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Density of states and group velocity of electrons in Si@©calculated from a full band structure
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The full band structure of Sihas been determined in order to calculate parameters that are necessary for
the description of carrier transpob initio calculations of the density of states and group velocity for the
conduction bands of SiCare worked out as a function of energy. Four different crystal structures of &8
investigated, which are known to be built up by the same fundamental unit, namely, theeB&bedron: they
are thea- and B-quartz and thex- and B-cristobalite. All of them are polymorphs of silica. The conduction
bands are calculated by means of two different techniques: the Hartree-Fock method and density-functional
theory. The different features of the two methods are examined. Eight energy bands are used to calculate the
density of states and group velocity for the energies of interest. Based on such calculations, the relevant
scattering mechanisms have been modeled to determine the microscopic relaxation times. This in turn allows
for the solution of the Boltzmann transport equation in the coordinate and energy space, which eventually leads
to the calculation of macroscopic quantities such as carrier concentration, average velocity, and average energy.
Examples are given of calculated electron mobility and average energy, along with comparisons with experi-
mental results available in the literature.
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[. INTRODUCTION duction band was assumed to be a spherical and parabolic
function terminating at 6 eV, this limiting the validity of the
Among insulators, silicon dioxide plays a major role in analysis when high electric fields are considered.
the solid-state technology. Especially in recent years, experi- A more accurate description of the transport properties at
mental and theoretical investigations focused on microscopihigher energies, suitable for the application of the SHE
properties of this material related with reliability problems. method, requires two steps$i) the calculation of the full
The hot-carrier effects and, among them, those related tband structure over the first Brillouin zone, afiid the con-
carrier injection into the gate oxide, cannot be neglected angistent calculation—from the full band structure—of the fun-
more in ultrascaled devices. A first-order model of electrondamental functions that are necessary in the SHE method,
transport in silicon dioxide has already been worked out imamely, the density of states and group velocity as a function
the framework of the spherical-harmonics expangiBhE) of energy. The work presented in this paper illustrates the
method applied to the solution of the Boltzmann transpoributcome of such calculations in SiOThe paper extends the
equationt One of the main advantages of this method is thatesults of Ref. 6, where the solution of the Sdlinger equa-
it provides the carrier-distribution function in the physical tion (namely, stepi above was carried out along specific
space and energy in a deterministic way. Thus, the informaerystalline directions only. As in Ref. 6, two differeab
tion about the carriers’ energy distribution is maintained,initio techniquegHartree-Fock(HF) and density-functional
which is essential for describing high-energy phenomena. Itheory (DFT)] are adopted here. In particular, the gradient-
Ref. 1, the scattering rates for each collision process haveorrected extensidnof the local-density approximation
been analyzed and a number of transport properties of ele¢tDA) has been used in the DFT technique. The nonhomo-
trons in bulk SiQ have been worked out in the framework of geneous electron-gas effects have been accounted for
the parabolic-band approximation. Moreover, a new modethrough the Lee-Yang-Parr functiorfal.
has been introduced into the SHE code to calculate the mi- As in the SHE scheme the band structure of the material
croscopic fluxes at the silicon interfat&@he description of appears through the density of states and group velocity, the
the high-energy tail of the distribution function above thecalculations reported in this work constitute the basis to
energy barrier at the interface and within Si@rovides use- achieve an accurate description of the transport properties for
ful information about the electron injection into the gate ox-SiO, at higher energies. Obviously, the completion of a re-
ide. search project aiming at modeling the carrier transport re-
As far as the investigation of carrier transport in $i®  quires the description of the collision events; in particular, as
concerned, the main theoretical efforts were via Monte Carldar as SiQ is concerned, the implementation of the electron-
simulation®~° In these works microscopic collision mecha- phonon interactions has already occurred in Ref. 1 for the
nisms in polar materials have accurately been modeled, leadpherical-parabolic approximation of the band structure. Ow-
ing to interpretation of the experimental data for averageng to the calculation of the transport parameters presented in
velocity, average energy, and impact ionization in Sih  this paper, the investigation on the collision events has been
our first investigatiohof the electron transport in Si&ome  extended to the high-energy case, and the results are reported
approximations were embedded in the description of thet the end of the paper.
band structure at higher energies. In particular, the first con- The description of some electronic properties of the,SiO
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polymorphs has been addressed as early as the late 1970’sglobal shape of the peaks. As a consequence, the calculation
Refs. 9—-12. The tight-binding technique has been applied inf the electronic properties of the crystalline phases of,SiO
Refs. 9 and 11, which report the calculation of the conduc€an be exploited to understand the main aspects of the amor-
tion bands of the ideal3-cristobalite at the three high- phous phases as well.
symmetry points of th& space and estimate the effective  The set of polymorphs that have been analyzed in this
mass of the lowest conduction band. A similar calculation iswork has been selected with the aim of taking into account
shown in Ref. 12 fow-quartz. In Ref. 10 the pseudopotential forms with an electronic density similar to that of the amor-
technique is applied ta-quartz to determine the eigenvalues phous silicon dioxide, and with a quite symmetric crystalline
in 16 points of the irreducible Brillouin zone and to calculate structure®> Among the SiQ polymorphs, thea-quartz form
the effective mass of electrons and holes. A self-consistentf silica is the most common structure present in nature and
LDA approach was later used in Ref. 13 to calculate thehas 6 symmetry operators. Thequartz structure is similar
conduction and valence bands of Si@olymorphs. The to that ofa-quartz, but is characterized by 12 symmetry op-
LDA technique adopted in Ref. 13 is based on the assumperators, this providing a computational advantage in terms of
tion of a locally homogeneous electron gas. Among the aimgentral processing unit time and memory in the calculation of
of the present work are overcoming some of the approximaa number of physical properties. Thecristobalite structure
tions of the investigations mentioned above, and consistentlis characterized by 8 symmetry operators, but its structure is
extending the calculation in order to determine the density ofess compact in comparison with that of quartz. The
states and group velocity. References exist where the densif§-cristobalite is characterized by a diamond structure with an
of states is calculated for materials different from gi@.g., oxygen atom placed on each vertex of the cell, and, due to its
hexagonal SiC polytype’, band-tail derivation in 48 symmetry operators, it can be seen as the most suitable
semiconductor$® and bulk and interface density of states in form for ab initio calculations.
amorphous- or polycrystalline-silicon devic€dn recent pa- The numerical calculation of the band structure and den-
pers, calculations have been reported for ultrathin,SiO sity of states implies the solution of a multibody problem
tight-binding andab initio calculations have been used in that exceeds the computational power of nowadays comput-
Refs. 17 and 18, respectively, in the framework of investiga-ers. From the theoretical standpoint, such calculations can be
tions on the applicability of the effective-mass approxima-dealt with by methods similar to those used for analyzing
tion to the carrier dynamics, including tunneling. On themolecular structures. In that field, a number of theories have
other hand, to our knowledge the calculation of the groupbeen developed for the purpose of simulating molecular
velocity in SiO, polymorphs has not been tackled before. structures that are known to reduce the complexity of the

