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Dynamics of hot-electron scattering in GaN heterostructures

P. Tripathi and B. K. Ridley
Department of Electronic Systems Engineering, University of Essex, Colchester, United Kingdom

~Received 15 May 2002; published 1 November 2002!

A detailed comparison is made between the hot-electron rates for energy and momentum relaxation in
electron-acoustic-phonon scattering and energy and momentum exchange rates in electron-electron scattering
in a GaN heterostructure. In the case of piezoelectric scattering full account is taken of the anisotropy of the
interaction and corresponding form factors have been calculated. The interaction with acoustic phonons is
assumed to be statically screened. Dynamic screening of the electron-electron interaction is shown to give rise
to resonances associated with plasmon-phonon coupled mode effects with overall dynamic rates rather insen-
sitive to electron density at least for densities around 131012 cm22. At these densities electron-electron
scattering easily dominates the energy and momentum distribution at energies below the optical-phonon energy
and is comparable with the optical phonon contribution above the phonon energy. The condition for the
formation of a drifted Maxwellian distribution is discussed.
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I. INTRODUCTION

A comprehensive understanding of the electronic p
cesses underlying the transport properties of GaN het
structures is an essential requirement for the successful m
eling of high-power microwave FET’s and other device
Although much of the basic physics can be carried over fr
previous work on GaAs, and even Si, heterostructures,
all of it can because GaN, though still tetrahedrally bond
crystallizes in the wurtzite structure rather than the z
blende structure of GaAs and, moreover, it is more stron
polar than GaAs. The lower symmetry of wurtzite allows t
appearance of spontaneous electric polarization which re
in the spontaneous creation of a neutralizing electron or h
gas at the heterostructure interface.1 Although not as strong
as in typical ferroelectrics, the spontaneous polarization
strong enough to induce carrier densities of 1012– 1013 cm22

without the necessity for doping.2,3 In principle therefore,
though rarely in practice, impurity scattering can be ignor
which makes the nitride system unique among semicond
tor structures. This would suggest that at low temperatu
where phonon scattering is weak, mobilities of ord
106 cm2/V s may be expected, mirroring the record electr
mobilities of around 107 cm2/V s observed in the lighter ef
fective mass GaAs structures. The low-temperature mo
ties observed in state-of-the-art nitride high-electro
mobility transistors ~HEMTS! is, however, an order o
magnitude less. The discrepancy may not be due to the
vious culprit—interface roughness scattering—but rathe
the fields produced by fluctuations in the dipole distributi
in the barrier.4 Nevertheless, dipole-scattering-limited m
bilities are high enough for this type of scattering to be n
ligible at most temperatures of interest. Ordinary alloy sc
tering would have to be considered also where the barrie
small enough for there to be significant penetration of
electron wave function into the barrier, but even here
effect is predicted to be negligible in AlGaN.5,6 Improve-
ments in crystal growing, reducing the effects of interfa
roughness and dislocations, encourages the study of e
tronic processes to focus purely on electron-phonon
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electron-electron interactions, and this is our aim here.
The interaction between electrons and optical phonons

