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Density of states and group velocity of electrons in SiO2 calculated from a full band structure
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The full band structure of SiO2 has been determined in order to calculate parameters that are necessary for
the description of carrier transport.Ab initio calculations of the density of states and group velocity for the
conduction bands of SiO2 are worked out as a function of energy. Four different crystal structures of SiO2 are
investigated, which are known to be built up by the same fundamental unit, namely, the SiO4 tetrahedron: they
are thea- andb-quartz and thea- andb-cristobalite. All of them are polymorphs of silica. The conduction
bands are calculated by means of two different techniques: the Hartree-Fock method and density-functional
theory. The different features of the two methods are examined. Eight energy bands are used to calculate the
density of states and group velocity for the energies of interest. Based on such calculations, the relevant
scattering mechanisms have been modeled to determine the microscopic relaxation times. This in turn allows
for the solution of the Boltzmann transport equation in the coordinate and energy space, which eventually leads
to the calculation of macroscopic quantities such as carrier concentration, average velocity, and average energy.
Examples are given of calculated electron mobility and average energy, along with comparisons with experi-
mental results available in the literature.

DOI: 10.1103/PhysRevB.66.195205 PACS number~s!: 71.20.2b, 72.10.2d, 71.15.2m, 72.20.2i
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I. INTRODUCTION

Among insulators, silicon dioxide plays a major role
the solid-state technology. Especially in recent years, exp
mental and theoretical investigations focused on microsco
properties of this material related with reliability problem
The hot-carrier effects and, among them, those related
carrier injection into the gate oxide, cannot be neglected
more in ultrascaled devices. A first-order model of electr
transport in silicon dioxide has already been worked ou
the framework of the spherical-harmonics expansion~SHE!
method applied to the solution of the Boltzmann transp
equation.1 One of the main advantages of this method is t
it provides the carrier-distribution function in the physic
space and energy in a deterministic way. Thus, the infor
tion about the carriers’ energy distribution is maintaine
which is essential for describing high-energy phenomena
Ref. 1, the scattering rates for each collision process h
been analyzed and a number of transport properties of e
trons in bulk SiO2 have been worked out in the framework
the parabolic-band approximation. Moreover, a new mo
has been introduced into the SHE code to calculate the
croscopic fluxes at the silicon interface.2 The description of
the high-energy tail of the distribution function above t
energy barrier at the interface and within SiO2 provides use-
ful information about the electron injection into the gate o
ide.

As far as the investigation of carrier transport in SiO2 is
concerned, the main theoretical efforts were via Monte Ca
simulation.3–5 In these works microscopic collision mech
nisms in polar materials have accurately been modeled, l
ing to interpretation of the experimental data for avera
velocity, average energy, and impact ionization in SiO2 . In
our first investigation1 of the electron transport in SiO2 some
approximations were embedded in the description of
band structure at higher energies. In particular, the first c
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duction band was assumed to be a spherical and para
function terminating at 6 eV, this limiting the validity of th
analysis when high electric fields are considered.

A more accurate description of the transport properties
higher energies, suitable for the application of the SH
method, requires two steps:~i! the calculation of the full
band structure over the first Brillouin zone, and~ii ! the con-
sistent calculation—from the full band structure—of the fu
damental functions that are necessary in the SHE meth
namely, the density of states and group velocity as a func
of energy. The work presented in this paper illustrates
outcome of such calculations in SiO2 . The paper extends th
results of Ref. 6, where the solution of the Schro¨dinger equa-
tion ~namely, stepi above! was carried out along specifi
crystalline directions only. As in Ref. 6, two differentab
initio techniques@Hartree-Fock~HF! and density-functional
theory ~DFT!# are adopted here. In particular, the gradie
corrected extension7 of the local-density approximation
~LDA ! has been used in the DFT technique. The nonhom
geneous electron-gas effects have been accounted
through the Lee-Yang-Parr functional.8

As in the SHE scheme the band structure of the mate
appears through the density of states and group velocity,
calculations reported in this work constitute the basis
achieve an accurate description of the transport properties
SiO2 at higher energies. Obviously, the completion of a
search project aiming at modeling the carrier transport
quires the description of the collision events; in particular,
far as SiO2 is concerned, the implementation of the electro
phonon interactions has already occurred in Ref. 1 for
spherical-parabolic approximation of the band structure. O
ing to the calculation of the transport parameters presente
this paper, the investigation on the collision events has b
extended to the high-energy case, and the results are rep
at the end of the paper.