The paper is organized as follows: in Sec. Il, the elecssimulation by means of suitable approximations. Among
tronic properties of SiQare analyzed and the choice of the these are the HF method and DFT, which are implemented in
SiO, polymorphs is discussed. The description of the physithe codecrysTAL98O adopted in this work to analyze the
cal model for the electrons in SiQs briefly illustrated in  crystalline forms under investigatidA. Both approaches
Sec. lIl. In Sec. IV the first Brillouin zone of the crystalline have suitably been extended in Ref. 22 to solve the one-
systems is described along with the numerical details abougtlectron Schrdinger equation for the periodical problem of a
the three-dimensional mesh adopted inkhepace. The com- crystalline structure.
putational details for the calculation of the density of states
and group velocity are given in Sec. V. The optimization of
the basis sets adopted for the polymorphs of ,Si€© de-
scribed in Sec. VI. Finally, the results are shown in Sec. VII.  One of the main properties of the spherical-harmonics ex-
They consist of the density of states and group velocity ofansion method is that it provides the carriers’ energy distri-
the polymorphs considered, in the calculations of the elecbution in the real space-energy domainK) in a determin-
tron mobility and average energy, and in the comparison withstic way?® This feature is obtained by expanding the carrier-
experimental data available in the literature. distribution functionf (r k) in the momentum space in series
of spherical harmonics defined on the unit sptéré® The
method eventually yields a system of first-order, coupled dif-
ferential equations for the zero- and first-order tefimsnd

