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Renormalization approach to quantum-dot structures under strong alternating fields
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We develop a renormalization method for the quasienergy spectra of low-dimensional structured systems
under intense ac fields. These systems are emulated by tight-binding lattice models with a clear continuum
limit of the effective-mass and single-particle approximations. The coupling to the ac field is treated nonper-
turbatively by means of the Floquet Hamiltonian. The renormalization approach gives an intuitive view of the
electronic dressed states. The numerical advantage over a direct diagonalization of the Floquet Hamiltonian
makes the method suitable for the study of dressed states of nanoscopic systems with realistic geometries,
irrespective of the ac field intensity. Two numerical examples are discussed: a quantum dot, emphasizing the
analysis of the effective-mass limit for lattice models and double-dot structures, for which we discuss the limit
of the two-level approximation currently used in the literature.
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I. INTRODUCTION strong ac electric field. The time-independent infinite matrix
Hamiltonian, obtained after the application of the Floquet-

The renormalization method, as a tool for studying theFourier transformation over the time-dependent Sdimger
electronic structure of solids, has attracted attention some 28quation, describes entirely these processes without any fur-
years ago with the application to disordered low-dimensionather ad hochypothesis.
systems:? More recently, the particular suitability of the Hence, the effect of an intense ac field on the electronic
method for studying strongly anisotropic solids started tospectra of a nanostructure, such as a quantum dot, is well
deserve growing interest, such as in applications to semicordescribed by an infinite Floquet matrix. However, due to the
ductor superlattices and conducting polymers. large vector basis necessary to describe the system in a tight-

The aim of the present work is to apply the renormaliza-binding approximation for the lattice model, the eigenvalue
tion method to a different problem with the same formalcalculations are practically impossible to be performed be-
structure: the dressed electronic spectra of semiconductgiond a perturbative field intensity range. Indeed, intense ac
microstructures under intense ac fields. field effects have been usually investigated for heuristic

Recent advances in semiconductor technology openechain models for minibands in superlattices. Having such
possibilities to design systems that are in the quantum limitimitations in mind, we observe that the infinite Hamiltonian
in all spatial directions, establishing an important branch ofmatrix has the structure of a simple tight-binding linear chain
what is nowadays called nanoscience. A double quantum datridiagonal matrix—where the diagonal “energy sites” are
sometimes also called artificial molecdlés an example of now replaced by block matrices—that corresponds to the
such systems and has been the object of intensive researblre Hamiltonian of the system with or without an associated
from both theoreticdr?* and experiment&t~3? points of  multiple of the photon energy, what will be called “photon
view in the last few years. In particular, the response ofreplicas.” The off-diagonal elements, i.e., the “hopping pa-
guantum dots and double quantum dots to microwave fieldsameters” are replaced by block matrices that describe the
has attracted renewed attentioff*and is directly concerned coupling of the system with the ac field.
to our work. These relationships allow us to develop an interesting and

Semiconductor microstructures can be described by latticpromising approach: the renormalization procedure, whereby
models, treated in a tight-binding framework, emulating thethe actual dimension of the system to be calculated is re-
continuum limit of the effective-mass approximatidnLat-  duced to that of the lattice model for the bare system. Fur-
tice models have been widely used in the context of disordethermore, since the quantity calculated is the density of
effects on electronic and transport properties of two-states, one gets a step further than by direct diagonalization
dimensional systent$. On the other hand, lattice models of the Floquet Hamiltonian, which provides only the
show a quite long history as a simulation tool of nanoelec-quasienergy spectra without the spectral modulation as a
tronic devices, as well as quantum billiards and arrays ofunction of the field intensity, as well as the strength hierar-
guantum dots and antidots in the presence of a magnetithy of these quasienergy spectra related to different photon
field 3" replicas, as will be discussed.