The description of some electronic properties of the Si2
©2002 The American Physical Society05-1
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polymorphs has been addressed as early as the late 197
Refs. 9–12. The tight-binding technique has been applie
Refs. 9 and 11, which report the calculation of the cond
tion bands of the idealb-cristobalite at the three high
symmetry points of thek space and estimate the effectiv
mass of the lowest conduction band. A similar calculation
shown in Ref. 12 fora-quartz. In Ref. 10 the pseudopotenti
technique is applied toa-quartz to determine the eigenvalu
in 16 points of the irreducible Brillouin zone and to calcula
the effective mass of electrons and holes. A self-consis
LDA approach was later used in Ref. 13 to calculate
conduction and valence bands of SiO2 polymorphs. The
LDA technique adopted in Ref. 13 is based on the assu
tion of a locally homogeneous electron gas. Among the a
of the present work are overcoming some of the approxim
tions of the investigations mentioned above, and consiste
extending the calculation in order to determine the density
states and group velocity. References exist where the de
of states is calculated for materials different from SiO2 , e.g.,
hexagonal SiC polytypes,14 band-tail derivation in
semiconductors,15 and bulk and interface density of states
amorphous- or polycrystalline-silicon devices.16 In recent pa-
pers, calculations have been reported for ultrathin SiO2 :
tight-binding andab initio calculations have been used
Refs. 17 and 18, respectively, in the framework of investi
tions on the applicability of the effective-mass approxim
tion to the carrier dynamics, including tunneling. On t
other hand, to our knowledge the calculation of the gro
velocity in SiO2 polymorphs has not been tackled before.

The paper is organized as follows: in Sec. II, the el
tronic properties of SiO2 are analyzed and the choice of th
SiO2 polymorphs is discussed. The description of the phy
cal model for the electrons in SiO2 is briefly illustrated in
Sec. III. In Sec. IV the first Brillouin zone of the crystallin
systems is described along with the numerical details ab
the three-dimensional mesh adopted in thek space. The com-
putational details for the calculation of the density of sta
and group velocity are given in Sec. V. The optimization
the basis sets adopted for the polymorphs of SiO2 is de-
scribed in Sec. VI. Finally, the results are shown in Sec. V
They consist of the density of states and group velocity
the polymorphs considered, in the calculations of the e
tron mobility and average energy, and in the comparison w
experimental data available in the literature.

II. THE POLYMORPHS OF SiO 2

In very-large-scale integrated complementary metal-ox
semiconductor~CMOS! technology, the gate oxide is grow
in an amorphous phase on a silicon crystal: this means
SiO2 is constituted by SiO4 tetrahedra with bond-length an
bond-angle distortions. It is known that most amorpho
phases are characterized by distortions of about 1% for
bond length and 10% for the bond angle, thus the main
ference between the crystalline ad amorphous phases is
to the Si–O–Sibonding.19 Moreover, it has experimentally
been observed that the x-ray photoemission spectra20 and
ultraviolet photoemission spectra21 of amorphous and crys
talline SiO2 appear to be quite similar in the location an
19520
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global shape of the peaks. As a consequence, the calcul
of the electronic properties of the crystalline phases of S2
can be exploited to understand the main aspects of the a
phous phases as well.

The set of polymorphs that have been analyzed in
work has been selected with the aim of taking into acco
forms with an electronic density similar to that of the amo
phous silicon dioxide, and with a quite symmetric crystalli
structure.6 Among the SiO2 polymorphs, thea-quartz form
of silica is the most common structure present in nature
has 6 symmetry operators. Theb-quartz structure is similar
to that ofa-quartz, but is characterized by 12 symmetry o
erators, this providing a computational advantage in term
central processing unit time and memory in the calculation
a number of physical properties. Thea-cristobalite structure
is characterized by 8 symmetry operators, but its structur
less compact in comparison with that of quartz. T
b-cristobalite is characterized by a diamond structure with
oxygen atom placed on each vertex of the cell, and, due to
48 symmetry operators, it can be seen as the most suit
form for ab initio calculations.