In very-large-scale integrated complementary metal-oxidd;, i =X, y, z of the expansion. It has been checked that the
semiconductofCMOS) technology, the gate oxide is grown energy-distribution function obtained by the first-order trun-
in an amorphous phase on a silicon crystal: this means thaiation provides sufficient accuracy for the problems at
SiO, is constituted by Si@tetrahedra with bond-length and hand?"2®
bond-angle distortions. It is known that most amorphous The features of the spherical-harmonics expansion
phases are characterized by distortions of about 1% for theethod are illustrated in detail in the above references. To
bond length and 10% for the bond angle, thus the main difthe purposes of this paper it is important to remind the reader
ference between the crystalline ad amorphous phases is dtieat the band structure of the material appears in the model
to the Si—-O-Sbonding®® Moreover, it has experimentally only through the density of stategE) and group velocity
been observed that the x-ray photoemission sp&caad Ug(E) per unit volume in the energy space. The other coef-
ultraviolet photoemission specffaof amorphous and crys- ficients of the model are the microscopic relaxation timgs
talline SiO, appear to be quite similar in the location and and7; and the electric field. The latter is determined from

IIl. COEFFICIENTS OF THE TRANSPORT MODEL

Il. THE POLYMORPHS OF SiO ,
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a simulation using a set of real-space transport equations like ik,
those of the hydrodynamic moddl. '

The density of states and group velocity are obtained di-
rectly from the full-band system #s

9(E)= f G(E,0)d0, M

uZ(E)iLJ G(E,Q)U%(E,Q)dQ 2)
g g(E) e ’

whereG(E,Q) =k?/ (k- VE) andU4(E,Q) =V E/# are the
density of states and group velocity in tkespace, respec-
tively. The carrier concentration, average velocity, and aver-
age energy, which are the macroscopic quantities describing
the carrier transport, can be calculated from the above. Tak-
ing by way of example the electrons of the conduction band, giG. 1. First Brillouin zone of thes-cristobalite polymorph.
such quantities are given #%°

Figure 1 shows the first Brillouin zone of a diamond crys-

n:J' gfodE, Um:_J’ ugfdE, Wn:_f Egf,dE, tal structure, typllcal of SI|IC.OH aan—crlst.ob.aIlte. For this
3n n structure, the reciprocal-lattice characteristic vectors are
©)

where the integrals extend over the conduction band. blzz—w(ix+iy—iz),

The above description shows that the transport coeffi- a
cients deriving from the material’s structure ageand ug. o
Therefore, an accurate calculation of the density of states and by=—(iy+i,— i), (4)
group velocity is essential for the solution of the carrier- a
transport problem. The importance of accounting for the full
band structure of the material in such a calculation, without b
resorting to the parabolic-band approximation, has already 3
been outlined in the investigations about carrier transport in o . . .
silicon?® As shown by Eqs(1) and(2), the numerical calcu- whe{elllx, ly: ﬁ.nd'z rT\lre orthog:)nal :;m't \k/)e%tors artad|s('j[he bi
lation of g and u, is based on an integration of the band c:ys? ogr_?ﬁé(lc lfe szame er ?F'a 10 y-cen ﬁrelﬁ cubic
structureE(k) and its gradien¥V E(k) over the angular part structure. x» Ky, andk, axes ot -g. 1 are parafiel g,

of the k vector. Thus, an accurate tabulation of the bandY’ and iz, re_specnveAIy. In paT“C“'ar: It |$1=5:42A for
structure in thek space is fundamental, silicon anda=7.313 A for B-cristobalite. The first octant,

shown in gray in Fig. 1, is defined by the relations

2T
:?(|x_|y+|z)a

IV. TABULATION OF THE BAND STRUCTURE 32w

2
) O=ky . ky k;=—, kx+ky+k2$—(—). (5)
The band structures of the Si(polymorphs have been a 2\ a

calculated by means of both the HF and DFT methods. Thee first equation defines the cube containing the first octant
same approach has previously been adopted for the analygis the Brillouin zone, while the second defines the plane
of silicon dioxide, limited to the characteristic directidhin corresponding to the hexagonal face of the figure.