The coupling to an ac field is nonperturbatively included The paper has the following structure. A brief introduction
using the Floquet method, by means of a procedure introto the Floguet Hamiltonian is given at the beginning, fol-
duced by Shirley® The Floquet method is widely used for lowed by a comprehensive description of the renormalization
the nonperturbative study of the interaction of atomic, mo-method applied to the system. Afterwards examples of the
lecular, and semiconductor nanostructures systems with mumerical calculations are shown and discussed. We initially
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focus on the validity of a lattice model for a quantum dot in

V
the presence of intense ac fields. The second part of the{(f—mﬁw—€|1,|2)5|1|15|é|2— 2100171, -1t b+ B,
d

results and discussion section will be centered on the ac fiel
dependence on the bonding and antibonding states of an ar-
tificial molecule, i.e., a double-quantum-dot structure. (015 1,-11 611 1,+2) 0171, } [ Smrm
IIl. THEORY =F1l16i1,6121,(8m m-11 S m+ 1), ()

A. The Floquet Hamiltonian

The energy spectrum of a bare electronic system will beyvhereF, = ;eaF. These matrix elements are similar to those
described here by a tight-binding square latticestike or-  reported in a long list of one-dimensional systems under in-
bitals, considering only nearest-neighbor interaction. An agense ac fields. One can easily identify that the left-hand side
field will be considered parallel to one of the square sidesyt Eq, (3) represents a barelike electronic system. The differ-
Hence, the model for the bare electronic system coupled t@qce is that the energy eigenvalugs,m# w are now quasi-
an arbitrarily intense ac field is described by the Hamiltoniar\gnergies of a system dressed by photons shifted by multiples

H=Ho+Hin, where of the photon energy, usually called th@h photon replica
Vv of the system. The effect of the ac field is to couple different
+ > |2| [0'|1’|2(T|T1+1’|2 photon replicas as may be seen in the right-hand side of Eq.
172 (3). The problem can only be handled by means of direct

diagonalization, if the Floquet matrix is truncated to a rea-
sonable dimension. This dimension is givenlbyx L,(2M

(1) +1), whereL; andL, are the number of atomic sites in

and each direction, whileV is the maximum photon index. The
resulting quasienergy spectruffor the infinite systemis

(2 periodic defining quasi-Brillouin zong®BZ), with the first
QBZ spanning the range i w/2<&<hw/2. The numbeM,

Here U|1’|2:||1'|2>’ U|T1,|2:<|1:|2|: where (4,l,) are the Wwhich determines how many photon replicas are taken into

(x,y) coordinates of the sites. Thetomic energywill be account, is chosen in order to satisfy a convergence condi-
taken constanig, ,.=4|V/|, for all sites. Equatiori2) repre- tion: symmetric spectra relative to the QBZ edges for the few
L2 - relevant replicas arounch=0. Since the ac field couples a
sents the coupling to the ac electric field parallel to xhe . .
axis, as can be seen by the linear dependendg oais the Floguet state defmgd by photons to states witm—=1 or
electron chargew and F are the monochromatic ac field M+ 1 photons, multiple photon processes become relevant
frequency and amplitude, respectively. In the results showﬁv'th increasing field intensity, bl_Jt it can also be seen that th_e
throughout this work, the field direction will be parallel to €OUPling matrix elements are linearly dependent on the di-
one of the sides of an isolated quantum dot or along th&hension of the system in the direction of the field polariza-
double-quantum-dot structure. The treatment of the timelion, as can be seen in the right-hand side of @y. There-
dependent problem is based on Floquet stated,,m) fore, the direct diagonalization of the Floquet Hamiltonian
wherem is the photon index. We follow the procedure de- becomes difficult for nonperturbative field intensities and
veloped by Shirle$f for a two-level problem, which consists large systems.
in a Fourier-Floguet transformation of the time-dependent A truncated Floguet matrix is a tridiagonal block matrix
Hamiltonian into a time-independent infinite matrix. The el- given by
ements of this infinite matrix are