the Fröhlich interaction, being the most important at tem
peratures above about 100 K in GaN, has properly been
subject of many papers in the literature. In wurtzite, unli
zinc blende, the interaction is anisotropic and involves b
longitudinally and transversely polarized components.7 The
angular dependence of the coupling coefficients can be
tained simply for the case of weak anisotropy8 and it turns
out that the contribution from the TO modes is two orders
magnitude smaller than the contribution from the L
modes.9 Most authors therefore adopt an isotropic, zi
blende–like, model. At an interface, the incident bulk Ga
modes must satisfy mechanical and electrical boundary c
ditions. Because of the usually large disparity of atomic m
factors~such as the ratio of the reduced mass to the unit
mass! at the interface the appropriate mechanical bound
condition is the vanishing of the optical displacement~u50!
~Ref. 10! corresponding to total reflection. The LO mod
are therefore half-space modes. In addition there are in
face modes. When the barrier is composed of a ternary a
such as in the AlInN/GaN system, there are three interf
modes.11 Satisfying the boundary conditions leads to the h
bridization of all the modes12 and complicates the calculatio
of scattering rates. Though essential for describing Ram
scattering, hybridization can be sacrificed without much
ror in favor of the dielectric continuum~DC! model, which
uses only electrical boundary conditions, when only elect
scattering rates are required. An even simpler approximat
much adopted after its use in the AlAs/GaAs system,13 is to
forget about half-space and interface modes and simply
the bulk phonon spectrum; errors are rarely larger than 1
20 %. The large electron densities typically obtained also
quire taking into account degeneracy, and the effect of P
exclusion was expected to reduce the rate. Solution of
linearised Boltzmann equation for the AlN/GaN syste
showed instead that the rate tended at first to increas
more electrons in the Fermi tail acquired enough energy
emit an optical phonon and only at higher Fermi energies
the rate decrease, with the result that the mobility reache
minimum at a density of 1013 cm22.14
©2002 The American Physical Society01-1
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With the possible exception of coupled-mode effec
scattering of electrons in GaN channels by polar opti
phonons appear to be reasonably well understood. The l
electron densities, even if short of degeneracy, will play
important role in screening, in providing plasmons and
determining the form of the distribution function at all ele
tric fields. Needless to say, electron-electron scattering
GaAs channels has been the subject of too many pape
mention all here. One of the features of many is the comm
assumption of static screening of all interactions~e.g., Ref.
15!, which is valid for all elastic interactions but not fo
inelastic scattering such as electron-electron interaction it
and for the interaction with optical phonons. Neverthele
the need for dynamic screening of the electron-electron
teraction is well pointed out.16,17 In calculations of transpor
in GaN quantum wells, electron-electron scattering was, w
one exception, not considered.18–21 The exception was an
analysis of moderately low temperature hot-electron tra
port where unscreened electron-electron scattering was t
to be strong enough to engender a drifted Maxwellian dis
bution, resulting in a number of novel phenomena includ
absolute cooling of electrons and squeezed electrons.22 These
results have contributed substantially to the motivation
this study. One of our aims, in short, is to examine the p
sibility of obtaining a hot-electron drifted Maxwellian distr
bution.

The regime of electron energies below the optical-phon
band is characterized in our ideal system by the domina
of scattering by acoustic modes, which accounts for b
momentum and energy relaxation of hot electrons. In
strongly polar nitride systems, piezoelectric scattering, at
energies, is more intense than deformation-potential sca
ing, given the accepted values of the deformation const
Piezoelectric scattering is highly anisotropic, particularly
wurtzite. Usually, some sort of spherical average is tak
However, form factors that incorporate the angular anis
ropy have long been known for the zinc blende case23 and
they have been applied to GaAs~Ref. 15! and even to GaN.19

As far as the authors are aware, form factors incorpora
the wurtzite anisotropy, derived in this paper, have not b
given before.

As regards the electron-electron interaction, the detail
energy-exchange in the presence of dynamic screening
not been explored; where dynamic screening has been
sidered~e.g., Ref. 16! the emphasis has been on scatter
rates. Our interest here is less on the scattering rates th
selves, more on the dynamical aspects, i.e., momentum
change and energy exchange, since it is these that mu
compared with the rates of momentum relaxation and ene
relaxation associated with the interaction with phonons
which determine the form of the distribution function for h
electrons.

II. ACOUSTIC PHONON ENERGY

Below about 100 K in GaN the dominant process for
laxing hot-electron energy is via the interaction with acous
phonons. In the 2D case these can be regarded validl
being essentially bulk travelling modes, complications as
19530
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ciated with the presence of an interface being discoun
The interaction with electrons is usually regarded as qu
elastic, the phonon energies involved being much less t
the electron energy. While this property is undoubtedly va
in bulk material, it is not necessarily so for quasi-2D electr
gases. The phonon energy for long-wavelength modes is
portional to the wave vectorQ, i.e., \v5\s•Q, wheres is
the velocity of sound, or simply\v5\sQ, taking spherical
averages over the elastic anisotropy. In bulk materialQ is
determined by the conservation of crystal momentum, wh
limits the magnitude to roughly 0<Q<2k, wherek is the
electron wave vector, and sincek corresponds to long wave
lengths in most cases in semiconductor physics, so doeQ
and the energy is correspondingly small. In the 2D case m
mentum conservation is limited to the in-plane componenq
and no such restriction applies to the perpendicular com
nent qz . The phonon energy is therefore not so precis
determined since\v5\s(q21qz

2)1/2. The only limitation on
qz is provided by the modulus squared overlap integ
uG(qz)u2:

G~qz!5E c~z!2eiqzzdz, ~1!

wherec(z) is the z component of the electron wave func
tion. An approximate form for the latter for the ground sta
in a heterostructure channel is the Fang-Howard w
function:24 c(z)5(b3/2)1/2ze2bz/2, in which caseuG(qz)u2
falls off rapidly for qz>b/2

uG~qz!u25
b6

~b21qz
2!3 . ~2!