view of the modeling of the transport phenomena, the gen-

eration of numerical tables for the density of states and group k
velocity is needed. Thus, a three-dimensional meslkk in A
space has been generated, and the energy and its derivatives

have been calculated at each point. A preliminary part of

such work has been the reconstruction of the first Brillouin '
zone of the polymorphs under investigation from the crystal-
lographic data available in the literature.
Although the calculation at hand could in principle be
restricted to the irreducible Brillouin zone, for programming
o

simplicity the band structure has been tabulated over its first ky
octant. This choice does not limit the minimum element size
of the adopted mesh: this size is in fact controlled by the

/

CRYSTAL98 code. The critical point of the tabulation proce-
dure is the definition of the geometrical planes of the first
Brillouin zones. FIG. 2. First Brillouin zone ofe- and g-quartz.
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4kz 2w

b2:_iy! (9)

A = :
)/

wherea=4.971 A andc=7.010 A. The first octant of the
Brillouin zone of a tetragonal crystal structure is the paral-
lelepiped defined by the relations

2
Ok, <—,
FIG. 3. First Brillouin zone of thex-cristobalite polymorph. a
The first Brillouin zone ofa- and g-quartz is shown in 0=k $2_7-r (10)
Fig. 2. For these crystals the reciprocal-space characteristic Yo a’
vectors are
2
27 Oo=sk,=< I
bl_ a IX!
For the calculation of the band structure in the first octant of
o (1 /3 the Brillouin zone, the latter has been discretized. The dis-
b2——7T i+ —3i ) (6)  cretization procedure has been carried out using=20.05
al\2* 27 mesh step for thig, , k, andk, axes, this defining an elemen-
tary, rectangular parallelepiped associated with each discreti-
2 zation pointk; . More specifically, the distand8, from the
b3:T'Z’ center of the Brillouin zone to the boundary of it, measured

along thek, axis, has been subdivided into equal intervals of
wherea andc are the crystallographic parameters of a trigo-length A, =B, A. The same subdivision has been carried out
nal structure. In particulaa=4.9138 A, c=5.4052 A for  for the k, andk, axes, thus obtaining a set of equal parallel-
a-quartz, anda=4.996 A, c=5.497 A for g-quartz. In this  epipeds whose volume depends on the polymorph consid-
case, the parallelepiped containing the first octant of the Brilered.

louin zone is defined by In the case oh-cristobalite, due to the shape of the Bril-
louin zone(Fig. 3), 1/A*=8000 parallelepipeds fill exactly
O<k.< 2_77 its first octant, and the number of discretization points turns
T g out to be (1 1/A)3=9261. In the case g8-cristobalite and

a- or B-quartz, the shape of the Brillouin zone prevents an
exact filling by parallelepipedong@=igs. 1 and 2 The dis-

O=<k,< 3 2_77 7) cretization points turn out to be 5775 f@cristobalite and
V3 a 6951 for a- and B-quartz. The choice of the discretization
procedure used here stems from the need of interpolating
2 E(k) andVE(k). The band structurg(k) is replaced with
O<k,= - a quadratic interpolation of the typleover each parallelepi-

ped. Although the quadratic interpolation over parallelepi-
In addition to these relations, the equation of the plane obpeds requires the calculation of a larger number of coeffi-
liquely cutting the k,,k,) plane must be taken into account: cients than the linear one carried out over tetrahddes,

e.g., Ref. 32 the additional computer load is affordable even

1 2 2x when a substantial number of parallelepipeds is used. More-
Kys— —ket+ — = (8)  over, the same type of interpolation is used in Refs. 33 and
V3 V3 34, which makes the comparison soun¢ere Sec. VI

For each discretization poirk;, the eigenvalues of the
eight lowest conduction bands have been computed. Then,
(the first and second derivatives have been calculatéd ag

The relations(7) and (8) together describe the gray region
shown in Fig. 2.