_ t
Ho= 2>, €1,.1,01,.1,01, 1

17,15 2

t ' t
+ + +
Ol +11,91,1, T 011,01 1,41 0'|1,|2+10'|1,|2]

H=eaFcoswt >, oy | lio] | .
Il'IZ 172 172

EM F
F EMt F
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whereEM=(£—mAw)l+H, is aL; XL, block matrix rep- where the dots represent the remaining equations of the infi-
resenting a photon replica with the matrix elements given byiite set. The decimation procedure consists in eliminating,
the left-hand side of Eq3). The coupling of the system with from the above set of equations, all those equations involv-
the intense ac electric field is represented by the off-diagonahg odd-numbered photon replicas, i.e., by replacing the ex-
blocks F, which are diagonal block matrices, with the ele- pressions
ments given by
1
F=Fil16111, 61, (5 Gzn+1,OZWF(Gzn,o+ Gan+20 (12)
The diagonalization of the problem is simply given by in the right-hand side of the subset for the even-numbered
photon replicasG,, in Eq. (11). The result is a set of
Mg=0. 6 Green’s functions with renormalized photon replicas and
coupling matrices. This decimation procedure is successively
applied to the remaining equations of the original set given
th Eqg. (11). The general form of these equations, afferl
decimations is

The dimension of the problem can be reduced {x L,
by means of a renormalization procedure. The first step is t
define the associated Green’s funcfiv@,

MeG=| " EgMGm,o: Omot an_zg,me—zé,o"‘ Fﬁw 26 mOm+2£,05
This function will be projected onto the photon subspace (13
and for the sake of clarity we will drop the site indices in the hare the renormalized photon replicas, up to ordef, afre
Floquet statesl;,l,,m)—|m). given by ’ ’

Since the Floquet states form a complete basis,
>|k){(k|=1 , the Green’s functions are given by

1
M_ M -1 i1
E§ _E§*l_Fm—25‘1,mEm,2§:}Fm,m72§‘1
2 (nIME[K) Gi= O ®
| - . | CEEL LDl g
Having Eq.(4) in mind, the matrice¢n|Mg|k) are simply m+26-4m M_+l2§’ m,m-+ 2
written as ‘
while the coupling matrices, up to the same decimation order
(n|Mg[n)=EN (9 of & are written as
for n=k, where the quasienergies are redefinedfasf 1
i i : 3 _pél é-1
+in, with »—0; and Fr 2t m= mezg,lymEM_2§,1Fm72§'m72§,1 (15
(nIMe[k)=F (10 o
. and
if n#k.
o = —pé L o Fel 16
B. Renormalization method m26m™ Fms 261 moy g8 1 me 26 m 261 (16)
&1

The quasidensity of dressed states of a system Wjth
XL, sites is obtained by successive “renormalizations” of  Although the successive decimation procedure described
the Floquet matriMg, using the expansion in Green’s func- here is straightforward, we add a few comments for a clear
tions. The infinite set of Green’s function, E®), is depicted understanding of the results shown in E¢s3)—(16). The
below around the photon replica ft4 =0, coupling matricesF, are all identical in the initial set of

Green’s-function equations, E@8). Already after the first
decimation,é=1, the coupling to higher and lower photon
replicas become different, due to the addition or subtraction

E72G72,0 = F(G_30tG_10, of miw in the denominators, respectively. The expressions
given by Eqs.(14)—(16) are actually recursive relations be-
E™'G_10 = F(G_,0tGop), tween renormalized quantities aftédecimations and those
from the previous step, i.e§—1.
E%Goo = 1+F(G_10+ Gy, The renormalized expression for the photon replicas of
the electronic system reveals a simple interpretation of the
E'G1o = F(Goot+ G0, method: each decimation represents a successive dressing of
the electronic states. By inspecting the coupling matrices, it
EZGZYO = F(Gygt+G3p), is straightforward to realize that the coupling between pho-

ton replicas that are distant in energy by increasing multiples
(11 of Aw becomes relevant only with increasing field intensity.
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FIG. 1. Quantum-dot geometrigs) square, andb) rounded
square. The arrow indicates the ac-electric-field direction.