The numerical calculation of the band structure and d
sity of states implies the solution of a multibody proble
that exceeds the computational power of nowadays com
ers. From the theoretical standpoint, such calculations ca
dealt with by methods similar to those used for analyz
molecular structures. In that field, a number of theories h
been developed for the purpose of simulating molecu
structures that are known to reduce the complexity of
simulation by means of suitable approximations. Amo
these are the HF method and DFT, which are implemente
the codeCRYSTAL98© adopted in this work to analyze th
crystalline forms under investigation.22 Both approaches
have suitably been extended in Ref. 22 to solve the o
electron Schro¨dinger equation for the periodical problem of
crystalline structure.

III. COEFFICIENTS OF THE TRANSPORT MODEL

One of the main properties of the spherical-harmonics
pansion method is that it provides the carriers’ energy dis
bution in the real space-energy domain (r ,E) in a determin-
istic way.23 This feature is obtained by expanding the carri
distribution functionf (r ,k) in the momentum space in serie
of spherical harmonics defined on the unit sphere.24–26 The
method eventually yields a system of first-order, coupled d
ferential equations for the zero- and first-order termsf 0 and
f i , i 5x, y, z of the expansion. It has been checked that
energy-distribution function obtained by the first-order tru
cation provides sufficient accuracy for the problems
hand.27,28

The features of the spherical-harmonics expans
method are illustrated in detail in the above references.
the purposes of this paper it is important to remind the rea
that the band structure of the material appears in the mo
only through the density of statesg(E) and group velocity
ug(E) per unit volume in the energy space. The other co
ficients of the model are the microscopic relaxation timest0
andt1 and the electric fieldF. The latter is determined from
5-2
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DENSITY OF STATES AND GROUP VELOCITY OF . . . PHYSICAL REVIEW B 66, 195205 ~2002!
a simulation using a set of real-space transport equations
those of the hydrodynamic model.29

The density of states and group velocity are obtained
rectly from the full-band system as30

g~E!8E G~E,V!dV, ~1!

ug
2~E!8

1

g~E!
E G~E,V!Ug

2~E,V!dV, ~2!

whereG(E,V)5k3/(k•“kE) andUg(E,V)5“kE/\ are the
density of states and group velocity in thek space, respec
tively. The carrier concentration, average velocity, and av
age energy, which are the macroscopic quantities descri
the carrier transport, can be calculated from the above. T
ing by way of example the electrons of the conduction ba
such quantities are given by28,29

n5E g f0dE, vni5
1

3n E ugf idE, wn5
1

n E Eg f0dE,

~3!

where the integrals extend over the conduction band.
The above description shows that the transport coe

cients deriving from the material’s structure areg and ug .
Therefore, an accurate calculation of the density of states
group velocity is essential for the solution of the carrie
transport problem. The importance of accounting for the
band structure of the material in such a calculation, with
resorting to the parabolic-band approximation, has alre
been outlined in the investigations about carrier transpor
silicon.25 As shown by Eqs.~1! and~2!, the numerical calcu-
lation of g and ug is based on an integration of the ban
structureE(k) and its gradient“kE(k) over the angular par
of the k vector. Thus, an accurate tabulation of the ba
structure in thek space is fundamental.

IV. TABULATION OF THE BAND STRUCTURE

The band structures of the SiO2 polymorphs have been
calculated by means of both the HF and DFT methods.
same approach has previously been adopted for the ana
of silicon dioxide, limited to the characteristic directions.6 In
view of the modeling of the transport phenomena, the g
eration of numerical tables for the density of states and gr
velocity is needed. Thus, a three-dimensional mesh ink
space has been generated, and the energy and its deriva
have been calculated at each point. A preliminary part
such work has been the reconstruction of the first Brillo
zone of the polymorphs under investigation from the crys
lographic data available in the literature.