Finally, a-cristobalite is characterized by a tetragona
crystal structure, whose first Brillouin zone is shown in Fig. 1
Sé;g:sth;ekmd of crystal the reciprocal-space characteristic %Euj:K[Eu(kﬁAaia)— E,(kj—Auin], (1D

195205-4



DENSITY OF STATES AND GROUP VELOCITY ®.. .. PHYSICAL REVIEW B 66, 195205 (2002

) 1 _ _ . dient. Summation over the parallelepipeds and bands gives
(7agEuj:m[Eu(kj+Aala+ Agig) —E,(Kj—A,l, the final density of states corresponding to the current level
* E.
+Agig) —E,(Ki+Ai,—Agig) +E, (Kj—A,i, The interpolation has been implemented here as follows:
) first, the parallelepiped centéx,, . is calculated and, for a
—Agigl, given bandv, the corresponding energy is determined as a
where v runs over the eight lowest conduction bands,;'rr(;sr:q ?ﬁepm;'rr:ﬁet:gni fre%rg 3ercgi%ioslrat'c interpolation starting
Aup)=BapA (@,8=xy,2), andE,;=E, (k). P PIP '
V. CALCULATION METHOD FOR THE DENSITY OF Eui(kmc):Evi(ki)+§ 94E,i(K) (KameKami)
STATES AND GROUP VELOCITY
. . 1
In .order to de}ermme the density Qf statgsand group + 52 aiﬁEvi(ki)(kamC_ Kami) (Kgmce— Kgmi) -
velocity ug at a given energ¥, and to finally tabulate them ap
over a wide range of energies, an integration algorithm has (15)

been implemented. A brief description is given in the follow- ] o
ing, with special emphasis for the numerical aspects. Usingonsistently, the component of the group velocity in the

the coordinates of thk space, Eqs(1) and(2) read direction is approximated as
2 21 .
g(E):WE f&(E—Ev(k))dk, (12) Upia(Kme) = 7 ViEui1a=daEyi(Ki)
v k

2 2 9% gk (kgme—kgm)- (16
UAE)G(E)= =3 f us (k) S(E—E,(k))dk,
(277) v k . . . .
13 Then, the approximation is improved by averaging over the
(13 vertices: Ev(kmc)=2i8:1EUi(kmc)/8, and the same for
where 1/(27)? is the density of states in the k) spacep is  Uvia(Kmd)- _ . . o
the band indexu,= (1/4)ViE,, and the factor 2 accounts ~ The group velocity as a function d is obtained in a
for the spin degeneracy. similar way. It is worth noting that an alternative definition
The energy range 010 eV has been chosen for the appl®f the group velocity i&'
cation of the algorithm, in order to cover the eight lowest 5
conduction bands.fc.)r all Fhe polymorphg of interest. Such a Ug(E)g(E)= 32 f |u, (k)| S(E—E,(k))dk.
range has been divided into 500 equal intervals of 0.02 eV (2m)° 5 Jx
each. (17

The integralg12) and (13) must be carried out over sur- The computation shows that for the materials at hand the

faces of constant energy=E, (k), wherek, (k) is given by difference between the group velocity derived from Ekp)

a table in whichk is discretized as detailed in the preceding and that of Eq.(17) is not quantitatively relevant. An ex-
section. The algorithm runs over the elementary parallelepi: X '

