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Renormalization approach to quantum-dot structures under strong alternating fields
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We develop a renormalization method for the quasienergy spectra of low-dimensional structured systems
under intense ac fields. These systems are emulated by tight-binding lattice models with a clear continuum
limit of the effective-mass and single-particle approximations. The coupling to the ac field is treated nonper-
turbatively by means of the Floquet Hamiltonian. The renormalization approach gives an intuitive view of the
electronic dressed states. The numerical advantage over a direct diagonalization of the Floquet Hamiltonian
makes the method suitable for the study of dressed states of nanoscopic systems with realistic geometries,
irrespective of the ac field intensity. Two numerical examples are discussed: a quantum dot, emphasizing the
analysis of the effective-mass limit for lattice models and double-dot structures, for which we discuss the limit
of the two-level approximation currently used in the literature.
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I. INTRODUCTION

The renormalization method, as a tool for studying t
electronic structure of solids, has attracted attention som
years ago with the application to disordered low-dimensio
systems.1,2 More recently, the particular suitability of th
method for studying strongly anisotropic solids started
deserve growing interest, such as in applications to semic
ductor superlattices and conducting polymers.3

The aim of the present work is to apply the renormaliz
tion method to a different problem with the same form
structure: the dressed electronic spectra of semicondu
microstructures under intense ac fields.

Recent advances in semiconductor technology ope
possibilities to design systems that are in the quantum l
in all spatial directions, establishing an important branch
what is nowadays called nanoscience. A double quantum
sometimes also called artificial molecule,4 is an example of
such systems and has been the object of intensive rese
from both theoretical5–21 and experimental22–32 points of
view in the last few years. In particular, the response
quantum dots and double quantum dots to microwave fie
has attracted renewed attention33,34 and is directly concerned
to our work.

Semiconductor microstructures can be described by la
models, treated in a tight-binding framework, emulating
continuum limit of the effective-mass approximation.35 Lat-
tice models have been widely used in the context of disor
effects on electronic and transport properties of tw
dimensional systems.36 On the other hand, lattice mode
show a quite long history as a simulation tool of nanoel
tronic devices, as well as quantum billiards and arrays
quantum dots and antidots in the presence of a magn
field.37

The coupling to an ac field is nonperturbatively includ
using the Floquet method, by means of a procedure in
duced by Shirley.38 The Floquet method is widely used fo
the nonperturbative study of the interaction of atomic, m
lecular, and semiconductor nanostructures systems wi
0163-1829/2002/66~19!/195310~9!/$20.00 66 1953
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strong ac electric field. The time-independent infinite mat
Hamiltonian, obtained after the application of the Floqu
Fourier transformation over the time-dependent Schro¨dinger
equation, describes entirely these processes without any
ther ad hochypothesis.

Hence, the effect of an intense ac field on the electro
spectra of a nanostructure, such as a quantum dot, is
described by an infinite Floquet matrix. However, due to
large vector basis necessary to describe the system in a t
binding approximation for the lattice model, the eigenval
calculations are practically impossible to be performed
yond a perturbative field intensity range. Indeed, intense
field effects have been usually investigated for heuris
chain models for minibands in superlattices. Having su
limitations in mind, we observe that the infinite Hamiltonia
matrix has the structure of a simple tight-binding linear ch
tridiagonal matrix—where the diagonal ‘‘energy sites’’ a
now replaced by block matrices—that corresponds to
bare Hamiltonian of the system with or without an associa
multiple of the photon energy, what will be called ‘‘photo
replicas.’’ The off-diagonal elements, i.e., the ‘‘hopping p
rameters’’ are replaced by block matrices that describe
coupling of the system with the ac field.

