for lattice sizes
we present our results, and in Sec. IV our conclusions arél=4-64, in steps of two. The quantities calculated here are
summarized. the ground state energies, and the correlation of the spins

lim o Im[o(w)]=D, (10

w—0
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TABLE |I. DMRG estimates of the ground-state energy/J TABLE Il. The internal energy and the spin stiffness calculated
and correlatio{ S{S7) for N=64 sites atl’/J=0.5 as a function of  in SSE simulations for a 256-site chain willvJ=1/4 at different
m, the number of states retained per block. A SSE estimate oinverse temperatureg8=J/T.
Ey/J=—28.2178(3) for PBC agrees very well with the DMRG
data: here our final DMRG estimate 1528.217 971). The correla- Eo/NJ Ps
tion between spins across the weak link also converges to better

than one part in 1f The anti-periodic boundary conditions yield —0.442112) 0.000@0)
similar levels of accuracy. 64 —0.442 371 0.00081)
128 —0.442 4299) 0.00883)

m Periodic Anti-periodic 256 —0.442 4435) 0.02025)
Eo/J (S}Sh) Eo/Jd (SKS%) 512 —0.442 4484) 0.02124)

1024 —0.442 45383) 0.02152)

96  —28.217 652 —0.060888 —28.212779 —0.0560 186 2048 —0.442 44%3) 0.02182)

164 —28.217938 —0.061 194 —28.213082 —0.0562 742
234 —28.217964 —0.061219 —28.213123 —0.0563 028
342 —28.217970 —-0.061222 -28.213132 —0.0563091  which yieldsEy/J=—28.21783), agreeing perfectly with
the DMRG results. The correlations between the spins across
the links have a marginally lower accuracy because of round-
across the weak link. The total number of density matrixoff error, but even here we have an error in the region of one
eigenstates retained in a block was-350 in the basis trun- part in 1¢.
cation procedure. Since the SSE method is a finite-temperature quantum
We also carried out quantum Monte Carlo simulationsMonte Carlo method we have to run the simulations at suf-
using the stochastic series expansiSSB method? In this  ficiently low temperature to converge the quantities of inter-
case, the spin stiffness can be directly calculated as the seest to their ground state values. In Table 1l we show the
ond derivative of the energy with respect to the phase, whiclzonvergence of the energy and the charge stiffness for a 256-
is given in terms of the fluctuation of the winding number in site chain. All SSE results discussed below were obtained at
the simulationg? inverse temperaturgd where the results do not differ, within
statistical errors, from results @v/2.
Ground-state energies were calculated for the periodic and
anti-periodic rings, as a function of the weak-link coupling
To estimate the accuracy of the DMRG, we perform con-J’/J. Figures 2 and 3 shows DMRG estimates for the quan-
vergence tests witm, the number of basis states retained intity AEN=[Ey(N;J')—Ey(N;J'=J)]/J as a function of
a block. Table | shows sample results f5¥J=0.5 andN J'1J, for several different lattice sizes up M= 64. An ex-
=64 with both periodic and anti-periodic boundary condi-trapolation in 1N can be performed to extract the bulk limit
tions. We see good convergence with the number of basifor each value ofl’ by a simple polynomial fit to the data,
states retained: in particular, for the ground-state energy wgiving us the extrapolated curve for the periodic and anti-
have convergence to one part in®LWe obtained indepen- periodic cases. It can be seen that for the periodic case the
dent estimates using SSE techniques for the periodic casbulk values are approached from above, while for the anti-

Ill. RESULTS
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FIG. 2. AEN=(Ex(N;J")
—Ep(N;J"'=J))/J as a function
--------- — of J'/J for the ring with periodic

B boundary conditions. The data are
extrapolated using a simple fit to
obtain the bulk limit.

0.3

0.2

0.1

JN

195313-3



BYRNES, BURSILL, ECKLE, HAMER, AND SANDVIK

PHYSICAL REVIEW B66, 195313 (2002

04 T T T
0.35
03
0.25

AE, o2f

0.1

N=4 —O—

N=8 | |
N=16 —&—
N=32 —@—
N=64 —l— -

Extrapolation —-—

FIG. 3. As for Fig. 2, but with
anti-periodic boundary conditions.

JN

periodic case the limit is approached from below.

Putting together both the periodic and anti-periodic results

1
Ps:Z- (14

for the energy, we can calculate the spin stiffness factor,

given by

2N
pPs= TJ[EO( N;anti-periodig — Eo(N;periodig] (13
a

The apparent discrepancy between the data and this result
can be attributed to the presence of logarithmic corrections to
the ground-state energy, and hence the stiffness, as shown by
Woynarovich and Ecklé® Such logarithmic effects were ob-
served numerically by Laflorencie, Capponi, ande®serrt.’