peds introduced in Sec. IV. The vertices of theh parallel- ample is shown in Fig. 5.
epiped will be denoted here &g,;, i=1,...,8 where, in par-
ticular, k,,; corresponds to the vertex where the sl VI OPTIMIZATION OF THE BASIS SETS
+ky+k; is minimum. If the current energy levé is in the A first critical aspect of the numerical calculation of the
range defined by the eigenvaluggs(k,), then themth par-  pand structure in Si9has been the choice of the variational
allelepiped contributes to the calculation of the number ofhasis set to accurately describe the atomic orbitals. The
states. variational basis sets adopted in this work for the Sp0ly-
Following Ref. 31, the number of states per eV and unitmorphs have been obtained starting from a number of opti-
volume of themth parallelepiped andth band can be ap- mized sets fora-quartz reported in Ref. 35. First, as the
proximated as Si—O bond is quite ionic, the choice of the basis is more
critical for oxygen than for silicon. For this reason, a
_ Aym 14 6-211G(2) basis instead of a 6-21G@2 has been chosen
Som= IV E,(Kmo|’ 19 for oxygen A slightly different basis set has been adopted
for B-quartz in order to overcome some convergence prob-
whereA,, is the surface determined by the intersection oflems. The symbols used to indicate the basis sets are
the isoenergetic plane with the parallelepiped. Equatigh  standard?
replaces the actual energy surface to which the céntgpf Since the choice of the basis set plays an essential role in
the mth parallelepiped belongs with a plane normal tothe description of the electronic structure and in the calcula-
V\E,(kno. As a consequence, to implement Ef4) it is  tion of the conduction-band eigenvalues, the basis sets for
necessary to interpolate, (k. and the corresponding gra- B-quartz, a-cristobalite, andg-cristobalite have been opti-
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TABLE |. Adopted basis sets for silicon and oxygen. 6 . T
Basis Gaussian 'E
Atoms set exponents O3
i
>
a-quartz ©
N 4
Si 6-21G(2) agp=0.130 2
ag,1=0.500 N4
ag,=1.500 Lo
e} 6-211G(2l) @rsp =0.890 <
g2 =0.280 % o
ag1=0.400 6
Ay = 1200 >_
-quartz =1
Bq T
Si 6-21G(2) agp=0.130 &
aq=0.500 0o, 1 2 3 4 5
o 6-31G(2l) asy=0.274 Energy (eV)
ag=0.600

FIG. 4. Density of states in energy for silicon. Solid line:

a-cristobalite \ ) !
pseudopotential$Ref. 34. Dotted line: HF method. Dashed line:

Si 6-21G() asp=0.119 DFT method.
ag;=0.429
agp=1.289 der study and the exponents for the Gaussian functions de-
o 6-211G(2) asp =1.317 scribing the outer orbitals for the silicon and oxygen atoms
asp=0.414 are reported, rounded to four digits. Starting from the
ag1=0.242 a-quartz basis set of Ref. 35, the first scaling factor refers to
ay,=0.728 the sp shells, the second factor refers to ttheshells of the
B-cristobalite silicon atom, the third and fourth factors refer to gEandd
: shells of the oxygen atom, respectively.
Si 6-21G(a) asp=0.113
ag;=0.856
ag,=2.568 VII. RESULTS AND CONCLUSIONS
(0] 6-211G(a =1.309 . .
(2 as"l_ The results of band calculations obtained by the procedure
agp=0.411 , . ;
i depicted above have been exploited to calculate the density-
g, =0.200 . : ; .
0.602 of-state and group-velocity functions as described in Secs.
agp=U.

IV and V. The numerical accuracy in the description of such
functions demanded by the SHE method is very high. Spe-
mized as well. Starting from the values reported in Ref. 35, &ial care has then been devoted to the definition of the three-
nonlinear parameter optimization has been carried out. Thdimensional mesh in th& space and to the algorithm for
optimization procedure is based on the nonlinear modifiectalculating the two functions.
damped least-square scheme, an improved variant of the A first test has been carried out to validate the method:
Levenberg-Marquardt methtf’ and, in the present case, both the density of states and group velocity have been cal-
has led to optimizing the basis-set parameters with respect wulated for Si and compared to those given by Ref. 34. The
a final fitting value for the minimum energy. Only the expo- density of states computed by the DET band structure is
nents for the Gaussian functions describing the outer orbitalsompared in Fig. 4 with that given by the pseudopotential
for the silicon and oxygen atoms have been exploited for thispproach of Ref. 34. In the latter reference, the band struc-
optimization. The nonlinear optimization has been carriedure is obtained following the local empirical pseudopotential
out with four parameters in order to limit the computational method by Cohen and Bergstres&eafter adjusting the form
load. Such parameters are the scaling factors affecting thiactors to the material under investigation.
exponents of the Gaussian functions. Both the qualitative shape of the function and the value
It is worth mentioning that, as in the variational HF and position of the main peaks are very similar for the two
method the calculated energy is always above the experimetechniques. The maximum relative difference between the
tal one, a decrease in energy corresponds to an improveado sets is about 15%. Despite the differences between the
basis set. For this reason, the parameter optimization hd3FT and HF methods, the calculated energy bands are usu-
been carried out in the frame of the HF approach. Once thally similar to each other. The DFT eigenvalues are in gen-
optimal parameters have been determined, the correspondiegal slightly lower than the HF ones, and the energy-band
basis set has been adopted also for the DFT calculation. gap is usually underestimated with respect to the experi-
In Table I, the adopted basis sets for the polymorphs unments. As far as the calculation of the density of states by the

195205-6



DENSITY OF STATES AND GROUP VELOCITY ®.. ..