These relationships allow us to develop an interesting
promising approach: the renormalization procedure, wher
the actual dimension of the system to be calculated is
duced to that of the lattice model for the bare system. F
thermore, since the quantity calculated is the density
states, one gets a step further than by direct diagonaliza
of the Floquet Hamiltonian, which provides only th
quasienergy spectra without the spectral modulation a
function of the field intensity, as well as the strength hier
chy of these quasienergy spectra related to different pho
replicas, as will be discussed.

The paper has the following structure. A brief introductio
to the Floquet Hamiltonian is given at the beginning, fo
lowed by a comprehensive description of the renormalizat
method applied to the system. Afterwards examples of
numerical calculations are shown and discussed. We initi
©2002 The American Physical Society10-1
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focus on the validity of a lattice model for a quantum dot
the presence of intense ac fields. The second part of
results and discussion section will be centered on the ac
dependence on the bonding and antibonding states of a
tificial molecule, i.e., a double-quantum-dot structure.

II. THEORY

A. The Floquet Hamiltonian

The energy spectrum of a bare electronic system will
described here by a tight-binding square lattice ofs-like or-
bitals, considering only nearest-neighbor interaction. An
field will be considered parallel to one of the square sid
Hence, the model for the bare electronic system couple
an arbitrarily intense ac field is described by the Hamilton
H5Ho1Hint , where

Ho5 (
l 1 ,l 2

e l 1 ,l 2
s l 1 ,l 2

s l 1 ,l 2
† 1

V

2 (
l 1 ,l 2

@s l 1 ,l 2
s l 111,l 2

†

1s l 111,l 2
s l 1 ,l 2

† 1s l 1 ,l 2
s l 1 ,l 211

† 1s l 1 ,l 211s l 1 ,l 2
† #

~1!

and

Hint5eaFcosvt (
l 1 ,l 2

s l 1 ,l 2
l 1s l 1 ,l 2

† . ~2!

Here s l 1 ,l 2
5u l 1 ,l 2&, s l 1 ,l 2

† 5^ l 1 ,l 2u, where (l 1 ,l 2) are the

(x,y) coordinates of the sites. Theatomic energywill be
taken constant,e l 1 ,l 2

54uVu, for all sites. Equation~2! repre-
sents the coupling to the ac electric field parallel to thex
axis, as can be seen by the linear dependence onl 1 : e is the
electron charge;v and F are the monochromatic ac fiel
frequency and amplitude, respectively. In the results sho
throughout this work, the field direction will be parallel t
one of the sides of an isolated quantum dot or along
double-quantum-dot structure. The treatment of the tim
dependent problem is based on Floquet statesu l 1 ,l 2 ,m&
wherem is the photon index. We follow the procedure d
veloped by Shirley38 for a two-level problem, which consist
in a Fourier-Floquet transformation of the time-depend
Hamiltonian into a time-independent infinite matrix. The e
ements of this infinite matrix are
19531
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F ~E2m\v2e l 1 ,l 2
!d l

18 l 1
d l

28 l 2
2

V

2
$~d l

18 ,l 1211d l
18 ,l 111!d l

28 l 2

1~d l
28 ,l 2211d l

28 ,l 211!d l
18 l 1

%Gdm8m

5F1l 1d l
18 l 1

d l
28 l 2

~dm8,m211dm8,m11!, ~3!