Although the calculation at hand could in principle b
restricted to the irreducible Brillouin zone, for programmin
simplicity the band structure has been tabulated over its
octant. This choice does not limit the minimum element s
of the adopted mesh: this size is in fact controlled by
CRYSTAL98 code. The critical point of the tabulation proc
dure is the definition of the geometrical planes of the fi
Brillouin zones.
19520
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Figure 1 shows the first Brillouin zone of a diamond cry
tal structure, typical of silicon andb-cristobalite. For this
structure, the reciprocal-lattice characteristic vectors are

b15
2p

a
~ ix1 iy2 iz!,

b25
2p

a
~ iy1 iz2 ix!, ~4!

b35
2p

a
~ ix2 iy1 iz!,

whereix , iy , and iz are orthogonal unit vectors anda is the
crystallographic cell parameter of a body-centered cu
structure. Thekx , ky , andkz axes of Fig. 1 are parallel toix ,
iy , and iz , respectively. In particular, it isa55.42 Å for
silicon anda57.313 Å for b-cristobalite. The first octant
shown in gray in Fig. 1, is defined by the relations

0<kx ,ky ,kz<
2p

a
, kx1ky1kz<

3

2 S 2p

a D . ~5!

The first equation defines the cube containing the first oc
of the Brillouin zone, while the second defines the pla
corresponding to the hexagonal face of the figure.

FIG. 1. First Brillouin zone of theb-cristobalite polymorph.

FIG. 2. First Brillouin zone ofa- andb-quartz.
5-3
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The first Brillouin zone ofa- and b-quartz is shown in
Fig. 2. For these crystals the reciprocal-space character
vectors are

b15
2p

a
ix ,

b25
2p

a S 1

2
ix1
)

2
iyD , ~6!

b35
2p

c
iz ,

wherea andc are the crystallographic parameters of a trig
nal structure. In particular,a54.9138 Å, c55.4052 Å for
a-quartz, anda54.996 Å, c55.497 Å for b-quartz. In this
case, the parallelepiped containing the first octant of the B
louin zone is defined by

0<kx<
2p

a
,

0<ky<
2

)

2p

a
, ~7!

0<kz<
2p

c
.

In addition to these relations, the equation of the plane
liquely cutting the (kx ,ky) plane must be taken into accoun

ky<2
1

)
kx1

2

)

2p

a
. ~8!

The relations~7! and ~8! together describe the gray regio
shown in Fig. 2.

Finally, a-cristobalite is characterized by a tetragon
crystal structure, whose first Brillouin zone is shown in F
3. For this kind of crystal the reciprocal-space characteri
vectors are

FIG. 3. First Brillouin zone of thea-cristobalite polymorph.
19520
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b15
2p

a
ix ,

b25
2p

a
iy , ~9!

b35
2p

c
iz ,

wherea54.971 Å andc57.010 Å. The first octant of the
Brillouin zone of a tetragonal crystal structure is the par
lelepiped defined by the relations

0<kx<
2p

a
,

0<ky<
2p

a
, ~10!

0<kz<
2p

c
.

For the calculation of the band structure in the first octant
the Brillouin zone, the latter has been discretized. The d
cretization procedure has been carried out using aD50.05
mesh step for thekx , ky andkz axes, this defining an elemen
tary, rectangular parallelepiped associated with each disc
zation pointk j . More specifically, the distanceBx from the
center of the Brillouin zone to the boundary of it, measur
along thekx axis, has been subdivided into equal intervals
lengthDx5BxD. The same subdivision has been carried o
for theky andkz axes, thus obtaining a set of equal parall
epipeds whose volume depends on the polymorph con
ered.

In the case ofa-cristobalite, due to the shape of the Bri
louin zone~Fig. 3!, 1/D358000 parallelepipeds fill exactly
its first octant, and the number of discretization points tu
out to be (111/D)359261. In the case ofb-cristobalite and
a- or b-quartz, the shape of the Brillouin zone prevents
exact filling by parallelepipedons~Figs. 1 and 2!. The dis-
cretization points turn out to be 5775 forb-cristobalite and
6951 for a- and b-quartz. The choice of the discretizatio
procedure used here stems from the need of interpola
E(k) and“kE(k). The band structureE(k) is replaced with
a quadratic interpolation of the type31 over each parallelepi-
ped. Although the quadratic interpolation over parallele
peds requires the calculation of a larger number of coe
cients than the linear one carried out over tetrahedra~see,
e.g., Ref. 32!, the additional computer load is affordable ev
when a substantial number of parallelepipeds is used. M
over, the same type of interpolation is used in Refs. 33
34, which makes the comparison sounder~see Sec. VII!.