For the deep square well case, the overlap integral falls
rapidly for qz.0 and again, after a weak resonance, forqz
.2p/a, where a is the well width. Thus, as long as th
width of the well contains many monolayers, the error
ignoring the contribution to the phonon energy made byqz
will be small, thanks to the relatively small magnitude of t
sound velocity, and the interaction can safely be taken to
quasielastic, as far as evaluating the scattering rate or
momentum relaxation rate is concerned. Another bonus
this approximation is that the screening of the interaction
be assumed to be static. In general, however, the usua
sumption of the 2D rate being simply derivable form the 3
rate by multiplying byI (b),23 where

I ~b!5E
2`

`

uG~qz!u2dqz/2p53b/16 ~3!

and 3/2a in the case of a deep square well, is not stric
valid.

The problem becomes most acute in the evaluation of
energy relaxation rate, since the magnitude of the pho
energy emitted or absorbed is central to the calculati
However, for wells that are not too narrow it will be reaso
able to obtain the energy relaxation rate with the approxim
tion Q5q. For simplicity we will adopt this approximation
and derive all rates with the usual assumptions of quasie
ticity, energy directly proportional toq and lattice tempera-
1-2
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tures high enough for equipartition to hold. Errors introduc
will be unimportant as far as a comparison with energy
change rates associated with electron-electron scatte
since, as we will see, the latter are much bigger for the e
tron densities of interest. The procedure will, however, som
what underestimate the true rates, which would lead t
slight underestimate of the electric field for the onset
warm-electron effects. However, our concern is the beha
b

tin

fo
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of hot electrons, where the relatively high energy of the el
trons favors the approximationQ5q.

III. DEFORMATION-POTENTIAL RATES

The scattering rate derived from Fermi’s golden rule is
herically
coustic

n,

n of
W~k!5
pJ2

rV E
2`

`

dqzuG~qz!u2
Lz

2p E Q2

v~11qs /q!2

3H n~v!1
1

2
6

1

2J dk8,k6qd$E~k8!2E~k!7\v%qdqdu
LxLy

4p2 , ~4!

whereJ is the deformation constant,r is the mass density,V5LxLyLz is the cavity volume,v5sQ, n(v) is the Bose-
Einstein factor, equal in this case tokBT/\v@1, and qs5e2nF(q)/(2«skBT) is the 2D static screening factor withn
5electron density,«S is the static permittivity, andF(q)5(819r 13r 2)/8(11r )3 with r 5q/b is the form factor for the
Fang-Howard wave function with only the ground state being occupied. We assume that the electrons are in a sp
symmetric conduction band and that they interact via the deformation potential only with longitudinally polarized a
~LA ! modes. We also assume that the conduction band is parabolic.

We now apply the simplifying approximationQ5q, which allows us to carry out the integration overqz @see Eq.~3!#.
Performing the integration over angle gives

W~k!5
3J2m* b

32p\3s2rkF E
0

2k~11h! kBT

~11qs /q!2A12$~q/2k!2h%2
dq

1E
0

2k~12h! kBT1\sq

~11qs /q!2A12$~q/2k!1h%2
dq
G , ~5!

whereh5m* s/\k, ands is the velocity of longitudinally polarized acoustic~LA ! modes. The first integral is for absorptio
the second for emission. Retention of the small quantityh is essential for the calculation of energy relaxation.

The momentum relaxation rate is obtained by weighting the integrands with the factorq2/2k2 and neglectingh:

W~k!5
3J2m* bkBT

32p\3s2rk3 F E
0

2k q2

~11qs /q!2A12~q/2k!2
dqG . ~6!

The energy relaxation rate is given by Eq.~5! with the integrands multiplied by the phonon energy and a change of sig
the second integral

W~E!52
3J2m* b

32p\3s2rkF E
0

2k~11h! \sqkBT

~11qs /q!2A12$~q/2k!2h%2
dq

2E
0

2k~12h! \sq~kBT1\sq!

~11qs /q!2A12$~q/2k!1h%2
dq
G . ~7!
ot-
ies
. It
nts,
We evaluate the integrals numerically. The integrals can
evaluated analytically only if theq dependence of the form
factor that determines the screening is ignored by adop
some average.