whereF15 1
2 eaF. These matrix elements are similar to tho

reported in a long list of one-dimensional systems under
tense ac fields. One can easily identify that the left-hand s
of Eq. ~3! represents a barelike electronic system. The diff
ence is that the energy eigenvalues,E2m\v are now quasi-
energies of a system dressed by photons shifted by multi
of the photon energy, usually called themth photon replica
of the system. The effect of the ac field is to couple differe
photon replicas as may be seen in the right-hand side of
~3!. The problem can only be handled by means of dir
diagonalization, if the Floquet matrix is truncated to a re
sonable dimension. This dimension is given byL13L2(2M
11), whereL1 and L2 are the number of atomic sites i
each direction, whileM is the maximum photon index. Th
resulting quasienergy spectrum~for the infinite system! is
periodic defining quasi-Brillouin zones~QBZ!, with the first
QBZ spanning the range2\v/2<E<\v/2. The numberM,
which determines how many photon replicas are taken
account, is chosen in order to satisfy a convergence co
tion: symmetric spectra relative to the QBZ edges for the f
relevant replicas aroundm50. Since the ac field couples
Floquet state defined bym photons to states withm21 or
m11 photons, multiple photon processes become relev
with increasing field intensity, but it can also be seen that
coupling matrix elements are linearly dependent on the
mension of the system in the direction of the field polariz
tion, as can be seen in the right-hand side of Eq.~3!. There-
fore, the direct diagonalization of the Floquet Hamiltoni
becomes difficult for nonperturbative field intensities a
large systems.

A truncated Floquet matrix is a tridiagonal block matr
given by
MF51
EM F

F EM21 F

�

F E1 F

F E0 F

F E21 F

�

F E2M11 F

F E2M

2 ~4!
0-2
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whereEM5(E2m\v)I1H0 is a L13L2 block matrix rep-
resenting a photon replica with the matrix elements given
the left-hand side of Eq.~3!. The coupling of the system with
the intense ac electric field is represented by the off-diago
blocks F, which are diagonal block matrices, with the el
ments given by

F5F1l 1d l
18 l 1

d l
28 l 2

. ~5!

The diagonalization of the problem is simply given by

MF50. ~6!

The dimension of the problem can be reduced toL13L2
by means of a renormalization procedure. The first step i
define the associated Green’s function39 G,

MFG5I ~7!

This function will be projected onto the photon subspa
and for the sake of clarity we will drop the site indices in t
Floquet states:u l 1 ,l 2 ,m&→um&.

Since the Floquet states form a complete ba
(uk&^ku51 , the Green’s functions are given by

(
k

^nuMFuk&Gkm5dnm . ~8!

Having Eq.~4! in mind, the matriceŝnuMFuk& are simply
written as

^nuMFun&5EN ~9!

for n5k, where the quasienergies are redefined asE→E
1 ih, with h→0; and

^nuMFuk&5F ~10!

if nÞk.

B. Renormalization method

The quasidensity of dressed states of a system withL1
3L2 sites is obtained by successive ‘‘renormalizations’’
the Floquet matrixMF , using the expansion in Green’s fun
tions. The infinite set of Green’s function, Eq.~8!, is depicted
below around the photon replica forM50,

A

E22G22,0 5 F~G23,01G21,0!,

E21G21,0 5 F~G22,01G0,0!,

E0G0,0 5 I1F~G21,01G1,0!,

E1G1,0 5 F~G0,01G2,0!,

E2G2,0 5 F~G1,01G3,0!,

A ~11!
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where the dots represent the remaining equations of the
nite set. The decimation procedure consists in eliminati
from the above set of equations, all those equations invo
ing odd-numbered photon replicas, i.e., by replacing the
pressions

G2n11,05
1

E2n11
F~G2n,01G2n12,0! ~12!

in the right-hand side of the subset for the even-numbe
photon replicasG2n,0 in Eq. ~11!. The result is a set of
Green’s functions with renormalized photon replicas a
coupling matrices. This decimation procedure is successiv
applied to the remaining equations of the original set giv
in Eq. ~11!. The general form of these equations, afterj>1
decimations is

Ej
MGm,05dm,01Fm22j,m

j Gm22j,01Fm12j,m
j Gm12j,0 ,

~13!

where the renormalized photon replicas, up to order ofj, are
given by

Ej
M5Ej21

M 2Fm22j21,m
j21 1

Em22j21
j21Fm,m22j21

j21

2Fm12j21,m
j21 1

Ej21
M12j21Fm,m12j21

j21 ~14!

while the coupling matrices, up to the same decimation or
of j, are written as

Fm22j,m
j

5Fm22j21,m
j21 1

Ej21
M22j21Fm22j,m22j21

j21 ~15!

and

Fm12j,m
j

5Fm12j21,m
j21 1

Ej21
M12j21Fm12j,m12j21

j21 . ~16!