For each discretization pointk j , the eigenvalues of the
eight lowest conduction bands have been computed. T
the first and second derivatives have been calculated atk j as

]aEv j5
1

2Da
@Ev~k j1Daia!2Ev~k j2Daia!#, ~11!
5-4
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DENSITY OF STATES AND GROUP VELOCITY OF . . . PHYSICAL REVIEW B 66, 195205 ~2002!
]ab
2 Ev j5

1

4DaDb
@Ev~k j1Daia1Dbib!2Ev~k j2Daia

1Dbib!2Ev~k i1Daia2Dbib!1Ev~k j2Daia

2Dbib!#,

where v runs over the eight lowest conduction band
Da(b)5Ba(b)D (a,b5x,y,z), andEv j5Ev(k j ).

V. CALCULATION METHOD FOR THE DENSITY OF
STATES AND GROUP VELOCITY

In order to determine the density of statesg and group
velocity ug at a given energyE, and to finally tabulate them
over a wide range of energies, an integration algorithm
been implemented. A brief description is given in the follo
ing, with special emphasis for the numerical aspects. Us
the coordinates of thek space, Eqs.~1! and ~2! read

g~E!5
2

~2p!3 (
v
E

k
d„E2Ev~k!…dk, ~12!

ug
2~E!g~E!5

2

~2p!3 (
v
E

k
uv

2~k!d„E2Ev~k!…dk,

~13!

where 1/(2p)3 is the density of states in the~r, k ! space,v is
the band index,uv5(1/\)¹kEv , and the factor 2 account
for the spin degeneracy.

The energy range 0–10 eV has been chosen for the a
cation of the algorithm, in order to cover the eight lowe
conduction bands for all the polymorphs of interest. Suc
range has been divided into 500 equal intervals of 0.02
each.

The integrals~12! and ~13! must be carried out over sur
faces of constant energyE5Ev(k), whereEv(k) is given by
a table in whichk is discretized as detailed in the precedi
section. The algorithm runs over the elementary parallele
peds introduced in Sec. IV. The vertices of themth parallel-
epiped will be denoted here askmi , i 51,...,8 where, in par-
ticular, km1 corresponds to the vertex where the sumkx
1ky1kz is minimum. If the current energy levelE is in the
range defined by the eigenvaluesEv(kmi), then themth par-
allelepiped contributes to the calculation of the number
states.

Following Ref. 31, the number of states per eV and u
volume of themth parallelepiped andvth band can be ap
proximated as

Svm5
Avm

u“kEv~kmc!u
, ~14!

whereAvm is the surface determined by the intersection
the isoenergetic plane with the parallelepiped. Equation~14!
replaces the actual energy surface to which the centerkmc of
the mth parallelepiped belongs with a plane normal
“kEv(kmc). As a consequence, to implement Eq.~14! it is
necessary to interpolateEv(kmc) and the corresponding gra
19520
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the final density of states corresponding to the current le
E.

The interpolation has been implemented here as follo
first, the parallelepiped centerkmc is calculated and, for a
given bandv, the corresponding energy is determined a
first approximation from a quadratic interpolation starti
from the parallelepiped’s vertices:

Ev i~kmc!5Ev i~k i !1(
a

]aEv i~k i !~kamc2kami!

1
1

2 (
ab

]ab
2 Ev i~k i !~kamc2kami!~kbmc2kbmi!.

~15!

Consistently, the component of the group velocity in theia
direction is approximated as

uv ia~kmc!5
1

\
“kEv i• ia5]aEv i~k i !

1(
b

]a,b
2 Ev i~k i !~kbmc2kbmi!. ~16!

Then, the approximation is improved by averaging over
vertices: Ev(kmc)5( i 51

8 Ev i(kmc)/8, and the same for
uv ia(kmc).

The group velocity as a function ofE is obtained in a
similar way. It is worth noting that an alternative definitio
of the group velocity is34

ug~E!g~E!5
2

~2p!3 (
v
E

k
uuv~k!ud„E2Ev~k!…dk.

~17!