IV. PIEZOELECTRIC RATES

In the piezoelectric interaction the coupling parameter
deformation-potential scatteringJ2q2 is replaced by
e

g

r

e2Ka
2(u)ca(u)/«(u), whereKa(u) is the directionally de-

pendent electromechanical coupling coefficient,ca(u) is
the corresponding elastic constant, and«~u! is the permittiv-
ity. The subscript becomesL for longitudinally polarized
modes andT for transversely polarized modes. The anis
ropy of the piezoelectric, elastic, and dielectric propert
make the calculation of scattering rates more complicated
is usual to take spherical averages of the dielectric consta
i.e., «5(«111«33)/2, and of the elastic constants25
1-3
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cL5
1

3
~2c111c33!2

2

15
cx ,

cT5c441
2

15
cx ,

cx5c111c3322c1324c44. ~8!

There are five nonzero piezoelectric coefficientse31
5e32,e33,e245e15. For an acoustic wave traveling with po
lar coordinatesr,u,f with the c axis as the polar axis ther
are three orientations of unit-cell displacement:~1! along the
direction of travel ~longitudinally polarized!, ~2! at right
angles to the direction of travel in the plane containing thc
axis ~transversely polarized!, and ~3! at right angles to both
the direction of travel and the plane containing thec axis
~again transversely polarized!. In the last case the displace
ment is in the basal plane of the hexagon and the piezoe
tric interaction vanishes. For the other cases the effec
coefficients are

eL5e33cos3 u1~e3112e15!cosu sin2 u,

eT52~e332e312e15!cos2 u sinu2e15sin3 u. ~9!

The dimensionless electromechanical coupling coefficie
are

KL
25

eL
2

«xcL
, KT

25
eT

2

«scT
. ~10!

The scattering rate, with energy principally determined
the in-plane wave vector, is given by

Wa~k!5
e2m*

4p2«s\
2k

3E
0

2k~16h! Fa~Ka ,T,q!

~11qs /q!2A$12@~q/2k!7h#2%
dq,

~11!
19530
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where

Fa~Ka ,T,q!5E
2`

`

dqzE
0

`

dzE
0

`

dz8c2~z!c2~z8!

3eiqz~z2z8!Ca
2~Ka ,T,q,qz! ~12!

and

Ca
2~Ka ,T,q,qz!5Ka

2F kBT

\~q21qz
2!

1S 1

2
7

1

2D sa

A~q21qz
2!

G
'

Ka
2kBT

\~q21qz
2!

F11S 1

2
7

1

2D \saq

kBT G . ~13!

In order to decouple the integration overq from that overqz

we have again assumed that the phonon energy is essen
determined byq. To express the polar angles in Eq.~9! in
terms of the components of the phonon wave vector we
sume that the plane of the channel is perpendicular to thc
axis, which is the usual case in practice. In which ca
cosu5qz/Aq21qz

2 and the electromechanical coupling coe
ficient can be expressed as a function ofq andqz . The ap-
proximation in Eq.~13! allows the same form-factored cou
pling to apply to both stimulated and spontaneous proces

In the calculation of the momentum relaxation rate t
second term in the brackets of Eq.~13! is much smaller than
the first and can be neglected. The integrations overqz andz
can then be carried out analytically, leading to the expr
sions below. The second term in Eq.~13! must be retained in
the calculation of the energy relaxation rate. The phon
energy multiplying the first term is, however, approximat
as usual (\v'\saq). The integrations overqz and z can
again be carried out analytically to give
x. The
Fa~Ka ,T,q!5Ga~Ka ,T,q!F11S 1

2
7

1

2D \saq

kBT G ,

GL~KL ,T,q!5
pkBT

\«scLqF ea
2 1

48
~15f 0233f 1112 f 22 f 3!1eaeb

1

4
~3 f 025 f 11 f 2!

1eb
2 1

2
~ f 02 f 1!

G ,

GT~KT ,T,q!5
pkBT

\«scTq Fea
2 1

48
~3 f 013 f 126 f 21 f 3!1eae15

1

4
~ f 01 f 12 f 2!1e15

2 f 0G . ~14!

Here the f n are form factors associated with the Fang-Howard wave function. They are defined in the Appendi
piezoelectric coefficients appearing in Eq.~14! areea5e332eb ,eb5e3112e15.