ENERGY (E/hw)

The final result of this renormalization of the Floquet ma-
trix is the dressed Green’s function for one of the photon
replicas, such a8l =0, with the proper renormalized photon
replica and coupling matrices. This is achieved by substitut-
ing the results of Eq9.14)—(16) into Eq. (13). The number
of decimations necessary for a given field intensity is deter- 0 1 2
mined by a convergence criteria between a given §tefith FIELD 'NTENSEY (eaF/hw)
the previous one. A quasi-density-of-Floquet-statp§e (b)
+i7) can then be obtained,

[&N]

FIG. 2. Density of states as a function of field intensity, at a high
_ 1 frequency/io=1 eV, of a square latticop), and rounded lattice
p(E+in)=— ;'m[Tr Gool- (17 (bottom.

uantum well or quantum dot is represented by a site of the

sites basis. The present method can be seen as a version gice. This extreme lattice limit has been used throughout

the Floquet state theory in the Green's-function language, a ¢ literaiure for StUd.y ing qu_alitatively the effect of ".“ense_
discussed by Brandd8. Having in mind previous’ ac fields on superlattice minibands, as already mentioned in

atmpts  the decmaton proceture,besides he areagf® PIOGctor, On e ather hand, tice models may be
mentioned intuitive interpretation for dressed states in suc 9 P y

Green’s-function language, has no limitations concerning th re well described by the effective-mass approximation. In

ac field strength and may be applied to arbitrary static potenéeenF;Lezfgér"\grz’r::ﬁatt'g2;2'2?;23:&5%%35?\;:2?; If?)ft':r?e
tial profiles that define the bare mesoscopic systems.

GaAs bottom of the conduction bana} =0.067m,. Since,
V=-#2%/(2m*a?), V=—0.142 eV for a lattice parameter
of a=20 A. Such parametrization used in the results shown
Lattice models, with nearest-neighbor interactions onlybelow, will correspond to structures with lateral widths up to
show a particle-hole symmetry in the electronic structure and. = 280 A (double-quantum-dot caseThis is still an order
are usually thought as simple, although useful, approximaef magnitude lower than the typical dimensions of actual
tions for superlattices or arrays of quantum dots, where eacfjuantum dots constructed by lithographic methods. How-

The trace of the Green’s operator is taken over the atomi

C. Lattice and continuum limits
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FIG. 3. Double-quantum-dot geometry. The arrow indicates the
direction of the ac-electric-field considered.

ever, in the present study we intend to illustrate the method
as well as to establish the range of validity of the lattice
model for an effective-mass approximation physical limit. In
this sense, the first question to be addressed is the transitio 0 1 2
between the extreme lattice and effective-mass limits. This is FIELD INTENSITY (eaF/hw)
analyzed by following the evolution of the quasi-density-of- (a)

states as a function of the intensity-of-ac fields with frequen-
cies of the order of the electronic bandwidth. Such an essen
tial step has been carried out for rather small structures, a:
mentioned above. Once this point is settled, one can see th:
the general conclusions are consistent for larger quantum-dc
systems. It should be also pointed out that we will be mainly
concerned with the lowest pair of states of a double quantun_
dot. In such a situation, the atomic site basis is large enougts
to properly simulate these states.