The results are shown in Fig. 4. At couplings other thanwho calculated the stiffness for the isotropic model using the

J'/J=1 the values trend steadily down towards zero as th@ethe ansatAsee their Fig. # Even for a lattice size of
lattice sizeN increases. There is a marked difference in be-10 000 sites, the stiffness was still above 0.26. A similar ef-
havior for the isotropic cas# /J=1, as the strong curvature fect was noted by Alvarez and GréSwho studied the zero

towards zero is not apparent. An exact result is available fomomentum limit of the Drude weigttvhich approaches the
the J'/J=1 case, as obtained by Hamer, Quispel, andspin stiffnesg and found it well above 0.25 even for 512

Batchelof® [Equation(3.37) of Ref. 20 withy=0], sites.
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FIG. 5. SSE results for the
stiffness factorpg versus lattice
sizes N=16, 32, 64, 128, 256).
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Using field theoretical methods, Eggert and Affletk tity, not a bulk property. It is integrated out in the early stages
have predicted that a chain witH<<J should be similar to of renormalization and then remains fixed, while longer-
an open chain(i.e., J'/J=0). This implies that the spin range correlations will keep renormalizing. It is only bulk
(charge stiffness should vanish as the system dizes . properties such as the spin-stiffness which scale to the value
Figure 5 shows SSE resutsfor the stiffness versus the of the open chain. Nevertheless, the data of Fig. 7 do show a
system size =16, 32, 64, 128, and 25%6or several val- weak renormalization effect. While the data fbfJ=1 re-
ues ofJ’<J. The results are in accordance with a scalingmain essentially flat and independent\yfthe data for lower

behavior

pNn(X)~a(x)N™7

values ofJ’/J exhibit a weak upturn at largs.

(15 IV. CONCLUSIONS

wherex=J'/J, and the indexr=2/3. Figure 6 demonstrates |, symmary, we have performed a finite-lattice study of
that the data for largél can be well described, in fact, by a ¢ Heisenberg ring with a weak link, using both DMRG and

simple scaling form

(X)~ ———N"28 N (16) M A toy |
PN (1-x) ) . N
» | | 080 |y Tyt f
It is likely, however, that the true asymptotic correction-to- (R S 4
scaling behavior is again being disguised by logarithmic cor-
rections, and that the value~2/3 is only an “effective ex- 020 | |
ponent” valid over the present range Nfvalues, rather than ' ,
the true asymptotic exponent. ) ﬁjﬁjﬁ’é
We have also calculated the value of the spin correlationa %1% | B8 J7J-1/8 i
function across the weak link, i.6.S;S;). Figure 7 shows —a J7J=1/4
the behavior vs N2 for various values ofl’/J. It can be A—AdN=1/2
seen that the finite-lattice values generally approach a finite %10 | :jﬁ:gg ]
value in the bulk limit, as one would expect, except for the | e e 1516 ]
special casel’/J=0 where the link is open. Theoretical | erdNssE |
expectation® are that the correlation function should ap- —= p/x=26[(1-x)"N]
proach its bulk limit like 1N?, up to logarithmic corrections. i |
The presence of a finite correlation across the weak link is  0.05 ; 10 o

just what one would naively expect when the weak-link cou-

(1-x)""N

pling J' is nonzero. On the other hand, it might appear to

contradict the previous statement that a chain with a weak FIG. 6. Scaling plot ofps/x vs (1—x)¥?N, wherex=J'/J.
link should renormalize to the open chain. The point here isAlso shown is the scaling forrfl6), which agrees with the data for
that the weak-link correlation islacal, short-distance quan- largeN.
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QMC calculations on rings of up to 256 sites. The spin orbut we have not found this necessary for our present
charge stiffness has been calculated either diré@MC), or ~ purposes.

from the energy difference between the system with anti- For the future, it would be of interest to see how the
periodic boundary conditions and that with periodic bound-results generalize to more complicated and interesting cases,

aries, assuming a quadratic dependence of the energy on tRECP @S higher spin chains, or real electronic models, such as
twist parametegﬁ (SMRG) P oy the Hubbard model or its variant, the so-caltedd model.

. . . Another interesting extension of the present study would be
The st|ffnes§, and hencg the persistent currlent, 'S fqund ® interpret the Wegk link and hence tﬁe modified gond in our

scale to zero in the bulk limiN—-c, for any J'<J. This 54| as caused by a mechanical force on a quantum wire. It

agrees with the renormalization group prediction of Eggeriyould be interesting to see what conclusions could be drawn

and Affleck; that the stable fixed point for this system cor- from our simple one-dimensional model for such a scenario.

responds to an open chain, so that the chain with a weak link

will behave like an open chain, as regards its bulk properties.
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