The computation shows that for the materials at hand
difference between the group velocity derived from Eq.~13!
and that of Eq.~17! is not quantitatively relevant. An ex
ample is shown in Fig. 5.

VI. OPTIMIZATION OF THE BASIS SETS

A first critical aspect of the numerical calculation of th
band structure in SiO2 has been the choice of the variation
basis set to accurately describe the atomic orbitals.
variational basis sets adopted in this work for the SiO2 poly-
morphs have been obtained starting from a number of o
mized sets fora-quartz reported in Ref. 35. First, as th
SiuO bond is quite ionic, the choice of the basis is mo
critical for oxygen than for silicon. For this reason,
6-211G(2d) basis instead of a 6-21G(2d) has been chosen
for oxygen.35 A slightly different basis set has been adopt
for b-quartz in order to overcome some convergence pr
lems. The symbols used to indicate the basis sets
standard.42

Since the choice of the basis set plays an essential ro
the description of the electronic structure and in the calcu
tion of the conduction-band eigenvalues, the basis sets
b-quartz, a-cristobalite, andb-cristobalite have been opti
5-5
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mized as well. Starting from the values reported in Ref. 35
nonlinear parameter optimization has been carried out.
optimization procedure is based on the nonlinear modi
damped least-square scheme, an improved variant of
Levenberg-Marquardt method36,37 and, in the present case
has led to optimizing the basis-set parameters with respe
a final fitting value for the minimum energy. Only the exp
nents for the Gaussian functions describing the outer orb
for the silicon and oxygen atoms have been exploited for
optimization. The nonlinear optimization has been carr
out with four parameters in order to limit the computation
load. Such parameters are the scaling factors affecting
exponents of the Gaussian functions.

It is worth mentioning that, as in the variational H
method the calculated energy is always above the experim
tal one, a decrease in energy corresponds to an impro
basis set. For this reason, the parameter optimization
been carried out in the frame of the HF approach. Once
optimal parameters have been determined, the correspon
basis set has been adopted also for the DFT calculation

In Table I, the adopted basis sets for the polymorphs

TABLE I. Adopted basis sets for silicon and oxygen.

Atoms
Basis
set

Gaussian
exponents

a-quartz

Si 6-21G(2d) asp50.130
ad150.500
ad251.500

O 6-211G(2d) asp150.890
asp250.280
ad150.400
ad251.200

b-quartz

Si 6-21G(2d) asp50.130
ad50.500

O 6-31G(2d) asp50.274
ad50.600

a-cristobalite

Si 6-21G(2d) asp50.119
ad150.429
ad251.289

O 6-211G(2d) asp151.317
asp250.414
ad150.242
ad250.728

b-cristobalite

Si 6-21G(2d) asp50.113
ad150.856
ad252.568

O 6-211G(2d) asp151.309
asp250.411
ad150.200
ad250.602
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der study and the exponents for the Gaussian functions
scribing the outer orbitals for the silicon and oxygen ato
are reported, rounded to four digits. Starting from t
a-quartz basis set of Ref. 35, the first scaling factor refers
the sp shells, the second factor refers to thed shells of the
silicon atom, the third and fourth factors refer to thespandd
shells of the oxygen atom, respectively.

VII. RESULTS AND CONCLUSIONS

The results of band calculations obtained by the proced
depicted above have been exploited to calculate the den
of-state and group-velocity functions as described in Se
IV and V. The numerical accuracy in the description of su
functions demanded by the SHE method is very high. S
cial care has then been devoted to the definition of the th
dimensional mesh in thek space and to the algorithm fo
calculating the two functions.

A first test has been carried out to validate the meth
both the density of states and group velocity have been
culated for Si and compared to those given by Ref. 34. T
density of states computed by the DET band structure
compared in Fig. 4 with that given by the pseudopoten
approach of Ref. 34. In the latter reference, the band st
ture is obtained following the local empirical pseudopoten
method by Cohen and Bergstresser38 after adjusting the form
factors to the material under investigation.