W

600
DOS

400

ENERGY (m

lll. ARTIFICIAL ATOMS AND MOLECULES

200

A. A quantum dot under intense ac field _ L

As a starting point, we calculate the quasi-density-of-
states of quantum dots as a function of the ac field intensity.
We choose two different quantum-dot geometries: a square

and a rounded one, as shown in Fig. 1, where the ac-electric B B e e ML e °©
field direction is indicated by an arrow. The square gquantum- 0 0.1 0.2 0.3

dot is emulated by an array ob66 atomic sites, Fig. (b). A FIEL i [NTENSITY (/o)

more realistic geometry for a quantum dot is given in Fig. (b)

1(b), which will be used for the double-dot systems studied ) . o .

also in this work. It should be noticed that the area of this FIG. 4. Top: density of states as gfunctlon of _fleld intensity of a
geometry—37 atomic sites, using the same tight-binding padeuble guantum dot, as shown in Fig. 3, at a high frequenay,
rameters described below—is comparable with the squargl eVv. Bottom: density of_ state's for the two lowest states, i.e., the
one, Fig. 1a). In Fig. 2 we show the contour plot of the molecularbonding and antibonding states.

density of states as a function of the ac field intensity for the

bottom half of the first QBZ. We recall that, for the chosenanymore and the length scale is given by the host lattice
hopping parameter, the bandwidth is given BE=|8V| parameter and not the lateral widtH,, of the quantum dot.
=1.136 eV. Here the field frequency #sw=1.0 eV. The Indeed, the model simulates in this limit a square array of
square quantum dot, although a textbook example, is verguantum dots, each one represented by a single site, resem-
useful to understand the breakdown of the effective-masbling the results that would be expected for coupled chains,
limit. At zero field intensity the energy spectrum of a two where each chain model the dynamic localization in super-
dimensional square potential well with=120 A—a quan- lattice minibands.

tum dot—is clearly identified, as well as the breakdown of This result for a square array is a good guide for charac-
degeneracies due to the applied ac field. The level stafts terizing the density of states as a function of the field inten-
Stark shif lead to crossings a@aF#%w~2.4, correspond- sity of a quantum dot with lower symmetry, Figibl, as can

ing to a dynamic localization in chains perpendicular to thebe seen in the equivalent plot shown in Figb)2also for a

field direction. This is the limit where the host lattice effectsfrequencyrw=1.0 eV. The dynamic localization at the ex-
are already predominant, i.e., the discrete basis of atomitteme lattice limit is less defined due to the fact that the
orbitals does not emulate the effective-mass approximatioatomic site chains perpendicular to the field direction are not
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FIG. 5. Top: Density of states as a function of field intensity of ~ FIG. 6. Top: Density of states of a double quantum dot as a
a double quantum dot at low frequencidsy=10 meV. Bottom:  function of field intensity at a nearly resonant frequengyy
spectra of an equivalent two-level system, simulated with a dipole=7 meV. Bottom: spectra of a two-level equivalent system near
distanced~d, in the dynamic localization regime. Rabi resonance.

equivalent as in the square array. Besides that some of thatensity. On the other hand, in both figures we see no sig-
degeneracies are already broken in the absence of the @fficant modulation of the density of states in the low-field
field. intensity limit within the entire band of the depicted zero
A important characteristic of the method can be seen irphoton replica, due to the high frequency considered.
Fig. 2. By simply diagonalizing the Floquet Hamiltonian, the ' The main interest, however, is the effective-mass limit,
quasienergy spectra are depicted in the so-called QBZ's,e., the energy bottom of each photon replica at low-field
each of them reproducing the spectrum with the energyntensities in the scale of Fig. 2, as well as low frequencies
shifted by integer multiples of the photon energy. The overthat would couple only these few low-energy states. The
lap of these photon replicas makes the interpretation of thgcaling of these quantities shows the suitability of the present

spectrum rather cumbersome, specially for strong overlapsnethod, as will be seen in the following discussion on
which are unavoidable for low frequencies. The result of thegouble quantum dots.