The momentum relaxation rate is
1-4
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Wm~k!5
e2m* kBT

4p«s\
3k3 E

0

2k q@KL
2~q!1KT

2~q!#

~11qs /q!2A12~q/2k!2
dq ~15!

and theq-dependent electromechanical coupling coefficients are given by

KL
2~q!5

1

«scL F ea
2 1

48
~15f 0233f 1112 f 22 f 3!

1eaeb

1

4
~3 f 025 f 11 f 2!1eb

2 1

2
~ f 02 f 1!

G ,

KT
2~q!5

1

«scT
Fea

2 1

48
~3 f 013 f 126 f 21 f 3!1eae15

1

4
~ f 01 f 12 f 2!1e15

2 f 0G . ~16!

In the case of energy relaxation the contributions from the LA and TA modes must be evaluated separately. The
relaxation rate is given by

W~E!52
e2m* kBTsa

4p«s\
2k F E

0

2k~11ha! Ka
2~q!

~11qs /q!2A12$~q/2k!2ha%2
dq

2E
0

2k~12ha! Ka
2~q!$11~\saq/kBT!%

~11qs /q!2A12$~q/2k!1ha%2
dq
G . ~17!
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Once again the integrals have to be evaluated numerica
Clearly, taking the piezoelectric anisotropy into accou

complicates the expressions considerably. It is interestin
compare the results of taking the anisotropy fully into a
count and the results using spherical averages26

^eL
2&5

1

7
e33

2 1
4

35
e33~e3112e15!1

8

105
~e3112e15!

2,

^eT
2&5

2

35
~e332e312e15!

2

1
16

105
e15~e332e312e15!1

16

35
e15

2 . ~18!

In the expression for the momentum relaxation rate the te
in the square brackets of Eq.~16! are replaced bŷeL

2& f 0 and
^eT

2& f 0 . The comparison of the effectiveq dependence in the
case of GaN is shown in Fig. 1. The differences are sign
cant.

V. ELECTRON-ELECTRON RATES

For simplicity we will regard the rate of electron-electro
scattering by electrons with the same spin as negligible
cause of exchange and interference effects. The energy
change rate can then be obtained by ignoring spin and tr
ing the interaction as a simple two-body collision in whi
an incident electron, wave vectork1 , collides with a target
electron, wave vectork2 , and after collision the electron
have wave vectorsk18 andk28 . We assume that the electron
remain in the lowest subband. The frequency of this proc
is calculated as usual in the Born approximation. The ph
19530
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cally meaningful rates are momentum and energy excha
rates rather than simple scattering rates, which means tha
order of summation must be such that the final sum sho
be over one of the final states suitably weighted by
amount of energy or momentum exchanged. The follow
calculation is of the rate of energy exchange. When the
ergy exchanged is significantly large the rate will be a
equal to the momentum exchange rate.

The scattering rate for the processk1→k18 in an isotropic,
Maxwellian distribution is

W~k1 ,k18!5
e4n

8p\ANd
E e2E2 /kBTe

F2~q!

«~q,v!2q2

3d~E181E282E12E2!2dk2 , ~19!

wheren is the areal density of electrons,Nd is the effective
density of states in the lowest subband,A is the area,F(q) is

FIG. 1. Effective piezoelectric coefficients in GaN~full lines!
compared with spherical-average approximation~dashed lines!. q is
the acoustic wave vector andb is the Fang-Howard factor.
1-5
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the form factor@5 f 0 , Eq. ~A1!#, \q is the momentum trans
fer, and «(q,v) is the permittivity. Integration overk2 is
straightforward. The integral over the angle betweenk1 and
k18 can be expressed in terms of a new variable

u5
q

~k1
22k18

2!1/2 ~20!

so, after some manipulation and including the case fork1

,k18 , we get

W~k1 ,k18!5W0E
g

g21 F2~u!

uÃu3/2$«~u,Ã!/«`%2

3eÃ/2

expH 2
uÃu
4 S u21

1

u2D J
u2H ~u22g2!S 1

g22u2D J 1/2du, ~21!

W05
e4n\

8p1/2«`
2 m* ~kBTe!

2A
, g5Uk12k18

k11k18
U1/2

,

where«` is the high-frequency permittivity of the lattice an
Ã5(E12E18)/kBTe is the normalized exchange energ
Equation~3! is just that derived by Esipov and Levinson,27

but with the form factor and screening factor included. T
energy-relaxation rate for the incident electron is then of
form

Q5E ~E12E18!W~k1 ,k18!k18dk18A/2p. ~22!