PHYSICAL REVIEW B 66, 195205 (2002

-- HF
— DFT eq. (22)
—- DFT eq. (18)

o Pseudo pot.

GROUP VELOCITY (10°cms™)

(=)
=

data of Ref. 34. The results provided by the DFT approach
are again very similar to those of Ref. 34. The comparison of
Fig. 4 shows that the DFT method reproduces well the den-
sity of states of the conduction band. The same agreement
between the pseudopotential and DFT methods can be seen
in Fig. 5 for the group velocityeven when two alternative
definitions of the latter are adopted, E¢$3) and (17)]. In
addition, DFT agrees with the pseudopotential results better
than the HF method.

After completing the validation of the algorithms adopted
for the calculation of the electronic properties, the procedure
has been applied to the full band structures of the polymor-
phs under study. In Fig. 6, the densities of states for the four
structures are shown. Both the DFT and HF data have been
reported: here again, the overestimation of the HF eigen-

o

FIG. 5. Group velocity in energy for silicon. Dots: pseudopo-
tentials(Ref. 34. Dashed line: HF method. Solid line: DFT method
using definition(17). Long-dashed line: DFT method using defini-

tion (13).

2 3
Energy (eV)

states gives a clear shift of the main peaks to higher energies.
As far as the comparison between the polymorphs is con-
cerned, a strong similarity is found between the shapes of the
density of states in the whole range. The agreement is also
quantitative for energies up to 3 eV. Similar features are vis-
ible in the group velocities. The latter are shown in Fig. 7,
where the velocities obtained with both HF and DFT meth-
ods are reported.

HF method is concerned, even if a qualitative agreement can To summarize, the investigations described so far led to
be recognized, a rather different distribution in the number othe following resultsi(i) implementation of a tabulation al-
states is found in the whole range of energies: this discrepgorithm for the energy bands in the first Brillouin zone of the
ancy is intrinsic to the method and is due to the overestimamaterials of interest, including the preliminary reconstruction
tion of the eigenvalues given by the HF approach, this sugef the Brillouin zone from the crystal lographic data avail-
gesting that the HF technique is less suited to this kind ofble in the literature(ii) calculation of the first eight conduc-
analysis. In Fig. 5, the results of the group-velocity calcula-tion bands—covering the energy range of interest—for a
tion for silicon have been reported and compared with thenumber of silica polymorphs, including the optimization of
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the basis set for both silicon and oxygéiii,) implementa-  The definition ofc{Y, ¢(2), cro, cac is given in Ref. 1,

tion of a systematic interpolation scheme for the calculatiormong with that of the other relaxation timg in terms of the

of the density of states and group velocity, based on(B4),  same scattering processesrgs Each coefficient of Eq(18)
starting from the tabulation of the eigenvalues, &vd ap-  empeds a multiplicative constant whose value has been de-
plication of the interpolation scheme to the silica polymorphsiermined by comparison with the experimental data as out-
and to silicon, including the comparison of the two possible;\oq pelow.

de]lnitions(t_l3) a(tjnd t()17) oft;c]he dgrou_f Veflo?t{' d By way of example, the zero- and first-order terms of the
S mentioned above, the densily of states and group Ve€g;qiin ition function’s expansiofy, andf; have been deter-

locity of silicon were already known, and their calculation _: : o
. ) : mined by solving the Boltzmann transport equation in the
has been carried out here in order to validate our procedure

by comparison with a consistent set of data available in Ref?pat'a"y uniform case, with a constant electric fiéie Fi,