Both the qualitative shape of the function and the va
and position of the main peaks are very similar for the t
techniques. The maximum relative difference between
two sets is about 15%. Despite the differences between
DFT and HF methods, the calculated energy bands are
ally similar to each other. The DFT eigenvalues are in g
eral slightly lower than the HF ones, and the energy-ba
gap is usually underestimated with respect to the exp
ments. As far as the calculation of the density of states by

FIG. 4. Density of states in energy for silicon. Solid lin
pseudopotentials~Ref. 34!. Dotted line: HF method. Dashed line
DFT method.
5-6
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DENSITY OF STATES AND GROUP VELOCITY OF . . . PHYSICAL REVIEW B 66, 195205 ~2002!
HF method is concerned, even if a qualitative agreement
be recognized, a rather different distribution in the numbe
states is found in the whole range of energies: this disc
ancy is intrinsic to the method and is due to the overestim
tion of the eigenvalues given by the HF approach, this s
gesting that the HF technique is less suited to this kind
analysis. In Fig. 5, the results of the group-velocity calcu
tion for silicon have been reported and compared with

FIG. 5. Group velocity in energy for silicon. Dots: pseudop
tentials~Ref. 34!. Dashed line: HF method. Solid line: DFT metho
using definition~17!. Long-dashed line: DFT method using defin
tion ~13!.
19520
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data of Ref. 34. The results provided by the DFT approa
are again very similar to those of Ref. 34. The comparison
Fig. 4 shows that the DFT method reproduces well the d
sity of states of the conduction band. The same agreem
between the pseudopotential and DFT methods can be
in Fig. 5 for the group velocity@even when two alternative
definitions of the latter are adopted, Eqs.~13! and ~17!#. In
addition, DFT agrees with the pseudopotential results be
than the HF method.

After completing the validation of the algorithms adopt
for the calculation of the electronic properties, the proced
has been applied to the full band structures of the polym
phs under study. In Fig. 6, the densities of states for the f
structures are shown. Both the DFT and HF data have b
reported: here again, the overestimation of the HF eig
states gives a clear shift of the main peaks to higher energ
As far as the comparison between the polymorphs is c
cerned, a strong similarity is found between the shapes of
density of states in the whole range. The agreement is
quantitative for energies up to 3 eV. Similar features are v
ible in the group velocities. The latter are shown in Fig.
where the velocities obtained with both HF and DFT me
ods are reported.

To summarize, the investigations described so far led
the following results:~i! implementation of a tabulation al
gorithm for the energy bands in the first Brillouin zone of t
materials of interest, including the preliminary reconstructi
of the Brillouin zone from the crystal lographic data ava
able in the literature,~ii ! calculation of the first eight conduc
tion bands—covering the energy range of interest—fo
number of silica polymorphs, including the optimization
-
FIG. 6. Density of states in en
ergy for~a! a-quartz,~b! b-quartz,
~c! a-cristobalite, and ~d!
b-cristobalite. Solid lines: HF
method. Dashed lines: DFT
method.
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FIG. 7. Group velocity in en-
ergy for~a! a-quartz,~b! b-quartz,
~c! a-cristobalite, and ~d!
b-cristobalite. Solid lines: HF
method. Dashed lines: DFT
method.
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the basis set for both silicon and oxygen,~iii ! implementa-
tion of a systematic interpolation scheme for the calculat
of the density of states and group velocity, based on Eq.~14!,
starting from the tabulation of the eigenvalues, and~iv! ap-
plication of the interpolation scheme to the silica polymorp
and to silicon, including the comparison of the two possi
definitions~13! and ~17! of the group velocity.

As mentioned above, the density of states and group
locity of silicon were already known, and their calculatio
has been carried out here in order to validate our proced
by comparison with a consistent set of data available in R
34. As far as the group velocities of silica polymorphs a
concerned, no data are available, at least to the auth
knowledge. The results shown here are thus a contributio
the self-consistent calculation of a complete set of coe
cients of the Boltzmann transport equation within the Si2
domain, in the framework of the solution method based
the spherical-harmonics expansion.

Extending the approach of Ref. 1, the individual scatt
ing rates of collision processes relevant in bulk SiO2 have
been modeled accounting for the full band structure. T
processes are related to two modes of the polar longitudi
optical phonons~LO!, to the transverse-optical phonon
~TO!, and to the acoustic phonons~AC!. They contribute to
the total scattering rate 1/t0 according to

1

t0
5cLO

~1!g~E7\vLO
~1!!1cLO

~2!g~E7\vLO
~2!!