present renormalization approach is the quasienergy spec-
trum modulated by the field-dependent density of states, so
the higher or lower photon replica become relevant only with
increasing field intensity. This effect is verified at the bottom The double-quantum-dot system is based on the quantum
of Figs. 2a) and 2b): the spectrum replica lowered by one dot shown in Fig. tb). The coupling between dots is of free
photon energy shows a negligible contribution at low-fieldchoice and we consider a simple connection of both dots by

B. Double Quantum dot
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7 T T O T I M In Fig. 4b) we have the quasi-density-of-states for the
lowest pair of molecular states. Both, bonding and antibond-
. - ing states shift rigidly upwards in energy. Here a modulation
- f# of the density of states is seen: with the increasing field in-
- - tensity, the density of states diminishes, with increasing con-
60| tribution of higher and lower photon replicdsot shown.
Since the frequency of the field is very higho=1 eV, all
s B states of the system are mixed by the field and no typical
7 - B two-level behavior is observed. The rigid energy shift may
7 B be seen already as a lattice effect, since for high-field inten-
sities the dynamic localization for the host lattice is revealed,
Fig. 4(a).
7 B A clear covalent molecular picture is revealed for much
7 \ B lower frequencies, in the range dto~10 meV, which is of
the order of the tunnel splitting between the lowest pair of
states in the bare “moleculé”for the chosen parameters:
0 0.5 1 1.5 2 AEgp = 7.1 meV. For this frequency range the coupling to
FIELD INTENSITY (eaF /hew) higher molecular states is negligible, since the third molecu-
@ lar state is about 50 meV above the antibonding state. The
lattice effects are also absent, since the dynamic localization
effects on the host lattice are relevant for field frequencies of
the order of the entire spectral width, which is two orders of
magnitude larger than the energy scale of interest: the tunnel
splitting. The present results are exact, since we are in an

= independent particle approximation for an artificiaj hol-
:><><: ecule. Within this parameter range, the lowest pair of states
of the double quantum dot behave as a two-level systam,
><:>< will be discussed in the following results. We are going to
switch the field frequency from above to below the tunnel

50 =
>-<>—< splitting energy. The quasi-density-of-states plots will also be

- . compared to the corresponding quasienergy spectra of the

><:>< equivalent two-level system obtained by diagonalizing the

Floquet Hamiltonian.
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400

ENERGY (meV)

[
o
/
ol
200

4-OIIII|IIII|IIII|IIII <

E (meV)

40 e e In Fig. 5 the evolution of the artificial 5 bonding and
edF/ho antibonding states as functions of field intensity is shown for
(b) afield frequencyi w=10 meV>AEg;;. In Fig. 5a) we see

the quasi-density-of-states around the main photon replica,
FIG. 7. Top: Density of states of a double quantum dot as avhich shows the highest intensity for low-field intensities.
function of field intensity athw=5 meV. Bottom: spectra of a The next important branches of the quasi-density-of-states
two-level system in the ac Stark regime. are the bonding state plus one photon and the antibonding
minus one photon. With increasing field intensity, the split-

. . . tiag between the zero-photon bonding and antibonding states
the same hopping parameters considered so far, as 'I|UStrat%|minishes down to a crossing aaF/hw~0.3. This re-

n F|g'. 3. Such configuration is an elxamp.Ie of'strc.)ng InterdOtsembles the dynamic localization regime for superlattice
coupling. As stated before, the ac field direction is along th%inibandél"‘zThe branches of the quasi-density-of-states in
guantum-dotmolecule The corresponding quasi-density-of- Fig. 5@ can be mapped on the quasienergy spectrum of a
states plot as a function of field intensity for the same highyo_jevel system, emulated by two atomic sites with fitted
field frequencyfiw=1.0 eV, as in Fig. 2 is shown in Fig. tight-binding parameters. This spectrum is a function of a
4(a). The quasi-density-of-states spectrum is very similafie|d intensity defined byedF/%w, whered is the distance
with the appearance of the expected energy splitting due tgetween the two effective atomic sites. The correspondence
the coupling among quantum-dot states. The energy splittingetween Figs. @) and 3b) is satisfied by properly scaling
structure may be rather complex, considering the coupling ofi~7a. Having in mind the double quantum dot of Fig. 3,
initially degenerate states in each quantum dot. A covalentd=7a is the distance between the centers of the Hotthe

like binding, with a splitting between bonding and antibond-bond length of the molecule.”