Dynamic effects enter into screening via the fac
q•vcm, wherevcm is the velocity of the center of mass.28 It is
straightforward to show that this factor is nothing but (E1

2E18)/\ which is the frequency associated with the ene
loss by the incident electron.29

The permittivity is composed of the sum of lattice a
electronic contributions. In a polar semiconductor the latt
contribution in the long-wavelength limit is

«L~0,v!5«`

v22vLO
2 1 ivG

v22vTO
2 1 ivG

, ~23!

whereG is the decay rate. The electronic contribution can
obtained in the random-phase approximation neglecting
effects of exchange and correlation. A closed expression
the non-degenerate state has recently been obtained by
and Galbraith.16 The real part is

«eR5
e2m* nF~q!

2p\2Ndq2 FA1FS 1,
3

2
,2

\2A1
2

2m* kBTe
D

1A2FS 1,
3

2
,2

\2A2
2

2m* kBTe
D G ,

A65
1

2q S q26
2m*

\2 \v D , ~24!
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where Nd5m* kBTe /p\2 is the 2D density of states an
F(1,3/2,2z) is a confluent hypergeometric function, and t
imaginary part is

«eI5
e2m* nF~q!

2p\2Ndq2 Apm* kBTe

2\2

3~e2\2A2
2 /2m* kBTe2e2\2A1

2 /2m* kBTe!. ~25!

The quantity that appears in the expression for the rat
the square modulus

«~q,v!25~«LR1«eR!21~«LI1«eI!
2. ~26!

Approximate analytic results for the strictly 2D case ha
been obtained previously with the assumption that the in
gral in Eq.~21! can be evaluated foru'1, which maximises
the exponential factor.27,29 Here we make no such approx
mations. The integral is evaluated numerically.

The net energy exchange rate is determined mainly
substantial energy exchanges, even though these are no
most rapid. This may be seen by expressing Eq.~21! as fol-
lows:

W~k,k8!5W0J6~Ã!eÃ/2, ~27!

whereJ6(Ã) is the integral, which is dependent of the sig
of the energy exchange through the denominator ofg @Eq.
~21!#. Noting thatÃ.0 implies loss of energy andÃ,0
gain, we see that the net loss of energy by the incident e
tron is

Q5Q0S E
0

E/kBT

ÃeÃ/2J1~Ã!dÃ2E
0

`

Ãe2Ã/2J2~Ã!dÃ D ,

Q05
e4n

16p3/2\«`
2 . ~28!

Small energy exchanges contribute little to the integral@the
factor Ã3/2 in the denominator ofJ(Ã) notwithstanding#.
WhenÃ!1,J1'J2 and whenÃ@1 the second integral in
Eq. ~28! is small and there will be little error in replacing th
upper limit by E/kBT. Thus, Eq.~28! can be simplified for
superthermal electrons as follows:

Q5Q0E
0

E/kBT

2Ã sinh~Ã/2!J1~Ã!dÃ. ~29!

VI. RESULTS

The equations derived in the previous sections will n
be applied to a particular case, one that is relevant to
problem of hot-electron transport in GaN heterostructure
low lattice temperatures where it has been suggested22 that,
in the absence of charged-impurity scattering, electr
electron scattering may be strong enough to allow the
precedented situation of a drifted Maxwellian distribution
occur leading to the phenomenon of ‘‘squeezed electron
We consider a GaN heterostructure at a lattice temperatur
77 K containing a hot, nondegenerate electron gas w
1-6
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TABLE I. GaN properties. cL5
1
3 (2c111c33)2

2
15cx ,cT5c441

2
15cx ,cx5c111c3322c1324c44,sL

5AcL /r,sT5AcT /r.

r
~g m/cm3! «s /«0 «` /«0 m* /m

J
~eV!

6.15 9.0 5.35 0.23 8

c11

~GPa!
c12

~GPa!
c13

~GPa!
c33

~GPa!
e33

~C/m2!
e31

~C/m2!
e15

~C/m2!

374 106 70 379 0.67 20.37 20.33
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s-
Fang-Howard factor b54.83106/cm, density 2.5
31012 cm22, and electron temperature 300 K. The choice
b and density~see the Appendix II!, though consistent within
a simple electrostatic model30 for the specific structure
Al0.3Ga0.7N(37 Å)/GaN, is made chiefly to allow quantita
tive estimates of the orders of magnitude of the intrasubb
rates involved, which is our main purpose here. At the el
tron temperature of 300 K the density of 2.531012 cm22 is
the largest for nondegenerate statistics to apply.