1cTOg~E7\vTO!1cACg~E!. ~18!
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The definition ofcLO
(1) , cLO

(2) , cTO, cAC is given in Ref. 1,
along with that of the other relaxation timet1 in terms of the
same scattering processes ast0 . Each coefficient of Eq.~18!
embeds a multiplicative constant whose value has been
termined by comparison with the experimental data as o
lined below.

By way of example, the zero- and first-order terms of t
distribution function’s expansionf 0 , and f i have been deter
mined by solving the Boltzmann transport equation in t
spatially uniform case, with a constant electric fieldF5F ix
and using the density of states and group velocity
b-cristobalite calculated with the DFT technique. The ele
tron concentration, average velocity, and average ene
have then been calculated from Eq.~3!. In this case the elec
tron mobility is given by the drift relationvnx5mnF, where
vnx is derived by settingf i5 f x in Eq. ~3!.

The results are shown in Figs. 8 and 9. In the first one,
calculated mobility is compared with the experimental
sults of Ref. 39, which have been obtained from Si2
samples of different thicknesses. In the second, the ca
lated average energy is compared with the same qua
determined from the parabolic-band approximation, and w
experimental results of Refs. 3 and 40 obtained with
carrier-separation technique. It is worth mentioning that
experimental setup for measuring energy using such a t
nique is known to provide more reliable results at high
fields.41 For this reason, the data below 5 MV/cm have n
been used in the fitting procedure. It can also be obser
that in the mobility data of Fig. 8 the sets corresponding
different thicknesses exhibit a nonmonotonic dependence
5-8
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DENSITY OF STATES AND GROUP VELOCITY OF . . . PHYSICAL REVIEW B 66, 195205 ~2002!
the field, which makes the fitting based on these sets
appropriate. On the other hand, a sound fitting proced
should take the mobility and average-energy data into
count at the same time, because they are related to diffe
moments of the distribution function. Another set of data
available in Ref. 39, which reports the electron mobility f
the lowest-thickness sample as a function of temperatur
F5104 V/cm. This set of data is better suited for the fittin
procedure due to the strong temperature dependence o
phonon scattering and, in addition, because it makes the
ting domain two-dimensional as temperature and elec
field are independent.

In conclusion, the multiplicative constants within the c
efficients of Eq.~18! have been determined by a simult
neous fitting of the mobility data as a function of temperat
and of the average-energy data as a function of the ele
field. The inset of Fig. 8 compares the calculated and exp
mental mobility as a function of temperature in the ran
100–400 K. After completing the fitting, the electron mob
ity as a function of the electric field has been calculated w

FIG. 8. Electron mobility in SiO2 as a function of the electric
field. Symbols show the experimental results reported in Ref.
obtained on samples with different thicknesses. The inset comp
the calculated mobility with that measured by Ref. 39 on
lowest-thickness sample, as a function of temperature and witF
5104 V/cm.
on
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no further change in the multiplicative constants of Eq.~18!,
to obtain the results shown in Fig. 8. As expected, the ag
ment is better for the lowest-thickness sample. As for
average energy~Fig. 9!, the agreement is fair in the high
field range. A final observation is about the relevance of
full band calculation. The dashed curve in Fig. 9 shows
result of the same fitting procedure as above carried out
ing the parabolic-band model. The marked saturation beh
ior is due to the much lower number of electronic states
higher energies. The difference in the densities of states
microscopic energies larger than 2 eV can be appreciate
the curves shown in the inset, where the full band a
parabolic-band cases are compared.

The investigation reported in this work is part of a larg
project aimed at solving the carrier transport in semicond
tor devices, in the framework of the semiclassical Boltzma
transport equation in real space and energy. Such infor
tion, coupled with that already available for silicon, builds
the physical basis for the full band calculation of the dist
bution function in the whole MOS structure.

9,
es

FIG. 9. Electron average energy in SiO2 as a function of the
electric field, calculated by the spherical-harmonics method~SHE!
using the parabolic-band~dashed line! and full-band structure~con-
tinuous line!. The symbols show the experimental results repor
in Refs. 3 and 40. The inset compares the full-band density of st
of b-cristobalite with that obtained from the parabolic-band mod
ns.
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