ing states is well defined for the interdot coupling between A similar situation, for a field frequency given byw

the lowest state in each quantum dot. Therefore, from now=7 meV, therefore near a resonance situatidvE,);

on we will focus exclusively on the energy bottom of the ~% w; is shown in Fig. 6. Here we clearly see that the bond-
spectra, the continuum—Ilow-field intensity—limit, in order ing and antibonding states evolve Rabi sideband$® This

to analyze the lowest pair of split double-quantum-dot stateshehavior can also be mapped on an effective two-level sys-
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tem, Fig. 8b). The effective distance between the two effec-be illustrated with a simple estimate. In a previous Wrk,
tive atomic sites is close to the “molecular bond length” using a direct diagonalization procedure, strong field intensi-
=7a, as for frequencies higher than the tunnel splitting,ties requiredM ~90 for a chainL~ 20 sites long. Therefore,
Fig. 5. in such cases the matrix dimension reachg2M+1)

The near resonant case may be analyzed directly from the 3620, which is equivalent to the numerical effort of sys-
Rabi frequency at the crossing of the sidebands in Fig. 6 tems with lateral sizes of the order &f; ,~60 (LyXL,
At the crossingh og=AEgpi;, where wg=doF/A with d =3600), using the renormalization-decimation method. Re-
being the dipole matrix element. Sindd,;;;=7% w, one has calling the tight-binding parameters of the present work, this
thateaF~0.3h wg, resulting in a dipole matrix elemeni, lateral size corresponds to=L; ;a=1200 A, which is of
~3.33% and A,=6.6a, in good agreement with the “mo- the order of actual quantum dot typical length scales. The
lecular length,”d="7a. illustrative examples shown here for double quantum dots

In Fig. 7 we show the situation for a field frequentw  are still heuristic, since one of the main proposals of this
=5 meV lower than the bare tunneling splitting. The zero-work is the establishment of the continuum and extreme lat-
photon molecular states show an ac Stark $fifijg. 7(a).  tice limits of the model. This clear definition of the con-
The dressed tunnel splitting increases with field intensity uginuum limit permits the future application of the method to
the first important anticrossing a&aF/Aw=1. Now the systems with dimensions at least one order of magnitude
mapping on an effective two-level system, Figb)7 occurs larger than the present heuristic ones. Nevertheless, the re-
for an effective distancd~ 3.5, nearly half the nominal mo- sults for the rather small double quantum dots point out in-
lecular bond length. This shrinking of the effective distanceteresting dependences of the dressed electronic structure on
is, however, compatible with the increasing of the tunnelthe field frequency, which could be addressed in actual sys-
splitting. tems. A natural extension of the work is the analysis of the
local quasi-density-of-states, as well as the study of asym-
metric double quantum dots with realistic dimensions, a situ-

~ation for which the density of states reveals actual tunneling
In the present work we have developed a renormalizationproperties.

decimation method applicable to the Floquet Hamiltonian.
With this method it becomes possible to investigate intense
ac field effects on semiconductor microstructures described
by lattice models with realistic dimensions. The matrix di- It is a pleasure to thank H. S. Brandi for suggesting the
mension in the renormalization method is simply the numbepossibility of decimating the Floquet Hamiltonian, as well as
of lattice sitesl ;X L,, while for a direct diagonalization of many stimulating discussions at the beginning of this work.
the Floquet Hamiltonian one has to handle matrix dimen-The authors acknowledge financial support from FAPESP
sions ofL;XL,(2M+1). The usefulness of the method can and CNPq.
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