34. As far as the group velocities of silica polymorphs areand using the density of states and group velocity of

concerned, no data are available, at least to the author-cristobalite calculated with the DFT technique. The elec-
knowledge. The results shown here are thus a contribution t§ON concentration, average velocity, and average energy
the self-consistent calculation of a complete set of coeffiave then been calculated from E@). In this case the elec-
cients of the Boltzmann transport equation within the ,SiO tron mobility is given by the drift relatiow ,,= w,F, where
domain, in the framework of the solution method based orvnx is derived by settind;=f, in Eq. (3).
the spherical-harmonics expansion. The results are shown in Figs. 8 and 9. In the first one, the
Extending the approach of Ref. 1, the individual scattercalculated mobility is compared with the experimental re-
ing rates of collision processes relevant in bulk Sitave sults of Ref. 39, which have been obtained from SiO
been modeled accounting for the full band structure. Thesamples of different thicknesses. In the second, the calcu-
processes are related to two modes of the polar longitudinalated average energy is compared with the same quantity
optical phonons(LO), to the transverse-optical phonons determined from the parabolic-band approximation, and with
(TO), and to the acoustic phonok&C). They contribute to  e€xperimental results of Refs. 3 and 40 obtained with the
the total scattering rate 44 according to carrier-separation technique. It is worth mentioning that the
experimental setup for measuring energy using such a tech-
nique is known to provide more reliable results at higher
fields?! For this reason, the data below 5 MV/cm have not

T_O:C(L%;Q(Eiﬁwf.g)+C|<.%3)9(E1ﬁwf_%)) been used in the fitting procedure. It can also be observed
that in the mobility data of Fig. 8 the sets corresponding to
+ C1o0(EF A wtg) + CacO(E). (18 different thicknesses exhibit a nonmonotonic dependence on
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FIG. 8. Electron mobility in Si@ as a function of the electric FIG. 9. Electron average energy in Si@s a function of the

field. Symbols show the experimental results reported in Ref. 39 o — :
obtained on samples with different thicknesses. The inset comparéésIectrlc field, calculated by the spherical-harmonics metSide

the calculated mobility with that measured by Ref. 39 on the. 3 the parabolic-banidiashed lingand full-band structurécon-

lowest-thickness sample. as a function of temperature and with tinuous ling. The symbols show the experimental results reported
:Vilo“ V/clm pie, unct peratu "™ in Refs. 3 and 40. The inset compares the full-band density of states

of B-cristobalite with that obtained from the parabolic-band model.

the field, which makes the fitting based on these sets lesso further change in the multiplicative constants of Ekp),
appropriate. On the other hand, a sound fitting proceduré obtain the results shown in Fig. 8. As expected, the agree-
should take the mobility and average-energy data into acment is better for the lowest-thickness sample. As for the
count at the same time, because they are related to differeaverage energyFig. 9), the agreement is fair in the high-
moments of the distribution function. Another set of data isfield range. A final observation is about the relevance of the
available in Ref. 39, which reports the electron mobility for full band calculation. The dashed curve in Fig. 9 shows the
the lowest-thickness sample as a function of temperature aesult of the same fitting procedure as above carried out us-
F=10"* V/cm. This set of data is better suited for the fitting ing the parabolic-band model. The marked saturation behav-
procedure due to the strong temperature dependence of tia is due to the much lower number of electronic states at
phonon scattering and, in addition, because it makes the fikiigher energies. The difference in the densities of states for
ting domain two-dimensional as temperature and electrienicroscopic energies larger than 2 eV can be appreciated in
field are independent. the curves shown in the inset, where the full band and
In conclusion, the multiplicative constants within the co- parabolic-band cases are compared.
efficients of Eq.(18) have been determined by a simulta- The investigation reported in this work is part of a larger
neous fitting of the mobility data as a function of temperatureproject aimed at solving the carrier transport in semiconduc-
and of the average-energy data as a function of the electrimr devices, in the framework of the semiclassical Boltzmann
field. The inset of Fig. 8 compares the calculated and experitransport equation in real space and energy. Such informa-
mental mobility as a function of temperature in the rangetion, coupled with that already available for silicon, builds up
100-400 K. After completing the fitting, the electron mobil- the physical basis for the full band calculation of the distri-
ity as a function of the electric field has been calculated withbution function in the whole MOS structure.
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