In the momentum and energy relaxation rates for acou
phonons the lattice temperature determines the numbe
excited phonons and the electron temperature affects
screening. The parameters used in the calculation are ma
those quoted in Ref. 2 and are shown in Table I. Figur
illustrates the nonpolar rates, and Fig. 3 the piezoelec
rates, as a function of the electron wave vector in units of
vector q05A2m* vLO /\, wherevLO is the optical-phonon

FIG. 2. Nonpolar acoustic-phonon rates in quasi-2D GaN:~a!
momentum relaxation rate,~b! energy relaxation rate:k is the elec-
tron wave vector and q05(2m* vLO /\)1/2. (TL577 K,Te

5300 K,n52.531012 cm22.)
19530
f
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e

frequency, taken to be 92 meV. From elementary consid
ations we expect the ratio of the momentum-relaxation r
and the energy-relaxation rate (WE /E) to be close to
2m* sa

2/kBTL, i.e., 0.02 for LA modes and 0.008 for TA
modes, which is the case neark/q051. Figure 4 illustrates
the extent of error introduced by using spherical average
the piezoelectric coefficients.

Screening, to a large extent, has acted to equalize
nonpolar and piezoelectric rates at highk, but at lowk the
piezoelectric momentum relaxation rate is dominant. As
gards energy relaxation, we note that absorption is domin
at low k for both interactions, leading to a slight negative ra
in each case. The thermal wave vector, defined bykT

5A2m* kBT/\2, givesk/q050.26 at 77 K. Thus fork,kT
net absorption is favored and net emission is favored fok
.kT .

The combined acoustic phonon energy relaxation rate
k/q051 does not exceed 231024 eV/ps. This may be com-

FIG. 3. Piezoelectric rates in quasi-2D GaN:TA, LA are tran
verse, longitudinal modes.~a! Momentum relaxation rate,~b! en-
ergy relaxation rate:k is the electron wave vector andq0

5(2m* vLO /\)1/2. (TL577 K,Te5300 K,n52.531012 cm22.)
1-7
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P. TRIPATHI AND B. K. RIDLEY PHYSICAL REVIEW B 66, 195301 ~2002!
pared with the energy relaxation rate for optical phono
assuming a basic unscreened emission rate of 1014/s, a pho-
non energy of 92 meV, and a form factorf 0 @Eq. ~A1!# for
q5q0 , giving 2.0 eV/ps, a factor 104 higher than the acous
tic phonon rate.

Turning to the energy exchange associated withe-e scat-
tering, we first consider the ideal 2D case. Figure 5 sho
the energy rate as a function of amount of exchange en
according to Eq.~29! assuming the form factor to be unity
There is a broad resonance at low energies which is ass
ated with the plasmon dispersion, and there are resonanc
and above the phonon energy associated with coupled-m
dispersion. We have discussed the spectrum of energy
change more fully elsewhere.32 The total energy rate versu
initial electron energy is shown in Fig. 6~a!. Figures 7 and 8

FIG. 4. Comparison of piezoelectric momentum relaxat
rates ~solid curve! with spherical-average approximation~dashed
curve!.

FIG. 5. Spectrum of electron-electron energy exchange rate
2D GaN @integrand of Eq.~29!#. The energy exchanged is\v,
E5incident electron energy,T5300 K,n52.531012 cm22,Q0

54.88 eV/ps:~a! low energies,~b! full range.
19530
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show the result of incorporating the form factor. Includin
the form factor reduces the rates at low energies by a fa
of 2, approximately. This reduction is less than might ha
been expected basically because the form factor appears
in the bare interaction and in the dielectric function; it the
fore reduces the bare interaction~by a factor of about 4! but
it also reduces the screening. Using the correct equa
for energy relaxation, Eq.~28!, reduces the rate at low ene
gies but has little effect at high energies. Comparison w
the energy relaxation rates associated with acoustic phon
may be facilitated by noting thatE/kBT53 corresponds
to k/q050.92. Around this energy the electron rate
about 331021 eV/ps which is to be compared with 2
31024 eV/ps for the acoustic phonon rate, which confirm
that the electron-electron rate is much bigger leading to
establishment of an electron temperature~implicitly assumed
in our choice of distribution function!. The rate for electron-
electron scattering at energies above the optical-phonon
ergy increases to around 2 eV/ps, which is comparable w
that for optical phonon scattering~2 eV/ps!, making our as-
sumption of an electron temperature at higher energies m
questionable.