Although the successive decimation procedure descri
here is straightforward, we add a few comments for a cl
understanding of the results shown in Eqs.~13!–~16!. The
coupling matrices,F, are all identical in the initial set of
Green’s-function equations, Eq.~8!. Already after the first
decimation,j51, the coupling to higher and lower photo
replicas become different, due to the addition or subtract
of m\v in the denominators, respectively. The expressio
given by Eqs.~14!–~16! are actually recursive relations be
tween renormalized quantities afterj decimations and those
from the previous step, i.e.,j21.

The renormalized expression for the photon replicas
the electronic system reveals a simple interpretation of
method: each decimation represents a successive dressi
the electronic states. By inspecting the coupling matrices
is straightforward to realize that the coupling between p
ton replicas that are distant in energy by increasing multip
of \v becomes relevant only with increasing field intensi
0-3
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The final result of this renormalization of the Floquet m
trix is the dressed Green’s function for one of the pho
replicas, such asM50, with the proper renormalized photo
replica and coupling matrices. This is achieved by substi
ing the results of Eqs.~14!–~16! into Eq. ~13!. The number
of decimations necessary for a given field intensity is de
mined by a convergence criteria between a given stepj with
the previous one. A quasi-density-of-Floquet-states,r(E
1 ih) can then be obtained,

r~E1 ih!52
1

p
Im@Tr G00#. ~17!

The trace of the Green’s operator is taken over the ato
sites basis. The present method can be seen as a versi
the Floquet state theory in the Green’s-function language
discussed by Brandes.40 Having in mind previous
attempts,33,40 the decimation procedure, besides the alrea
mentioned intuitive interpretation for dressed states in s
Green’s-function language, has no limitations concerning
ac field strength and may be applied to arbitrary static po
tial profiles that define the bare mesoscopic systems.

C. Lattice and continuum limits

Lattice models, with nearest-neighbor interactions on
show a particle-hole symmetry in the electronic structure
are usually thought as simple, although useful, approxim
tions for superlattices or arrays of quantum dots, where e

FIG. 1. Quantum-dot geometries~a! square, and~b! rounded
square. The arrow indicates the ac-electric-field direction.
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quantum well or quantum dot is represented by a site of
lattice. This extreme lattice limit has been used through
the literature for studying qualitatively the effect of inten
ac fields on superlattice minibands, as already mentione
the introduction. On the other hand, lattice models may
useful in emulating the lower part of electronic systems t
are well described by the effective-mass approximation.
the present work, the tight-binding hopping parameter is c
sen in order to emulate the electronic effective mass for
GaAs bottom of the conduction band,m* 50.067m0. Since,
V52\2/(2m* a2), V520.142 eV for a lattice paramete
of a520 Å. Such parametrization used in the results sho
below, will correspond to structures with lateral widths up
L5280 Å ~double-quantum-dot case!. This is still an order
of magnitude lower than the typical dimensions of actu
quantum dots constructed by lithographic methods. Ho

FIG. 2. Density of states as a function of field intensity, at a h
frequency,\v51 eV, of a square lattice~top!, and rounded lattice
~bottom!.
0-4
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ever, in the present study we intend to illustrate the met
as well as to establish the range of validity of the latt
model for an effective-mass approximation physical limit.
this sense, the first question to be addressed is the trans
between the extreme lattice and effective-mass limits. Thi
analyzed by following the evolution of the quasi-density-o
states as a function of the intensity-of-ac fields with frequ
cies of the order of the electronic bandwidth. Such an ess
tial step has been carried out for rather small structures
mentioned above. Once this point is settled, one can see
the general conclusions are consistent for larger quantum
systems. It should be also pointed out that we will be mai
concerned with the lowest pair of states of a double quan
dot. In such a situation, the atomic site basis is large eno
to properly simulate these states.

III. ARTIFICIAL ATOMS AND MOLECULES

A. A quantum dot under intense ac field

As a starting point, we calculate the quasi-density-
states of quantum dots as a function of the ac field inten
We choose two different quantum-dot geometries: a squ
and a rounded one, as shown in Fig. 1, where the ac-elec
field direction is indicated by an arrow. The square quantu
dot is emulated by an array of 636 atomic sites, Fig. 1~b!. A
more realistic geometry for a quantum dot is given in F
1~b!, which will be used for the double-dot systems stud
also in this work. It should be noticed that the area of t
geometry—37 atomic sites, using the same tight-binding
rameters described below—is comparable with the squ
one, Fig. 1~a!. In Fig. 2 we show the contour plot of th
density of states as a function of the ac field intensity for
bottom half of the first QBZ. We recall that, for the chos
hopping parameter, the bandwidth is given byDE5u8Vu
51.136 eV. Here the field frequency is\v51.0 eV. The
square quantum dot, although a textbook example, is v
useful to understand the breakdown of the effective-m
limit. At zero field intensity the energy spectrum of a tw
dimensional square potential well withL5120 Å—a quan-
tum dot—is clearly identified, as well as the breakdown
degeneracies due to the applied ac field. The level shifts~ac
Stark shift! lead to crossings ateaF/\v'2.4, correspond-
ing to a dynamic localization in chains perpendicular to
field direction. This is the limit where the host lattice effec
are already predominant, i.e., the discrete basis of ato
orbitals does not emulate the effective-mass approxima

FIG. 3. Double-quantum-dot geometry. The arrow indicates
direction of the ac-electric-field considered.
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anymore and the length scale is given by the host lat
parametera and not the lateral width,L, of the quantum dot.
Indeed, the model simulates in this limit a square array
quantum dots, each one represented by a single site, re
bling the results that would be expected for coupled cha
where each chain model the dynamic localization in sup
lattice minibands.

This result for a square array is a good guide for char
terizing the density of states as a function of the field inte
sity of a quantum dot with lower symmetry, Fig. 1~b!, as can
be seen in the equivalent plot shown in Fig. 2~b! also for a
frequency\v51.0 eV. The dynamic localization at the ex
treme lattice limit is less defined due to the fact that t
atomic site chains perpendicular to the field direction are

e

FIG. 4. Top: density of states as a function of field intensity o
double quantum dot, as shown in Fig. 3, at a high frequency,\v
51 eV. Bottom: density of states for the two lowest states, i.e.,
molecularbonding and antibonding states.
0-5
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equivalent as in the square array. Besides that some o
degeneracies are already broken in the absence of th
field.

A important characteristic of the method can be seen
Fig. 2. By simply diagonalizing the Floquet Hamiltonian, th
quasienergy spectra are depicted in the so-called QB
each of them reproducing the spectrum with the ene
shifted by integer multiples of the photon energy. The ov
lap of these photon replicas makes the interpretation of
spectrum rather cumbersome, specially for strong overl
which are unavoidable for low frequencies. The result of
present renormalization approach is the quasienergy s
trum modulated by the field-dependent density of states
the higher or lower photon replica become relevant only w
increasing field intensity. This effect is verified at the botto
of Figs. 2~a! and 2~b!: the spectrum replica lowered by on
photon energy shows a negligible contribution at low-fie

FIG. 5. Top: Density of states as a function of field intensity
a double quantum dot at low frequencies,\v510 meV. Bottom:
spectra of an equivalent two-level system, simulated with a dip
distanced'd0, in the dynamic localization regime.
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intensity. On the other hand, in both figures we see no
nificant modulation of the density of states in the low-fie
intensity limit within the entire band of the depicted ze
photon replica, due to the high frequency considered.