A rough measure of momentum relaxation rate which
adequate for purposes of comparison with the phonon rate
the energy relaxation rateWE5Q/E, with Q defined by Eq.
~29! andE is the initial energy, shown in Fig. 6~b!. Below the
optical-phonon energy this rate~reduced by the form factor!
is around 331012/s, which is to be compared with 1011/s,
the momentum relaxation rates associated with acou

or

FIG. 6. Total electron-electron rates,Q @Eq. ~29!#, for 2D GaN
at 300 K withn51.0 or 2.531012 cm22. ~a! Energy relaxation.~b!
Momentum-relaxation rate (Q/E).
1-8
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DYNAMICS OF HOT-ELECTRON SCATTERING IN GaN . . . PHYSICAL REVIEW B66, 195301 ~2002!
phonons. In general, for mobilities significantly in excess
around 2500 cm2/V s the hot-electron distribution would be
drifted Maxwellian. Above the phonon energy the rate ('2
31013/s) is comparable with the optical-phonon rate
('1014/s divided by 4!.

VII. CONCLUSION

In the particular case studied~lattice temperature 77 K
electron temperature 300 K, electron density of ord
1012 cm22, GaN heterostructure! we can conclude that a
electron temperature is easily established for energies
than the optical-phonon energy, and conditions in whic
drifted Maxwellian distribution is established are far fro
being impracticable. We further note that our results are
sensitive to electron density above 131012 cm22, an insen-
sitivity that is expected to extend into the degenerate regi
In practical structures, where densities are typically in
range 1012– 1013 cm22 but mobilities are typically less tha
2000 cm2/V s even at low temperatures, a drifted Maxwellia
is not predicted, but the establishment of an electron te
perature, at least at low energies, is predicted. In some c
low-temperature mobilities over 10 000 cm2/V s have been
observed33 so drifted Maxwellians are to be expected alo
with the related transport phenomena described in Ref.
However, it is then necessary to return to the calculation
the dynamics ofe-e collisions and to incorporate a drifte
Maxwellian in place of the isotropic distribution used in o
analysis.

FIG. 7. Spectrum of electron-electron energy exchange rate
quasi-2D GaN~including form factor!. Notation and conditions as
in Fig. 5.
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APPENDIX

1. Piezoelectric form factors

The form factors arising from the anisotropy of the piez
electric interaction with electrons described by the Fa
Howard wave function are given by

f n5E
0

`

dzE
0

`

dz8c2~z!c2~z8!~quz2z8u!ne2quz2z8u,

f 05
819r 13r 2

8~11r !3 , f 15
3r ~514r 1r 2!

8~11r !4 ,

f 25
3r 2~815r 1r 2!

4~11r !5 , f 35
3r 3~35118r 13r 2!

4~11r !6 .

~A1!

wherer 5q/b.

2. Model heterostructure

A simple electrostatic model that captures the essenc
how the spontaneous and piezoelectric polarization in a
erostructure induces a quasi-2D electron gas results in
following equation for the electron charge density.30

or FIG. 8. Total electron-electron rates for quasi-2D GaN~includ-
ing form-factor! at 300 K forn52.531012 cm22.
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s5~11h!21@sp12sp22f~«2 /a21«1 /a1!#,

h5«1p\2/e2m* a1 . ~A2!

Here, subscripts 1 and 2 refer to the barrier and GaN, res
tively, «1,2 is the permittivity,a1,2 is the thickness, andf is
the GaN Schottky barrier~'0.8 eV!. For a Al0.3Ga0.7N bar-
rier we have taken the polarization charge density, sponta
ous plus piezoelectric, to be 0.055 C/m2 and the spontaneou
M

, K
n

.

B

e

k,

19530
c-

e-

charge density in the GaN to be 0.029 C/m2.1 ~Note that later
estimates give a magnitude 9% larger31 a difference that is
unimportant in the present context.! For an electron density
at an electron temperature of 300 K that is still mainly no
degenerate~i.e., n52.531012 cm22) the barrier width
should be about 37 Å witha2 large. The resulting field in the
triangular well then defines the lowest subband energy fr
which the Fang-Howard parameterb can be deduced. Obvi
ousy, there is plenty of room here for more sophistica
modeling.
r,
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