The main interest, however, is the effective-mass lim
i.e., the energy bottom of each photon replica at low-fie
intensities in the scale of Fig. 2, as well as low frequenc
that would couple only these few low-energy states. T
scaling of these quantities shows the suitability of the pres
method, as will be seen in the following discussion
double quantum dots.

B. Double Quantum dot

The double-quantum-dot system is based on the quan
dot shown in Fig. 1~b!. The coupling between dots is of fre
choice and we consider a simple connection of both dots

f

le

FIG. 6. Top: Density of states of a double quantum dot a
function of field intensity at a nearly resonant frequency,\v
57 meV. Bottom: spectra of a two-level equivalent system n
Rabi resonance.
0-6
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RENORMALIZATION APPROACH TO QUANTUM-DOT . . . PHYSICAL REVIEW B 66, 195310 ~2002!
the same hopping parameters considered so far, as illust
in Fig. 3. Such configuration is an example of strong inter
coupling. As stated before, the ac field direction is along
quantum-dotmolecule. The corresponding quasi-density-o
states plot as a function of field intensity for the same hi
field frequency,\v51.0 eV, as in Fig. 2 is shown in Fig
4~a!. The quasi-density-of-states spectrum is very sim
with the appearance of the expected energy splitting du
the coupling among quantum-dot states. The energy split
structure may be rather complex, considering the coupling
initially degenerate states in each quantum dot. A covale
like binding, with a splitting between bonding and antibon
ing states is well defined for the interdot coupling betwe
the lowest state in each quantum dot. Therefore, from n
on we will focus exclusively on the energy bottom of th
spectra, the continuum—low-field intensity—limit, in ord
to analyze the lowest pair of split double-quantum-dot sta

FIG. 7. Top: Density of states of a double quantum dot a
function of field intensity at\v55 meV. Bottom: spectra of a
two-level system in the ac Stark regime.
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In Fig. 4~b! we have the quasi-density-of-states for t
lowest pair of molecular states. Both, bonding and antibo
ing states shift rigidly upwards in energy. Here a modulat
of the density of states is seen: with the increasing field
tensity, the density of states diminishes, with increasing c
tribution of higher and lower photon replicas~not shown!.
Since the frequency of the field is very high\v51 eV, all
states of the system are mixed by the field and no typ
two-level behavior is observed. The rigid energy shift m
be seen already as a lattice effect, since for high-field int
sities the dynamic localization for the host lattice is reveal
Fig. 4~a!.

A clear covalent molecular picture is revealed for mu
lower frequencies, in the range of\v'10 meV, which is of
the order of the tunnel splitting between the lowest pair
states in the bare ‘‘molecule’’9 for the chosen parameters
DEsplit57.1 meV. For this frequency range the coupling
higher molecular states is negligible, since the third mole
lar state is about 50 meV above the antibonding state.
lattice effects are also absent, since the dynamic localiza
effects on the host lattice are relevant for field frequencies
the order of the entire spectral width, which is two orders
magnitude larger than the energy scale of interest: the tu
splitting. The present results are exact, since we are in
independent particle approximation for an artificial H2

1 mol-
ecule. Within this parameter range, the lowest pair of sta
of the double quantum dot behave as a two-level system,32 as
will be discussed in the following results. We are going
switch the field frequency from above to below the tunn
splitting energy. The quasi-density-of-states plots will also
compared to the corresponding quasienergy spectra of
equivalent two-level system obtained by diagonalizing
Floquet Hamiltonian.

In Fig. 5 the evolution of the artificial H2
1 bonding and

antibonding states as functions of field intensity is shown
a field frequency\v510 meV.DEsplit . In Fig. 5~a! we see
the quasi-density-of-states around the main photon rep
which shows the highest intensity for low-field intensitie
The next important branches of the quasi-density-of-sta
are the bonding state plus one photon and the antibon
minus one photon. With increasing field intensity, the sp
ting between the zero-photon bonding and antibonding st
diminishes down to a crossing ateaF/\v'0.3. This re-
sembles the dynamic localization regime for superlatt
minibands41,42 The branches of the quasi-density-of-states
Fig. 5~a! can be mapped on the quasienergy spectrum o
two-level system, emulated by two atomic sites with fitt
tight-binding parameters. This spectrum is a function o
field intensity defined byedF/\v, whered is the distance
between the two effective atomic sites. The corresponde
between Figs. 5~a! and 5~b! is satisfied by properly scaling
d'7a. Having in mind the double quantum dot of Fig.
d57a is the distance between the centers of the dots,41 ‘‘the
bond length of the molecule.’’

A similar situation, for a field frequency given by\v
57 meV, therefore near a resonance situation,DEsplit
'\v; is shown in Fig. 6. Here we clearly see that the bon
ing and antibonding states evolve inRabi sidebands.43 This
behavior can also be mapped on an effective two-level s
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tem, Fig. 6~b!. The effective distance between the two effe
tive atomic sites is close to the ‘‘molecular bond length’’d
57a, as for frequencies higher than the tunnel splittin
Fig. 5.

The near resonant case may be analyzed directly from
Rabi frequency at the crossing of the sidebands in Fig. 6~a!.
At the crossing\vR5DEsplit , wherevR5d0F/\ with d0
being the dipole matrix element. SinceDEsplit5\v, one has
that eaF'0.3\vR , resulting in a dipole matrix elementd0
'3.33a and 2d056.6a, in good agreement with the ‘‘mo
lecular length,’’d57a.

In Fig. 7 we show the situation for a field frequency\v
55 meV lower than the bare tunneling splitting. The ze
photon molecular states show an ac Stark shift,43 Fig. 7~a!.
The dressed tunnel splitting increases with field intensity
the first important anticrossing ateaF/\v51. Now the
mapping on an effective two-level system, Fig. 7~b!, occurs
for an effective distanced'3.5, nearly half the nominal mo
lecular bond length. This shrinking of the effective distan
is, however, compatible with the increasing of the tun
splitting.

IV. FINAL REMARKS

In the present work we have developed a renormalizat
decimation method applicable to the Floquet Hamiltoni
With this method it becomes possible to investigate inte
ac field effects on semiconductor microstructures descri
by lattice models with realistic dimensions. The matrix d
mension in the renormalization method is simply the num
of lattice sites,L13L2, while for a direct diagonalization o
the Floquet Hamiltonian one has to handle matrix dim
sions ofL13L2(2M11). The usefulness of the method ca

*Present address: Consejo Superior de Investigaciones, Un
sidad Nacional Mayor de San Marcos, Lima, Peru.
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be illustrated with a simple estimate. In a previous work42

using a direct diagonalization procedure, strong field inten
ties requiredM'90 for a chainL'20 sites long. Therefore
in such cases the matrix dimension reachesL(2M11)
53620, which is equivalent to the numerical effort of sy
tems with lateral sizes of the order ofL1,2'60 (L13L2
53600), using the renormalization-decimation method. R
calling the tight-binding parameters of the present work, t
lateral size corresponds toL5L (1,2)a51200 Å, which is of
the order of actual quantum dot typical length scales. T
illustrative examples shown here for double quantum d
are still heuristic, since one of the main proposals of t
work is the establishment of the continuum and extreme
tice limits of the model. This clear definition of the con
tinuum limit permits the future application of the method
systems with dimensions at least one order of magnit
larger than the present heuristic ones. Nevertheless, the
sults for the rather small double quantum dots point out
teresting dependences of the dressed electronic structur
the field frequency, which could be addressed in actual s
tems. A natural extension of the work is the analysis of
local quasi-density-of-states, as well as the study of as
metric double quantum dots with realistic dimensions, a s
ation for which the density of states reveals actual tunne
properties.
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